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ABSTRACT
A generalized criterion for signature related algorithms to
compute Gröbner basis is proposed in this paper. Signature
related algorithms are a popular kind of algorithms for com-
puting Gröbner basis, including the famous F5 algorithm,
the F5C algorithm, the extended F5 algorithm and the GVW
algorithm. The main purpose of current paper is to study
in theory what kind of criteria is correct in signature related
algorithms and provide a generalized method to develop new
criteria. For this purpose, a generalized criterion is proposed.
The generalized criterion only relies on a general partial or-
der defined on a set of polynomials. When specializing the
partial order to appropriate specific orders, the generalized
criterion can specialize to almost all existing criteria of sig-
nature related algorithms. For admissible partial orders, a
proof is presented for the correctness of the algorithm that
is based on this generalized criterion. And the partial orders
implied by the criteria of F5 and GVW are also shown to be
admissible in this paper. More importantly, the generalized
criterion provides an effective method to check whether a
new criterion is correct as well as to develop new criteria for
signature related algorithms.
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I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms
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Algorithms, Theory
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1. INTRODUCTION
Gröbner basis was first proposed by Buchberger in 1965.

Since then, many important improvements have been made
to speed up the algorithms for computing Gröbner basis [3,
4, 14, 15, 19, 10, 11]. One important improvement is that
Lazard pointed out the connection between a Gröbner basis
and linear algebra [18]. This idea is also implemented as
XL type algorithms by Courtois et al. [5] and Ding et al.
[7]. Up to now, F5 is one of the most efficient algorithms
for computing Gröbner basis. The concept of signatures for
polynomials was also introduced by Faugère in [11]. Since
F5 was proposed in 2002, it has been widely investigated
and several variants of F5 have been presented, including
the F5C algorithm [9] and F5 with extended criteria [16].
Proofs and other extensions of F5 are also investigated in
[20, 8, 1, 2, 21, 22, 23]. Gao et al. proposed an incremental
signature related algorithm G2V to compute Gröbner basis
in [12], and presented an extended version GVW in [13].

The common characteristics of F5, F5C, extended F5 and
GVW are (1) each polynomial has been assigned a signature,
and (2) both the criteria and the reduction process depend
on the signatures of polynomials. So all these algorithms are
signature related algorithms. The only difference among the
algorithms is that their criteria are different.

By studying these criteria carefully, we find that all of
these criteria work almost in a same way. Suppose f and
g are two polynomials with signatures and the S-pair of f
and g is denoted by (tf , f, tg, g) where tf and tg are power
products such that the leading power product of tff and tgg
are the same. Then a necessary condition of existing criteria
to reject this S-pair is that, there exists some known poly-
nomial h such that h’s signature is a factor of tff ’s or tgg’s
signature. However, this condition is not sufficient to make
the criteria correct. Thus, existing criteria use different ex-
tra conditions to ensure correctness. With this insight, we
generalize these extra conditions to a partial order defined
on a set of polynomials, and then propose a generalized cri-
terion for signature related algorithms. When specializing
the partial order to appropriate specific orders, the general-
ized criterion can specialize to almost all existing criteria of
signature related algorithms. We will discuss the specializa-
tions in detail.

Unfortunately, not all partial orders can make the gener-
alized criterion correct. We proved that the generalized cri-
terion is correct if the partial order is admissible. Moveover,
we show that the partial orders implied by the criteria of F5
and GVW are both admissible, so the proof in this paper is
also valid for the correctness of F5 and GVW.
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The significance of the generalized criterion is to show
what kind of criteria for signature related algorithms is cor-
rect and provide a generalized method to check or develop
new criteria. Specifically, when a new criterion is presented,
if it can be specified from the generalized criterion by using
an admissible partial order, then this new criterion is defi-
nitely correct. It is also possible for us to develop some new
criteria by using an admissible partial order in the general-
ized criterion. From the proof in this paper, we know that
any admissible partial order can develop a new criterion for
signature related algorithms in theory, but not all of these
criteria can reject almost all useless critical pairs. Therefore,
we claim that if the admissible partial order is in fact a total
order, then almost all useless computations can be avoided.
The proof for the claim will be included in our future works.

The paper is organized as follows. Section 2 gives the
generalized criterion and describes how this generalized cri-
terion specializes to the criteria of F5 and GVW. Section 3
proves the correctness of the generalized criterion. Section 4
develops a new criterion by using an admissible partial or-
der in the generalized criterion. Concluding remarks follow
in Section 6.

2. GENERALIZED CRITERION

2.1 Generalized criterion
Let R = K[x1, · · · , xn] be a polynomial ring over a field K

with n variables. Suppose {f1, · · · , fm} is a finite subset of
R. We want to compute a Gröbner basis for the ideal

I = 〈f1, · · · , fm〉 = {p1f1 + · · ·+ pmfm | p1, · · · , pm ∈ R}

with respect to some term order on R.
Let f = (f1, · · · , fm) ∈ Rm, and consider the following

R-module of Rm ×R:

M = {(u, f) ∈ Rm ×R | u · f = f}.

Let ei be the i-th unit vector of Rm, i.e. (ei)j = δij where
δij is the Kronecker delta. Then the R-module M is gener-
ated by {(e1, f1), · · · , (em, fm)}. The R-module M was first
introduced to describe signature related algorithms by Gao
et al. in [12, 13].

Fix any term order ≺1 on R and any term order ≺2 on
Rm. We must emphasize that the order ≺2 may or may
not be related to ≺1 in theory, although ≺2 is usually an
extension of ≺1 to Rm in implementation. For sake of con-
venience, we shall use the following convention for leading
power products:

lpp(f) = lpp≺1
(f) and lpp(u) = lpp≺2

(u),

for any f ∈ R and any u ∈ Rm. We make the convention
that if f = 0 then lpp(f) = 0 and 0 ≺1 t for any non-zero
power product t in R; similarly for lpp(u). In the following,
we use ≺ to represent ≺1 and ≺2, if no confusion occurs.
Most of the terminologies on “module” in this paper can be
found in Chapter 5 of [6].

For any (u, f) ∈ M, we call lpp(u) the signature of
(u, f), which is the same as the signature used in F5.

Given a finite set B ⊂ M, consider a partial order “≤”
defined on B, where “≤” has:

1. Reflexivity: (u, f) ≤ (u, f) for all (u, f) ∈ B.

2. Antisymmetry: (u, f) ≤ (v, g) and (v, g) ≤ (u, f) im-
ply (u, f) = (v, g), where (u, f), (v, g) ∈ B.

3. Transitivity: (u, f) ≤ (v, g) and (v, g) ≤ (w, h) imply
(u, f) ≤ (w, h), where (u, f), (v, g), (w, h) ∈ B.

In the rest of this paper, we do not care about the equal-
ity case, so we always use “<”, which means “≤” without
equality.

Based on a partial order, we give a generalized criterion
for signature related algorithms.

Definition 2.1 (generalized rewritable criterion) Given
a set B ⊂M and a partial order “<” defined on B. We say
t(u, f), where (u, f) ∈ B, f is nonzero and t is a power prod-
uct in R, is generalized rewritable by B (gen-rewritable
for short), if there exists (u′, f ′) ∈ B such that

1. lpp(u′) divides lpp(tu), and

2. (u′, f ′) < (u, f).

In subsection 2.3, we will show how the generalized crite-
rion specializes to some exiting criteria. In next subsection,
we describe how this generalized criterion is applied to reject
redundant critical pairs.

2.2 Algorithm with generalized criterion
Let

G = {(v1, g1), · · · , (vs, gs)} ⊂M

be a finite subset. We call G an S-Gröbner basis1 for M
(“S” short for signature related), if for any (u, f) ∈M with
f 6= 0, there exists (v, g) ∈ G such that

1. lpp(g) divides lpp(f), and

2. lpp(tv) � lpp(u), where t = lpp(f)/lpp(g).

IfG is an S-Gröbner basis for M, then the set {g | (v, g) ∈ G}
is a Gröbner basis of the ideal I = 〈f1, · · · , fm〉. The reason
is that for any f ∈ 〈f1, · · · , fm〉, there exist p1, · · · , pm ∈ R
such that f = p1f1 + · · · + pmfm. Let u = (p1, · · · , pm).
Then (u, f) ∈M and hence there exists (v, g) ∈ G such that
lpp(g) divides lpp(f) by the definition of S-Gröbner basis.

Suppose (u, f), (v, g) ∈ M are two pairs with f and g
both nonzero. Let t = lcm(lpp(f), lpp(g)), tf = t/lpp(f)
and tg = t/lpp(g). If lpp(tfu) � lpp(tgv), then

[tf (u, f), tg(v, g)]

is called a critical pair of (u, f) and (v, g). The corre-
sponding S-polynomial is tf (u, f) − ctg(v, g) where c =
lc(f)/lc(g). Please keep in mind that, for any critical pair
[tf (u, f), tg(v, g)], we always have lpp(tfu) � lpp(tgv). Also
notice that tf (or tg) here does not mean it only depends on
f (or g). For convenience, we say [tf (u, f), tg(v, g)] is a crit-
ical pair of B, if both (u, f) and (v, g) are in B.

Given a critical pair [tf (u, f), tg(v, g)], there are three pos-
sible cases, assuming c = lc(f)/lc(g):

1. If lpp(tfu−ctgv) 6= lpp(tfu), then we say [tf (u, f), tg(v, g)]
is non-regular.

2. If lpp(tfu−ctgv) = lpp(tfu) and lpp(tfu) = lpp(tgv),
then [tf (u, f), tg(v, g)] is called super regular.

1S-Gröbner basis is a simpler version of strong Gröbner basis
defined in [13], so the GVW algorithm computes an S-
Gröbner basis. We proved in another paper that F5 also
computes an S-Gröbner basis.
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3. If lpp(tfu) � lpp(tgv), then we call [tf (u, f), tg(v, g)]
genuine regular or regular for short.

We say a critical pair [tf (u, f), tg(v, g)] is gen-rewritable
if either tf (u, f) or tg(v, g) is gen-rewritable.

We now state the signature related Gröbner basis algo-
rithm that is based on the generalized criterion.

GB algorithm with generalized criterion (GBGC)
Input: (e1, f1), · · · , (em, fm)
Output: An S-Gröbner basis forM = 〈(e1, f1), · · · , (em, fm)〉
begin
G←−{(ei, fi) | i = 1, · · · ,m}
CPairs←−{[tf (u, f), tg(v, g)] | (u, f), (v, g) ∈ G}
G←−G ∪ {(fjei − fiej , 0) | 1 ≤ i < j ≤ m} (>)
while CPairs 6= ∅ do

[tf (u, f), tg(v, g)]←− any critical pair in CPairs (F)
CPairs←−CPairs \ {[tf (u, f), tg(v, g)]}
if [tf (u, f), tg(v, g)] is regular and

is not gen-rewritable by G
then
c←−lc(f)/lc(g)
(w, h)←− reduce tf (u, f)− ctg(v, g) by G
if h 6= 0,

then
CPairs←−CPairs∪ {critical pair of

(w, h) and (w′, h′) | (w′, h′) ∈ G and h′ 6= 0}
G←−G ∪ {(hei − fiw, 0) | i = 1, · · · ,m} (>)

end if
G←−G ∪ {(w, h)}

end if
end while
return G

end
For the above algorithm, please notice that

1. The gen-rewritable criterion uses a partial order de-
fined on G. While new elements are added to G, the
partial order on G needs to be updated simultaneously.
Fortunately, most partial orders can be updated auto-
matically.

2. For the line ended with (F), we emphasize that any
critical pair can be selected, while some other algo-
rithm, such as GVW, always selects the critical pair
with minimal signature.

3. (w, h) is the reduction result of tf (u, f) − ctg(v, g) ∈
M, we will later show that (w, h) is an element of M.
So we have w · f = h where f = (f1, · · · , fm).

4. We add the elements of the form (u, 0) into G in the
lines ended with (>) to enhance the gen-rewritable cri-
terion. Notice that (fjei − fiej) · f = 0 and (hei −
fiw) · f = hfi − fih = 0 where f = (f1, · · · , fm), so
both (fjei− fiej , 0) and (hei− fiw, 0) are elements in
M. Moreover, G is always a subset of M.

5. The S-polynomial of [tf (u, f), tg(v, g)] is considered
only when [tf (u, f), tg(v, g)] is regular, which means
lpp(tfu) � lpp(tgv) and lpp(tfu) = lpp(tfu − ctgv).
So for each element, say (u, f), in the set G, only
(lpp(u), f) is really used throughout the algorithm.
For sake of efficiency, it suffices to record (lpp(u), f)
for each (u, f) ∈ G in the practical implementation.

Next let us see the reduction process in the above algo-
rithm. There are several ways to define the reduction pro-
cess [13, 16, 11]. We emphasize that any of these definitions
can be used in the above algorithm. Here we use a similar
definition as that in [11]. Given (u, f) ∈ M and B ⊂ M,
(u, f) is said to be reducible by B, if there exists (v, g) ∈ B
such that g 6= 0, lpp(g) divides lpp(f), lpp(u) � lpp(tv) and
t(v, g) is not gen-rewritable by B where t = lpp(f)/lpp(g).
If (u, f) is reducible by some (v, g) ∈ B, we say (u, f) re-
duces to (u, f) − ct(v, g) = (u − ctv, f − ctg) by (v, g)
where c = lc(f)/lc(g) and t = lpp(f)/lpp(g). This proce-
dure is called a one-step reduction. Next, we can repeat this
process until it is not reducible by B anymore. Clearly, if
both (u, f) and (v, g) are elements in M, then the reduction
result (u− ctv, f − ctg) is also an element in M.

In the algorithm GBGC, we say a partial order“<”defined
on G is admissible, if for any critical pair [tf (u, f), tg(v, g)],
which is regular and not gen-rewritable by G when it is being
selected from CPairs and whose corresponding S-polynomial
is reduced to (w, h) by G, we always have (w, h) < (u, f)
after updating “<” for G ∪ {(w, h)}. We emphasize that
in the above definition of admissible, the relation (w, h) <
(u, f) is essential and (w, h) may not be related to other
elements in G.

With the above definition, it is easy to verify whether a
partial order is admissible. In next subsection, we will show
that the partial orders implied by the criteria of F5 and
GVW are both admissible.

The following theorem shows the algorithm GBGC is cor-
rect if the partial order used in the generalized criterion is
admissible.

Theorem 2.2 Let M = 〈(e1, f1), · · · , (em, fm)〉 be an R-
module in Rm × R. Then an S-Gröbner basis for M can be
constructed by the algorithm GBGC, if the algorithm GBGC
terminates in finite steps and the partial order in the gener-
alized criterion is admissible.

2.3 Specializations
In this subsection, we focus on specializing the generalized

criterion to the criteria of F5 and GVW by using appropri-
ate admissible partial orders in the algorithm GBGC. By
saying “specialize” here, we mean that the critical pairs de-
tected/rejected by the criteria of F5 or GVW can also be
detected/rejected by the generalized criterion.

2.3.1 Criteria of F5
First, we list the criteria of F5 by current notations. In

F5, the order ≺2 on Rm is obtained by extending ≺1 to Rm

in a position over term fashion with e1 �2 · · · �2 em.

Definition 2.3 (syzygy criterion) Given a set B ⊂ M,
we say t(u, f), where (u, f) ∈ B with lpp(u) = xαei, f is
nonzero and t is a power product in R, is F5-divisible by
B, if there exists (u′, f ′) ∈ B with lpp(u′) = xβej, such that

1. lpp(f ′) divides txα, and

2. ei � ej.

Definition 2.4 (rewritten criterion) Given a set B ⊂
M, we say t(u, f), where (u, f) ∈ B and t is a power prod-
uct in R, is F5-rewritable by B, if there exists (u′, f ′) ∈ B
such that
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1. lpp(u′) divides lpp(tu), and

2. (u′, f ′) is added to B later than (u, f).

In F5, given a critical pair [tf (u, f), tg(v, g)] of B, if either
tf (u, f) or tg(v, g) is F5-divisible or F5-rewritable byB, then
this critical pair is redundant.

Next, we show how to specialize the generalized criterion
to both syzygy criterion and rewritten criterion at the same
time. For this purpose, we choose the following partial order
defined on G which can be updated automatically when a
new element is added to G: we say (u′, f ′) < (u, f) where
(u′, f ′), (u, f) ∈ G, if

1. f ′ = 0 and f 6= 0,

2. otherwise, (u′, f ′) is added to G later than (u, f).

The above partial order “<” is admissible in the algorithm
GBGC. Because for any critical pair [tf (u, f), tg(v, g)], which
is regular and not gen-rewritable by G when it is being se-
lected from CPairs and whose corresponding S-polynomial
is reduced to (w, h) by G, the pair (w, h) is always added to
G later than (u, f) no matter h is 0 or not.

At last, we show how the generalized criterion special-
izes to the rewritten criterion and syzygy criterion. For the
rewritten criterion, the specialization is obvious by the def-
inition of “<”. For the syzygy criterion, if t(u, f), where
(u, f) ∈ G with lpp(u) = xαei and f 6= 0, is F5-divisible
by some (u′, f ′) ∈ G with lpp(u′) = xβej , we have lpp(f ′)
divides txα and ei � ej . According to the algorithm GBGC,
since f ′ 6= 0, we have (f ′ei − fiu′, 0) ∈ G and lpp(f ′ei −
fiu
′) = lpp(f ′)ei divides txαei. So t(u, f) is gen-rewritable

by (f ′ei − fiu′, 0) ∈ G by definition.
With a similar discussion, the generalized criterion can

also specialize to the criteria in [16], since the extended F5
algorithm in that paper only differs from the original F5 in
the order ≺2 on Rm.

2.3.2 Criteria of GVW
First, we rewrite the criteria of GVW by current notations.

Definition 2.5 (First Criterion) Given a set B ⊂ M.
We say t(u, f), where (u, f) ∈ B, f is nonzero and t is a
power product in R, is GVW-divisible by B, if there exists
(u′, f ′) ∈ B such that

1. lpp(u′) divides lpp(tu), and

2. f ′ = 0.

Definition 2.6 (Second Criterion) Given a set B ⊂M.
We say t(u, f), where (u, f) ∈ B and t is a power prod-
uct in R, is eventually super top-reducible by B, if
t(u, f) is reducible and reduced to (w, h) by B, and there
exists (u′, f ′) ∈ B such that

1. lpp(u′) divides lpp(w),

2. lpp(f ′) divides lpp(h), and

3. lpp(w)
lpp(u′) = lpp(h)

lpp(f ′) and lc(w)
lc(u′) = lc(h)

lc(f ′) .

In GVW, given a critical pair [tf (u, f), tg(v, g)] of B, if
tf (u, f) is GVW-divisible or eventually super top-reducible
by B, then this critical pair is redundant. The GVW algo-
rithm also has a third criterion.

Third Criterion If there are two critical pairs [tf (u, f), tg(v, g)]
and [t̄f (ū, f̄), t̄g(v̄, ḡ)] of B such that lpp(tfu) = lpp(t̄f ū),
then at least one of the critical pairs is redundant.

Next, in order to specialize the generalized criterion to
the above three criteria at the same time, we use the follow-
ing partial order defined on G which can also be updated
automatically when a new element is added to G: we say
(u′, f ′) < (u, f) where (u′, f ′), (u, f) ∈ G, if one of the fol-
lowing two conditions holds:

1. lpp(t′f ′) < lpp(tf), where t′ = lcm(lpp(u),lpp(u′))
lpp(u′) and

t = lcm(lpp(u),lpp(u′))
lpp(u)

such that lpp(t′u′) = lpp(tu).

2. lpp(t′f ′) = lpp(tf) and (u′, f ′) is added to G later than
(u, f).

The above partial order “<” is admissible in the algorithm
GBGC. Because for any critical pair [tf (u, f), tg(v, g)], which
is regular and not gen-rewritable by G when it is being se-
lected from CPairs and whose corresponding S-polynomial
is reduced to (w, h) by G, we always have lpp(tfu) = lpp(w)
and lpp(tff) > lpp(h).

At last, let us see the three criteria of GVW.
For the first criterion, if t(u, f) is GVW-divisible by some

(u′, f ′) ∈ G, then t(u, f) is also gen-rewritable by (u′, f ′) ∈
G by definition.

For the second criterion, if t(u, f), where (u, f) ∈ G, is
eventually super top-reducible by G, then t(u, f) is reduced
to (w, h) and there exists (u′, f ′) ∈ G such that lpp(u′)

divides lpp(w), lpp(f ′) divides lpp(h), lpp(w)
lpp(u′) = lpp(h)

lpp(f ′) and
lc(w)
lc(u′) = lc(h)

lc(f ′) . Then we have lpp(t′u′) = lpp(w) = lpp(tu)

and lpp(t′f ′) = lpp(h) < lpp(tf), which means (u′, f ′) <
(u, f). So t(u, f) is gen-rewritable by (u′, f ′) ∈ G.

For the third criterion, we have lpp(tfu) = lpp(t̄f ū). First,
if (u, f) < (ū, f̄), then t̄f (ū, f̄) is gen-rewritable by (u, f)
and hence [t̄f (ū, f̄), t̄g(v̄, ḡ)] is redundant; the reverse is also
true. Second, if (u, f) = (ū, f̄), one of the two critical pairs
should be selected earlier from CPairs, assuming [tf (u, f),
tg(v, g)] is selected first. If [tf (u, f), tg(v, g)] is regular and
not gen-rewritable, then its S-polynomial is reduced to (w, h)
and (w, h) is added to G by the algorithm GBGC. Since
“<” is admissible, we have (w, h) < (u, f). Thus, when
[t̄f (ū, f̄), t̄g(v̄, ḡ)] is selected afterwards, it will be redun-
dant, since t̄f (ū, f̄) is gen-rewritable by (w, h). Otherwise,
if [tf (u, f), tg(v, g)] is not regular, or it is regular and gen-
rewritable, then [tf (u, f), tg(v, g)] is redundant. Anyway, at
least one of the critical pairs is redundant in the algorithm.

3. PROOFS FOR THE CORRECTNESS OF
THE GENERALIZED CRITERION

To prove the main theorem (Theorem 2.2) of the paper,
we need the following definition and lemmas.

In this section, we always assume that M is an R-module
generated by {(e1, f1), · · · , (em, fm)}. Let (u, f) ∈ M, we
say (u, f) has a standard representation w.r.t. a set B ⊂
M, if there exist p1, · · · , ps ∈ R and (v1, g1), · · · , (vs, gs) ∈
B such that

f = p1g1 + · · ·+ psgs,

where lpp(u) � lpp(pivi) and lpp(f) � lpp(pigi) for i =
1, · · · , s. Clearly, if (u, f) has a standard representation
w.r.t. B, then there exists (v, g) ∈ B such that lpp(g) di-
vides lpp(f) and lpp(u) � lpp(tv) where t = lpp(f)/lpp(g).
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We call this property to be the basic property of standard
representations.

Lemma 3.1 Let G be a finite subset of M and {(e1, f1),
· · · , (em, fm)} ⊂ G. For an element (u, f) in M, (u, f)
has a standard representation w.r.t. G, if for any critical
pair [tg(v, g), th(w, h)] of G with lpp(u) � lpp(tgv), the S-
polynomial of [tg(v, g), th(w, h)] always has a standard rep-
resentation w.r.t. G.

Proof. For (u, f) ∈ M, we have u · f = f where f =
(f1, · · · , fm) ∈ Rm. Assume u = p1e1 + · · · + pmem where
pi ∈ R. Clearly, f = p1f1 +· · ·+pmfm. Notice that lpp(u) �
lpp(piei) for i = 1, · · · ,m. If lpp(f) � lpp(pifi), then we
have already got a standard representation for (u, f) w.r.t.
G. Otherwise, we will prove it by the classical method. Let
T = max{lpp(pifi) | i = 1, · · · ,m}, then T � lpp(f) holds
by assumption. Consider the equation

f =
∑

lpp(pifi)=T

lc(pi)lpp(pi)fi +
∑

lpp(pjfj)≺T

pjfj

+
∑

lpp(pifi)=T

(pi − lc(pi)lpp(pi))fi. (1)

The leading power products in the first sum should be can-
celed, since we have T � lpp(f). So the first sum can be
rewritten as a sum of S-polynomials, that is∑

lpp(pifi)=T

lc(pi)lpp(pi)fi =
∑

c̄t(tgg − cthh),

where (v, g), (w, h) ∈ G, c̄ ∈ K, tg(v, g) − cth(w, h) is the
S-polynomial of [tg(v, g), th(w, h)], lpp(t tgg) = lpp(t thh) =
T and lpp(u) � lpp(t tgv) � lpp(t thw) such that we
have lpp(t(tgg − cthh)) ≺ T . By the hypothesis of the
lemma, the S-polynomial (tgv−cthw, tgg−cthh) has a stan-
dard representation w.r.t. G, that is, tgg − cthh =

∑
qigi,

where (vi, gi) ∈ G, lpp(u) � lpp(t tgv) � lpp(t qivi) and
lpp(tgg−cthh) � lpp(qigi). Substituting these standard rep-
resentations back to the original expression of f in (1), we

get a new representation for f . Let T (1) be the maximal
leading power product of the polynomials appearing in the
right side of the new representation. Then we have T � T (1).
Repeat the above process until T (s) is the same as lpp(f) for
some s after finite steps. Finally, we always get a standard
representation for (u, f).

Lemma 3.2 Let G be a finite subset of M and {(e1, f1),
· · · , (em, fm)} ⊂ G. Then G is an S-Gröbner basis for
M, if for any critical pair [tf (u, f), tg(v, g)] of G, the S-
polynomial of [tf (u, f), tg(v, g)] always has a standard rep-
resentation w.r.t. G.

Proof. By using Lemma 3.1, for any (u, f) ∈M, (u, f)
has a standard representation w.r.t. G. According to the ba-
sic property of standard representations, G is an S-Gröbner
basis for M.

Before giving a full proof of Theorem 2.2, we introduce
the following definitions first.

Suppose [tf (u, f), tg(v, g)] and [tf ′(u
′, f ′), tg′(v

′, g′)] are
two critical pairs, we say [tf ′(u

′, f ′), tg′(v
′, g′)] is smaller

than [tf (u, f), tg(v, g)] if one of the following conditions
holds:

(a). lpp(tf ′u
′) ≺ lpp(tfu).

(b). lpp(tf ′u
′) = lpp(tfu) and (u′, f ′) < (u, f).

(c). lpp(tf ′u
′) = lpp(tfu), (u′, f ′) = (u, f) and lpp(tg′v

′) ≺
lpp(tgv).

(d). lpp(tf ′u
′) = lpp(tfu), (u′, f ′) = (u, f), lpp(tg′v

′) =
lpp(tgv) and (v′, g′) < (v, g).

Let D be a set of critical pairs. A critical pair in D is said
to be minimal if there is no critical pair in D smaller than
this critical pair. Remark that the order “smaller” defined
on the critical pairs is also a partial order, i.e. some critical
pairs may not be comparable. Thus, the minimal critical
pair in D may not be unique, but we can always find one if
D is finite.

Now, we can give the proof of the main theorem.

Proof of Theorem 2.2. LetGend denote the set returned
by the algorithm GBGC. According to the hypotheses, Gend
is finite, and we also have {(e1, f1), · · · , (em, fm)} ⊂ Gend
by the algorithm GBGC.

To show Gend is an S-Gröbner basis for M, we will take
the following strategy.

Step 1: Let Todo be the set of all the critical pairs of Gend,
and Done be an empty set.

Step 2: Select a minimal critical pair [tf (u, f), tg(v, g)] in
Todo.

Step 3: For such [tf (u, f), tg(v, g)], we will prove the fol-
lowing two facts.

(F1). The S-polynomial of [tf (u, f), tg(v, g)] has a standard
representation w.r.t. Gend.

(F2). If [tf (u, f), tg(v, g)] is super regular or regular, then
tf (u, f) is gen-rewritable by Gend.

Step 4: Move [tf (u, f), tg(v, g)] from Todo to Done, i.e.
Todo←−Todo \ {[tf (u, f), tg(v, g)]} and Done←−Done ∪
{[tf (u, f), tg(v, g)]}.
We can repeat Step 2, 3, 4 until Todo is empty. Please no-
tice that for every critical pair in Done, it always has prop-
erty (F1). Particularly, if this critical pair is super regular
or regular, then it has properties (F1) and (F2). When Todo
is empty, all the critical pairs of Gend will lie in Done, and
hence, all the corresponding S-polynomials have standard
representations w.r.t. Gend. Then Gend is an S-Gröbner
basis by Lemma 3.2.

Step 1, 2, 4 are trivial, so we next focus on showing the
facts in Step 3.

Take a minimal critical pair [tf (u, f), tg(v, g)] in Todo.
And this critical pair must appear in the algorithm GBGC.
Suppose such pair is selected from the set CPairs in some
loop of the algorithm GBGC and Gk denotes the set G at
the beginning of the same loop. For such [tf (u, f), tg(v, g)],
it must be in one of the following cases:

C1: [tf (u, f), tg(v, g)] is non-regular.

C2: [tf (u, f), tg(v, g)] is super regular.

C3: [tf (u, f), tg(v, g)] is regular and is not gen-rewritable
by Gk.

C4: [tf (u, f), tg(v, g)] is regular and tf (u, f) is gen-rewritable
by Gk.
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C5: [tf (u, f), tg(v, g)] is regular and tg(v, g) is gen-rewritable
by Gk.

Thus, to show the facts in Step 3, we have two things to
do: First, show (F1) holds in case C1; Second, show (F1)
and (F2) hold in cases C2, C3, C4 and C5.

We make the following claims under the condition that
[tf (u, f), tg(v, g)] is minimal in Todo. The proofs of these
claims will be presented after the current proof.

Claim 1: Given (ū, f̄) ∈ M, if lpp(ū) ≺ lpp(tfu), then
(ū, f̄) has a standard representation w.r.t. Gend.

Claim 2: If [tf (u, f), tg(v, g)] is super regular or reg-
ular and tf (u, f) is gen-rewritable by Gend, then the S-
polynomial of [tf (u, f), tg(v, g)] has a standard representa-
tion w.r.t. Gend.

Claim 3: If [tf (u, f), tg(v, g)] is regular and tg(v, g) is
gen-rewritable by Gend, then tf (u, f) is also gen-rewritable
by Gend.

Claim 2 plays an important role in the whole proof. Since
Claim 2 shows that (F2) implies (F1) in the cases C2, C3,
C4 and C5, it suffices to show tf (u, f) is gen-rewritable by
Gend in these cases.

Next, we proceed for each case respectively.
C1: [tf (u, f), tg(v, g)] is non-regular. Consider the S-

polynomial (tfu − ctgv, tff − ctgg) where c = lc(f)/lc(g).
Notice that lpp(tfu − ctgv) ≺ lpp(tfu) by the definition of
non-regular, so Claim 1 shows (tfu− ctgv, tff − ctgg) has
a standard representation w.r.t. Gend, which proves (F1).

C2: [tf (u, f), tg(v, g)] is super regular, i.e. lpp(tfu −
ctgv) = lpp(tfu) and lpp(tfu) = lpp(tgv) where c = lc(f)/lc(g).
Let c̄ = lc(u)/lc(v). Notice that c̄ 6= c, since lpp(tfu −
ctgv) = lpp(tfu). Then we have lpp(tfu− c̄tgv) ≺ lpp(tfu)
and lpp(tff − c̄tgg) = lpp(tff). So Claim 1 shows (tfu −
c̄tgv, tff − c̄tgg) has a standard representation w.r.t. Gend,
and hence, there exists (w, h) ∈ Gend such that lpp(h) di-
vides lpp(tff − c̄tgg) = lpp(tff) and lpp(tfu) � lpp(tfu −
c̄tgv) � lpp(thw) where th = lpp(tff)/lpp(h). Consider
the critical pair of (u, f) and (w, h), say [t̄f (u, f), t̄h(w, h)].
Since lpp(h) divides lpp(tff), then t̄f divides tf , t̄h divides

th and
lpp(tf )

lpp(t̄f )
= lpp(th)

lpp(t̄h)
. So [t̄f (u, f), t̄h(w, h)] is regular, and

is smaller than [tf (u, f), tg(v, g)] in fashion (a) if t̄f 6= tf
or in fashion (c) if t̄f = tf , which means [t̄f (u, f), t̄h(w, h)]
lies in Done and t̄f (u, f) is gen-rewritable by Gend. Then
tf (u, f) is also gen-rewritable by Gend, since t̄f divides tf .

C3: [tf (u, f), tg(v, g)] is regular and not gen-rewritable by
Gk. According to the algorithm GBGC, the S-polynomial
tf (u, f) − ctg(v, g) is reduced to (w, h) by Gk where c =
lc(f)/lc(g), and (w, h) will be added to the set Gk after-
wards. Notice that Gk ⊂ Gend and (w, h) ∈ Gend. Since
“<” is an admissible partial order, we have (w, h) < (u, f)
by definition. Combined with the fact lpp(w) = lpp(tfu),
so tf (u, f) is gen-rewritable by (w, h) ∈ Gend.

C4: [tf (u, f), tg(v, g)] is regular and tf (u, f) is gen-rewritable
by Gk. Then tf (u, f) is also gen-rewritable by Gend, since
Gk ⊂ Gend.

C5: [tf (u, f), tg(v, g)] is regular and tg(v, g) is gen-rewritable
by Gk. tg(v, g) is also gen-rewritable by Gend, since Gk ⊂
Gend. Then Claim 3 shows tf (u, f) is gen-rewritable by
Gend as well.

Theorem 2.2 is proved.

We give the proofs for the three claims below.

Proof of Claim 1. According to the hypothesis, we have
(ū, f̄) ∈ M and lpp(ū) ≺ lpp(tfu). So for any critical pair

[tf ′(u
′, f ′), tg′(v

′, g′)] of Gend with lpp(ū) � lpp(tf ′u
′), we

have [tf ′(u
′, f ′), tg′(v

′, g′)] is smaller than [tf (u, f), tg(v, g)]
in fashion (a) and hence lies in Done, which means the S-
polynomial of [tf ′(u

′, f ′), tg′(v
′, g′)] has a standard repre-

sentation w.r.t. Gend. So Lemma 3.1 shows that (ū, f̄) has
a standard representation w.r.t. Gend.

Proof of Claim 2. We have that [tf (u, f), tg(v, g)] is
minimal in Todo and tf (u, f) is gen-rewritable by Gend. Let
c = lc(f)/lc(g). Then (ū, f̄) = (tfu− ctgv, tff − ctgg) is the
S-polynomial of [tf (u, f), tg(v, g)]. Since [tf (u, f), tg(v, g)]
is super regular or regular, we have lpp(ū) = lpp(tfu). Next
we will show that (ū, f̄) has a standard representation w.r.t.
Gend. The proof is organized as follows.

First: We show that there exists (u0, f0) ∈ Gend such
that (u0, f0) < (u, f), tf (u, f) is gen-rewritable by (u0, f0)
and t0(u0, f0) is not gen-rewritable by Gend where t0 =
lpp(tfu)/lpp(u0).

Second: For such (u0, f0), we show that lpp(f̄) � lpp(t0f0)
where t0 = lpp(tfu)/lpp(u0).

Third: We prove that (ū, f̄) has a standard representation
w.r.t. Gend.

Proof of the First fact. By hypothesis, suppose tf (u, f) is
gen-rewritable by some (u1, f1) ∈ Gend, i.e. lpp(u1) divides
lpp(tfu) and (u1, f1) < (u, f). Let t1 = lpp(tfu)/lpp(u1).
If t1(u1, f1) is not gen-rewritable by Gend, then (u1, f1) is
the one we are looking for. Otherwise, there exists (u2, f2) ∈
Gend such that t1(u1, f1) is gen-rewritable by (u2, f2). No-
tice that tf (u, f) is also gen-rewritable by (u2, f2) and we
have (u, f) > (u1, f1) > (u2, f2). Let t2 = lpp(tfu)/lpp(u2).
We next discuss whether t2(u2, f2) is gen-rewritable byGend.
In the better case, (u2, f2) is the needed one if t2(u2, f2) is
not gen-rewritable byGend; while in the worse case, t2(u2, f2)
is gen-rewritable by some (u3, f3) ∈ Gend. We can re-
peat the above discussions for the worse case. Finally, we
will get a chain (u, f) > (u1, f1) > (u2, f2) > · · · . This
chain must terminate, since Gend is finite and “>” is a par-
tial order defined on Gend. Suppose (us, fs) is the last
one in the above chain. Then tf (u, f) is gen-rewritable by
(us, fs) and ts(us, fs) is not gen-rewritable by Gend where
ts = lpp(tfu)/lpp(us).

Proof of the Second fact. From the First fact, we have
that t0(u0, f0) is not gen-rewritable by Gend where t0 =
lpp(tfu)/lpp(u0). Next, we prove the Second fact by con-
tradiction. Assume lpp(f̄) ≺ lpp(t0f0). Let c0 = lc(ū)/lc(u0).
Then we have lpp(ū − c0t0u0) ≺ lpp(ū) = lpp(t0u0) and
lpp(f̄ − c0t0f0) = lpp(t0f0). So (ū − c0t0u0, f̄ − c0t0f0)
has a standard representation w.r.t. Gend by Claim 1,
and hence, there exists (w, h) ∈ Gend such that lpp(h) di-
vides lpp(f̄ − c0t0f0) = lpp(t0f0) and lpp(t0u0) � lpp(ū −
c0t0u0) � lpp(thw) where th = lpp(t0f0)/lpp(h). Next con-
sider the critical pair of (u0, f0) and (w, h), say [t̄0(u0, f0),
t̄h(w, h)]. Since lpp(h) divides lpp(t0f0), then t̄0 divides t0,

t̄h divides th and lpp(t0)
lpp(t̄0)

= lpp(th)
lpp(t̄h)

. So [t̄0(u0, f0), t̄h(w, h)] is

regular, and is smaller than [tf (u, f), tg(v, g)] in fashion (a)
if t̄0 6= t0 or in fashion (b) if t̄0 = t0, which means [t̄0(u0, f0),
t̄h(w, h)] lies in Done and t̄0(u0, f0) is gen-rewritable by
Gend. Moreover, since t̄0 divides t0, t0(u0, f0) is also gen-
rewritable by Gend, which contradicts with the property that
t0(u0, f0) is not gen-rewritable by Gend. The Second fact
is proved.

Proof of the Third fact. According to the second fact,
we have lpp(f̄) � lpp(t0f0) where t0 = lpp(tfu)/lpp(u0).

342



Let c0 = lc(ū)/lc(u0). We have lpp(ū − c0t0u0) ≺ lpp(ū)
and lpp(f̄ − c0t0f0) � lpp(f̄). So (ū, f̄) − c0t0(u0, f0) =
(ū− c0t0u0, f̄ − c0t0f0) has a standard representation w.r.t.
Gend by Claim 1. Notice that lpp(ū) = lpp(t0u0) and
lpp(f̄) � lpp(t0f0). So after adding c0t0f0 to both sides
of the standard representation of (ū, f̄) − c0t0(u0, f0), then
we will get a standard representation of (ū, f̄) w.r.t. Gend.

Claim 2 is proved.

Proof of Claim 3. Since tg(v, g) is gen-rewritable by
Gend and lpp(tgv) ≺ lpp(tfu), by using a similar method
in the proof of the First and Second facts in Claim 2, we
have that there exists (v0, g0) ∈ Gend such that tg(v, g) is
gen-rewritable by (v0, g0), t0(v0, g0) is not gen-rewritable by
Gend and lpp(tgg) � lpp(t0g0) where t0 = lpp(tgv)/lpp(v0).

If lpp(tgg) = lpp(t0g0), then the critical pair of (u, f)
and (v0, g0), say [t̄f (u, f), t̄0(v0, g0)], must be regular and
smaller than the critical pair [tf (u, f), tg(v, g)] in fashion
(a) or (d), which means [t̄f (u, f), t̄0(v0, g0)] lies in Done
and t̄f (u, f) is gen-rewritable by Gend. Since lpp(t0g0) =
lpp(tgg) = lpp(tff), then t̄f divides tf , and hence, tf (u, f)
is gen-rewritable by Gend as well.

Otherwise, lpp(tgg) � lpp(t0g0) holds. Let c = lc(v)/lc(v0),
we have lpp(tgv− ct0v0) ≺ lpp(tgv) and lpp(tgg − ct0g0) =
lpp(tgg). Then (tgv− ct0v0, tgg− ct0g0) has a standard rep-
resentation w.r.t. Gend by Claim 1, and hence, there exists
(w, h) ∈ Gend such that lpp(h) divides lpp(tgg − ct0g0) =
lpp(tgg) and lpp(thw) � lpp(tgv − ct0v0) ≺ lpp(tgv) where
th = lpp(tgg)/lpp(h). Notice that lpp(thh) = lpp(tgg) =
lpp(tff). The critical pair of (u, f) and (w, h), say [t̄f (u, f),
t̄h(w, h)], must be regular and smaller than the critical pair
[tf (u, f), tg(v, g)] in fashion (a) or (c), which means [t̄f (u, f),
t̄h(w, h)] lies in Done and t̄f (u, f) is gen-rewritable by Gend.
Since lpp(h) divides lpp(tgg) = lpp(tff), then t̄f divides tf ,
and hence, tf (u, f) is gen-rewritable by Gend as well.

Claim 3 is proved.

4. DEVELOPING NEW CRITERIA
Based on the generalized criterion, to develop new cri-

teria for signature related algorithms, it suffices to choose
appropriate admissible partial orders. For example, we can
develop a new criterion by using the following admissible
partial order implied by GVW’s criteria: that is, (u′, f ′) <
(u, f), where (u, f), (u′, f ′) ∈ G, if one of the following two
conditions holds.

1. lpp(t′f ′) < lpp(tf) where t′ = lcm(lpp(u),lpp(u′))
lpp(u′) and

t = lcm(lpp(u),lpp(u′))
lpp(u)

such that lpp(t′u′) = lpp(tu).

2. lpp(t′f ′) = lpp(tf) and (u′, f ′) is added to G later than
(u, f).

Recently, we notice Huang also uses a similar order in [17].
Applying this admissible partial order in the algorithm

GBGC, we get a new algorithm (named by NEW). This al-
gorithm can be considered as an improved version of GVW.
To test the efficacy of the new criterion, we implemented
the algorithm NEW on Singular (version 3-1-2), and use two
strategies for selecting critical pairs in our implementation.

Minimal Signature Strategy: [tf (u, f), tg(v, g)] is selected
from CPairs if there does not exist [tf ′(u

′, f ′), tg′(v
′, g′)] ∈

CPairs such that lpp(tf ′u
′) ≺ lpp(tfu);

Minimal Degree Strategy: [tf (u, f), tg(v, g)] is selected from

CPairs if there does not exist [tf ′(u
′, f ′), tg′(v

′, g′)] ∈ CPairs
such that deg(lpp(tf ′f

′)) ≺ deg(lpp(tff)).

The proof in Section 3 ensures the algorithm NEW is correct
by using any of the above strategies.

In the following table, we use (s) and (d) to refer the
two strategies respectively. The order ≺1 is graded reverse
lex order and ≺2 is extended from ≺1 in the following way:
xαei ≺2 x

βej , if either lpp(xαfi) ≺1 lpp(xβfj), or lpp(xαfi) =
lpp(xβfj) and i > j. This order ≺2 has also been used in
[13, 22]. The examples are selected from [13] and the tim-
ings are obtained on Core i5 4× 2.8 GHz with 4GB memory
running Windows 7.

Table 1: #all.: number of all critical pairs generated
in the computation; #red.: number of critical pairs
that are really reduced in the computation; #gen.:
number of non-zero generators in the Gröbner basis
in the last iteration but before computing a reduced
Gröbner basis. “Katsura5 (22)” means there are 22
non-zero generators in the reduced Gröbner basis of
Katsura5.

NEW(s) NEW(d) NEW(s) NEW(d)

Katsura5 (22) Katsura6 (41)
#all. 351 378 1035 1275
#red. 39 40 73 78
#gen. 27 28 46 51

time(sec.) 1.400 1.195 7.865 5.650

Katsura7 (74) Katsura8 (143)
#all. 3160 3160 11325 11325
#red. 121 121 244 244
#gen. 80 80 151 151

time(sec.) 38.750 29.950 395.844 310.908

Cyclic5 (20) Cyclic6 (45)
#all. 1128 2080 18528 299925
#red. 56 78 231 834
#gen. 48 65 193 775

time(sec.) 2.708 2.630 106.736 787.288

From the above table, we can see that the new criterion
can reject redundant critical pairs effectively. We also notice
that the timings are influenced by the strategies of selecting
critical pairs. For some examples, the algorithm with mini-
mal signature strategy has better performance. The possible
reason is that less critical pairs are generated by this strat-
egy. For other examples, the algorithm with minimal degree
strategy cost less time. The possible reason is that, although
the algorithm with the minimal degree strategy usually gen-
erates more critical pairs, the critical pairs which are really
needed to be reduced usually have lower degrees.

5. CONCLUSIONS AND FUTURE WORKS
Signature related algorithms are a popular kind of algo-

rithms for computing Gröbner basis. A generalized criterion
for signature related algorithms is proposed in this paper.
Almost all existing criteria of signature related algorithms
can be specialized by the generalized criterion, and we show
in detail that this generalized criterion can specialize to the
criteria of F5 and GVW by using appropriate admissible or-
ders. We also proved that if the partial order is admissible,
the generalized criterion is always correct no matter which
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computing order of the critical pairs is used. Since the gener-
alized criterion can specialize to the criteria of F5 and GVW,
the proof in this paper also ensures the correctness of F5 and
GVW for any computing order of critical pairs.

The significance of this generalized criterion is to describe
what kind of criterion is correct in signature related algo-
rithms. Moreover, the generalized criterion also provides
an effective approach to check and develop new criteria for
signature related algorithms, i.e., if a new criterion can be
specialized from the generalized criterion by using an admis-
sible partial order, it must be correct; when developing new
criteria, it suffices to choose admissible partial orders in the
generalized criterion. We also develop a new effective crite-
rion in this paper. We claim that if the admissible partial
order is in fact a total order, then the generalized criterion
can reject almost all useless critical pairs. The proof of the
claim will be included in future works.

However, there are still some open problems.
Problem 1: Is the generalized criterion still correct if the
partial order is not admissible? We do know some par-
tial orders will lead to wrong criteria. For example, con-
sider the following partial order which is not admissible: we
say (u′, f ′) < (u, f), where (u, f), (u′, f ′) ∈ G, if f ′ = 0
and f 6= 0; otherwise, (u′, f ′) is added to G earlier than
(u, f). The above partial order leads to a wrong criterion.
The reason is that (e1, f1), · · · , (em, fm) are added to G
earlier than others, so using this partial order, the gen-
eralized criterion will reject almost all critical pairs gener-
ated later, which definitely leads to a wrong output unless
{(e1, f1), · · · , (em, fm)} itself is an S-Gröbner basis.
Problem 2: Does the S-Gröbner basis always exist for the
module generated by any {(e1, f1), · · · , (em, fm)}? The ex-
istence of S-Groebner basis is the prerequisite of the termina-
tion of GBGC as well as GVW, since GVW also computes an
S-Gröbner basis. Our experiments show GBGC always ter-
minates in finite steps, so the S-Gröbner bases always exist
for these examples.
Problem 3: Does the algorithm GBGC always terminate
in finite steps? We have tested many examples, and we have
not found a counterexample that GBGC does not terminate.
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