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ABSTRACT
Signature-based algorithms, including F5, F5C, G2V and
GVW, are efficient algorithms for computing Gröbner bases
in commutative polynomial rings. In this paper, we present
a signature-based algorithm to compute Gröbner bases in
solvable polynomial algebras which include usual commu-
tative polynomial rings and some non-commutative poly-
nomial rings like Weyl algebra. The generalized Rewritten
Criterion (discussed in Sun and Wang, ISSAC 2011) is used
to reject redundant computations. When this new algorithm
uses the partial order implied by GVW, its termination is
proved without special assumptions on computing orders of
critical pairs. Data structures similar to F5 can be used to
speed up this new algorithm, and Gröbner bases of syzygy
modules of input polynomials can be obtained from the out-
puts easily. Experimental data show that most redundant
computations can be avoided in this new algorithm.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms

Keywords
Gröbner basis, signature-based algorithm, F5, GVW, solv-
able polynomial algebra.

1. INTRODUCTION
Gröbner bases were developed by Buchberger in 1965 [3].

Since then, many important improvements have been made
to speed up the algorithms for computing Gröbner bases in
usual commutative polynomial rings [4, 20, 21, 30]. One
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important improvement is Lazard pointed out the connec-
tion between Gröbner bases and linear algebra methods [26].
This idea is also implemented as the F4 algorithm by Faugère
[14], and as XL type algorithms by Courtois et al. [7] and
Ding et al. [10]. Up to now, Faugère’s F5 algorithm [15]
is one of the most efficient algorithms for computing Gröb-
ner bases in commutative polynomial rings, and its variants
and termination have been studied by Eder and Perry [11,
12, 13], Hashemi and Ars [22], Zobnin [37], Arri and Perry
[2], and the authors [32, 33, 34]. Gao et al. proposed another
signature-based algorithms G2V and GVW in [17, 18].

Computing Gröbner bases in non-commutative rings have
also been widely investigated, for example, Weyl algebra
[16], solvable polynomial algebras [25], free algebras [29, 31],
rings of differential operators [24, 36, 28], G-algebra [27],
PBW algebras [5, 19] and skew polynomial rings [6].

Due to the non-commutativity, it is difficult to reject re-
dundant computations effectively, as well as to compute
Gröbner bases for syzygy modules of input polynomials. In
this paper, a signature-based algorithm is presented to com-
pute Gröbner bases in solvable polynomial algebras. The
generalized criterion proposed in [34] is extended to reject
redundant computations in this non-commutative algebra,
and its correctness is proved in a much simpler way. In this
generalized criterion, the partial order implied by GVW is
used, and the termination is proved without special assump-
tions on computing orders of critical pairs, while the ter-
mination of the original GVW is proved by assuming that
the critical pair with minimal signature is always computed
first [23]. During practical implementations, in order to im-
prove the efficiency, this new algorithm can use a similar
data structure to F5, and by using similar methods intro-
duced in [35], we can also obtain Gröbner bases for syzygy
modules of input polynomials from the outputs of this new
algorithm easily. Experimental data show this new algo-
rithm can reject most redundant critical pairs appearing in
the computation.

This paper is organized as follows. Preliminaries about
signature-based algorithms are given in Section 2. Algo-
rithms are described in Section 3, and the related proofs
come in Section 4. A simple example is presented in Section
5 to illustrate this new algorithm, and some experimental
data are listed in Section 6. Conclusions follow in Section 7.

2. PRELIMINARIES

2.1 Notations
We first recall the definition of solvable polynomial alge-
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bras. Let N be the set of non-negative integers, and ≺ be
an admissible order on Nn, i.e., a total order on Nn such
that 0 ∈ Nn is the smallest element and α ≺ β implies
α + γ ≺ β + γ for all α, β, γ ∈ Nn. For n indeterminates
{x1, . . . , xn}, the standard power product set is defined as
M = {xα = xa11 · · ·xann | α = (a1, . . . , an) ∈ Nn}. We say
xα ≺ xβ if α ≺ β. Let k be a field. For any finite sum
0 6= f =

∑
α∈Nn cαx

α, where cα ∈ k, the multi-degree of f
is defined as mdeg(f) := max≺{α | cα 6= 0} ∈ Nn.

Let R be a finitely generated k-algebra with n generators
{x1, . . . , xn}. R is called a solvable polynomial algebra if
R satisfies (i) M is a k-basis of R, (ii) for any 0 ≤ i ≤ j ≤ n,
there exist 0 6= cij ∈ k and pij ∈ R such that xjxi =
cijxixj+pij and xmdeg(pij) ≺ xixj . Clearly, every element in
R has a unique form

∑
cαx

α, and moreover, for any f, g ∈ R,
we have mdeg(fg) = mdeg(gf). If f = cαx

α + f ′ ∈ R,
where mdeg(f ′) ≺ mdeg(f) = α, we define lpp(f) := xα

and lc(f) := cα.
It is well-known that solvable polynomial algebras include

many important non-commutative algebras like the Weyl al-
gebra An(k), the enveloping algebra of any finite dimensional
Lie algebra and a fairly large class of quantum groups.

A left ideal I generated by F ⊂ R in R is defined as:
I := 〈F 〉 = {

∑
f∈F pff | pf ∈ R}. Only left ideals are

considered in current paper, so we usually say“ideal” instead
of “left ideal” for short.

For any xα, xβ ∈ R, we say that xα divides xβ if β −
α ∈ Nn. If xα divides xβ , xβ−α is called a quotient of xβ

and xα, denoted by xβ−α := xβ/xα. Note that, in solvable
polynomial algebra R, the relation xβ−αxα = xβ usually
does not hold, but we always have lpp(xβ−αxα) = xβ . Given
a left ideal I in R, its Gröbner basis is defined as following:

Definition 2.1 Let I be a left ideal in R and G be a finite
subset of I \ {0}. Then G is a Gröbner basis of I w.r.t. ≺
iff for all f ∈ I, there exists g ∈ G such that lpp(g) divides
lpp(f).

Note that when R is a usual commutative polynomial ring,
the above definition is consistent with the usual definition
of a Gröbner basis.

2.2 Signature
Let f := (f1, · · · , fm) ∈ Rm. We want to compute a

Gröbner basis for the following left ideal

I := 〈f1, . . . , fm〉

= {u · f = p1f1 + · · ·+ pmfm | u = (p1, . . . , pm) ∈ Rm}

with respect to some term order on R.
Given f ∈ I and u ∈ Rm such that f = u · f , we use

the notation f [u] to express this relation between f and u.
Computations on f [u] can be defined naturally. Let f, g ∈
I and u,v ∈ Rm such that f = u · f and g = v · f , c
be a constant in k and t be a power product in R. Then
f [u] + g[v] = (f + g)[u+v], and ct(f [u]) = (ctf)[ctu]. These
operations are well defined, i.e., f + g = (u + v) · f and
ctf = (ctu) · f due to the distributivity of R. In fact, any

f [u] such that f = u · f is an element of the R-module:

{f [u] | f = u · f and u ∈ Rm} = {p1f
[e1]
1 + · · · + pmf

[em]
m |

p1, · · · , pm ∈ R}, where ei is the i-th unit vector of Rm, i.e.,
(ei)j = δij where δij is the Kronecker delta.

In order to make the notation f [u] easier to be understood,
we also call f [u] an element in I and write f [u] ∈ I.
Besides, the notation f [u] always means f ∈ I and
f = u · f in this paper. For any f [u] and g[v] in I, we say
f [u] = g[v] only if f = g and u = v hold at the same time.

Fix any term order ≺1 on R and any term order ≺2

on Rm. We must emphasize that the order ≺2 may or may
not be related to ≺1 in general, although ≺2 is usually an
extension of ≺1 to Rm in implementation. For example, the
term order ≺2 on Rm can be a POT (position over term)
extension of ≺1, i.e., xαei ≺2 x

βej , if either i > j, or i = j
and xα ≺1 x

β .
With order ≺2, we can define the leading power product

(lpp), leading coefficient (lc), “divide”, and “quotient” in Rm

similarly. For more terminologies on “module”, we refer the
readers to Chapter 5 of [8].

For sake of convenience, we use ≺ to represent ≺1 on
R and ≺2 on Rm if no confusion occurs. In current paper,
elements in R are expressed by letters f, g, h; while elements
in Rm are denoted by boldface letters such as u,v,w. We
make the convention that if f = 0 then lpp(f) = 0 and 0 ≺ t
for any non-zero power product t in R.

For any f [u] ∈ I, we define lpp(u) as the signature of

f [u]. The original definition of signature is introduced by
Faugère in [15], and recently, Gao et al. give a generalized
definition of signature in [18]. In current paper, we use the
definition given by Gao et al.

2.3 Strong Gröbner Bases
Let G := {g[v1]

1 , . . . , g
[vs]
s } be a finite subset of I. We call

G a strong Gröbner basis of I, if for any f [u] ∈ I, there
exists g[v] ∈ G such that

1. lpp(v) divides lpp(u), and

2. lpp(tg) � lpp(f), where t = lpp(u)/lpp(v).

A finite strong Gröbner basis exists for any left ideal I by
Theorem 3.5. The above definition of a strong Gröbner basis
is simpler than the definition of a strong Gröbner basis in
[18], and it is easy to show both definitions are equivalent.
A strong Gröbner basis of I has the following property.

Proposition 2.2 If G is a strong Gröbner basis of I =
〈f1, . . . , fm〉, then (1) the set {g | g[v] ∈ G} is a Gröbner

basis of I w.r.t. ≺1; and (2) the set {v | g[v] ∈ G and g = 0}
is a Gröbner basis of the syzygy module {(p1, . . . , pm) ∈ Rm |
p1f1 + · · ·+ pmfm = 0} w.r.t. ≺2.

Proof. We prove (1) by contradiction. Let E := {0 6=
f ∈ I | there does not exist g[v] ∈ G such that lpp(g) divides

lpp(f)}, N := {f [u] ∈ I | u · (f1, · · · , fm) = f, f ∈ E}, and

f [u] ∈ N be an element with the minimal signature in N
w.r.t. ≺2. Then by the definition of strong Gröbner basis,
there exists g[v] ∈ G such that lpp(v) divides lpp(u), and
lpp(tg) � lpp(f), where t = lpp(u)/lpp(v). If lpp(tg) =
lpp(f), then this contradicts the fact that f is in E. Other-

wise, we get lpp(tg) ≺ lpp(f). For f̄ [ū] := f [u]− ct(g[v]) ∈ I
where c = lc(u)/lc(tv), since lpp(f̄) = lpp(f), we will have

f̄ ∈ E and f̄ [ū] ∈ N . However, as lpp(ū) ≺ lpp(u), this is a

contradiction that f [u] has the minimal signature in N .
Next we prove (2). For any nonzero u = (p1, . . . , pm) ∈

Rm such that p1f1 + · · ·+pmfm = 0, we have 0[u] ∈ I. Then
by the definition of strong Gröbner basis, there exists g[v] ∈
G such that lpp(v) divides lpp(u), and lpp(tg) � 0, where

t = lpp(u)/lpp(v). So we have g = 0, and 0[v] ∈ G.
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The following deduced definition and proposition will be
used in the proofs in Section 4.

Let I := 〈f1, . . . , fm〉, and t := xαei be a term in Rm.
We say G ⊂ I is a strong Gröbner basis≺t of I, if for
any f [u] ∈ I with lpp(u) ≺ t, there exists g[v] ∈ G such that
(1) lpp(v) divides lpp(u), and (2) lpp(tg) � lpp(f), where
t = lpp(u)/lpp(v).

Proposition 2.3 Let I := 〈f1, · · · , fm〉 and t := xαei be
a term in Rm. If G is a strong Gröbner basis≺t of I, then
for any f [u] ∈ I with lpp(u) ≺ t and f 6= 0, there exists

g[v] ∈ G, such that

1. lpp(g) divides lpp(f), and

2. lpp(tv) � lpp(u), where t = lpp(f)/lpp(g).

Note that in the definition of a strong Gröbner basis, the
first condition is “lpp(v) divides lpp(u)”; while in the above
proposition, it is “lpp(g) divides lpp(f)”.

Proof. We prove this proposition by contradiction. Let
N := {f [u] ∈ I | f 6= 0, lpp(u) ≺ t, and there do not

exist g[v] ∈ G and power product tg such that lpp(tgg) =

lpp(f) and lpp(tgv) � lpp(u)}, and let f [u] ∈ N be an
element with the minimal signature in N . Since G is a strong
Gröbner basis≺t of I and lpp(u) ≺ t, there exists g[v] ∈
G such that lpp(v) divides lpp(u), and lpp(tg) � lpp(f)
where t = lpp(u)/lpp(v). Note that lpp(tv) = lpp(u) ≺ t.

If lpp(tg) = lpp(f), then it implies f [u] /∈ N , which is a
contradiction. Otherwise, we get lpp(tg) ≺ lpp(f). For

f̄ [ū] := f [u] − ct(g[v]) ∈ I where c = lc(u)/lc(tv), then

lpp(f̄) = lpp(f) and lpp(ū) ≺ lpp(u) ≺ t. Since f [u] has

the minimal signature in N , we have f̄ [ū] /∈ N . So for this
f̄ [ū] ∈ I, there exists h[w] ∈ G such that lpp(h) divides
lpp(f̄) = lpp(f), and lpp(thw) � lpp(ū) ≺ lpp(u), where

th = lpp(f̄)/lpp(h). This contradicts f [u] ∈ N .

3. ALGORITHM

3.1 Criterion
Now, it is the time to define the critical pair of two ele-

ments. Suppose f [u], g[v] are two elements such that both f
and g are nonzero. Assume lpp(f) = xα = xa11 · · ·xann and

lpp(g) = xβ = xb11 · · ·xbnn . The least common multiple
of lpp(f) and lpp(g) is defined as lcm(lpp(f), lpp(g)) :=

x(max{a1,b1},··· ,max{an,bn}). We can also define least com-
mon multiples for terms in Rm in a similar way. Let t :=
lcm(lpp(f), lpp(g)), tf := t/lpp(f) and tg := t/lpp(g), if

lpp(tfu) � lpp(tgv), then the ordered 4-tuple vector (tf , f
[u],

tg, g
[v]) is called the critical pair of f [u] and g[v], and its

corresponding S-polynomial is tf (f [u]) − ctg(g
[v]) where

c = lc(tff)/lc(tgg). Please keep in mind that, for any critical

pair (tf , f
[u], tg, g

[v]), we always have lpp(tfu) � lpp(tgv).

Particularly, a critical pair (tf , f
[u], tg, g

[v]) is said to be reg-
ular if lpp(tfu) � lpp(tgv).

For convenience, the critical pair of f [u] and g[v] is some-
times denoted by [f [u], g[v]] or [g[v], f [u]] for short. Please

note that, we only care about the order of f [u] and g[v] in the
form (tf , f

[u], tg, g
[v]), but we do not care about this order

in the simple form [f [u], g[v]]. We also say that [f [u], g[v]] is

a critical pair of B if both f [u] and g[v] are in B.

For a finite set B ⊂ I, “<B” is a partial order defined on
B in general sense, i.e. “ <B ” has non-reflexivity, antisym-
metry, and transitivity. The subscript B of “<B” means the
partial order <B is defined on the set B. For more details
about the partial order, we refer to [34].

Definition 3.1 (Rewritten Criterion) Let B be a subset

of I, <B be a partial order on B, f [u] be an element in B,
and t be a power product in R. t(f [u]) is called rewritable

by B if there exists g[v] ∈ B such that

1. lpp(v) divides lpp(tu), and

2. g[v] <B f [u].

In particular, a critical pair (tf , f
[u], tg, g

[v]) of B is

called rewritable by B if either tf (f [u]) or tg(g
[v]) is rewrit-

able by B. The critical pair (tf , f
[u], tg, g

[v]) of B is said to

be rejected by Rewritten Criterion w.r.t. B if (tf , f
[u], tg, g

[v])
is rewritable by B.
f [u] ∈ I is said to be a syzygy element in I if f =

0. Similar to F5 and GVW, in order to enhance Rewritten
Criterion, we can add known syzygy elements to B, and
assume that syzygy elements are smaller than non-syzygy
elements in B under the partial order <B such that more
redundant computations can be avoided. Please notice that,
for any two elements f and g in the solvable polynomial
algebra R, the relation gf − fg = 0 does not always hold.
That is, if f [u], g[v] ∈ I, the element g(f [u]) − f(g[v]) =

(gf − fg)[gu−fv] may not be a syzygy element in I.
The following theorem is the main result of this paper,

and it is an extended version of the main result in [34]. The
detailed proof will be given in Subsection 4.1.

Theorem 3.2 (Correctness) Let G be a finite subset of
the ideal I = 〈f1, . . . , fm〉, and <G be any partial order on
G. Then G is a strong Gröbner basis of I if both the follow-
ing two conditions hold:

1. For any 1 ≤ i ≤ m, there exists f [u] ∈ G such that
lpp(u) = ei, and

2. Every regular critical pair of G is rewritable by G.

In Theorem 3.2, the order <G can be any partial order.

3.2 Algorithm
Theorem 3.2 induces an algorithm to compute a strong

Gröbner basis for I directly. We start with the set G0 :=

{f [e1]
1 , . . . , f

[em]
m }. If every regular critical pair of G0 is

rewrit- able by G0, then G0 is a strong Gröbner basis. Oth-
erwise, if there exists a regular critical pair (tf , f

[u], tg, g
[v])

of G0 such that it is not rewritable by G0, then we cre-
ate an h[w] from (tf , f

[u], tg, g
[v]) such that (tf , f

[u], tg, g
[v])

is rewritable by {h[w]}. Next, we expand G0 to G1 :=

G0∪{h[w]} and repeat the above discussions on regular crit-
ical pairs of G1. The set Gi can be expanded repeatedly
in this way until all regular critical pairs of some Gs are
rewritable by Gs.

There is only one question left: how to create an h[w]

from a regular critical pair (tf , f
[u], tg, g

[v]) of Gi such that

(tf , f
[u], tg, g

[v]) is rewritable by {h[w]}?
All existing signature-based algorithms for computing Gröb-

ner bases in polynomial rings solve the above problem by us-
ing a special reduction and an admissible partial order on G
(“admissible” will be defined later).
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Now, let us consider the special reduction.

Definition 3.3 f [u] is said to be reducible by h[w] ∈ G if

1. lpp(h) divides lpp(f), and

2. lpp(tw) ≺ lpp(u) where t = lpp(f)/lpp(h).

If f [u] is reducible by h[w] ∈ G, then f [u] 7−→G f [u] −
ct(h[w]) is said to be a one-step-reduction by G where c =
lc(f)/lc(th) and t = lpp(f)/lpp(h).

f [u] is said to be reduced to f ′
[u′]

by G if f ′
[u′]

is ob-

tained by several one-step-reductions from f [u], and f ′
[u′]

is
not reducible by G.

The following result follows directly from above definition.

Proposition 3.4 Let f [u] be an element in I = 〈f1, . . . , fm〉,
and G be a subset of I. If f [u] is reduced to f ′

[u′]
by G, then

lpp(u) = lpp(u′) and u′ · (f1, . . . , fm) = f ′.

If the S-polynomial of a regular critical pair (tf , f
[u], tg, g

[v])

ofG is reduced to h[w] byG, then we have lpp(tfu) = lpp(w)

by above proposition. To make (tf , f
[u], tg, g

[v]) rewritable

by h[w], by the definition of rewritable, we only need h[w] is
smaller than f [u] under the partial order on G ∪ {h[w]}.

A partial order “<G” on G is admissible if for any regu-
lar critical pair (tf , f

[u], tg, g
[v]) of G, whenever we need to

reduce the S-polynomial of (tf , f
[u], tg, g

[v]) to h[w] by G,

we always have h[w] <G∪{h[w]} f
[u] after expanding “<G” to

G ∪ {h[w]}. We have shown in [34] that the partial orders
implied by criteria of F5 and GVW are both admissible. In
particular, the new algorithm in this paper will use the fol-
lowing GVW-order.

GVW-order: For any f [u], g[v] ∈ G, we define g[v] <G f [u]

if one of the following two conditions holds:

(a) lpp(t′g) ≺ lpp(tf), where t′ = lcm(lpp(u),lpp(v))
lpp(v)

and t =
lcm(lpp(u),lpp(v))

lpp(u)
such that lpp(tu) = lpp(t′v).

(b) lpp(t′g) = lpp(tf) and g[v] is added to G later than f [u].

The algorithm SGB deduced from Theorem 3.2 computes
a strong Gröbner basis for the ideal I = 〈f1, . . . , fm〉 in the
solvable polynomial algebra R.

In the algorithm SGB, SPoly([f [u], g[v]]) refers to the S-

polynomial of [f [u], g[v]]. There are several useful facts:

(A). Since only signatures of elements in I are used in the
definitions of regular critical pairs, rewritable and reducible,
similar to F5, for sake of efficiency, for all elements in I ap-
pearing in the algorithm SGB, such as f [u], g[v] and h[w], it
suffices to use the data structure (lpp(u), f), (lpp(v), g)
and (lpp(w), h) to express them in practical imple-
mentations.

(B). Using algorithms in Subsection 3.3, elements, such as

f [u], can be recovered from the data structure (lpp(u), f).
By Proposition 2.2, a Gröbner basis of I and a Gröbner ba-
sis of the syzygy module {(p1, . . . , pm) ∈ Rm | p1f1 + · · · +
pmfm = 0} can be obtained directly.

(C). Rewritten Criterion uses a partial order defined on G.
While new elements are added to G (line ended with (3)),
the partial order on G needs to be updated simultaneously.
Fortunately, most partial orders, such as GVW-order, can

Algorithm 1: Algorithm for computing Strong Gröbner
bases in solvable polynomial algebras (SGB)

Input : f
[e1]
1 , . . . , f

[em]
m .

Output: A strong Gröbner basis G of 〈f1, . . . , fm〉.
begin

G←−{f [ei]
i | i = 1, . . . ,m}

CPairs←−{[f [u], g[v]] is regular | ∀ f [u], g[v] ∈ G}
while CPairs 6= ∅ do

[f [u], g[v]] = (tf , f
[u], tg, g

[v])←− any critical
pair in
CPairs (1)

CPairs←−CPairs \ {[f [u], g[v]]}
if [f [u], g[v]] is not rewritable by G then

h[w]←− reduce SPoly([f [u], g[v]]) by G (2)
CPairs←−CPairs ∪

{[h[w], h′[w
′]] is regular | h′[w

′] ∈ G}
G←−G ∪ {h[w]} (3)

return G

be updated automatically.

(D). For the line ended with (1), we emphasize that any
critical pair can be selected.

(E). In line marked with (2), we can append the codes

G←−G \ {f [u] ∈ G | f [u] is rewritable by h[w]}

to remove redundant elements from G. This step will not
affect the correctness of the algorithm. An element f [u] is
removed from G only if there is an h[w] such that f [u] is
rewritable by h[w]. In this case, any regular critical pair
involving f [u] is rewritable by h[w], and any regular critical
pair that is rewritable by f [u] is also rewritable by h[w].

Theorem 3.5 (Termination) The algorithm SGB termi-
nates after a finite number of steps if GVW-order is used in
Rewritten Criterion, and the term orders ≺1 on R and ≺2

on Rm are compatible, which means that xα ≺1 x
β if and

only if xαei ≺2 x
βei for all 1 ≤ i ≤ m.

Theorem 3.5 shows the termination of the algorithm SGB
does not depend on computing orders of critical pairs. The
proof for the above theorem is given in Subsection 4.2.

3.3 Recover f [u] from (lpp(u), f)

If we use the data structure (lpp(u), f) instead of f [u] to
express elements in G, the algorithm SGB will be more ef-
ficient, and we can also derive a Gröbner basis for I from
the data structure (lpp(u), f) according to Proposition 2.2.
However, we cannot get a Gröbner basis for the syzygy mod-
ule {(p1, . . . , pm) ∈ Rm | p1f1 + · · · + pmfm = 0} from the
data structure (lpp(u), f) directly. So we need methods of

recovering f [u] from (lpp(u), f). The methods in this sub-
section are slight revisions of methods in [35].

Proposition 3.6 Let S = {(t1, g1), . . . , (ts, gs)} be the set
returned by Algorithm SGB through using the data struc-
ture (lpp(u), f) instead of f [u]. Then the algorithm Recov-

erSGB constitutes a strong Gröbner basis {g[v1]
1 , . . . , g

[vs]
s }

for 〈f1, . . . , fm〉 such that lpp(vi) = ti, where i = 1, . . . , s.
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The above proposition can be proved by Corollary 3.2 and
Theorem 3.5 of [35] after a slight modification. Due to the
page limit, we omit the proof.

Algorithm 2: RecoverSGB

Input : S = {(t1, g1), . . . , (ts, gs)} returned by the
algorithm SGB.

Output: G = {g[v1]
1 , . . . , g

[vs]
s } a strong Gröbner basis

of I = 〈f1, . . . , fm〉 s.t. lpp(vi) = ti.
begin

G←−∅;
while S 6= ∅ do

(xαej , f)←− xαej is minimal in S, i.e.,
xαej � ti, for ∀(ti, gi) ∈ S;
S←−S \ {(xαej , f)};
g←−IncSF(xαej , f, S);
g0←−IncSF(xαej , x

αfj , S);
if g 6= 0 then c←−lc(g)/lc(g0); else c←−1; end if
(p1, . . . , pt)←−Rep(cxαej , f,G)(where t = #G);

u←−cxαej +
∑
pivi where g

[vi]
i ∈ G;

G←−G ∪ {f [u]};
return G.

In the above algorithm, we need two functions Rep(·) and
IncSF(·).

The function Rep(cxαej , f,G = {g[v1]
1 , . . . , g

[vt]
t }) com-

putes a set {p1, . . . , pt} ⊂ R such that f = cxαfj + p1g1 +

· · · + ptgt where xαej � lpp(pivi) and g
[vi]
i ∈ G for i =

1, . . . , t. Corollary 3.2 of [35] assures that the pi’s always
exist in the algorithm RecoverSGB .
Function Rep(·).
Step 1: Let pi := 0 for i = 1, . . . , t, and h := f − cxαfj .
Step 2: If there exists g

[vi]
i ∈ G s.t. lpp(gi) divides lpp(h)

and lpp(tvi) ≺ xαej , where t = lpp(h)/lpp(gi), then set
pi := pi + (lc(h)/lc(tgi))t, and h := h− (lc(h)/lc(tgi))tgi.
Step 3: If h 6= 0, then goto step 2.
Step 4: Return {p1, . . . , pt}.

The function IncSF(xαej , f, S = {(t1, g1), . . . , (ts, gs)})
computes an incomplete standard form (see [35] for defi-
nition) g for xαej such that g = f + p1g1 + · · · + ptgt
where p1, . . . , pt ∈ R, xαej � lpp(piti) and (ti, gi) ∈ S for
i = 1, . . . , t, and there do not exist (ti, gi) ∈ S and power
product t, s.t. lpp(tgi) = lpp(g) and lpp(tti) ≺ xαej .
Function IncSF(·).
Step 1: Let g := f .
Step 2: If there exists (ti, gi) ∈ S s.t. lpp(gi) divides lpp(g)
and lpp(tti) ≺ xαej , where t = lpp(g)/lpp(gi), then set
g := g − (lc(g)/lc(tgi))tgi; Otherwise, return g.
Step 3: If g 6= 0, then goto step 2; otherwise, return 0.

For more details about algorithms above, we refer to [35].

4. THEORY
In this section, we give detailed proofs for Theorem 3.2

and Theorem 3.5.

4.1 Correctness
The following proof is more general and is also much sim-

pler than the proofs given in [34].

Proof of Theorem 3.2. We prove this theorem by con-
tradiction. Assume G is not a strong Gröbner basis of I,
then the set N := {f [u] ∈ I | there do not exist g[v] ∈

G and power product t such that lpp(tv) = lpp(u) and

lpp(tg) � lpp(f)} is not empty. Let f [u] ∈ N be an element
with the minimal non-zero signature in N . In this case, let
t := lpp(u). Then G is a strong Gröbner basis≺t.

Next, we will find some f
[u0]
0 ∈ G such that lpp(u0) di-

vides t and t0(f
[u0]
0 ) is not rewritable by G, where t0 =

t/lpp(u0). Suppose t = xαei, then there exists g
[v1]
1 ∈ G

such that lpp(v1) = ei by hypothesis. Let t1 := xα. Then

we have t = lpp(t1v1). If t1(g
[v1]
1 ) is not rewritable by G,

then g
[v1]
1 is what we are looking for. Otherwise, there ex-

ists g
[v2]
2 ∈ G such that t1(g

[v1]
1 ) is rewritable by g

[v2]
2 . Let

t2 := lpp(t1v1)/lpp(v2). Then we have t = lpp(t2v2). Next

we discuss whether t2(g
[v2]
2 ) is rewritable by G or not. If

t2(g
[v2]
2 ) is not rewritable byG, then g

[v2]
2 is the desired f

[u0]
0 ;

Otherwise, t2(g
[v2]
2 ) is rewritable by some g

[v3]
3 ∈ G. We can

repeat the above discussions. Finally, by the definition of

rewritable, we get a chain g
[v1]
1 >G g

[v2]
2 >G g

[v3]
3 >G · · · .

This chain must terminate, since G is finite. Let g
[vs]
s be

the last element in this chain. Then g
[vs]
s is the desired

f
[u0]
0 , since t = lpp(tsvs) and ts(g

[vs]
s ) is not rewritable by

G, where ts = t/lpp(vs).

Let f
[u0]
0 ∈ G be the element found in the last paragraph.

Then lpp(t0u0) = t and t0(f
[u0]
0 ) is not rewritable by G,

where t0 = t/lpp(u0). Since lpp(t0u0) = t = lpp(u) and

f [u] ∈ N , we must have lpp(f) ≺ lpp(t0f0) by the definition
of N . However, this contradicts the result of Lemma 4.1,
and the theorem is proved.

Lemma 4.1 Let G be a finite subset of I = 〈f1, . . . , fm〉,
<G be any partial order on G, and t be a term in Rm such
that G is a strong Gröbner basis≺t of I and every regular

critical pair of G is rewritable by G. For any f
[u0]
0 ∈ G and

any power product t0 in R with lpp(t0u0) � t, if t0(f
[u0]
0 )

is not rewritable by G, then for any f [u] ∈ I with lpp(u) =
lpp(t0u0), we have lpp(f) � lpp(t0f0).

Proof. We prove the lemma by contradiction. Let N :=

{(t0, f [u0]
0 ) | f [u0]

0 ∈ G, t0 is a power product, lpp(t0u0) � t,

t0(f
[u0]
0 ) is not rewritable by G and there exists f [u] ∈ I

with lpp(u) = lpp(t0u0) s.t. lpp(f) ≺ lpp(t0f0)}. Assume

N is not empty. Let (t0, f
[u0]
0 ) be minimal in N , i.e., there is

no (th, h
[w]) ∈ N such that lpp(thw) ≺ lpp(t0u0). Clearly,

f0 6= 0 and u0 6= 0.

For such (t0, f
[u0]
0 ) ∈ N , let f [u] be in I such that lpp(u) =

lpp(t0u0) and lpp(f) ≺ lpp(t0f0). Denote f̄ [ū] := t0(f
[u0]
0 )−

c(f [u]) ∈ I where c = lc(t0u0)/lc(u). Then lpp(f̄) = lpp(t0f0)

and lpp(ū) ≺ lpp(t0u0) � t. For f̄ [ū] ∈ I, since G is a
strong Gröbner basis≺t, by Proposition 2.3, the set D :=
{(tg, g[v]) | g[v] ∈ G, tg is a power product, lpp(tgg) =
lpp(f̄) = lpp(t0f0) and lpp(tgv) � lpp(ū) ≺ lpp(t0u0)} is
not empty.

Let (tg, g
[v]) ∈ D be minimal inD, i.e., there is no (th, h

[w])
∈ D such that either lpp(thw) ≺ lpp(tgv), or lpp(thw) =

lpp(tgv) and h[w] <G g[v].

For such (tg, g
[v]) ∈ D, let (t̄0, f

[u0]
0 , t̄g, g

[v]) be the crit-

ical pair of f
[u0]
0 and g[v]. Since lpp(tgg) = lpp(t0f0) and

lpp(tgv) � lpp(ū) ≺ lpp(t0u0), we have t̄0 divides t0, t̄g di-
vides tg and t0/t̄0 = tg/t̄g, and moreover, this critical pair

(t̄0, f
[u0]
0 , t̄g, g

[v]) is regular. By hypothesis, (t̄0, f
[u0]
0 , t̄g, g

[v])

is rewritable by G. If t̄0(f
[u0]
0 ) is rewritable by G, so does
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t0(f
[u0]
0 ), which contradicts that (t0, f

[u0]
0 ) ∈ N and t0(f

[u0]
0 )

is not rewritable by G. So t̄g(g
[v]) must be rewritable by G.

Since t̄g(g
[v]) is rewritable by G, so does tg(g

[v]). Similar
to the second paragraph in the proof of Theorem 3.2, for

tg(g
[v]), we can also find some g

[v0]
0 ∈ G such that tg(g

[v])

is rewritable by g
[v0]
0 where g

[v0]
0 <G g[v], and t′0(g

[v0]
0 ) is

not rewritable by G, where t′0 = lpp(tgv)/lpp(v0). Note
that lpp(t′0v0) = lpp(tgv) � lpp(ū) ≺ lpp(t0u0) � t, so

(t′0, g
[v0]
0 ) /∈ N , because (t0, f

[u0]
0 ) is minimal in N . Thus, we

have lpp(tgg) � lpp(t′0g0). Since (tg, g
[v]) is minimal in D,

the relation lpp(tgg) = lpp(t′0g0) does not hold (otherwise

we would have (t′0, g
[v0]
0 ) ∈ D, lpp(t′0v0) = lpp(tgv) and

g
[v0]
0 <G g[v] such that (tg, g

[v]) is not minimal in D). So we
must have lpp(tgg) � lpp(t′0g0).

Denote ḡ[v̄] := tg(g
[v])−ct′0(g

[v0]
0 ) where c = lc(tgv)/lc(t′0v0).

Then lpp(ḡ) = lpp(tgg) and lpp(v̄) ≺ lpp(tgv) ≺ lpp(t0u0) �
t. Since G is a strong Gröbner basis≺t, by Proposition 2.3,
there exists h[w] ∈ G such that lpp(h) divides lpp(ḡ) =
lpp(tgg) = lpp(t0f0) and lpp(thw) � lpp(v̄) ≺ lpp(tgv) ≺
lpp(t0u0), where th = lpp(ḡ)/lpp(h). So we have (th, h

[w]) ∈
D and lpp(thw) ≺ lpp(tgv). This contradicts that (tg, g

[v])
is minimal in D.

Hence N must be empty, and the lemma is proved.

4.2 Termination
Consider a map σ : R × Rm → k[Y,Z,W ], where Y =
{y1, . . . , yn}, Z = {z1, . . . , zm}, and W = {w0, w1, . . . , wn}
are new variables that commute with each other, i.e., k[Y,Z,W ]

is a polynomial ring. For any f [u] ∈ I with lpp(u) =
xa11 · · ·xann ei 6= 0, if f = 0, then we define

σ(0[u]) = ya11 · · · y
an
n zi ∈ k[Y,Z,W ].

Otherwise, assuming lpp(f) = xb11 · · ·xbnn , then we define

σ(f [u]) = ya11 · · · y
an
n ziw0w

b1
1 · · ·w

bn
n ∈ k[Y,Z,W ].

The variable w0 is introduced to define σ when f 6= 0. In
[13], Eder and Perry introduced a similar map to study the
termination of some signature-based algorithms.

Proof of Theorem 3.5. We first claim that, in any loop
of the algorithm SGB, if the regular critical pair (tf , f

[u],

tg, g
[v]) is not rewritable by G and its S-polynomial is re-

duced to h[w] by G, then σ(h[w]) is not divisible by any

σ(h
[w0]
0 ) where h

[w0]
0 ∈ G.

We prove the claim by contradiction. Assume there exists

some h
[w0]
0 ∈ G such that σ(h

[w0]
0 ) divides σ(h[w]). When

both h0 and h are nonzero, we have that lpp(w0) divides
lpp(w) and lpp(h0) divides lpp(h). Let s := lpp(w)/lpp(w0)
and t := lpp(h)/ lpp(h0). There are two cases:

(1) s �1 t. Now, we have lpp(sh0) �1 lpp(th0) = lpp(h) ≺
lpp(tff) and lpp(sw0) = lpp(w) = lpp(tfu). Since GVW-

order is used in Rewritten Criterion, we get h
[w0]
0 <G f [u],

and tf (f [u]) is rewritable by h
[w0]
0 ∈ G. This contradicts the

fact that (tf , f
[u], tg, g

[v]) is not rewritable by G.

(2) s �1 t. Since the orders ≺1 and ≺2 are compatible, we
have lpp(th0) = lpp(h) and lpp(tw0) ≺ lpp(sw0) = lpp(w).

So h
[w0]
0 ∈ G can be used to reduce h[w] further, which con-

tradicts the fact that the S-polynomial of (tf , f
[u], tg, g

[v]) is

reduced to h[w] by G.

Note that if σ(h
[w0]
0 ) divides σ(h[w]), then h = 0 implies

h0 = 0 by the definition of σ. When h0 = 0, a contradiction
can be constructed similar to case (1).

After all, the claim is proved by contradiction.
Using above claim, in each loop of the algorithm SGB,

the regular critical pair (tf , f
[u], tg, g

[v]) is either rejected
by Rewritten Criterion or its S-polynomial is reduced to

h[w] such that σ(h[w]) is not divisible by any σ(h
[w0]
0 ) where

h
[w0]
0 ∈ G. In the former case, the number of critical pairs

in CPairs decreases. In the latter case, the ideal generated

by {σ(h[w])} ∪{σ(h
[w0]
0 ) | h[w0]

0 ∈ G} over k[Z, Y,W ] strictly

contains the ideal generated by {σ(h
[w0]
0 ) | h[w0]

0 ∈ G}. Ac-
cording to Hilbert’s theorem on ascending chains, the algo-
rithm SGB must terminate in finite steps.

5. EXAMPLE
In this section, we use a simple example to illustrate how

to compute a strong Gröbner basis by Algorithm SGB. In
this example, we first use the data structure (lpp(u), f) to
express elements in G, and then recover a strong Gröb-
ner basis by algorithms in Subsection 3.3.

Example 5.1 Let R be the Weyl algebra A2 = k[x1, x2, D1,
D2], and I := 〈f1, f2, f3〉 ⊂ R, where f1 = x1D1 + 1, f2 =
x2D2, f3 = x1D2 + D2 and Di = ∂

∂xi
. The term order

≺1 is a block order such that {D1 > D2} � {x1 > x2},
and within each block, term orders are graded reverse lex
orders. The term order on R3 is a POT extension of ≺1,
i.e., xαei ≺2 x

βej, if either i > j, or i = j and xα ≺1 x
β.

(1) Compute a Gröbner basis for I by Algorithm
SGB. The critical pair with minimal degree in CPairs is
selected in the algorithm SGB, and GVW-order is used in
Rewritten Criterion.

Initially, S0 := {r1 = (e1, f1), r2 = (e2, f2), r3 = (e3, f3)},
and CPairs 0 := {[r1, r2], [r1, r3], [r2, r3]}.
LOOP 1: [r2, r3] = (x1, r2, x2, r3) is selected.
Its S-polynomial is (x1e2,−x2D2), which can be reduced to
r4 := (x1e2, 0) by r2. Now S1 := S0 ∪{r4} and CPairs 1 :=
CPairs 0 \ {[r2, r3]}.
LOOP 2: [r1, r3] = (D2, r1, D1, r3) is selected.
Its S-polynomial is (D2e1,−D1D2). No polynomial in S1

can be used for reduction. So we get r5 := (D2e1,−D1D2).
Now S2 := S1∪{r5} and CPairs 2 := CPairs 1∪{[r5, r1], [r5, r2],
[r5, r3]} \ {[r1, r3]}.
LOOP 3: [r5, r2] = (x2, r5, D1, r2) is selected.
Its S-polynomial is r6 := (x2D2e1, 0). Now S3 := S2 ∪ {r6}
and CPairs 3 := CPairs 2 \ {[r5, r2]}.
LOOP 4: [r5, r3] = (x1, r5, D1, r3) is selected.
Its S-polynomial is (x1D2e1, D1D2 +D2), which can be re-
duced to r7 := (x1D2e1, D2) by r5. Now S4 := S3∪{r7} and
CPairs 4 := CPairs 3 ∪ {[r7, r1], [r7, r2], [r7, r3], [r7, r5]} \
{[r5, r3]} = {[r1, r2], [r5, r1], [r7, r1], [r7, r2], [r7, r3], [r7, r5]}.

LOOP 5: [r7, r2] = (x2, r7, 1, r2) is selected. However, it is
rejected by Rewritten Criterion, since x2(r7) is rewritable by
r6. Now S5 := S4 and CPairs 5 := {[r1, r2], [r5, r1], [r7, r1],
[r7, r3], [r7, r5]}.
LOOP 6: [r7, r3] = (x1, r7, 1, r3) is selected.
Its S-polynomial is (x2

1D2e1,−D2), which can be reduced
to r8 := (x2

1D2e1, 0) by r7. Now S6 := S5 ∪ {r8} and
CPairs 6 := {[r1, r2], [r5, r1], [r7, r1], [r7, r5]}.
LOOP 7: [r7, r5] = (D1, r7, 1, r5) is selected.
Its S-polynomial is r9 := (x1D1D2e1, 0). Now S7 := S6 ∪
{r9} and CPairs 7 := {[r1, r2], [r5, r1], [r7, r1]}.
LOOP 8: [r5, r1] = (x1, r5, D2, r1) is selected. However, it
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is rejected by Rewritten Criterion, since x1(r5) is rewritable
by r7. Now S8 := S7 and CPairs 8 := {[r1, r2], [r7, r1]}.
LOOP 9: [r7, r1] = (x1D1, r7, D2, r1) is selected. How-
ever, it is rejected by Rewritten Criterion, since x1D1(r7) is
rewritable by r9. Now S9 := S8 and CPairs 9 := {[r1, r2]}.
LOOP 10: [r1, r2] = (x2D2, r1, x1D1, r2) is selected. How-
ever, it is rejected by Rewritten Criterion, since x2D2(r1) is
rewritable by r6. Now S10 := S9 and CPairs 10 := ∅.

Finally, we get a simpler version of strong Gröbner basis
S10 = {r1, r2, . . . , r9} of I. By Proposition 2.2, the set

{f1, f2, f3,−D1D2, D2}

is a Gröbner basis of I.
(2) Recover a strong Gröbner basis from S10 for
I by Algorithm RecoverSGB. First, we sort ri’s in an
ascending order on signature, and get

S := {r3, r2, r4, r1, r5, r6, r7, r8, r9}.

Initially, G0 := ∅. Loop 1 and 2 are trivial, and we can
easily get u3 := e3 and u2 := e2 from r3 and r2. Now

G2 := {f [e3]
3 , f

[e2]
2 }.

LOOP 3: r4 = (x1e2, 0). Then g := IncSF(x1e2, 0, S) = 0,
and hence c4 := 1. Next, (p3, p2) := Rep(c4x1e2, 0, G2) =
(−x2, 1). Here pi corresponds to ri. Then u4 := c4x1e2 +

p3e3 + p2e2 = (x1 + 1)e2 − x2e3. Now G3 := G2 ∪ {0[u4]}.
LOOP 4: r1 = (e1, f1). The procedure is trivial, and u1 :=

e1. Now G4 := G3 ∪ {f [e1]
1 }.

LOOP 5: r5 = (D2e1,−D1D2). Then g := IncSF(D2e1,
−D1D2, S) = −D1D2 and g0 := IncSF(D2e1, D2f1, S) =
−D1D2, and hence, c5 := (−1)/(−1) = 1. Next, (p3, p2, p1)
:= Rep(c5D2e1,−D1D2, G4) = (−D1, 0, 0). Then u5 :=

c5D2e1+p3e3 = D2e1−D1e3. NowG5 := G4∪{(−D1D2)[u5]}.

LOOP 6: r6 = (x2D2e1, 0). Then g := IncSF(x2D2e1, 0, S)
= 0, and hence, c6 := 1. Next,(p3, p2, p1, p5) := Rep(c6x2D2e1,
0, G5) = (0,−x1D1−1, 0, 0). Then u6 := c6x2D2e1+p2e2 =

x2D2e1 − (x1D1 + 1)e2. Now G6 := G5 ∪ {0[u6]}.
LOOP 7: r7 = (x1D2e1, D2). Then g := IncSF(x1D2e1, D2,
S) = D2 and g0 := IncSF(x1D2e1, x1D2f1, S) = D2, and
hence, c7 := 1/1 = 1. Next, (p3, p2, p1, p5) := Rep(c7x1D2e1,
D2, G6) = (−x1D1 + D1, 0, 0, 1). Then u7 := c7x1D2e1 +
p3e3 + p5(D2e1 −D1e3) = (x1D2 + D2)e1 − x1D1e3. Now

G7 := G6 ∪ {(D2)[u7]}.
LOOP 8: r8 = (x2

1D2e1, 0). Then g := IncSF(x2
1D2e1,

0, S) = 0, and hence, c8 := 1. Next, (p3, p2, p1, p5, p7) :=
Rep(c8x

2
1D2e1, 0, G7) = (−x2

1D1 + x1D1 − 1, 0, 0, x1, 1).
Then u8 := c8x

2
1D2e1+p3e3+p5(D2e1−D1e3)+p7((x1D2+

D2)e1−x1D1e3) = (x2
1D2+2x1D2+D2)e1−(x2

1D1+x1D1+

1)e3. Now G8 := G7 ∪ {0[u8]}.
LOOP 9: r9 = (x1D1D2e1, 0). Then g := IncSF(x1D1D2e1,
0, S) = 0, and hence, c9 := 1. Next, (p3, p2, p1, p5, p7) :=
Rep( c9x1D1D2e1, 0, G8) = (−x1D

2
1 + D2

1, 0, 0, D1 + 2, 0).
Then u9 := c9x1D1D2e1+p3e3+p5(D2e1−D1e3) = (x1D1D2

+D1D2+2D2)e1−(x1D
2
1 +2D1)e3. Now G9 := G8∪{0[u9]}.

From S10, we know the set {f1, f2, f3,−D1D2, D2} is a
Gröbner basis of I. Using G9, we can express elements in
this Gröbner basis as an R-representation w.r.t. f1, f2, f3,
i.e., −D1D2 = D2f1 − D1f3 and D2 = (x1D2 + D2)f1 −
x1D1f3. Besides, from G9, the set {(0, x1 + 1,−x2), (x2D2,
−x1D1 − 1, 0), (x2

1D2 + 2x1D2 +D2, 0,−x2
1D1 − x1D1 − 1),

(x1D1D2+D1D2+2D2, 0,−x1D
2
1−2D1)} is a Gröbner basis

of the syzygy module {(p1, p2, p3) ∈ R3 | p1f1+p2f2+p3f3 =
0} w.r.t. ≺2 by Proposition 2.2.

6. EXPERIMENTAL DATA
The algorithm SGB with GVW-order has been imple-

mented on Singular (ver 3-1-4 [9]). We generated some ran-
dom examples in the Weyl AlgebraR = k[x1, . . . , x6, D1, . . . , D6],
where Di = ∂

∂xi
is the partial derivative by xi for i =

1, . . . , 6. The term order ≺1 is a block order such that {D1 >
· · · > D6} � {x1 > · · · > x6}, and within each block, term
orders are graded reverse lex orders. The term order on Rm

is an extension of ≺1 in the following way: xαei ≺2 x
βej , if

either lpp(xαfi) ≺1 lpp(xβfj), or lpp(xαfi) = lpp(xβfj) and
i > j. The critical pair with minimal signature in CPairs is
selected in the algorithm SGB.
(E1): {D1D6 + x1D1, D1D3 + x3D4 + x2, x3D3 + x3D5, x4D4D5 + x22}.

(E2): {x3D4+x1D6+x21, x3D2−x2D4+x3D5, D2D3+x4D3+x21−x1x5}.

(E3): {x6D6 + x21 − x5, D4D6 + x1D1 + x24, D3D4 +D2
6 − x1D5}.

(E4): {D1D4−D2D6−x1D3−x4D4 +x2, D3D5 +x3D5 +x2x3−x1x4 +

x5}.

(E5): {x3D4 +x5D6 +x22 +x4x6, D
2
1−D1D4−x2D6, x4D2−x5D2 +x22}.

(E6): {D2D6 + x4D2 + x6D5 + x1x6, D1D3 +D2
4 −D

2
6 + x1D2 + x3x5}.

(E7): {D2
2 +D2D3, D1D4 +D3D6−D4D6, D1D2−x2D3 +x2D5, x6D3+

x1x3}.

The following table shows the performance of Rewritten
Criterion.

Table 1: Total, Reject, → 0, and →6= 0 refer to the

number of total critical pairs, critical pairs rejected by

Rewritten Criterion, critical pairs (not rejected) reduced

to 0, and critical pairs (not rejected) reduced to nonzero

elements respectively.

Exam. Total Reject → 0 →6= 0 Reject(%)
E1 465 402 36 27 86%
E2 2628 2452 106 70 93%
E3 3321 3158 84 79 95%
E4 3403 3242 80 81 95%
E5 8001 7731 146 124 97%
E6 15400 15089 137 174 98%
E7 34980 34459 260 261 99%

From Table 1, we can see that about 95% critical pairs are
redundant and rejected by Rewritten Criterion, and Rewrit-
ten Criterion performs even better for complicated exam-
ples. However, some critical pairs, which are not rejected by
Rewritten Criterion, are reduced to 0. This is because the
vector (−g, f) is usually not a principle syzygy for (f, g) in
the Weyl Algebra, so fewer known syzygies can be used to
reject redundant computations. Using algorithms in Subsec-
tion 3.3, we can also obtain Gröbner bases for syzygy mod-
ules of input polynomials easily.

7. CONCLUSIONS
A signature-based algorithm for computing Gröbner bases

in solvable polynomial algebras is developed. Generalized
criterion is used to reject redundant computations in non-
commutative cases. Experimental data show that Rewritten
Criterion can also reject most redundant computations in
solvable polynomial algebras. The termination is proved if
GVW-order is used in Rewritten Criterion. An important
application of the algorithm is to compute Gröbner bases
for syzygy modules in solvable polynomial algebras. Other
admissible partial orders, such as the partial order implied
by F5, can also be used to construct this new algorithm, but
the corresponding proofs for terminations need to be studied
further.
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[29] F. Mora. Gröbner bases for non-commutative
polynomial rings. In Proc. AAECC-3, Lect. Notes in
Comp. Sci., vol. 229, 353-362, 1986.
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bases computation using syzygies. In Proc. ISSAC’92,
ACM Press, 320-328, 1992.

[31] T. Mora. An introduction to commutative and
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