
Computing Comprehensive Gröbner Systems and
Comprehensive Gröbner Bases Simultaneously ∗

Deepak Kapur
Dept. of Computer Science
University of New Mexico
Albuquerque, NM, USA
kapur@cs.unm.edu

Yao Sun
KLMM

Academy of Mathematics and
Systems Science,CAS
Beijing 100190, China

sunyao@amss.ac.cn

Dingkang Wang
KLMM

Academy of Mathematics and
Systems Science,CAS
Beijing 100190, China

dwang@mmrc.iss.ac.cn

ABSTRACT
In Kapur et al (ISSAC, 2010), a new method for computing
a comprehensive Gröbner system of a parameterized polyno-
mial system was proposed and its efficiency over other known
methods was effectively demonstrated. Based on those in-
sights, a new approach is proposed for computing a compre-
hensive Gröbner basis of a parameterized polynomial sys-
tem. The key new idea is not to simplify a polynomial un-
der various specialization of its parameters, but rather keep
track in the polynomial, of the power products whose coeffi-
cients vanish; this is achieved by partitioning the polynomial
into two parts–nonzero part and zero part for the special-
ization under consideration. During the computation of a
comprehensive Gröbner system, for a particular branch cor-
responding to a specialization of parameter values, nonzero
parts of the polynomials dictate the computation, i.e., com-
puting S-polynomials as well as for simplifying a polynomial
with respect to other polynomials; but the manipulations
on the whole polynomials (including their zero parts) are
also performed. Gröbner basis computations on such pairs
of polynomials can also be viewed as Gröbner basis compu-
tations on a module. Once a comprehensive Gröbner system
is generated, both nonzero and zero parts of the polynomials
are collected from every branch and the result is a faithful
comprehensive Gröbner basis, to mean that every polyno-
mial in a comprehensive Gröbner basis belongs to the ideal
of the original parameterized polynomial system. This tech-
nique should be applicable to other algorithms for comput-
ing a comprehensive Gröbner system as well, thus producing
both a comprehensive Gröbner system as well as a faithful
comprehensive Gröbner basis of a parameterized polynomial
system simultaneously. The approach is exhibited by adapt-
ing the recently proposed method for computing a compre-

∗The first author is supported by the National Science Foun-
dation award CCF-0729097 and the last two authors are sup-
ported by NKBRPC 2011CB302400, NSFC 10971217 and
60821002/F02.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.

hensive Gröbner system in (ISSAC, 2010) for computing a
comprehensive Gröbner basis. The timings on a collection
of examples demonstrate that this new algorithm for com-
puting comprehensive Gröbner bases has better performance
than other existing algorithms.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms

Keywords
Gröbner basis, comprehensive Gröbner basis, comprehensive
Gröbner system.

1. INTRODUCTION
The concept of a comprehensive Gröbner basis was intro-

duced by Weispfenning [16] as a special basis of a parametric
polynomial system such that for every possible specialization
of its parameters, the basis obtained from the comprehen-
sive Gröbner basis serves as a Gröbner basis of the ideal gen-
erated by the specialization of the parametric polynomial
system (see also [7] where a related concept of a parametric
Gröbner basis is introduced). In that paper, Weispfenning
gave an algorithm for computing a comprehensive Gröb-
ner basis from a comprehensive Gröbner system, consisting
of Gröbner bases for various specializations of the parame-
ters. In this paper, we show how both comprehensive Gröb-
ner system and comprehensive Gröbner basis of a paramet-
ric polynomial system can be constructed together. The key
idea is to retain terms in polynomials even when parameters
are specialized, resulting in vanishing of the coefficients of
these terms.

To illustrate the key idea, let us consider Example 8.4 from
[17] where Weispfenning defined the concept of a canoni-
cal comprehensive Gröbner basis of a parametric polynomial
system to mimic the concept of a reduced Gröbner basis
of a polynomial system determined by the associated ideal
and term order. Suppose there are two polynomials f, g ∈
k[u, v][x, y]:

f = y + ux+ v, g = uy + x+ v.

193

Further, suppose we are interested in computing Gröb-
ner basis with the lexicographic order induced by y > x.

Clearly, f can be used to simplify g, resulting in

h = g − uf = (1− u2)x− uv + v.

In fact, g can be deleted without any loss of generality. Based
on the specialization of u and v, the leading power product
of h is either x or 1.

For the branch where (1−u2) 6= 0, the nonzero part of h is
(1−u2)x+(−uv+v). Since both f and h have noncomparable
leading power products, {f, h} constitutes a Gröbner basis
for this branch for those specializations satisfying (1−u2) 6=
0.

For the branch, where (1− u2) = 0 and (−uv+ v) 6= 0 for
all those specializations of u and v, the nonzero part of h is
(−uv+v) and the zero part of h is (1−u2)x. For this branch,
a Gröbner basis is {h}, since the leading power product of
the nonzero part of h is 1, which reduces every other power
product. If h is simplified using the specializations of u and
v, the Gröbner basis would have been {1}. However, such a
Gröbner basis is not faithful, since 1 is not in 〈f, g〉. But to
maintain faithfulness, we keep h instead.

Finally, for the branch where (1−u2) = 0 and (−uv+v) =
0, h vanishes completely. And, the nonzero part of f is itself,
since the leading coefficient of f is 1. A Gröbner basis for
this branch is {f}; if the specialization of u and v had been
used to simplify f , we have {y + x+ v} as a Gröbner basis.

Using the proposed algorithm, a comprehensive Gröbner
system consists of three branches: a branch corresponding
to specializations satisfying (1− u2) 6= 0, for which {f, h} is
a Gröbner basis for a 0-dimensional specialization; another
branch, corresponding to the specialization satisfying (1 −
u2) = 0, (−uv + v) 6= 0 (which can be further simplified
to u + 1 = 0, v 6= 0), for which {h} is a Gröbner basis for
the ideal generated by 1; the last branch corresponds to the
specialization (1− u2) = 0, (−uv + v) = 0, for which {f} is
a Gröbner basis for the one dimensional ideal.

The key difference between the output of this algorithm
and other algorithms including our algorithm in [9], is that
a Gröbner basis in every branch in a comprehensive Gröb-
ner system is a subset of the original ideal, and hence con-
tributes to a comprehensive Gröbner basis.

A faithful comprehensive Gröbner basis for the above sys-
tem can be easily constructed by taking the union of Gröb-
ner bases along all the branches; for every possible specializa-
tion, there is exactly one branch generating a Gröbner basis
for the specialized ideal; furthermore, by construction, all
the polynomials are in the ideal of the original system. For
the above example, a comprehensive Gröbner basis is {f, h}.1

Based on the ideas illustrated for the above example, we
propose in this paper, an algorithm for simultaneously com-
puting a comprehensive Gröbner system as well as the as-
sociated comprehensive Gröbner basis that is faithful. This
algorithm builds on our recently proposed algorithm [9] for
computing a comprehensive Gröbner system as its founda-
tion. The key difference between the new algorithm and
the previous algorithm is that unlike in the old algorithm,

1An interested reader would notice that this result is dif-
ferent from the one reported in [17]. In fact, the canonical
comprehensive Gröbner basis reported there for the same or-
der is a proper superset of the above result, suggesting that
after all, the definition in [17] does not quite capture the
notion of minimality and hence, canonicity.

during computations, the zero part of a polynomial under a
specialization is also kept in a tuple representation so as to
recover the original polynomial when needed. Specifically,
when computing a comprehensive Gröbner system of the set
F ⊂ k[U][X], we use a tuple (q, q̄) ∈ (k[U][X])2 to replace
each polynomial p = q + q̄ in the computation, with the
following properties: (i) p ∈ 〈F 〉, and (ii) q̄ is 0 under the
specialization of parameters being considered. When a com-
prehensive Gröbner system of F is obtained, then for each
2-tuple (g, ḡ) in this comprehensive Gröbner system, we re-
cover the faithful polynomial g + ḡ; this way, a comprehen-
sive Gröbner basis of F is obtained simultaneously with the
comprehensive Gröbner system.

Generally, a comprehensive Gröbner basis for a given poly-
nomial set F is harder to compute than a comprehensive
Gröbner system of F . The difficulty of computing a compre-
hensive Gröbner basis of F is that, all the polynomials in this
comprehensive Gröbner basis should be faithful polynomials,
i.e., these polynomials should belong to the ideal 〈F 〉, while
the polynomials in a comprehensive Gröbner system of F are
not necessarily faithful polynomials. Therefore, the algo-
rithms for computing comprehensive Gröbner systems usu-
ally have better performance than those for comprehensive
Gröbner bases. Consequently, a feasible method for com-
puting comprehensive Gröbner bases is to compute compre-
hensive Gröbner systems first, and then transform all poly-
nomials in the comprehensive Gröbner systems to faithful
polynomials. Unfortunately, this transformation is usually
expensive when the computation of comprehensive Gröb-
ner systems is finished. So the goal of the new technique
is to make this transformation easier. The proposed idea of
retaining polynomials from the ideal of the original polyno-
mial system while computing Gröbner bases along different
branches can be used in all algorithms for computing com-
prehensive Gröbner systems, including Weispfenning’s [16],
Kapur’s [7], Montes’ [11, 10, 13], Wang’s [2], Suzuki-Sato’s
[15], Nabeshima’s [14] as well as our recently proposed algo-
rithm [9].

Comprehensive Gröbner basis and Gröbner system construc-
tions have been found useful in many engineering applica-
tions which can be modeled using parameterized polynomial
systems; see [4, 6, 11] for examples of some applications.
These constructions have also been found useful for auto-
mated geometry theorem proving [2] and automated geom-
etry theorem discovery [12], as well as more recently, for
computing loop invariants in program analysis [8]. Solving
parametric polynomial systems has also been investigated
by Chou and Gao [5] and Chen et al. [1] using the char-
acteristic set construction, as well as by Wibmer [18] using
Gröbner cover.

The paper is organized as follows. We give some notations
and definitions in Section 2. The new technique mentioned
above is described in Section 3. We propose a new algorithm
for computing comprehensive Gröbner bases in Section 4. A
simple example illustrates the proposed algorithm in Sec-
tion 5. Empirical data and comparison with other existing
algorithms are presented in Section 6. Concluding remarks
follow in Section 7.

2. NOTATIONS AND DEFINITIONS
Let k be a field, R be the polynomial ring k[U] in the

parameters U = {u1, · · · , um}, and R[X] be the polyno-
mial ring over the parameter ring R in the variables X =

194

{x1, · · · , xn} where X ∩ U = ∅, i.e. X and U are disjoint
sets.

Let PP (X), PP (U) and PP (U,X) be the sets of power
products of X, U and X ∪ U respectively. ≺X,U is an ad-
missible block term order on PP (U,X) where U � X. The
orders ≺X and ≺U are the restrictions of ≺X,U on PP (X)
and PP (U) respectively.

For a polynomial f ∈ R[X] = k[U][X], the leading power
product, leading coefficient and leading monomial of f w.r.t.
the order ≺X are denoted by lppX(f), lcX(f) and lmX(f)
respectively. Since f can also be regarded as an element of
k[U,X], in this case, the leading power product, leading co-
efficient and leading monomial of f w.r.t. the order ≺X,U

are denoted by lppX,U (f), lcX,U (f) and lmX,U (f) respec-
tively. For f , we always have lmX(f) = lcX(f)lppX(f) and
lmX,U (f) = lcX,U (f)lppX,U (f).

Given a field L, a specialization of R is a homomorphism
σ : R −→ L. In this paper, we always assume L to be an
algebraically closed field containing k and we only consider
the specializations induced by the elements in Lm. That
is, for ā ∈ Lm, the induced specialization σā is defined as
follows.

σā : f −→ f(ā)

where f ∈ R. Every specialization σ : R −→ L extends
canonically to a specialization σ : R[X] −→ L[X] by apply-
ing σ coefficient-wise.

For a parametric polynomial system, the comprehensive
Gröbner system and comprehensive Gröbner basis are given
below.

Definition 2.1 (CGS) Let F be a subset of R[X], A1, · · · , Al

be algebraically constructible subsets of Lm, G1, · · · , Gl be
subsets of R[X], and S be a subset of Lm such that S ⊆
A1 ∪ · · · ∪ Al. A finite set G = {(A1, G1), · · · , (Al, Gl)} is
called a comprehensive Gröbner system on S for F , if
σā(Gi) is a Gröbner basis of the ideal 〈σā(F)〉 in L[X] for
ā ∈ Ai and i = 1, · · · , l. Each (Ai, Gi) is called a branch
of G. If S = Lm, then G is simply called a comprehensive
Gröbner system for F .

For an F ⊂ R = k[U], the variety defined by F in Lm

is denoted by V (F). In this paper, the constructible set Ai

always has the form: Ai = V (Ei) \ V (Ni) where Ei, Ni are
subsets of k[U]. Particularly, we call Ei and Ni equality
constraints and disequality constraints respectively. Clearly,
if the set Ai = V (Ei) \ V (Ni) is empty, the branch (Ai, Gi)
is redundant.

Definition 2.2 (CGB) Let F be a subset of R[X] and S
be a subset of Lm. A finite subset G in R[X] is called a
comprehensive Gröbner basis on S for F , if σā(G) is
a Gröbner basis of the ideal 〈σā(F)〉 in L[X] for each ā in
S. If S = Lm, then G is simply called a comprehensive
Gröbner basis for F .
A comprehensive Gröbner basis G of F is called faithful if
in addition, every element of G is also in 〈F 〉.

A typical approach to compute a comprehensive Gröb-
ner basis of F is to first compute a comprehensive Gröb-
ner system of F and then further process it to generate a
comprehensive Gröbner basis. It follows from the above def-
initions of a comprehensive Gröbner system and a compre-
hensive Gröbner basis that given a comprehensive Gröbner

system G = {(A1, G1), · · · , (Al, Gl)} on S for F ⊂ R[X], if
Gi ⊂ 〈F 〉 for i = 1, · · · , l, then the set G1∪· · ·∪Gl is a com-
prehensive Gröbner basis on S for F . However, in almost all
the known algorithms for computing a comprehensive Gröb-
ner system, Gi is typically never a subset of the ideal 〈F 〉,
since polynomials get simplified based on parameter special-
ization. The main challenge is thus to recover G′i ⊂ 〈F 〉 such
that σā(Gi) = σā(G′i) for ā ∈ Ai. In the next section, we
propose a new technique to obtain the G′i’s efficiently during
the computation of a comprehensive Gröbner system.

3. A POLYNOMIAL AS A TUPLE UNDER
PARAMETER SPECIALIZATION

As mentioned in the introduction and illustrated using an
example, the key new idea in our approach is to keep track of
polynomials in 〈F 〉 while computing various Gröbner bases
under different parameter specializations. If some terms in
these polynomials vanish due to specialization of parameters
during the computation of a comprehensive Gröbner system,
this information can be kept by splitting the polynomial into
the nonzero part and the zero part under the specialization.

A polynomial p ∈ 〈F 〉 is replaced along a branch of a com-
prehensive Gröbner system computation for a specialization
of parameters from a constructible set Ai, by a tuple (q, q̄)
such that (i) p = q+ q̄, and further, (ii) for every parameter
specialization σ from Ai, σ(q̄) is 0. We call (q, q̄) an ad-
missible tuple representation of p in the ideal 〈F 〉 w.r.t.
constructible set Ai.

2

Let us observe some properties of admissible tuple rep-
resentation of polynomials from an ideal. Given admissible
tuple representations (p, p̄) and (q, q̄) of p + p̄ and q + q̄ in
〈F 〉, w.r.t. Ai, (p+ q, p̄+ q̄) is an admissible tuple represen-
tation of p+q+ p̄+ q̄ in the ideal generated by p+ p̄ and q+ q̄
w.r.t. Ai. Furthermore, given a polynomial r, (r · p, r · p̄) is
an admissible tuple representation of r · p+ r · p̄ in the ideal
generated by p+ p̄ w.r.t. Ai.

Let us now consider operations on polynomials and pa-
rameter specializations performed while computing a com-
prehensive Gröbner system. In Gröbner basis computations,
there are two key steps – simplification of a polynomial by
another polynomial and S-polynomial construction from a
pair of distinct polynomials. In addition, we modify para-
metric constraints by adding disequalities and equalities on
parameters, and modify the tuple representation of polyno-
mials under consideration.

Particularly, if a parametric constraint h is added to a
constructible set Ai = V (Ei) \ V (Ni), with Ei, Ni ⊂ k[U],
the new constructible set A′i should be nonempty, i.e., A′i =
V (E′i) \ V (N ′i) 6= ∅ where either E′i = Ei ∪ {h}, N ′i = Ni if
the constraint is h = 0 or E′i = Ei, N

′
i = {n · h | n ∈ Ni}

if the constraint is h 6= 0. Typically, h is the leading coeffi-
cient of the polynomial q in a tuple (q, q̄) in a computation.
If Ai is extended by adding h 6= 0, then the tuple is not
changed; otherwise, if h = 0 is added as a new parameter
constraint to Ei of Ai, then the above tuple is replaced by
(q′, q̄′) by moving all terms in q that vanish to q̄′ such that
q + q̄ = q′ + q̄′ and the leading coefficient of q′ is not al-
ways zero for the specializations from A′i and q̄′ is 0 w.r.t.

2We decided not to include an additional condition on an
admissible tuple representation that lcX(q) 6= 0 wrt Ai, be-
cause this property is not preserved under addition. How-
ever, as the reader would observe later, this third condition
is satisfied by tuples generated in the algorithms below.

195

A′i. These are admissible tuple representations. We can
make the leading coefficients of first components of tuples
always nonzero w.r.t. some parametric constraints by using
the method in [7, 11, 2].

For a constructible set Ai and two admissible tuple repre-
sentations p = (p, p̄),q = (q, q̄) of p + p̄ and q + q̄, respec-
tively, assuming both lcX(p) and lcX(q) are nonzero w.r.t.
Ai, their S-polynomial is defined to be

lcX(q)Lpq

lppX(p)
· (p, p̄)− lcX(p)Lpq

lppX(q)
· (q, q̄),

where Lpq = lcm(lppX(p), lppX(q)). Clearly, the S-polynomial
of p and q is also an admissible tuple representation. And
the polynomial corresponding to the above tuple is in the
ideal of {p+ p̄, q + q̄}.

Similarly, along a branch corresponding to a constructible
setAi, assuming lppX(g) divides lppX(f) and lcX(g) is nonzero
w.r.t. Ai, the result of reducing (simplifying) f = (f, f̄) by
g = (g, ḡ) is:

lcX(g)f − lmX (f)
lppX (g)

· g
= (lcX(g)f − lmX (f)

lppX (g)
g, lcX(g)f̄ − lmX (f)

lppX (g)
ḡ),

which is an admissible tuple representation of the simplified
polynomial in the ideal of {f + f̄ , g + ḡ}.

In algorithms for computing a comprehensive Gröbner sys-
tem from F , if we use the above admissible tuple representa-
tion of polynomials in F and perform the above S-polynomial
and reduction as defined above on tuples, then, for each
branch, we get a finite set of admissible tuples such that
their first components constitute a Gröbner basis of F under
the parameter specialization belonging to Ai. Furthermore,
these constructions produce tuples such that the polynomials
corresponding to them, obtained by adding the two compo-
nents of the tuple, are in the ideal 〈F 〉. In this way, a faithful
Gröbner basis is generated for every branch corresponding to
Ai.

3.1 Manipulating Tuple Representations of Poly-
nomials using Module Operations

As the reader might have noticed, it suffices to perform
various Gröbner basis operations only on the first component
of the tuple representation of a polynomial from the input
ideal to generate a comprehensive Gröbner system. How-
ever, to compute a comprehensive Gröbner basis consisting
of faithful polynomials from the input ideal, the same op-
erations have to be recorded on the second component also,
even though computations on the second components do not
affect the overall computation of a Gröbner basis along a
branch under a specialization. A Gröbner basis implementa-
tion that also provides information about how the elements
of a Gröbner basis can be obtained from the input basis
(i.e., the representation of each element of a Gröbner basis
in terms of the input basis), can be used to derive the re-
quired information about the second components; hence, in
this way, the faithful polynomial corresponding to the first
component in a Gröbner basis along a particular branch can
be generated.

In the absence of such information available about Gröb-
ner basis elements in terms of the input basis, existing im-
plementations of Gröbner basis algorithms on modules can
be used instead, since all the operations on admissible tuple
representations can be converted to basic module operations.

Most of the terminologies on “module” in this section can be
found in Chapter 5 of [3].

Let F be a subset of R[X] and Ai be a constructible set.
Then

M(F,Ai) = {(p, p̄) | p+p̄ ∈ 〈F 〉 and σā(p̄) = 0 for all ā ∈ Ai}

is the set of all admissible tuple representations of polyno-
mials from 〈F 〉 w.r.t. Ai. Clearly, M(F,Ai) ⊂ (R[X])2 is
an R[X]-module with the following basic operations:

1. for p = (p, p̄),q = (q, q̄) ∈ M(F,Ai), p + q = (p +
q, p̄+ q̄) ∈M(F,Ai), and

2. for p = (p, p̄) ∈ M(F,Ai) and r ∈ R[X], r · p = (r ·
p, r · p̄) ∈M(F,Ai).

Since M(F,Ai) is a module, we can use general definitions
of the S-polynomial and reduction in a module. To make
these definitions consistent with those defined on tuples in
last subsection, it suffices to extend the term order defined
on R[X] to the free R[X]-module (R[X])2 in a POT (position
over term) fashion with (1, 0) � (0, 1).

An important operation for computing a comprehensive
Gröbner system is simplifying (p, p̄) ∈ M(F,Ai) w.r.t. Ai.
As mentioned earlier, we can simplify (p, p̄) to (p′, p̄′) by
moving all terms in p that vanish to p̄ such that p + p̄ =
p′ + p̄′ and the leading coefficient of p′ is not always zero
for the specializations from Ai and p̄′ is 0 w.r.t. Ai. This
simplification can also be expressed using module operations.
Assume Ai = V (E) \ V (N) where E,N ⊂ R and 〈E〉 is
radical. Then simplifying (p, p̄) w.r.t. Ai is equivalent to
reducing (p, p̄) by the set {(e,−e) | e ∈ E} ⊂ M(F,Ai).
For example, let F = {ax2 + bx + a + 1} ⊂ Q[a, b][x], Ai =
V (E) = V ({a, b − 1}) and p = (ax2 + bx + a + 1, 0) ∈
M(F,Ai). Then p = (ax2 + bx+ a+ 1, 0) can be reduced to
(x+ 1, ax2 + bx− x+ a) as follows:

(ax2 + bx+ a+ 1, 0)− (x2 + 1) · (a,−a)− x · (b− 1, 1− b)

= (x+ 1, ax2 + bx− x+ a).

Notice that the result is also an element in M(F,Ai), since
(a,−a), (b− 1, 1− b) ∈M(F,Ai).

4. A NEW ALGORITHM FOR COMPUTING
A COMPREHENSIVE GRÖBNER BASIS

The algorithm proposed in [9] for computing a comprehen-
sive Gröbner system is adapted so as to work on the tuple
representation of polynomials. The output of the new algo-
rithm is a comprehensive Gröbner system with the property
that every branch is disjoint vis a vis specializations, and
the output along each branch is a Gröbner basis for 〈F 〉 un-
der the specialization. Tuple representation of the output
is used to extract polynomials from 〈F 〉. Hence a faith-
ful comprehensive Gröbner basis can be found by taking the
union of the outputs along all branches. The correctness
and termination of the new algorithm that outputs a com-
prehensive Gröbner system as well as a comprehensive Gröb-
ner basis follow from the correctness and termination of the
algorithm proposed in [9] for computing a comprehensive
Gröbner system.

The algorithm for computing a comprehensive Gröbner
system in [9] uses the following theorem; the definition below
is used in this theorem.

196

Definition 4.1 (Minimal Dickson Basis) For a polyno-
mial set G in k[U,X] and an admissible block order with
U � X, we say F ⊂ k[U,X], denoted by MDBasis(G), is a
minimal Dickson basis of G, if

1. F is a subset of G,

2. for every polynomial g ∈ G, there is some polynomial
f ∈ F such that lppX(g) is a multiple of lppX(f), i.e.
〈lppX(F)〉 = 〈lppX(G)〉, and

3. for any two distinct f1, f2 ∈ F , neither lppX(f1) is
a multiple of lppX(f2) nor lppX(f2) is a multiple of
lppX(f1).

A minimal Dickson basis of a set may not be unique.

Theorem 4.2 (Kapur-Sun-Wang, 2010) Let G be a Gröb-
ner basis of the ideal 〈F 〉 ⊂ k[U,X] w.r.t. an admissible
block order with U � X. Let Gr = G ∩ k[U] and Gm =
MDBasis(G \ Gr). If σ is a specialization from k[U] to L
such that

1. σ(g) = 0 for g ∈ Gr, and

2. σ(h) 6= 0, where h =
∏

g∈Gm
lcX(g) ∈ k[U],

then σ(Gm) is a (minimal) Gröbner basis of 〈σ(F)〉 in L[X]
w.r.t. ≺X .

The theorem below serves as a basis of the proposed al-
gorithm for computing a comprehensive Gröbner basis. The
set E below refers to the set of equality constraints. It estab-
lishes that along a branch, for a specialization satisfying E,
the first components of the tuple representation of polyno-
mials constitute a comprehensive Gröbner basis of 〈F 〉 and
furthermore, every polynomial obtained by adding the two
components in the tuple representation is in 〈F 〉 ensuring
faithfulness.

Theorem 4.3 Let F be a set of polynomials in k[U,X], E
be a subset of k[U], and M be a k[U,X]-module generated
by {(f, 0) | f ∈ F} ∪ {(e,−e) | e ∈ E}. Suppose G is a
Gröbner basis of the module M w.r.t. an order extended from
≺X,U in a position over term fashion with (0, 1) ≺ (1, 0),
where ≺X,U is an admissible block order with U � X.

Denote G1st = {g | (g, ḡ) ∈ G}, Gr = G1st ∩ k[U] and
Gm = MDBasis(G1st \ Gr). Gm is a subset of G such that
{(g, ḡ) ∈ Gm | g ∈ Gm}. If σ is a specialization from k[U]
to L such that

1. σ(g) = 0 for g ∈ Gr, and

2. σ(h) 6= 0, where h =
∏

g∈Gm
lcX(g) ∈ k[U],

then

(1). for each (g, ḡ) ∈ Gm, g + ḡ ∈ 〈F 〉 and σ(ḡ) = 0, and

(2). {σ(g+ ḡ) | (g, ḡ) ∈ Gm} is a minimal Gröbner basis of
〈σ(F)〉 in L[X] w.r.t. ≺X .

That is, {(V (Gr) \ V (h), Gm)} is comprehensive Gröbner
system on V (Gr) \ V (h) for F , and {g+ ḡ | (g, ḡ) ∈ Gm} is
a comprehensive Gröbner basis on V (Gr) \ V (h) for F .

Proof. For (1), we first show E ⊂ 〈Gr〉. Since G is a
Gröbner basis of the module M generated by {(f, 0) | f ∈
F} ∪ {(e,−e) | e ∈ E} w.r.t. an order extended from ≺X,U

in a POT fashion with (0, 1) ≺ (1, 0), we next show G1st is
a Gröbner basis for the ideal 〈F ∪ E〉 w.r.t. ≺X,U . For any
h ∈ 〈F ∪ E〉, we have h =

∑
f∈F pf f +

∑
e∈E qe e where

pf , qe ∈ k[U,X], so (h,−(
∑

e∈E qe e)) =
∑

f∈F pf (f, 0) +∑
e∈E qe (e,−e) ∈M. As G is a Gröbner basis for M, there

exists (g, ḡ) ∈ G such that lpp(g) divides lpp(h), which
means G1st is a Gröbner basis for the ideal 〈F ∪E〉. Besides,
Gr = G1st ∩ k[U] ⊂ 〈F ∪ E〉, so we have E ⊂ 〈Gr〉 ⊂ k[U]
since ≺X,U is a block order with U � X.

Notice that Gm is a subset of the module M; for each
(g, ḡ) ∈ Gm, we have(

g
ḡ

)
=
∑
f∈F

pf

(
f
0

)
+
∑
e∈E

qe

(
e
−e

)
,

where pf , qe ∈ k[U,X]. So g+ḡ = (
∑

f∈F pf f+
∑

e∈E qe e)+∑
e∈E qe(−e) =

∑
f∈F pf f ∈ 〈F 〉, and ḡ =

∑
e∈E qe(−e).

Since E ⊂ 〈Gr〉, then σ(ḡ) = 0.
For (2), G1st is a Gröbner basis for the ideal 〈F ∪ E〉

w.r.t. ≺X,U as shown above, Gr = G1st ∩ k[U] and Gm =
MDBasis(G1st \ Gr), so σ(Gm) = {σ(g + ḡ) | (g, ḡ) ∈ Gm}
is a minimal Gröbner basis of 〈σ(F)〉 by Theorem 4.2.

Therefore, combined with (1) and (2), {(V (Gr)\V (h), Gm)}
is comprehensive Gröbner system on V (Gr)\V (h) for F , and
{g + ḡ | (g, ḡ) ∈ Gm} is a comprehensive Gröbner basis on
V (Gr) \ V (h) for F .

We emphasize that, in the above theorem, we do not
necessarily need to compute a whole Gröbner basis for the
module M, what we really need is a G ⊂ M such that
G1st = {g | (g, ḡ) ∈ G} is a Gröbner basis for the ideal
〈F ∪ E〉.

4.1 Algorithm
Now, we give an algorithm for computing comprehensive

Gröbner bases. The correctness of the algorithm is a direct
result of the above theorem. Its termination also can be
proved in a same way as in [9].

In order to keep the presentation simple, we have delib-
erately avoided tricks and optimizations such as factoring h
below. All the tricks suggested in [9] can be used here as
well. In fact, our implementation incorporates fully these
optimizations.

The following algorithm computes a comprehensive Gröb-
ner basis on V (E) \ V (N) for F ⊂ k[U,X].

Algorithm CGB(E,N, F)
Input: (E,N, F): E, N , finite subsets of k[U]; F , a finite
subset of k[U,X].
Output: a comprehensive Gröbner basis of the set F on
V (E) \ V (N).

1. CGS := CGSMain(E,N, F), where CGS is a finite set
of 3-tuples (Ei, Ni,Gi) such that {(V (Ei)\V (Ni), G

1st
i)},

where G1st
i = {g | (g, ḡ) ∈ Gi}, constitutes a compre-

hensive Gröbner system on V (E)\V (N) for F , and for
each (g, ḡ) ∈ Gi, g + ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for every
parameter specialization σ from V (Ei) \ V (Ni).

2. Return {g + ḡ | (g, ḡ) ∈ Gi for all i}.

197

Below we assume that all Gröbner basis computations are
done in (k[U,X])2 using the order extended by ≺X,U in a
POT fashion with (1, 0) � (0, 1).

Algorithm CGSMain(E,N, F)
Input: (E,N, F): E, N , finite subsets of k[U]; F , a finite
subset of (k[U,X])2.
Output: CGS: a finite set of 3-tuples (Ei, Ni,Gi) such
that {(V (Ei)\V (Ni), G

1st
i)}, whereG1st

i = {g | (g, ḡ) ∈ Gi},
constitutes a comprehensive Gröbner system on V (E)\V (N)
for F , and for each (g, ḡ) ∈ Gi, g+ ḡ ∈ 〈F 〉 and σ(ḡ) is 0 for
every parameter specialization σ from V (Ei) \ V (Ni).

1. If inconsistent(E, N), then return ∅.

2. Otherwise, G0 := ReducedGröbnerBasis ({(f, 0) | f ∈
F} ∪ {(e,−e) | e ∈ E}).

3. G := G0 \ {(g, ḡ) ∈ G0 | g = 0} and G1st := {g |
(g, ḡ) ∈ G}.

4. If there exists (1, ḡ) ∈ G, then return {(E,N, {(1, ḡ)})}.

5. Let Gr := {(g, ḡ) ∈ G | g ∈ k[U]} and Gr := {g |
(g, ḡ) ∈ Gr}.

6. If inconsistent(E,Gr×N), then CGS := ∅, else CGS :=
{(E,Gr ×N,Gr)}.

7. If inconsistent(Gr,N), then return CGS.

8. Otherwise, let Gm := MDBasis(G1st \Gr) and Gm :=
{(g, ḡ) ∈ G \Gr | g ∈ Gm}.

9. if consistent(Gr,N×{h}), then CGS := CGS ∪{(Gr, N×
{h},Gm)}, where h = lcm{h1, · · · , hk} and {h1, · · · , hk}
= {lcX(g) | g ∈ Gm}.

10. Return CGS ∪
⋃

h∈[h1,··· ,hk] CGSMain(Gr ∪ {hi}, N ×
{h1h2 · · ·hi−1}, {g + ḡ | (g, ḡ) ∈ G \Gr}).

In the above algorithm, A × B = {fg | f ∈ A, g ∈
B}. Also, for the case i = 1, N × {h1h2 · · ·hi−1} = N .
inconsistent(E,N) returns true if V (E)\V (N) is empty, false
otherwise. The above steps 2 and 3 present a method to get
G such that G1st is a Gröbner basis for 〈F ∪ E〉. We can
also get such G by using Suzuki-Sato’s trick in [15]. The
inconsistency check is performed using techniques discussed
in detail in [9]; their discussion is omitted here because of
lack of space.

Compared with Suzuki-Sato’s algorithm for computing a
comprehensive Gröbner basis [15], the new algorithm has
three advantages, most of which are inherited from our al-
gorithm for computing a comprehensive Gröbner system [9].
First, as should be evident from the description, polynomials
are never generated for the case when V (E)\V (N) is empty;
so many useless computations are avoided. Second, recur-
sive calls on the CGSMain are made only for the cases when
the leading coefficients of Gm are nonzero instead of having
to consider the leading coefficients of the whole G1st \ Gr;
thus many unnecessary branches are avoided, because typ-
ically, the size of Gm is smaller than the size of G1st \ Gr.
Finally, while recursively calling the CGSMain function, the
intermediate result {g + ḡ | (g, ḡ) ∈ G \Gr} is used in the
new algorithm, instead of using the original F as input as
in the Suzuki-Sato’s algorithm, which should also contribute
to the speedup of the proposed algorithm. Because of these

advantages, the proposed algorithm has a much better per-
formance than the Suzuki-Sato algorithm as well as other
existing algorithms, as shown in the experimental results in
section 6.

5. A SIMPLE EXAMPLE
The proposed algorithm is illustrated using the same ex-

ample discussed in [9] primarily to help an interested reader
to see the differences between the algorithm in [9] and the
new algorithm of this paper. The discussion here is however
self-contained.

Example 5.1 Let F = {ax − b, by − a, cx2 − y, cy2 − x} ⊂
Q[a, b, c][x, y], with the block order ≺X,U , {a, b, c} � {x, y};
within each block, ≺X and ≺U are graded reverse lexico-
graphic orders with y < x and c < b < a, respectively.

At the beginning, F = {ax − b, by − a, cx2 − y, cy2 − x},
E = ∅ and N = {1}. We compute a comprehensive Gröb-
ner system for {(f, 0) | f ∈ F} ∈ (Q[a, b, c][x, y])2 using the
tuple representation, so that along every branch, for every
polynomial in a Gröbner basis, we can also extract the origi-
nal polynomial from the input ideal generated by F to main-
tain faithfulness of the output.

(1) The set V (E)\V (N) is not empty. The reduced Gröb-
ner basis of the Q[a, b, c][x, y]-module 〈(f, 0) | f ∈ F 〉 ⊂
(Q[a, b, c][x, y])2 w.r.t. the order extended by ≺X,U in POT
fashion, is

G0 = G = {(x3−y3, 0), (cx2−y, 0), (ay2−bc, 0), (cy2−x, 0),

(ax− b, 0), (bx−acy, 0), (a2y− b2c, 0), (by−a, 0), (a6− b6, 0),

(a3c− b3, 0), (b3c− a3, 0), (ac2 − a, 0), (bc2 − b, 0)},

with Gr = {(g, ḡ) ∈ G | g ∈ Q[a, b, c]} = {(a6−b6, 0), (a3c−
b3, 0), (b3c− a3, 0), (ac2 − a, 0), (bc2 − b, 0)}. Denote G1st =
{g | (g, ḡ) ∈ G} and Gr = {g | (g, ḡ) ∈ Gr}.

It is easy to see that (V (E) \V (Gr)) \V (N) is not empty.
This implies that {∅, Gr,Gr} is a trivial branch of the com-
prehensive Gröbner system for F .

(2) G1st\Gr = {x3−y3, cx2−y, ay2−bc, cy2−x, ax−b, bx−
acy, a2y − b2c, by − a}; Gm = MDBasis(G1st \ Gr) = {bx −
acy, by − a} and Gm = {(bx− acy, 0), (by − a, 0)}. Further,
h = lcm{lcX(bx − acy), lcX(by − a)} = b. This gives us
another branch of comprehensive system for F corresponding
to the case when all polynomials in Gr are 0 and b 6= 0:
(Gr, {b},Gm). Notice that V (Gr) \ V (b) is not empty.

(3) The next branch to consider is when b = 0. The Gröb-
ner basis of Gr ∪{b} is {a3, ac2−a, b}, which is the input E′

in the recursive call of CGSMain, with the other input being
N ′ = {1} and F ′ = {g + ḡ | (g, ḡ) ∈ G \Gr}.

Since V (E′)\V (N ′) is not empty, we can compute the re-
duced Gröbner basis for {(f, 0) | f ∈ F ′}∪{(a3,−a3), (ac2−
a,−ac2 + a), (b,−b)}. By removing the tuples whose first
component is 0, we get G′ = {(x3−y3, 0), (cx2−y, 0), (cy2−
x, 0), (a,−by), (b,−b)} of which G′r = {(a,−by), (b,−b)}.
Similarly, denote G′1st = {g | (g, ḡ) ∈ G′} and G′r = {g |
(g, ḡ) ∈ G′r}. It is easy to check the set V (E′) \ V (G′r) is
empty, so no element in G′r contributes to the comprehensive
Gröbner system.

Next, G′m = {cx2−y, cy2−x}, G′m = {(cx2−y, 0), (cy2−
x, 0)} and h′ = lcm(lcX(cx2 − y), lcX(cy2 − x)) = c. This
results in another branch: (G′r, {c},G′m).

198

(4) For the case when h′ = c = 0, the set E′′ = {a, b, c}
which is the Gröbner basis of G′r ∪{c}. N ′′ = {1} and F ′′ =
{x3 − y3, cx2 − y, cy2 − x}. Computing the reduced Gröb-
ner basis for {(f, 0) | f ∈ F ′′} ∪ {(a,−a), (b,−b), (c,−c)}
and removing the tuples whose first component is 0, we get
G′′ = {(x,−cy2), (y,−cx2), (a,−a), (b,−b), (c,−c)}. Then,
G′′r = {(a,−a), (b,−b), (c,−c)}, Gm = {x, y} and G′′m =
{(x,−cy2), (y,−cx2)}. Further, h′′ = lcm(lcX(x), lcX(y)) =
1. Similarly, denote G′′ and G′′r as before. This gives the
last branch: (G′′r , {1},G′′m).

Since h′′ = 1, no more branches are generated and the al-
gorithm terminates. Thus, we obtain a comprehensive Gröb-
ner system for F :



{(a6 − b6, 0), (a3c− b3, 0), if a6 − b6 6= 0 or a3c− b3 6= 0
(b3c− a3, 0), (ac2 − a, 0), or b3c− a3 6= 0 or ac2 − a 6= 0
(bc2 − b, 0)}, or bc2 − b 6= 0,
{(bx− acy, 0), (by − a, 0)}, if a6 − b6 = a3c− b3

= b3c− a3 = ac2 − a
= bc2 − b = 0 and b 6= 0,

{(cx2 − y, 0), (cy2 − x, 0)} if a = b = 0 and c 6= 0,
{(x,−cy2), (y,−cx2)} if a = b = c = 0.

An interested reader would observe comparing the above
output with the output from [9] that except for the last
branch, the outputs are the same. In [9], the last branch for
the case when a = b = c = 0, the Gröbner basis is: {x, y},
whereas in the above the Gröbner basis is: {x−cy2, y−cx2},
when the tuple representation is replaced by the correspond-
ing polynomials from the ideal of F . x − cy2 is the faithful
polynomial from the ideal of F corresponding to the output
element x in [9]; similarly, y− cx2 is the faithful polynomial
corresponding to y.

A comprehensive Gröbner basis of F , after removing the
duplicate ones, can be obtained directly from the above com-
prehensive Gröbner system. That is {a6 − b6, a3c− b3, b3c−
a3, ac2 − a, bc2 − b, bx− acy, by − a, cx2 − y, cy2 − x}.

6. IMPLEMENTATION AND COMPARATIVE
PERFORMANCE

The proposed algorithm has been implemented on the
computer algebra system Singular. The implementation has
been experimented on a number of examples from differ-
ent application domains including geometry theorem proving
and computer vision, and it has been compared with imple-
mentations of other algorithms. Since the proposed algo-
rithm uses the new technique and basic module operations,
it is efficient and can compute comprehensive Gröbner basis
for most problems in a few seconds. In particular, we have
been successful in solving the famous P3P problem for pose-
estimation from computer vision, which is investigated by
Gao et al [6] using the characteristic set method; see the
polynomial system below.

The following table shows a comparison of our implemen-
tation on Singular with other existing algorithms for com-
puting comprehensive Gröbner bases, including: Suzuki-Sato
algorithm implemented by Nabeshima in Risa/Asir (package
PGB, ver20090915) and the function “cgb” for computing
comprehensive Gröbner bases in Reduce (package RedLog).
The versions of Singular, Risa/Asir and Reduce are ver3-1-2,
ver20090715 and free CSL version, respectively.

The implementation has been tried on many examples in-
cluding Examples F6 and F8 from [14]. Many of these ex-

amples could be solved very quickly. To generate complex
examples, we modified problems F2, F3, F4, F5 and F8 in
[14], and labeled them as S1, S2, S3, S4 and S5. As stated
above, we also tried the famous P3P problem from computer
vision. The polynomials for these problems are given below:

F6: F = {x4 +ax3 +bx2 +cx+d, 4x3 +3ax2 +2bx+c}, X =
{x}, U = {a, b, c, d};

F8: F = {ax2 + by, cw2 + z, (x − z)2 + (y − w)2, 2dxw −
2by}, X = {x, y, z, w}, U = {a, b, c, d};

S1: F = {ax2y3 +by+y, x2y2 +xy+2x, ax2 +by+2}, X =
{x, y}, U = {a, b, c};

S2: F = {ax4 + cx2 + y, bx3 + x2 + 2, cx2 + dx + y}, X =
{x, y}, U = {a, b, c, d};

S3: F = {ax3y + cxz2, x4y + 3dy + z, cx2 + bxy, x2y2 +
ax2, x5 + y5}, X = {x, y, z}, U = {a, b, c, d};

S4: F = {ax2y + bx + y3, ax2y + bxy + cx, y2 + bx2y +
cxy}, X = {x, y}, U = {a, b, c};

S5: F = {ax2 + byz + c, cw2 + by + z, (x − z)2 + (y −
w)2, 2dxw − 2byz}, X = {x, y, z, w}, U = {a, b, c, d};

P3P: F = {(1−a)y2−ax2−py+arxy+ 1, (1− b)x2− by2−
qx+ brxy + 1}, X = {x, y}, U = {p, q, r, a, b}.

For all these examples, the term orders used on X are graded
reverse lexicographic orders.

Table 1: Timings
Exa. Algorithm time(sec.) #polys

New(S) 0.310 7
F6 cgb(R) 0.590 6

SuzukiSato(A) error −
New(S) 0.650 28

F8 cgb(R) > 1h −
SuzukiSato(A) 0.6708 284

New(S) 0.120 8
S1 cgb(R) > 1h −

SuzukiSato(A) error −
New(S) 0.165 9

S2 cgb(R) 10.520 38
SuzukiSato(A) error −

New(S) 4.515 62
S3 cgb(R) 28.845 84

SuzukiSato(A) > 1h −
New(S) 5.410 27

S4 cgb(R) 50.180 39
SuzukiSato(A) > 1h −

New(S) 18.034 58
S5 cgb(R) 329.169 59

SuzukiSato(A) > 1h −
New(S) 14.440 50

P3P cgb(R) > 1h −
SuzukiSato(A) > 1h −

In Table 1, entries labelled with New(S) is the proposed
algorithm implemented in Singular; (R) and (A) stand for
Reduce and Risa/Asir, respectively. The column “#polys”
is the number of polynomials in the comprehensive Gröb-
ner basis output by the implementations. The label “error”

199

is included if an implementation ran out of memory or broke
down. The timings were obtained by running the implemen-
tations on Core i5 4 × 2.8GHz with 4GB memory running
Windows 7.

As is evident from Table 1, the proposed algorithm has
better performance in contrast to other algorithms.

7. CONCLUDING REMARKS
In this paper, we have adapted the algorithm proposed

in [9] for computing a comprehensive Gröbner system of a
parameterized polynomial system F such that the new algo-
rithm not only produces a comprehensive Gröbner system of
F but it also generates a comprehensive Gröbner basis of F .
The main idea is to use polynomials from the ideal generated
by F during the computation along various branches corre-
sponding to constructible sets specializing parameters in the
algorithm in [9]. Polynomials from 〈F 〉 are represented as
tuples, with the first component corresponding to its nonzero
part under the specialization and the second component be-
ing zero under the specialization. The key steps of a Gröb-
ner basis computation including reduction of a polynomial
by another polynomial and S-polynomial construction, are
performed on these tuple representations; these steps can
also be viewed as computing Gröbner basis of a submodule
over R[X]2.

The new algorithm produces a comprehensive Gröbner
system, in which each branch is a finite set of tuples along a
constructible set (which is specified by a finite set of equal-
ities over parameters and a finite set of disequalities over
parameters), with the properties (i) the constructible sets
constitute a partition over the set of parameter specializa-
tions under consideration, and (ii) for every parameter spe-
cialization in the constructible set of the branch, the second
component of every tuple is 0 under the specialization and
the leading coefficient of the first component in every tuple
is nonzero under the specialization, and most importantly,
(iii) the sum of the first component and the second compo-
nent in the tuple is in the ideal generated by the input F .
For generating a comprehensive Gröbner system, the second
component of these tuples do not give any useful information
and can hence be discarded. Using these second components
however, a comprehensive Gröbner basis is the union over ev-
ery branch of the set of polynomials obtained by adding the
two components of each tuple. Further, such a comprehen-
sive Gröbner basis is faithful since all the polynomials in the
basis are also in the ideal.

The above construction can be used to adapt all known
algorithms for computing a comprehensive Gröbner system.
We believe that various optimization criteria to discard re-
dundant computations can also be integrated in the proposed
algorithm.

Using insights discussed above, we are investigating the
design of a new algorithm for computing a minimal compre-
hensive Gröbner basis of a parametric polynomial systems,
which will be reported in a forthcoming paper. Using this
notion, we are able to define a canonical minimal comprehen-
sive Gröbner basis, unlike the notion in Weispfenning [17],
where a canonical comprehensive Gröbner basis is defined
but it does not have the property of being minimal.

8. REFERENCES
[1] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza,

and W. Pan. Comprehensive triangular decomposition.

In Proceedings of CASC’07, Lect. Notes in Comp. Sci.,
Springer, Berlin, vol. 4770, 73-101, 2007.

[2] X.F. Chen, P. Li, L. Lin, and D.K. Wang. Proving
geometric theorems by partitioned-parametric Gröbner
bases. In Proceeding of Automated Deduction in
Geometry (ADG) 2004, Lect. Notes in Comp. Sci.,
Springer, Berlin, vol. 3763, 34-43, 2005.

[3] D. Cox, J. Little, and D. O’Shea. Using algebraic
geometry. Springer, New York, second edition, 2005.

[4] B. Donald, D. Kapur, and J.L. Mundy(eds.). Symbolic
and numerical computation for artificial intelligence.
Computational Mathematics and Applications,
Academic Press Ltd., London, 1992.

[5] X.S. Gao and S.C. Chou. Solving parametric algebraic
systems. In Proceedings of ISSAC’1992, ACM Press,
New York, 335–341, 1992.

[6] X.S. Gao, X.R. Hou, J.L. Tang, and H.F. Chen.
Complete solution classification for the
Perspective-Three-Point problem. IEEE Tran. on
PAMI, vol. 25, no. 8, 930-943, 2003.

[7] D. Kapur. An approach for solving systems of
parametric polynomial equations. Principles and
Practice of Constraint Programming (eds. Saraswat
and Van Hentenryck). MIT Press, Cambridge, 1995.

[8] D. Kapur. A quantifier-elimination based heuristic for
automatically generating inductive assertions for
programs. J. Syst. Sci. Complex., Vol. 19, No. 3,
307-330, 2006.

[9] D. Kapur, Y. Sun, and D.K. Wang. A new algorithm
for computing comprehensive Gröbner systems. In
Proceedings of ISSAC’2010, ACM Press, New York,
29-36, 2010.

[10] M. Manubens and A. Montes. Improving DISPGB
algorithm using the discriminant ideal. J. Symb.
Comp., 41, no. 11, 1245-1263. 2006.

[11] A. Montes. A new algorithm for discussing Gröbner
basis with parameters. J. Symb. Comp., vol. 33, 1-2,
183-208, 2002.

[12] A. Montes and T. Recio. Automatic discovery of
geometry theorems using minimal canonical
comprehensive Gröbner systems. In Proceeding of
Automated Deduction in Geometry (ADG) 2006,
Lecture Notes in Artificial Intelligence, Springer,
Berlin, Heidelberg, vol. 4869, 113-138, 2007.

[13] A. Montes and M. Wibmer. Gröbner bases for
polynomial systems with parameters. J. Symb. Comp.,
vol. 45, no. 12, 1391-1425, 2010.

[14] K. Nabeshima. A speed-up of the algorithm for
computing comprehensive Gröbner systems. In
Proceedings of ISSAC’2007, ACM Press, New York,
299-306, 2007.

[15] A. Suzuki and Y. Sato. A simple algorithm to compute
comprehensive Gröbner bases using Gröbner bases. In
Proceedings of ISSAC’2006, ACM Press, New York,
326-331, 2006.

[16] V. Weispfenning. Comprehensive Gröbner bases. J.
Symb. Comp., vol. 14, no. 1, 1-29, 1992.

[17] V. Weispfenning. Canonical comprehensive Gröbner
bases. J. Symb. Comp., vol. 36, no. 3-4, 669-683, 2003.

[18] M. Wibmer. Gröbner bases for families of affine or
projective schemes. J. Symb. Comp., vol. 42, no. 8,
803-834, 2007.

200

	Introduction
	Notations and Definitions
	A Polynomial as a Tuple under Parameter Specialization
	Manipulating Tuple Representations of Polynomials using Module Operations

	A New Algorithm for Computing a Comprehensive Gröbner basis
	Algorithm

	A Simple Example
	Implementation and Comparative Performance
	Concluding Remarks
	References

