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ABSTRACT

Signature-based algorithms, including F5, F5C, G2V and
GVW, are efficient algorithms for computing Grobner bases
in commutative polynomial rings. In this paper, we present
a signature-based algorithm to compute Grobner bases in
solvable polynomial algebras which include usual commu-
tative polynomial rings and some non-commutative poly-
nomial rings like Weyl algebra. The generalized Rewritten
Criterion (discussed in Sun and Wang, ISSAC 2011) is used
to reject redundant computations. When this new algorithm
uses the partial order implied by GVW, its termination is
proved without special assumptions on computing orders of
critical pairs. Data structures similar to F5 can be used to
speed up this new algorithm, and Grébner bases of syzygy
modules of input polynomials can be obtained from the out-
puts easily. Experimental data show that most redundant
computations can be avoided in this new algorithm.

Categories and Subject Descriptors

1.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms

Keywords

Grobner basis, signature-based algorithm, F5, GVW, solv-
able polynomial algebra.

1. INTRODUCTION

Grébner bases were developed by Buchberger in 1965 [3].
Since then, many important improvements have been made
to speed up the algorithms for computing Grobner bases in
usual commutative polynomial rings [4, 20, 21, 30]. One
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important improvement is Lazard pointed out the connec-
tion between Grobner bases and linear algebra methods [26].
This idea is also implemented as the F4 algorithm by Faugere
[14], and as XL type algorithms by Courtois et al. [7] and
Ding et al. [10]. Up to now, Faugere’s F5 algorithm [15]
is one of the most efficient algorithms for computing Grob-
ner bases in commutative polynomial rings, and its variants
and termination have been studied by Eder and Perry [11,
12, 13], Hashemi and Ars [22], Zobnin [37], Arri and Perry
[2], and the authors [32, 33, 34]. Gao et al. proposed another
signature-based algorithms G2V and GVW in [17, 18].

Computing Grobner bases in non-commutative rings have
also been widely investigated, for example, Weyl algebra
[16], solvable polynomial algebras [25], free algebras [29, 31],
rings of differential operators [24, 36, 28], G-algebra [27],
PBW algebras [5, 19] and skew polynomial rings [6].

Due to the non-commutativity, it is difficult to reject re-
dundant computations effectively, as well as to compute
Grobner bases for syzygy modules of input polynomials. In
this paper, a signature-based algorithm is presented to com-
pute Grobner bases in solvable polynomial algebras. The
generalized criterion proposed in [34] is extended to reject
redundant computations in this non-commutative algebra,
and its correctness is proved in a much simpler way. In this
generalized criterion, the partial order implied by GVW is
used, and the termination is proved without special assump-
tions on computing orders of critical pairs, while the ter-
mination of the original GVW is proved by assuming that
the critical pair with minimal signature is always computed
first [23]. During practical implementations, in order to im-
prove the efficiency, this new algorithm can use a similar
data structure to F5, and by using similar methods intro-
duced in [35], we can also obtain Grobner bases for syzygy
modules of input polynomials from the outputs of this new
algorithm easily. Experimental data show this new algo-
rithm can reject most redundant critical pairs appearing in
the computation.

This paper is organized as follows. Preliminaries about
signature-based algorithms are given in Section 2. Algo-
rithms are described in Section 3, and the related proofs
come in Section 4. A simple example is presented in Section
5 to illustrate this new algorithm, and some experimental
data are listed in Section 6. Conclusions follow in Section 7.

2. PRELIMINARIES
2.1 Notations

We first recall the definition of solvable polynomial alge-



bras. Let N be the set of non-negative integers, and < be
an admissible order on N™, i.e., a total order on N such
that 0 € N" is the smallest element and o < [ implies
a+v < B+~ for all o, 8,7 € N*. For n indeterminates
{z1,...,%n}, the standard power product set is defined as
M= {z% =2{* - 2p" | « = (a1,...,a,) € N'}. We say
z® < 2f if @ < B. Let k be a field. For any finite sum
0# f =23 ngenn Caz”, where co € k, the multi-degree of f
is defined as mdeg(f) := max<{a | ca # 0} € N™.

Let R be a finitely generated k-algebra with n generators
{z1,...,z»}. Ris called a solvable polynomial algebra if
R satisfies (i) M is a k-basis of R, (ii) for any 0 < ¢ < j < m,
there exist 0 # ¢;; € k and p;; € R such that z;z; =
cijTix;+pi; and gmdes(ij) x;x;. Clearly, every element in
R has a unique form > coz®, and moreover, for any f,g € R,
we have mdeg(fg) = mdeg(gf). If f = cax® + f € R,
where mdeg(f’) < mdeg(f) = «, we define lpp(f) := z“
and le(f) = ca.

It is well-known that solvable polynomial algebras include
many important non-commutative algebras like the Weyl al-
gebra A, (k), the enveloping algebra of any finite dimensional
Lie algebra and a fairly large class of quantum groups.

A left ideal 7 generated by FF C R in R is defined as:
I :=(F) = {Xcrpsf | py € R}. Only left ideals are
considered in current paper, so we usually say “ideal” instead
of “left ideal” for short.

For any z%,z° € R, we say that z® divides z” if 8§ —
a € N, If 2 divides x?, °~% is called a quotient of z”
and z®, denoted by 2~ := z# /2. Note that, in solvable
polynomial algebra R, the relation 2~ %2% = 2f usually
) = 2#. Given

does not hold, but we always have Ipp(z®~*z®
a left ideal Z in R, its Grobner basis is defined as following:

Definition 2.1 Let T be a left ideal in R and G be a finite
subset of T\ {0}. Then G is a Grébnerbasis of T w.r.t. <
iff for all f € L, there exists g € G such that Ipp(g) divides

Ipp(f).

Note that when R is a usual commutative polynomial ring,
the above definition is consistent with the usual definition
of a Grobner basis.

2.2 Signature

Let f := (f1,---,fm) € R™. We want to compute a
Grobner basis for the following left ideal
T:= <f1a"'ﬂfm>

={u-f=pifi+--+pnfmlu=(p1,...

with respect to some term order on R.

Given f € Z and u € R™ such that f = u-f, we use
the notation f (] to express this relation between f and u.
Computations on f™ can be defined naturally. Let f,g €
Z and u,v € R™ such that f = u-fand g = v -f, ¢
be a constant in k and ¢ be a power product in R. Then
4 gV = (f + )V and et (M) = (etf)lEt. These
operations are well defined, ie., f +g = (u+v) - f and
ctf = (ctu) - f due to the distributivity of R. In fact, any
™ such that f = u-f is an element of the R-module:
(M1 f=u-fandue R} = {pfi™ + -+ pufii |
pi,-++ ,pm € R}, where e; is the i-th unit vector of R™, i.e.,
(e;); = d;; where 0;; is the Kronecker delta.

,Pm) € R}

352

In order to make the notation f[“] easier to be understood,
we also call f an element in 7 and write fM e 7.
Besides, the notation fM always means f € 7 and
f=u-f in this paper. For any f and ¢ in Z, we say
i = g only if f = g and u = v hold at the same time.

Fix any term order <; on R and any term order <
on R™. We must emphasize that the order <2 may or may
not be related to < in general, although <2 is usually an
extension of <1 to R™ in implementation. For example, the
term order <2 on R™ can be a POT (position over term)
extension of <1, i.e., z%; <2 xﬁej, if either ¢ > j, or i = j
and 2 < z°.

With order <3, we can define the leading power product
(Ipp), leading coefficient (lc), “divide”, and “quotient” in R™
similarly. For more terminologies on “module”, we refer the
readers to Chapter 5 of [8].

For sake of convenience, we use < to represent <; on
R and <2 on R™ if no confusion occurs. In current paper,
elements in R are expressed by letters f, g, h; while elements
in R™ are denoted by boldface letters such as u,v,w. We
make the convention that if f = 0 then Ipp(f) =0and 0 < ¢
for any non-zero power product t in R.

For any fM € 7, we define Ipp(u) as the signature of
fM. The original definition of signature is introduced by
Faugere in [15], and recently, Gao et al. give a generalized
definition of signature in [18]. In current paper, we use the
definition given by Gao et al.

2.3 Strong Grobner Bases
Let G := {ggvl], ..., g1} be a finite subset of Z. We call

G a strong Grébner basis of Z, if for any f[¥ € Z, there
exists gIV! € G such that

1. Ipp(v) divides lpp(u), and

2. Ipp(tg) =X Ipp(f), where ¢ = Ipp(u)/Ipp(v).

A finite strong Grobner basis exists for any left ideal Z by
Theorem 3.5. The above definition of a strong Grébner basis
is simpler than the definition of a strong Groébner basis in
[18], and it is easy to show both definitions are equivalent.
A strong Grobner basis of Z has the following property.

Proposition 2.2 If G is a strong Grébner basis of T =
(f1,.-. fm), then (1) the set {g | g™ € G} is a Grobner
basis of T w.r.t. <1; and (2) the set {v | g™ € G and g = 0}
s a Grébner basis of the syzygy module {(p1,...,pm) € R™ |
pifi+ -+ Dmfm =0} wrt. <.

PRrROOF. We prove (1) by contradiction. Let E := {0 #
f € Z | there does not exist gI¥) € G such that lpp(g) divides
Ipp(f)}, N = {f™ e Z|u-(fi,--+,fm) = f,f € E}, and
f[“] € N be an element with the minimal signature in N
w.r.t. <2. Then by the definition of strong Grébner basis,
there exists g™ € @ such that lpp(v) divides lpp(u), and
Ipp(tg) = lpp(f), where ¢ = Ipp(u)/lpp(v). If Ipp(tg) =
Ipp(f), then this contradicts the fact that f is in E. Other-
wise, we get Ipp(tg) < lpp(f). For f[ﬁ] =l gy ez
where ¢ = lc(u)/le(tv), since lpp(f) = lpp(f), we will have
f € E and fl% € N. However, as Ipp(1) < Ipp(u), this is a
contradiction that f (] has the minimal signature in N.

Next we prove (2). For any nonzero u = (p1,...,pm) €
R™ such that p1fi+- - +Pm fm = 0, we have 0% € Z. Then
by the definition of strong Grébner basis, there exists g[] €
G such that lpp(v) divides lpp(u), and lpp(tg) < 0, where
t = Ipp(u)/Ipp(v). So we have g = 0, and 0V € G. O



The following deduced definition and proposition will be
used in the proofs in Section 4.

Let Z := (f1,..., fm), and t := 2%e; be a term in R™.
We say G C T is a strong Grébner basis<¢ of Z, if for
any f e 7 with Ipp(u) < t, there exists g1 € G such that
(1) 1pp(v) divides lpp(u), and (2) lpp(tg) =< lpp(f), where
t =lpp(u)/lpp(v).

Proposition 2.3 Let T := (fi, -, fm) and t := z%; be
a term in R™. If G is a strong Grobnerbasis<t of I, then
for any f™ € T with Ipp(u) < t and f # 0, there exists
g™ € G, such that

1. lpp(g) divides lpp(f), and
2. Ipp(tv) = Ipp(u), where t = 1pp(f)/Ipp(9)-

Note that in the definition of a strong Grobner basis, the
first condition is “lpp(v) divides lpp(u)”; while in the above
proposition, it is “lpp(g) divides lpp(f)”.

ProOF. We prove this proposition by contradiction. Let
N := {f € T | f # 0,lpp(u) < t, and there do not
exist g¥) € G and power product t, such that Ipp(tyg) =
Ipp(f) and lIpp(tyv) < Ipp(u)}, and let f™ € N be an
element with the minimal signaturein N. Since G is a strong
Grobner basis<t of Z and lpp(u) < t, there exists g/l €
G such that lpp(v) divides lpp(u), and lpp(tg) =< lpp(f)
where ¢ = Ipp(u)/lpp(v). Note that lpp(¢tv) = lpp(u) < t.
If Ipp(tg) = lpp(f), then it implies flul ¢ N, which is a
contradiction. Otherwise, we get lpp(tg) < lpp(f). For
= (M) € T where ¢ = lc(u)/lc(tv), then
Ipp(f) = Ipp(f) and lpp(@) < Ipp(u) < t. Since " has
the minimal signature in N, we have f® ¢ N. So for this
fal € I, there exists ™! € G such that Ipp(h) divides
Ipp(f) = lpp(f), and lpp(tnw) = Ipp(wi) < lpp(u), where
tn = Ipp(f)/lpp(h). This contradicts f™ e N. O

3. ALGORITHM

3.1 Ciriterion

Now, it is the time to define the critical pair of two ele-
ments. Suppose fI%, g™l are two elements such that both f
and g are nonzero. Assume lpp(f) = z% = z7* -+ 25" and
Ipp(g) = 2 = 2% ... 2% . The least common multiple
of Ipp(f) and Ipp(g) is defined as lem(Ipp(f),lpp(g))
glmax{arbi} - max{an,bn})  We can also define least com-
mon multiples for terms in R™ in a similar way. Let ¢ :=
lem(Ipp(f),Ipp(9)), ty := t/lpp(f) and t, := t/lpp(g), if
Ipp(tsu) = Ipp(tyv), then the ordered 4-tuple vector (v, flul,
ty, 9™ is called the critical pair of f[ and g1, and its
corresponding S-polynomial is t;(f™) — cty(g) where
c=lc(tsf)/lc(tgg). Please keep in mind that, for any critical
pair (t7, 1, ty, ™), we always have Ipp(tfu) = Ipp(t,v).
Particularly, a critical pair (¢y, fi tg, g["]) is said to be reg-
ular if Ipp(tsu) > lpp(tgv).

For convenience, the critical pair of f[*! and ¢! is some-
times denoted by [f™, ¢™M] or [¢M), f19] for short. Please
note that, we only care about the order of f[* and ¢! in the
form (ty, flul tg,g[v]), but we do mot care about this order
in the simple form [f[“],g[v]]. We also say that [f[“],g["]} is
a critical pair of B if both f*! and g["] are in B.
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For a finite set B C Z, “<p” is a partial order defined on
B in general sense, i.e. “ <p ” has non-reflexivity, antisym-
metry, and transitivity. The subscript B of “<pg” means the
partial order <p is defined on the set B. For more details
about the partial order, we refer to [34].

Definition 3.1 (Rewritten Criterion) Let B be a subset
of I, <p be a partial order on B, f™ be an element in B,
and t be a power product in R. t(f™) is called rewritable
by B if there exists g™} € B such that

1. lpp(v) divides lpp(tu), and
2. gV <p .

In particular, a critical pair (tf,f[“],tg,g["]) of B is
called rewritable by B if eitherts(f*) orty(g™) is rewrit-
able by B. The critical pair (t¢, f",t,, g™") of B is said to
be rejected by Rewritten Criterion w.r.t. B if (¢, Flul tg, g["])
is rewritable by B.

f e 7 is said to be a syzygy element in Z if f =
0. Similar to F5 and GVW, in order to enhance Rewritten
Criterion, we can add known syzygy elements to B, and
assume that syzygy elements are smaller than non-syzygy
elements in B under the partial order <g such that more
redundant computations can be avoided. Please notice that,
for any two elements f and ¢ in the solvable polynomial
algebra R, the relation gf — fg = 0 does not always hold.
That is, if f, ¢ € Z, the element g(fM) — f(gM") =
(gf — f9)9" V] may not be a syzygy element in Z.

The following theorem is the main result of this paper,
and it is an extended version of the main result in [34]. The
detailed proof will be given in Subsection 4.1.

Theorem 3.2 (Correctness) Let G be a finite subset of
the ideal T = (f1,..., fm), and <g be any partial order on
G. Then G is a strong Grobner basis of L if both the follow-
ing two conditions hold:

1. For any 1 < i < m, there emists f™ € G such that
Ipp(u) = e;, and

2. Ewvery regular critical pair of G is rewritable by G.

In Theorem 3.2, the order < can be any partial order.

3.2 Algorithm

Theorem 3.2 induces an algorithm to compute a strong
Grobner basis for 7 directly. We start with the set Go :=
{fl[ell,..., leml) If every regular critical pair of Go is
rewrit- able by Go, then Gy is a strong Grobner basis. Oth-
erwise, if there exists a regular critical pair (t7, f, 4, gI"))
of G such that it is not rewritable by Go, then we cre-
ate an b from (t7, f™ ¢,, ™) such that (¢5, f™, ¢,, g™)
is rewritable by {h™}. Next, we expand Gy to G; :
GoU {h[“’]} and repeat the above discussions on regular crit-
ical pairs of Gi. The set G; can be expanded repeatedly
in this way until all regular critical pairs of some G, are
rewritable by Gs.

There is only one question left: how to create an h
from a regular critical pair (ty, f[“],tmg["]) of G; such that
(te, f1 ty, o) is rewritable by {hM1} 2

All existing signature-based algorithms for computing Grob-
ner bases in polynomial rings solve the above problem by us-
ing a special reduction and an admissible partial order on G
(“admissible” will be defined later).

[w]



Now, let us consider the special reduction.

Definition 3.3 ™ is said to be reducible by h™! € G if

1. lpp(h) divides lpp(f), and

2. lpp(tw) < Ipp(u) where t = 1pp(f)/lpp(h).

If fM s reducible by K™ € G, then fM —g flM —
ct(h™) is said to be a one-step-reduction by G where ¢ =
le(f)/le(th) and t = lpp(f)/lpp(h).

#9 Gs said to be reduced to f'™ by G if '™ is ob-
tained by several one-step-reductions from f[“], and f'[u/] is
not reducible by G.

The following result follows directly from above definition.

Proposition 3.4 Let f be an element inZ = (f1,..., fm),

and G be a subset of T. If f™ is reduced to f'[u/] by G, then
Ipp(u) = lpp(u’) and 0’ - (f1,..., fm) = f".

If the S-polynomial of a regular critical pair (¢5, f™, ¢, g™)
of G is reduced to k™! by G, then we have Ipp(tsu) = Ipp(w)
by above proposition. To make (t¢, f, 4, gI)) rewritable
by ™!, by the definition of rewritable, we only need h™! is
smaller than f™ under the partial order on G'U {h["1}.

A partial order “<g” on G is admissible if for any regu-
lar critical pair (ty, f[“],tg,g["]) of G, whenever we need to
reduce the S-polynomial of (t7, f",t,,g™) to K™ by G,
we always have b <Gu{nwy f1 after expanding “<a” to
G U {h™1}. We have shown in [34] that the partial orders
implied by criteria of F5 and GVW are both admissible. In
particular, the new algorithm in this paper will use the fol-
lowing GVW-order.

GVW-order: For any f ¢l € @, we define g <4 fM
if one of the following two conditions holds:
(a) Ipp(t'g) < Ipp(tf), where ¢’ = lemUppMLlep(v) 5 ¢ —

N X Ipp(v)
lem(lpp(u).lpp(v)) pﬁf;&;f“"” such that lpp(tu) = Ipp(t'v).

(b) Ipp(t'g) = Ipp(tf) and g™ is added to G later than f[.
The algorithm SGB deduced from Theorem 3.2 computes
a strong Grobner basis for the ideal Z = (f1, ..., fm) in the
solvable polynomial algebra R.
In the algorithm SGB, SPoly([f™, g[)]) refers to the S-
polynomial of [f [“]79["]]. There are several useful facts:

(A). Since only signatures of elements in Z are used in the
definitions of regular critical pairs, rewritable and reducible,
similar to F5, for sake of efficiency, for all elements in Z ap-
pearing in the algorithm SGB, such as f™ ¢Vl and A it
suffices to use the data structure (Ipp(u), f), (Ipp(v), g)
and (lpp(w),h) to express them in practical imple-
mentations.

(B). Using algorithms in Subsection 3.3, elements, such as
fM can be recovered from the data structure (Ipp(w), f).
By Proposition 2.2, a Grobner basis of Z and a Grobner ba-
sis of the syzygy module {(p1,...,pm) € R™ | p1fi+ -+
DPm fm = 0} can be obtained directly.

(C). Rewritten Criterion uses a partial order defined on G.
While new elements are added to G (line ended with (3)),
the partial order on G needs to be updated simultaneously.
Fortunately, most partial orders, such as GVW-order, can
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Algorithm 1: Algorithm for computing Strong Grébner
bases in solvable polynomial algebras (SGB)

Input : fl[el], cee leml]
Output: A strong Grobner basis G of (fi,..., fm).
begin

Ge—{fle i=1,....,m}
CPairs «——{[f1, g™ is regular |V fM ¢M e G}
while C'Pairs # () do
[ oM = (¢, f ¢y, g™)— any critical
pair in
CPairs (1)
CPairs +—CPairs \ {[f™, g™}
if [ ¢ is not rewritable by G then
R «— reduce SPoly([f™, ¢™]) by G (2)
CPairs <—CPairs U
{[p™! W™'1] is regular | '™ € G}
G+—G U {p™ (3)

L r(:,turn G

be updated automatically.

(D). For the line ended with (1), we emphasize that any
critical pair can be selected.

(E). In line marked with (2), we can append the codes
G+—G\ {f™ e @ | f™ is rewritable by A"}

to remove redundant elements from G. This step will not
affect the correctness of the algorithm. An element f™ is
removed from G only if there is an hM™ such that fM is
rewritable by ™. In this case, any regular critical pair
involving f™ is rewritable by A, and any regular critical
pair that is rewritable by f is also rewritable by h™].

Theorem 3.5 (Termination) The algorithm SGB termi-
nates after a finite number of steps if GVW-order is used in
Rewritten Criterion, and the term orders <1 on R and <»
on R™ are compatible, which means that & <1 z” if and
only if z%e; <2 xPe; for all1 < i< m.

Theorem 3.5 shows the termination of the algorithm SGB
does not depend on computing orders of critical pairs. The
proof for the above theorem is given in Subsection 4.2.

3.3 Recover ™ from (Ipp(u), f)

If we use the data structure (Ipp(u), f) instead of fM to
express elements in G, the algorithm SGB will be more ef-
ficient, and we can also derive a Grobner basis for Z from
the data structure (Ipp(u), f) according to Proposition 2.2.
However, we cannot get a Grobner basis for the syzygy mod-
ule {(p1,...,pm) € R™ | prfi + -+ + pmfm = 0} from the
data structure (lpp(u), f) directly. So we need methods of
recovering f™ from (Ipp(u), f). The methods in this sub-
section are slight revisions of methods in [35].

Proposition 3.6 Let S = {(t1,91),...,(ts,gs)} be the set
returned by Algorithm SGB through using the data struc-
ture (Ipp(u), f) instead of f™. Then the algorithm Recov-

[Vs]}

»Gs
, fm) such that lpp(v;) = t;, wherei=1,...,s.

erSGB constitutes a strong Grébnerbasis {g\"!),. ..

for (f1,...



The above proposition can be proved by Corollary 3.2 and
Theorem 3.5 of [35] after a slight modification. Due to the
page limit, we omit the proof.

Algorithm 2: RecoverSGB

Input : S ={(t1,91),...,(ts,gs)} returned by the

algorithm SGB.

Output: G = {ggvl], e ,gLVS]} a strong Grobner basis
of T = <f1, ey fm) s.t. lpp(Vi) =t;.

begin

G+—0;

while S # () do

(z%ej, f)«— x%e; is minimal in S, i.e.,

x%e; <X t;, for V(t;,g:) € S;

S5\ {(z%e;, N}

g<«—IncSF(ze;, f, S);

go+—IncSF(z%e;, 2% f;, 9);

(p1,...,pt)<—Rep(cz®ej, f, G)(where t = #G);
u+—cz“e; + > p;v; where gl[-vi'] € G,
| G—Gu{fM}
L return G.

In the above algorithm, we need two functions Rep(-) and
IncSFE(-).

The function Rep(cz®e;, f,G = {ggvl],...,gt[vt]}) com-
putes a set {p1,...,p+} C R such that f = cz®f; + p1g1 +
-+ + ptgs where z%e; > lpp(piv;) and gz[vi] € G for i =
1,...,t. Corollary 3.2 of [35] assures that the p;’s always
exist in the algorithm RecoverSGB .

Function Rep(+).

Step 1: Let p; :=0fori=1,...,t, and h:= f — cx®fj.
Step 2: If there exists gz[vi] € G s.t. lpp(g:) divides lpp(h)
and lpp(tv;) < z%e;, where t = lpp(h)/lpp(g:), then set
pi := pi + (lc(h)/1c(tg:))t, and h := h — (Ic(h)/lc(tg:))tg.
Step 3: If h # 0, then goto step 2.

Step 4: Return {p1,...,p}.

The function IncSF(z%ej, f, S = {(ti,01),...,(ts,9s)})
computes an incomplete standard form (see [35] for defi-
nition) g for x%e; such that g f+pigi + -+ pege
where p1,...,p: € R, x%e; > lpp(pit;) and (t;,g;) € S for
i =1,...,t, and there do not exist (t;,g;) € S and power
product ¢, s.t. Ipp(tg;) = lpp(g) and lpp(tt;) < x%e;.
Function IncSF(-).

Step 1: Let g := f.

Step 2: If there exists (ti,g:) € S s.t. Ipp(g;) divides lpp(g)
and lpp(tt;) < x%e;, where ¢ = lpp(g)/lpp(g:), then set
g := g — (lc(g)/1c(tg:))tg:; Otherwise, return g.

Step 3: If g # 0, then goto step 2; otherwise, return 0.

For more details about algorithms above, we refer to [35].

4. THEORY

In this section, we give detailed proofs for Theorem 3.2
and Theorem 3.5.

4.1 Correctness

The following proof is more general and is also much sim-
pler than the proofs given in [34].

PROOF OF THEOREM 3.2. We prove this theorem by con-
tradiction. Assume G is not a strong Grdbner basis of Z,
then the set N := {f™ € Z | there do not exist g/} €

if g # 0 then c<—lc(g)/lc(go); else c+—1; end if
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G and power product ¢t such that lpp(tv) = lpp(u) and
Ipp(tg) < lpp(f)} is not empty. Let M e N be an clement
with the minimal non-zero signature in N. In this case, let
t :=Ipp(u). Then G is a strong Grébner basist.

Next, we will find some f(g'm] € G such that lpp(up) di-

[uo]

vides t and to(fy ') is not rewritable by G, where to =

t/lpp(uo). Suppose t = xz%e;, then there exists g&"” e d
such that lpp(vi) = e; by hypothesis. Let ¢; := z%. Then
we have t = Ipp(t1v1). If 1 (g}

then gg"l] is what we are looking for. Otherwise, there ex-

ists gg"?] € G such that t; (ggvl]) is rewritable by gg’ﬂ. Let
to := lpp(t1v1)/lpp(vz2). Then we have t = Ipp(t2v2). Next

we discuss whether tg(gg'ﬂ) is rewritable by G or not. If

to (gg'Z]) is not rewritable by G, then gévz] is the desired f(gu(’];
Otherwise, t2 (gg""’]) is rewritable by some g;[;'g] € G. We can
repeat the above discussions. Finally, by the definition of
rewritable, we get a chain gi*) >¢ g2 >4 glvel 5o

This chain must terminate, since G is finite. Let gLV"] be

) is not rewritable by G,

the last element in this chain. Then gLVS] is the desired
(EUO], since t = Ipp(tsvs) and ts (gL"S]) is not rewritable by
G, where t; = t/lpp(vs).

Let féu‘]] € G be the element found in the last paragraph.
Then lpp(toug) = t and to(f[guf’]) is not rewritable by G,
where to = t/lpp(ug). Since lpp(toug) = t = Ipp(u) and
™ e N, we must have Ipp(f) < Ipp(tofo) by the definition
of N. However, this contradicts the result of Lemma 4.1,
and the theorem is proved. [

Lemma 4.1 Let G be a finite subset of T = (f1,..., fm),
<g be any partial order on G, and t be a term in R™ such
that G is a strong Grébner basis<y of T and every regular
critical pair of G is rewritable by G. For any f(gu‘]] € G and
any power product to in R with lpp(touo) < t, if to(f(gu(’])
is not rewritable by G, then for any f™ € T with Ipp(u) =
Ipp(touo), we have Ipp(f) = Ipp(tofo).

ProOOF. We prove the lemma by contradiction. Let N :=
{(to, f(E“O]) | f(E“O] € G, to is a power product, Ipp(toug) < t,
to( f([)"O]) is not rewritable by G and there exists fl% € T
with Ipp(u) = Ipp(touo) s.t. 1Ipp(f) < Ipp(tofo)}. Assume
N is not empty. Let (to, f(EuO]) be minimal in N, i.e., there is
no (tn, h™) € N such that Ipp(tnw) < Ipp(toug). Clearly,
fo # 0 and up # 0.

For such (to, f*) € N, let ™ be in T such that Ipp(u) =
Ipp(touo) and Ipp(f) < Ipp(tofo). Denote f% .= to(f(gu"]) —
c(fMy € T where ¢ = Ic(touo) /lc(u). Then Ipp(f) = Ipp(tofo)
and lpp(a) < lpp(touo) = t. For ful e 7, since G is a
strong Grobner basis<t¢, by Proposition 2.3, the set D :=
{(tg,_g["]) | ¢ € G, t, is a power product, Ipp(tyg)
Ipp(f) = Ipp(tofo) and Ipp(tyv) = Ipp(w) < Ipp(touo)} is
not empty.

Let (ty, g™) € D be minimalin D, i.e., there is no (t,, h™)
€ D such that either Ipp(trw) < lpp(tyv), or lpp(thw) =
Ipp(tgv) and Y < g,

For such (t,,¢™) € D, let (fo,f(gu"],t_g,g["]) be the crit-
ical pair of f(gu‘]] and g, Since Ipp(tyg) = lpp(tofo) and
Ipp(tgv) = Ipp(d) < lpp(touo), we have o divides to, ¢4 di-
vides t, and to/to = ty4/ty, and moreover, this critical pair
(fo, fi*o) 7, g™) is regular. By hypothesis, (fo, f1*!, Z,, )
is rewritable by G. If fg(féue]) is rewritable by G, so does



to(f(guﬂ]), which contradicts that (¢o, féu"]) € N and to (f(gu"])
is not rewritable by G. So #,(g™) must be rewritable by G.

Since Z,(g™) is rewritable by G, so does t,(g™*)). Similar
to the second paragraph in the proof of Theorem 3.2, for
ty(g™), we can also find some g[v"] € G Such that t4(g™)
is rewritable by g([)VO] where g([)VO] < g™, and t)(g, VO]) is
not rewritable by G, where t{, = lpp(t,v)/lpp(vo). Note
that lpp(tovo) = Ipp(tyv) = lpp(ﬁ) < Ipp(touo) = t, so
(to, ) ¢ N, because (to, fo ) is minimal in N. Thus, we
have lpp( ¢9) = Ipp(togo). Since (tg,g["]) is minimal in D,
the relation Ipp(tyg9) = Ipp(togo) does not hold (otherwise
we would have (t{),g([)v‘)]) € D, lpp(tove) = lpp(tyv) and
g([)VO] < g™ such that (ty, ™)) is not minimal in D). So we
must have Ipp(tyg) = Ipp(togo0)-

Denote gi¥ := t, (g™ —cth (g)°)) where ¢ = le(t,v) /lc(thvo).

Then lpp(g) =
t. Since G is a strong Grobner basis<t¢, by Proposition 2.3,
there exists h™ € G such that lpp(h) divides Ipp(g) =
Ipp(tg9) = lpp(tofo) and lpp(trw) =< Ipp(V) < lpp(tyv) <
Ipp(touo), where ¢, = lpp(g)/Ipp(h). So we have (¢4, R™1) €
D and Ipp(tnw) < Ipp(tyv). This contradicts that (t4, g[*))
is minimal in D.

Hence N must be empty, and the lemma is proved.

4.2 Termination

Consider a map o : R x R™ — k[Y,Z, W], where Y =
{y1,--,yn}t, Z={21,...,2m}, and W = {wo, w1, ..., wn}

O

Ipp(tyg) and Ipp(¥) < Ipp(tyv) < Ipp(touo) =

are new variables that commute with each other, i.e., k[Y, Z, W]

is a polynomial ring. For any f € T with Ipp(u)

z{t-xhre; #£0, if f =0, then we define

o(0M) =yt - yinz € K[Y, Z, W),

blcc

Otherwise, assuming lpp(f) = 2% - - - 2%, then we define

o(f) = yit - yar zewowt - wi € K[Y, Z,W].

The variable wq is introduced to define ¢ when f # 0. In
[13], Eder and Perry introduced a similar map to study the
termination of some signature-based algorithms.

PRrROOF OF THEOREM 3.5. We first claim that, in any loop
of the algorithm SGB, if the regular critical pair (tf,f[“]
tg, g["]) is mot rewritable by G and its S-polynomial is re-
duced to ™! by G, then o(h™)) is not divisible by any
o(hi™°) where hI¥0! € G.

We prove the claim by contradiction. Assume there exists
some hi¥® € G such that o(h¥°)) divides o(h™). When
both ho and h are nonzero, we have that lpp(wo) divides
Ipp(w) and lpp(ho) divides Ipp(h). Let s := Ipp(w)/Ipp(wo)

and ¢ := Ipp(h)/ lpp(ho). There are two cases:
(1) s %1 t. Now, we have lpp(sho) =<1 Ipp(tho) = Ipp(h) <
Ipp(ts f) and lpp(swo) = lpp(w) = Ipp(tyu). Since GVW-

order is used in Rewritten Criterion, we get h([)w[’] <af [u]
and t(f™) is rewritable by h[OWO] € G. This contradicts the
fact that (7, f™, ¢y, g')) is not rewritable by G.

(2) s =1 t. Since the orders <; and <2 are compatible, we

have Ipp(tho) = Ipp(h) and Ipp(two) < Ipp(swo) = Ipp(w).
So A}l € G can be used to reduce ™! further, which con-
tradicts the fact that the S-polynomial of (s, f™ ¢4, g™ is

reduced to ™! by G.

Note that if o(h, w"]) divides (h™), then h = 0 implies
ho = 0 by the definition of 0. When ho = 0, a contradiction
can be constructed similar to case (1).
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After all, the claim is proved by contradiction.

Using above claim, in each loop of the algorithm SGB,
the regular critical pair (t7, f, t,,g™) is either rejected
by Rewritten Criterion or its S-polynomial is reduced to
R such that o(h™) is not divisible by any U(hgwo]
h([)w‘)] € G. In the former case, the number of critical pairs
in C'Pairs decreases. In the latter case, the ideal generated
by {o(h™)} U{a(h5")) | i) € G} over k[Z, Y, W] strictly
contains the ideal generated by {o(hi*®)) | )"l € G}. Ac-
cording to Hilbert’s theorem on ascending chains, the algo-
rithm SGB must terminate in finite steps. [

) where

5. EXAMPLE

In this section, we use a simple example to illustrate how
to compute a strong Grobner basis by Algorithm SGB. In
this example, we first use the data structure (Ipp(u), f) to
express elements in G, and then recover a strong Grob-
ner basis by algorithms in Subsection 3.3.

Example 5.1 Let R be the Weyl algebra Ay = k[m, T2, D1,
DQ], and T = <f1,f2,f3> C R, where fl =x1D1 + 1, f2 =
xeD2, f3 = x1D2 + D2 and D; = Far The term order
<1 1s a block order such that {D1 > D2} > {x1 > z2},
and within each block, term orders are graded reverse lex
orders. The term order on R® is a POT extension of <1,
i.e., zVe; <2 xﬁej, if either i > j, ori =j and x® <1 xP.

(1) Compute a Grébner basis for Z by Algorithm
SGB. The critical pair with minimal degree in CPairs is
selected in the algorithm SGB, and GVW-order is used in
Rewritten Criterion.

Initially, So := {r1 = (e1, f1),72 = (e2, f2), 73 = (es, f3)},
and CPairsg := {[r1,72], [r1, 73], [r2, 73]}

LOOP 1: [ro,r3] = (z1,72,z2,73) is selected.

Its S-polynomial is (z1e2, —z2D2), which can be reduced to
r4 := (z1€2,0) by r2. Now S1 := SoU{rsa} and CPairs: :=
CPairso \ {[rz2,rs3]}.

LOOP 2: [ry,r3] = (D2,71, D1,73) is selected.

Its S-polynomial is (D2e1,—D1D2). No polynomial in Sp
can be used for reduction. So we get r5 := (Dze1, —D1 D).
Now S := S1U{rs} and C'Pairs 3 := CPairs U{[rs,r1],[rs,
[rs,rs]} \ {[r1, 73]}

L OP 3: [T5, Tz} (1‘2,7"57 Dl,’f’z) is selected

Its S-polynomial is 76 := (x2D2e1,0). Now S5 := Sa U {re}
and CPairs s := CPairss \ {[rs,r2]}.

LOOP 4: [r5,r3] = (z1,75, D1,73) is selected.

Its S-polynomial is (z1Dze1, D1D2 4+ D3), which can be re-
duced to r7 := (z1D2e1, D2) by 5. Now Sy := SsU{r7} and
CPairss = CPairss U {[r7,r1],[r7,r2], [r7,73], [r7,75]} \
{[T57 7"3}} = {[T17T2]7 [T57 7"1]7 [T77 7“1], [T77T2]7 [7"7, 7"3}7 [7"777’5]}'

LOOP 5: [r7,r2] = (z2,77,1,72) is selected. However, it is
rejected by Rewritten Criterion, since x2(r7) is rewritable by
ré. Now S5 := S4 and CPairss := {[r1,r2], [r5,71], [r7,71],
[T77 T3]7 [T77 T5]}~

LOOP 6: [r7,r3] = (z1,77,1,73) is selected.

Its S-polynomial is (m%Dzel, —D5), which can be reduced
to rg : (x%Dgel,O) by r7. Now S := S5 U {rs} and
CPairse = {[r1,r2], [r5,71], [r7,71], [r7,75]}

LOOP 7: [r7,75] = (D1,77,1,75) is selected.

Its S-polynomial is 79 := (z1D1D2e1,0). Now S7 := Sg U
{ro} and CPairsz := {[r1,72], [r5,71], [r7,71]}-

LOOP 8: [rs5,71] = (21,75, D2,71) is selected. However, it

<

2],



is rejected by Rewritten Criterion, since x1(rs) is rewritable
by r7. Now Ss := S7 and CPairss := {[r1,72], [r7,71]}.
LOOP 9: [r7,71] = (z1D1,77,D2,71) is selected. How-
ever, it is rejected by Rewritten Criterion, since z1.D1(r7) is
rewritable by r9. Now Sy := Sg and C'Pairsg := {[r1,r2]}.
LOOP 10: [r1,r2] = (x2D2,7r1,x1D1,72) is selected. How-
ever, it is rejected by Rewritten Criterion, since x2Da(r1) is
rewritable by r¢. Now S1o := So and CPairs o := 0.

Finally, we get a simpler version of strong Groébner basis
S10 = {r1,72,...,79} of Z. By Proposition 2.2, the set

{f17f27f37_D1D2aD2}

is a Grobner basis of 7.

(2) Recover a strong Grobner basis from Sy for
Z by Algorithm RecoverSGB. First, we sort r;’s in an
ascending order on signature, and get

S :={rs,re,r4,71,75,76,77,T8,T9 }.

Initially, Go := (. Loop 1 and 2 are trivial, and we can
easily get us := e3 and uz := ey from r3 and r2. Now
G = (£, £},

LOOP 3: rs = (z1€2,0). Then g := IncSF(z1e2, 0,5) =0,
and hence ¢4 := 1. Next, (ps,p2) := Rep(cazie2,0, G2)
(—z2,1). Here p; corresponds to r;. Then us := cazi€2 +
p3es +p262 = (3,’1 —+ 1)92 — I2€es3. NOW Gg = G2 @] {0[u4]}.
LOOP 4: r1 = (e1, f1). The procedure is trivial, and u; :
er. Now Gy 1= Gs U {1}

LOOP 5: 75 (D2e1,—D1D3). Then g := IncSF(D2eq,
—D1D27S) = —D1D2 and go ‘= IncSF(Dgel, Dgfl,S) =
—D1 D5, and hence, ¢5 := (—1)/(—1) = 1. Next, (p3,p2,p1)
= Rep(C5D261,—D1D2,G4) = (—D1,0,0). Then Uus
csDoe1+pses = Daer—Dies. Now Gy = G4U{(—D1D2)[u5]

LOOP 6: r¢ = (z2D2e1,0). Then g := IncSF(x2Dze1,0,.5)

}.

= 0, and hence, ¢ := 1. Next,(ps, p2, p1,ps5) := Rep(cex2D2e1,

0, G5) = (07 *$1D171,0, 0) Then ug := c6x2D2e1+p2e2 =
xoDoe; — (:171D1 -+ 1)62. Now Gg := G5 U {O[uﬁ]}.
LOOP T7: T = (achgel, Dz) Theng = IncSF(mngel, DQ7
S) = D3 and go := IncSF(z1D2e1, z1D2f1,S) = D2, and
hence, ¢7 :=1/1 = 1. Next, (p3, p2,p1, p5) := Rep(crz1D2en,
DQ,GG) (—$1D1 + D1,0,0, 1). Then u7 := crz1D2e; +
pses + ps(D2e1 — Dies) = (x1D2 + D2)er — z1Dies. Now
G7:=Gg U {(Dg)[“7]}.
LOOP 8: rs = (21D2e1,0). Then g := IncSF(ziD2ei,
0,5) = 0, and hence, ¢s := 1. Next, (ps,p2, p1,ps5,p7) =
Rep(C&Z'%Dth 0,G7) (—JS%D1 + x1D1 — 1,0,0, 21, ].).
Then usg = CsJJ%Dgel +p3€3 +p5 (D2e1 —D163)+p7((1’1D2+
Ds)er —z1D1e3) = (x2D2+42x1 Do+ Do)er — (23 D1+x1.D1 +
1)63. Now Gg = G7 U {O[US]}.
LOOP 9: T9 = (xlDngel,O). Theng = IIlCSF(x:[Dngel7
0,5) = 0, and hence, ¢g := 1. Next, (ps,p2, p1,ps5,p7) =
Rep( cox1D1D2eq, 0, Gg) = (—$1D% + Di 0,0,D1 + 2, 0).
Then Ug = 09x1D1D2e1—|—p3e3+p5(D2e1—D1e3) = ($1D1D2
+D1D2+2D3)er — (21 D342D1)es. Now Gy := GgU{0Mo}.
From Sio, we know the set {fi, f2, f3, —D1D2, D2} is a
Grobner basis of Z. Using Gg, we can express elements in
this Grobner basis as an R-representation w.r.t. fi, f2, f3,
ie., —D1D2 = D2f1 — D1f3 and Dy = (IlDQ + Dz)fl —
$1D1f3. Besides, from Gg, the set {(0,1:1 + 1, —112), (JJQDQ,
—x1D1 — 1, 0), (l’%DQ +2x1 D5 + D2, 0, —x%Dl —x1Dy — 1),
(x1D1Do+D1D242Do, 0, —x1 D —2D1)} is a Grobner basis
of the syzygy module {(p1,p2, ps) € R® | prfi+p2fatpsfs =
0} w.r.t. <2 by Proposition 2.2.
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6. EXPERIMENTAL DATA

The algorithm SGB with GVW-order has been imple-
mented on Singular (ver 3-1-4 [9]). We generated some ran-
dom examples in the Weyl Algebra R = k[x1,...,26, D1,...,
where D; = a%i is the partial derivative by x; for 4
1,...,6. The term order <; is a block order such that {D1 >
<+« > Dg} > {x1 > -+ > x6}, and within each block, term
orders are graded reverse lex orders. The term order on R™
is an extension of <7 in the following way: z%e; <2 mﬂej, if
cither Ipp(z® f;) <1 Ipp(2” f;), or Ipp(z* f;) = Ipp(z” f;) and
i > j. The critical pair with minimal signature in CPairs is
selected in the algorithm SGB.

(E1): {D1Dg + z1D1, D1 D3 + 23D4 + z2, x3D3 + 23 D5, x4 Da D5 + 23 }.
(B2): {x3Dy+z1Dg+2?, e3Dg—xoDy+x3D5, Do D3+zgD3+a?—aizs}.
(E3): {wgDg + 2% — x5, D4y Dg + w1 D1 + x3, D3Dyg + D — 1 D5}.

(E4): {D1D4— D2Dg —x1 D3 —x4Ds+x2, D3Ds +a3D5 + w223 — 2104 +

T5}.

(E5):
(E6):
(E7):

{z3D4+a5D6+a3+xazg, DI — D1 Dy —x2Dg, x4 Dy — a5 D +a3}.
{D2Dg + x4D3 + z6 D5 + x126, D1 D3 + D — DZ + 21 Dg + z3z5}.
{D3+ D2 D3, D1 D4+ D3Dg — D4 Dg, D1 D3 — w3 D3 + 2 D5, w6 D3+
x1x3}.
The following table shows the performance of Rewritten
Criterion.

Table 1: Total, Reject, — 0, and —# 0 refer to the
number of total critical pairs, critical pairs rejected by
Rewritten Criterion, critical pairs (not rejected) reduced
to 0, and critical pairs (not rejected) reduced to nonzero
elements respectively.

Exam. Total Reject —0 —#0 Reject(%)
E1l 465 402 36 27 86%
E2 2628 2452 106 70 93%
E3 3321 3158 84 79 95%
E4 3403 3242 80 81 95%
E5 8001 7731 146 124 97%
E6 15400 15089 137 174 98%
E7 34980 34459 260 261 99%

From Table 1, we can see that about 95% critical pairs are
redundant and rejected by Rewritten Criterion, and Rewrit-
ten Criterion performs even better for complicated exam-
ples. However, some critical pairs, which are not rejected by
Rewritten Criterion, are reduced to 0. This is because the
vector (—g, f) is usually not a principle syzygy for (f,g) in
the Weyl Algebra, so fewer known syzygies can be used to
reject redundant computations. Using algorithms in Subsec-
tion 3.3, we can also obtain Grébner bases for syzygy mod-
ules of input polynomials easily.

7. CONCLUSIONS

A signature-based algorithm for computing Grobner bases
in solvable polynomial algebras is developed. Generalized
criterion is used to reject redundant computations in non-
commutative cases. Experimental data show that Rewritten
Criterion can also reject most redundant computations in
solvable polynomial algebras. The termination is proved if
GVWe-order is used in Rewritten Criterion. An important
application of the algorithm is to compute Grdbner bases
for syzygy modules in solvable polynomial algebras. Other
admissible partial orders, such as the partial order implied
by F5, can also be used to construct this new algorithm, but
the corresponding proofs for terminations need to be studied
further.
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