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Citation: Ma X D, Sun Y, Wang D K. On computing Gröbner bases in rings of differential operators. Sci China

Math, 2011, 54(6): 1077–1087, doi: 10.1007/s11425-011-4176-y

1 Introduction

Many investigations have been done on Gröbner basis in rings of differential operators [1,2,4,6,8], but the
coefficients are in fields (of rational functions), rings of power series, or rings of polynomials over a field.
For example, Mora gave an introduction to commutative and non-commutative Gröbner bases, which
includes Gröbner bases for Wely algebra [7]. As in Insa and Pauer’s paper [5], the rings of coefficients in
this paper are general commutative rings, which is the main difference from other existing works.

In Insa and Pauer’s paper, the results of Buchberger on Gröbner basis in polynomial rings have been
extended to the theory of Gröbner basis for differential operators. A criterion was presented to determine
if a set of differential operators is a Gröbner basis, and a basic method for computing the Gröbner basis
was also proposed. Pauer generalized the theory to a class of rings which includes rings of differential
operators with coefficients in Noetherian rings [9].

For computing the Gröbner basis of a set of differential operators, instead of computing the generators
of the syzygy module generated by their initials, Insa and pauer’s method needs to compute the generators
of many syzygy modules generated by their leading coefficients. Thus, Insa and pauer’s method leads to
many unnecessary computations. In order to improve the efficiency, Zhou and Winkler proposed some
techniques to reduce the computations on the syzygies [10].

In this paper, a new criterion is proposed for computing Gröbner basis in the ring of differential
operators with coefficients in a general commutative ring.

The new criterion is based on the following simple fact: Let f , g be two differential operators, then

fg = gf + h,
∗Corresponding author
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where fg and gf have the same degree, but h has less degree than fg or gf . The above equation implies
that even though the multiplication in the rings of differential operators is not commutative, the products
fg and gf still have the same initial. According to this fact, it suffices to consider the generators of the
syzygy module in a commutative ring which is deduced from the ring of differential operators. With these
generators, a new criterion is proposed to determine if a set of differential operators is a Gröbner basis.
This new result generalizes original Insa-Pauer Theorem such that their theorem can be concluded as a
special case of the new theorem. Furthermore, the results of this paper can be extended naturally to the
rings that preserve the same fact.

Then the proposed criterion also leads to an efficient method for computing Gröbner bases in the rings
of differential operators. This new method computes fewer s-polynomials than those in Insa and Pauer’s
method as well as Zhou and Winkler’s improved version. So it is not surprising that this new method
will have better efficiency than others.

This paper is organized as follow. Section 2 includes some preliminaries of the Gröbner basis in the
rings of differential operators. Insa-Pauer Theorem comes in Section 3. In Section 4, the new criterion is
presented in detail. And some algorithmic problems are discussed in Section 5. Section 6 is the conclusion.

2 Gröbner basis in rings of differential operators

Let K be a field of characteristic zero, N the set of non-negative integers, n ∈ N a positive integer and
K[X] := K[x1, . . . , xn] (resp. K(X) := K(x1, . . . , xn)) the ring of polynomials (resp. the field of rational
functions) in n variables over K. Let ∂

∂xi
: K(X) −→ K(X) be the partial derivative by xi for 1 6 i 6 n.

Let R be a Noetherian K-subalgebra of K(X) which is stable by ∂
∂xi

for 1 6 i 6 n, i.e. ∂
∂xi

(r) ∈ R for
all r ∈ R. Important examples for R are K[X], K(X) and K[X]M := { f

g ∈ K(X) | f ∈ K[X], g ∈ M}
where M is a subset of K[X] \ {0} closed under multiplication.

Assume the linear equations over R can be solved, i.e.,
(1) for all g ∈ R and all finite subsets F ⊂ R, it is possible to decide whether g is an element of R〈F 〉,

and if yes, it is available to obtain a family (df )f∈F in R such that g =
∑

f∈F dff ;
(2) for all finite subsets F ⊂ R, a finite system of generators of the R-module

{
(sf )f∈F

∣∣∣∣
∑

f∈F

sff = 0, sf ∈ R
}

can be computed.
The partial differential operator Di is defined as the restriction of ∂

∂xi
to R for 1 6 i 6 n. Let

A := R[D] = R[D1, . . . , Dn] be the R-subalgebra of Endk(R) generated by idR = 1 and D1, . . . , Dn,
where EndK(R) denotes the R-algebra of endomorphisms of the additive group of R which vanish at
elements of K. Then the ring A is “a ring of differential operators with coefficients in R”, while the
elements of A are called “differential operators with coefficients in R” [5]. It is well known that A is a
left-Noetherian associative R-algebra, so the ideals in A always refer to the left-ideals of A in this paper.
A is a non-commutative K-algebra with fundamental relations:

xixj = xjxi, DiDj = DjDi for 1 6 i, j 6 n,

and
Dir − rDi = Di(r), r ∈ R.

For a simple example, let A = (k[x1, x2])[D1, D2], then

x1x2 = x2x1, D1D2 = D2D1 and D1x1x2 − x1x2D1 = D1(x1x2) = x2.

And for any f ∈ A, f can be written uniquely as a finite sum

f =
∑

α∈Nn

rαDα, where rα ∈ R.
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Let≺ be an admissible order on Nn, i.e. a total order on Nn such that 0 ∈ Nn is the smallest element and
α ≺ β implies α+γ ≺ β+γ for all α, β, γ ∈ Nn. Then for a differential operator 0 6= f =

∑
α∈Nn rαDα ∈ A,

the degree, leading coefficient and initial are defined as

deg(f) := max≺{α | rα 6= 0} ∈ Nn,

lc(f) := rdeg(f),

init(f) := lc(f)Ddeg(f).

If F is a subset of A, we define

deg(F ) := {deg(f) | f ∈ F, f 6= 0},
init(F ) := {init(f) | f ∈ F, f 6= 0}.

It is easy to check that A has the following properties. Let f, g, h ∈ A:
Associativity:

(fg)h = f(gh).

Distributivity:
f(g + h) = fg + fh and (f + g)h = fh + gh.

There is another property about A which will be used frequently in this paper. Let init(f) = rfDαf and
init(g) = rgD

αg , rf , rg ∈ R, then

deg(fg) = deg(f) + deg(g), lc(fg) = lc(f)lc(g) and init(fg) = rfrgD
αf Dαg .

Therefore, A also has a Quasi-Commutativity:

deg(fg − gf) ≺ deg(fg) = deg(gf).

Then the Gröbner basis in the rings of differential operators with coefficients in R is defined as the
following.

Definition 2.1. Let J be an ideal in A and G a finite subset of J \ {0}. Then G is a Gröbner basis
of J w.r.t. ≺ iff for all f ∈ J ,

lc(f) ∈ R〈lc(g) | g ∈ G, deg(f) ∈ deg(g) + Nn〉.

Example 2.2. If J = A〈f〉 ⊂ A and f 6= 0, then {f} is a Gröbner basis of J .

3 Insa-Pauer Theorem

In order to compute the Gröbner basis, a division (or reduction) in A is necessary. In theory, there may
exist various kinds of divisions in A. The following division is the one presented by Insa and Pauer in [5].

Proposition 3.1 (Division in A). Let F be a finite subset of A \ {0} and g ∈ A. Then there exist a
differential operator r ∈ A and a family (hf )f∈F in A such that

(i) g =
∑

f∈F hff + r (r is “a remainder of g after division by F”),
(ii) for all f ∈ F , hf = 0 or deg(hff) ¹ deg(g),
(iii) r = 0 or lc(r) /∈ R〈lc(f) | deg(r) ∈ deg(f) + Nn〉.
This definition of division in A is also used in the new theorem presented in the next section. Based

on this division, a Gröbner basis in A has the following property [5].

Proposition 3.2. Let J be an ideal in A, G a Gröbner basis of J and f ∈ A. Then f ∈ J iff a
remainder of f after division by G is zero.

Then the next theorem proposed by Insa and Pauer provides a criterion for checking if a set of differ-
ential operators is a Gröbner basis.
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Theorem 3.3 (Insa-Pauer Theorem). Let G be a finite subset of A\{0} and J the ideal in A generated
by G. For E ⊂ G, let SE be a finite set of generators of the R-module

SyzR(E) :=
{

(se)e∈E

∣∣∣∣
∑

e∈E

selc(e) = 0
}
⊂ R(R|E|),

where |E| is the cardinality of the set E. Then the following assertions are equivalent:
(i) G is a Gröbner basis of J .
(ii) For all E ⊂ G and for all (se)e∈E ∈ SE, a remainder of

SPoly(E, (se)e∈E) :=
∑

e∈E

seD
m(E)−deg(e)e

after division by G is zero, where m(E) is the least common multiple of the degrees of polynomials in E,
i.e.,

m(E) := (maxe∈Edeg(e)1, . . . ,maxe∈Edeg(e)n) ∈ Nn.

According to this theorem, one is able to compute the Gröbner basis of A〈F 〉 for any subset F ⊂ A.
All needed to do is to check the remainder of

∑
e∈E seD

m(E)−deg(e)e after division by F is zero or not
for all E ⊂ F . If there does exist a remainder r which is not zero, then expand F to F ′ := F ∪ {r}
and repeat the process for F ′. The procedure terminates exactly when all the remainders are zero. The
terminality of this algorithm can be proved in a similar way as the general Gröbner basis algorithm.

During the above computing process, in order to seek non-zero remainders w.r.t. the subsets of F ,
one needs to compute the generators of Syz(E) for all E ⊂ F , which is really expensive. In view of
this, Zhou and Winkler proposed some techniques to avoid some unnecessary computations [10]. In their
paper, they show that if the elements in E have some special properties, then instead of computing the
generators of Syz(E), it suffices to calculate the generators of Syz(E′) for some E′ ⊂ E. Since the new
theorem in this paper generalizes Insa-Pauer Theorem in a different way from Zhou and Winkler, the
details of their method are omitted here. Interesting readers can refer to [10].

4 The new theorem for Gröbner basis in rings of differential operators

The differential operator

SPoly(E, (se)e∈E) =
∑

e∈E

seD
m(E)−deg(e)e

in (ii) of Insa-Pauer Theorem is denoted as a “generalized s-polynomial” w.r.t. the subset E ⊂ G in [10],
as it plays the same role as the general s-polynomials.

However, this generalized s-polynomial in Insa-Pauer Theorem is constructed quite strangely, since
it is not created by the syzygies of init(G) in the traditional way but results from the set SE , which
is a set of generators of {(se)e∈E | ∑

e∈E selc(e) = 0}. With a further study, one will find the reason
easily. That is, the syzygy of init(G) is extremely difficult to define and even harder to compute, as A
is a non-commutative ring. This explains why Insa and Pauer concentrate on the syzygy of lc(E) in R
instead.

At this point, it is natural to ask: do we really need the syzygy of init(G)? The answer is NO!
By revisiting the proof of Insa-Pauer Theorem carefully, in order to show G is a Gröbner basis, it

suffices to consider the differential operators which are generated by G and possibly have new initials.
What we need to do is to eliminate the present initials of G and to try to create all possible new initials
in A〈G〉. Fortunately, the syzygy of init(G) is not the only one that could do this job, since the ring A
has the Quasi-Commutativity.

With these considerations in mind, let us introduce a commutative ring B deduced from the Quasi-
Commutative ring A.
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Let B := R[Y ] = R[y1, . . . , yn] generated by idR = 1 and y1, . . . , yn. B is a commutative K-algebra
with fundamental relations:

xixj = xjxi, yiyj = yjyi and xiyj = yjxi for 1 6 i, j 6 n.

For any f ∈ B, f can also be written uniquely as a finite sum f =
∑

α∈Nn rαY α, where rα ∈ R. Similarly,
the degree, the leading coefficient and the initial are defined as: deg(f) := max≺{α | rα 6= 0} ∈ Nn,
lc(f) := rdeg(f) and init(f) := lc(f)Y deg(f) respectively.

Since Y commutes with X and the linear equations over R are solvable, it is easy to check that the
linear equations over B can be solved as well, which means the generators of

SyzB(F ) :=
{

(sf )f∈F

∣∣∣∣
∑

f∈F

sf init(f) = 0, sf ∈ B
}

can be computed, where F ⊂ B \ {0}.
With a little care, the only difference between B and A is that B is commutative and A is not. The

following map bridges the two rings easily. Let σ be a map from B toA such that for any
∑

α∈Nn rαY α ∈ B
where rα ∈ R,

σ

( ∑

α∈Nn

rαY α

)
=

∑

α∈Nn

rαDα ∈ A.

By the definition of σ, the following properties hold for all f, g ∈ B:

deg(f) = deg(σ(f)),

lc(f) = lc(σ(f)),

σ(init(f)) = init(σ(f)),

deg(fg) = deg(σ(fg)) = deg(σ(f)σ(g)),

lc(fg) = lc(σ(fg)) = lc(σ(f)σ(g)),

σ(init(fg)) = init(σ(fg)) = init(σ(f)σ(g)).

But remark that
σ(fg) 6= σ(f)σ(g).

It is also very easy to check that σ is an R-homomorphism, i.e. for f, g ∈ B and r ∈ R,

σ(rf + g) = rσ(f) + σ(g).

All the above properties will be used frequently in the proof of the new theorem.
Before presenting the new theorem, let us study some properties of the ring B first. These properties

will be used in the proof of the new theorem as well. We start with the following definition.

Definition 4.1. An element (sf )f∈F ∈ SyzB(F ) is homogeneous of degree α, where α ∈ Nn,
provided that

(sf )f∈F = (cfY αf )f∈F ,

where cf ∈ R and αf + deg(f) = α whenever cf 6= 0.

The following two lemmas are well known. For details, please see [3].

Lemma 4.2. SyzB(F ) has a set of homogeneous generators, i.e. there exists a finite set CF ⊂ S(F )
such that each element of CF is homogeneous and SyzB(F ) = B〈CF 〉.
Lemma 4.3. Let CF be a set of homogeneous generators of SyzB(F ). If (sf )f∈F ∈ SyzB(F ) is homo-
geneous of degree α, then there exists a family (rs̄)s̄∈CF

, where rs̄ ∈ B, such that

(sf )f∈F =
∑

s̄∈CF

rs̄s̄,
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and rs̄s̄ is homogeneous of degree α for all s̄ ∈ CF .

The following example illustrates the above lemma.

Example 4.4. Let R = Q[x1, . . . , x6], A = R[D1, . . . , D6] and J the left ideal of A generated by
F = {f1, f2, f3}, where f1 = x1D4 +1, f2 = x2D5, f3 = (x1 +x2)D6. Let ≺ be the graded lexicographical
order with D1 ≺ · · · ≺ D6.

Here, the ring B = R[y1, . . . , y6] is the corresponding commutative ring w.r.t. A. The set

CF = {s̄1, s̄2, s̄3, s̄4} ⊂ B3

generates SyzB(F ), and CF is also a set of homogeneous generators of SyzB(F ), where s̄1 = (y5y6, y4y6,

−y4y5), s̄2 = ((x1 + x2)y6, 0,−x1y4), s̄3 = (x2y5,−x1y4, 0), s̄4 = (0, (x1 + x2)y6,−x2y5).
Given ((x1 − x2)y5y6, 2x1y4y6,−x1y4y5) ∈ SyzB(F ) which is homogeneous of degree 3, there exist

r1 = −x2, r2 = y5, r3 = −y6 and r4 = y4 such that

((x1 − x2)y5y6, 2x1y4y6,−x1y4y5) = r1s̄1 + r2s̄2 + r3s̄3 + r4s̄4,

and ris̄i is homogeneous of degree 3 for i = 1, 2, 3, 4.
Now, it is time to present the new theorem.

Theorem 4.5 (Main theorem). Let G be a finite subset of A \ {0} and J the ideal in A generated by
G. For each g ∈ G, assume init(g) = cgD

αg , where cg ∈ R and αg ∈ Nn. Let CG be a set of homogeneous
generators of SyzB(HG), where HG = {cgY

αg | g ∈ G} ⊂ B and CG is called a set of commutative syzygy
generators of init(G) for short. Then the following assertions are equivalent:

(i) G is a Gröbner basis of J .
(ii) For all (sg)g∈G ∈ CG where sg ∈ B and hence σ(sg) ∈ A, a remainder of

CSPoly((sg)g∈G) :=
∑

g∈G

σ(sg)g

after division by G is zero.

Proof. (i)⇒ (ii): It follows from Proposition 3.2.
(ii)⇒ (i): Let h ∈ J . It suffices to show

lc(h) ∈ R〈lc(g) | g ∈ G, deg(h) ∈ deg(g) + Nn〉.

For a family (fg)g∈G in A, define

δ((fg)g∈G) := max≺{deg(fg) + deg(g) | g ∈ G}.

Since h ∈ J , there exists a family (hg)g∈G in A such that h =
∑

g∈G hgg. Choose (hg)g∈G such that

δ := δ((hg)g∈G) is minimal,

which implies that if (h′g)g∈G such that h =
∑

g∈G h′gg, then δ ¹ δ((h′g)g∈G).
Let E := {g ∈ G | deg(hg) + deg(g) = δ} ⊂ G.

Case 1. deg(h) = δ. Then

init(h) =
∑

g∈E

init(hgg) and lc(h) =
∑

g∈E

lc(hg)lc(g) ∈ R〈lc(g) | g ∈ E〉.

If g ∈ E, then deg(h) = δ = deg(hg) + deg(g) and hence deg(h) ∈ deg(g) + Nn. Therefore, lc(h) ∈
R〈lc(g) | g ∈ G, deg(h) ∈ deg(g) + Nn〉.
Case 2. deg(h) ≺ δ. Then

∑

g∈E

init(hgg) = 0, which implies
∑

g∈E

lc(hg)lc(g) = 0.
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Combined with the fact that deg(hg) + deg(g) = δ for g ∈ E, it follows

0 =
∑

g∈E

lc(hg)lc(g)Y δ =
∑

g∈E

lc(hg)Y deg(hg)lc(g)Y deg(g) ∈ B.

Denote

tg :=

{
lc(hg)Y deg(hg), g ∈ E,

0, g ∈ G \ E.

Notice that

σ(tg) :=

{
init(hg), g ∈ E,

0, g ∈ G \ E.

Then (tg)g∈G is a homogeneous element of SyzB(HG) with degree δ. Since CG is a set of homogeneous
generators of SyzB(HG), by Lemma 4.3, there exists a family (rs̄)s̄∈CG

where rs̄ ∈ B, such that (tg)g∈G =∑
s̄∈CG

rs̄s̄ and rs̄s̄ is homogeneous of degree δ, i.e. for ∀g ∈ G,

tg =
∑

s̄∈CG

rs̄sg, where s̄ = (sg)g∈G,

and for ∀ g ∈ G, ∀ s̄ ∈ CG,

deg(rs̄) + deg(sg) + deg(g) = δ whenever rs̄sg 6= 0.

Remark that all tg, rs̄, sg ∈ B.
Now

h =
∑

g∈G

hgg =
∑

g∈E

hgg +
∑

g∈G\E
hgg

=
( ∑

g∈E

hgg −
∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g
)

+
∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g +
∑

g∈G\E
hgg. (1)

For the FIRST sum in (1),
∑

g∈E

hgg −
∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g =
∑

g∈E

init(hg)g −
∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g +
∑

g∈E

(hg − init(hg))g

=
∑

g∈G

σ(tg)g −
∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g +
∑

g∈E

(hg − init(hg))g

=
∑

g∈G

(
σ(tg)−

∑

s̄∈CG

σ(rs̄)σ(sg)
)

g +
∑

g∈E

(hg − init(hg))g

=
∑

g∈G

∑

s̄∈CG

(σ(rs̄sg)− σ(rs̄)σ(sg))g +
∑

g∈E

(hg − init(hg))g. (2)

Since init(σ(rs̄sg)) = init(σ(rs̄)σ(sg)), then for ∀g ∈ G, ∀s̄ ∈ CG,

deg((σ(rs̄sg)− σ(rs̄)σ(sg))g) ≺ deg(σ(rs̄)σ(sg)g) = deg(rs̄) + deg(sg) + deg(g) = δ,

whenever rs̄sg 6= 0. In case of rs̄sg = 0 and σ(rs̄)σ(sg) 6= 0, lc(rs̄sg) = 0 implies lc(σ(rs̄)σ(sg)) = 0, so
the above inequation holds as well. Besides, clearly for ∀g ∈ E,

deg((hg − init(hg))g) ≺ deg(hgg) = δ.

For the SECOND sum in (1),

∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g =
∑

s̄∈CG

σ(rs̄)
( ∑

g∈G

σ(sg)g
)

.
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For each s̄ = (sg)g∈G ∈ CG, assume that s̄ is homogeneous of degree βs̄, then βs̄ = deg(σ(sg)) + deg(g)
whenever σ(sg) 6= 0, and consider

∑

g∈G

σ(sg)g =
∑

g∈G

init(σ(sg)g) +
∑

g∈G

(σ(sg)g − init(σ(sg)g))

=
∑

g∈G

lc(σ(sg))lc(g)Dβs̄ +
∑

g∈G

(σ(sg)g − init(σ(sg)g)).

By the definition of CG and s̄ is a homogeneous element of SyzB(HG) with degree βs̄, then

0 =
∑

g∈G

sgcgY
αg =

∑

g∈G

lc(sg)cgY
βs̄ , where init(g) = cgD

αg .

Notice that lc(σ(sg)) = lc(sg), which implies that
∑

g∈G

lc(σ(sg))lc(g)Dβs̄ = 0.

Combined with the fact that deg(σ(sg)g − init(σ(sg)g)) ≺ βs̄, the following inequation holds:

deg
( ∑

g∈G

σ(sg)g
)
≺ βs̄.

By (ii) a remainder of
∑

g∈G σ(sg)g after division by G is zero, i.e. there exist families (fg(s̄))g∈G in A,
such that ∑

g∈G

σ(sg)g =
∑

g∈G

fg(s̄)g,

and deg(fg(s̄)g) ¹ deg(
∑

g∈G σ(sg)g) ≺ βs̄. So the second sum in (1) turns out to be

∑

g∈G

∑

s̄∈CG

σ(rs̄)σ(sg)g =
∑

s̄∈CG

σ(rs̄)
( ∑

g∈G

σ(sg)g
)

=
∑

s̄∈CG

σ(rs̄)
( ∑

g∈G

fg(s̄)g
)

=
∑

g∈G

∑

s̄∈CG

σ(rs̄)fg(s̄)g (3)

and for ∀g ∈ G, ∀s̄ ∈ CG,

deg(σ(rs̄)fg(s̄)g) ≺ deg(σ(rs̄)) + βs̄ = δ whenever rs̄ 6= 0.

For the THIRD sum in (1), by the definition of E, it is obvious that deg(hgg) ≺ δ for g ∈ G \ E.
Based on the expressions in (2) and (3), let

h′g :=





∑

s̄∈CG

(σ(rs̄sg)− σ(rs̄)σ(sg) + σ(rs̄)fg(s̄)) + (hg − init(hg)), g ∈ E,

∑

s̄∈CG

(σ(rs̄sg)− σ(rs̄)σ(sg) + σ(rs̄)fg(s̄)) + hg, g ∈ G \ E.

Then it is easy to verify that h =
∑

g∈G h′gg and δ((h′g)g∈G) ≺ δ, which is a contradiction to the minimality
of δ. Hence Case 2 never occurs.

To sum up, the theorem is proved. 2

The above theorem provides a more fundamental criterion than Insa-Pauer Theorem, since it suffices
to consider the “s-polynomials” constructed from a set of commutative syzygy generators of init(G). As
we will see in the next section, Insa-Pauer Theorem only provides a method for computing the set CG.
Thus the new theorem is more essential and Insa-Pauer Theorem can be concluded as a simple corollary.

In fact, the main theorem extends much more generally.
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Theorem 4.6. The main theorem is true for all rings with the quasi-commutative property.

Proof. In the proof of the main theorem, only the quasi-commutative property is used. 2

Similar to Insa and Pauer’s approach, one can also develop an algorithm for computing Gröbner basis
of A〈F 〉 for any given F ⊂ A based on the main theorem. According to Theorem 4.5, it suffices to
compute one set of commutative syzygy generators of init(F ) in the commutative ring B, instead of
computing the generators of SyzR(E) for all subsets E ⊂ F . Clearly, Insa and Pauer’s method leads to
more computations than needed. To illustrate this, let us see the following example from [10].

Example 4.7. Let R = Q[x1, . . . , x6], A = R[D1, . . . , D6] and J the left ideal of A generated by
F = {f1, f2, f3, f4}, where f1 = x1D4 +1, f2 = x2D5, f3 = (x1 +x2)D6, f4 = D5D6. Let ≺ be the graded
lexicographical order with D1 ≺ · · · ≺ D6.

By Insa-Pauer Theorem, in order to compute a Gröbner basis for A〈F 〉, one needs to consider the
following 12 “generalized s-polynomials” (duplicated cases are omitted):

SPoly({f1, f2}, (x2,−x1)) = x2D5f1 − x1D4f2,

SPoly({f1, f3}, (x1 + x2,−x1)) = (x1 + x2)D6f1 − x1D4f3,

SPoly({f1, f4}, (1,−x1)) = D5D6f1 − x1D4f4,

SPoly({f2, f3}, (x1 + x2,−x2)) = (x1 + x2)D6f2 − x2D5f3,

SPoly({f2, f4}, (1,−x2)) = D6f2 − x2f4,

SPoly({f3, f4}, (1,−(x1 + x2))) = D5f3 − (x1 + x2)f4,

SPoly({f1, f2, f3}, (x2,−x1, 0)) = x2D5D6f1 − x1D4D6f2,

SPoly({f1, f2, f3}, (1, 1,−1)) = D5D6f1 + D4D6f2 −D4D5f3,

SPoly({f1, f2, f4}, (0, 1,−x2)) = D4D6f2 − x2D4f4,

SPoly({f1, f3, f4}, (x1 + x2,−x1, 0)) = (x1 + x2)D5D6f1 − x1D4D5f4,

SPoly({f1, f3, f4}, (1,−1, x2)) = D5D6f1 −D4D5f3 + x2D4f4,

SPoly({f2, f3, f4}, (1,−1, x1)) = D6f2 −D5f3 + x1f4.

By Zhou and Winkler’s trick, SPoly({f1, f2, f4}, (0, 1,−x2)), SPoly({f1, f3, f4}, (x1 + x2,−x1, 0)),
SPoly({f1, f3, f4}, (1,−1, x2)) and SPoly({f2, f3, f4}, (1,−1, x1)) can be removed.

However, according to the new theorem, B = R[y1, . . . , y6] and HF = {x1y4, x2y5, (x1 + x2)y6, y5y6}.
Then

CF = {s̄1, s̄2, s̄3, s̄4, s̄5} = {(x2y5,−x1y4, 0, 0), ((x1 + x2)y6, 0,−x1y4, 0),

(y5y6, 0, 0,−x1y4), (0, y6, 0,−x2), (0, 0, y5,−(x1 + x2))},

is a set of commutative syzygy generators of init(F ). Therefore, in the new method, it suffices to consider:

CSPoly(s̄1) = x2D5f1 − x1D4f2,

CSPoly(s̄2) = (x1 + x2)D6f1 − x1D4f3,

CSPoly(s̄3) = D5D6f1 − x1D4f4,

CSPoly(s̄4) = D6f2 − x2f4,

CSPoly(s̄5) = D5f3 − (x1 + x2)f4.

No matter in either Insa and Pauer’s method or Zhou and Winkler’s improved version, one has to com-
pute the remainders of SPoly({f2, f3}, (x1+x2,−x2)) and SPoly({f1, f2, f3}, (1, 1,−1)) all the time, which
are not needed any more in the new method. Therefore, the new method avoids all these unnecessary
computations and hence has better efficiency.

To finish this example, it is easy to check that all the remainders of CSPoly(s̄i) after division by F are
zero. So F itself is a Gröbner basis for A〈F 〉.
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Let us see another example from [10].

Example 4.8. Let R = Q[x1, x2, x3], A = R[D1, D2, D3] and J the left ideal of A generated by
F = {f1, f2}, where f1 = x1D

2
3 +x2D3 +x2, f2 = x2D

2
3 +x1D3 +x1. Let ≺ be the graded lexicographical

order with D1 ≺ D2 ≺ D3.

The Gröbner basis of the left ideal J is G = {f1, f2, p, q}, where p = qD3 +q and q = x2
2−x2

1. However,
to check whether G is a Gröbner basis, we have to deal with 10 distinct “generalized s-polynomials”
according to Insa-Pauer Theorem. By using our method, only 3 “CSPolys” are necessary to handle,
which is much fewer.

5 On Computing CG over R[Y ]

So far, as shown by the main Theorem 4.5, in order to check if a set of differential operators G is a
Gröbner basis for A〈G〉, it only needs to consider the “s-polynomials” deduced by CG, which is a set of
commutative syzygy generators of init(G). Now, the last question is how to compute the set CG over
R[Y ]?

By the definition of CG, it is a set of homogeneous generators of SyzB(HG) which is a syzygy module
of monomials in B = R[Y ]. In fact, Insa-Pauer Theorem implies a natural method to compute it. That
is, the set

{(seY
m(E)−deg(e))e∈E | (se)e∈E ∈ SE , E ⊂ G},

where SE is a set of generators of SyzR(E) = {(se)e∈E | ∑
e∈E selc(e) = 0, se ∈ R} and m(E) =

(maxe∈Edeg(e)1, . . . ,maxe∈Edeg(e)n) ∈ Nn, extends to a set of generators of SyzB(HG) naturally. But
Example 4.7 shows this set is not minimal in general.

Since B = R[Y ] is a commutative ring, there are many sophisticated results to compute the syzygy of
monomials in B, such as the techniques in [1]. Also Zhou and Winkler’s trick can be exploited for this
purpose. Here, we only mention two special cases.

(i) R is a field:
When R is a field, the following set

{(lc(g)Y m(f,g)−deg(f),−lc(f)Y m(f,g)−deg(g)) | f, g ∈ G}

extends to a set of generators of SyzB(HG).
(ii) R is the polynomial ring K[X]:
Since the variables X commute with Y , CG can be obtained by computing the generators of SyzB(HG)

in the polynomial ring K[X, Y ]. Notice that HG = {cgY
αg | g ∈ G} ⊂ K[X, Y ]. We can obtain a finite set

of generators for {(sg)g∈G | ∑g∈G sgcgY
αg = 0, sg ∈ K[X, Y ]} in the polynomial ring K[X, Y ] and denote

it by S. It is straightforward to check that S is also a set of generators for SyzB(HG) when considered
in K[X][Y ]. Then the collection of all homogeneous parts of S is a set of homogeneous generators for
SyzB(HG), since SyzB(HG) itself is a graded syzygy module in (K[X][Y ])|HG|.

We should also notice that the s-polynomial of two polynomials f and g may be no more one polynomial
but several polynomials when the coefficient ring R has a special structure.

6 Conclusion

In this paper, a new theorem which determines if a set of differential operators is a Gröbner basis in the
ring of differential operators is proposed. This new theorem is so essential that Insa-Pauer Theorem can
be considered as a direct corollary. Furthermore, based on the new theorem, a new method for computing
Gröbner basis in rings of differential operators is deduced. The new method avoids many unnecessary
computations naturally and hence has better efficiency than other well-known methods.
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