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a b s t r a c t

A new efficient algorithm for computing a comprehensive Gröb-
ner system of a parametric polynomial ideal over k[U][X] is
presented. This algorithm generates fewer branches (segments)
compared to previously proposed algorithms including Suzuki and
Sato’s algorithm as well as Nabeshima’s algorithm. As a result, the
algorithm is able to compute comprehensive Gröbner systems of
parametric polynomial ideals arising from applications which have
been beyond the reach of other well known algorithms. The start-
ing point of the new algorithm is Weispfenning’s algorithm with
a key insight by Suzuki and Sato who proposed computing first
a Gröbner basis of an ideal over k[U, X] before performing any
branches based on parametric constraints. The proposed algorithm
exploits the result that along any branch in a tree corresponding
to a comprehensive Gröbner system, it is only necessary to con-
sider one polynomial for each nondivisible leading power product
in k(U)[X]with the condition that the product of their leading coef-
ficients is not 0; other branches correspond to the cases where this
product is 0. In addition, for dealing with a disequality parametric
constraint, a probabilistic check is employed for radical member-
ship test of an ideal of parametric constraints. This is in contrast
to a general expensive check based on Rabinovitch’s trick using a
new variable as in Nabeshima’s algorithm. The proposed algorithm
has been implemented in Magma and Singular, and experimented
with a number of examples from different applications. Its per-
formance (the number of branches and execution time) has been
compared with several other existing algorithms. A number of
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heuristics and efficient checks have been incorporated into the
Magma implementation, especially in the case when the ideal of
parametric constraints is 0-dimensional. The algorithm has been
successfully used to solve a special case of the famous P3P problem
from computer vision.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A new algorithm for computing a comprehensive Gröbner system (CGS), as defined by Weispfen-
ning (1992, 2003) for parametric ideals (see also Kapur (1995) where a related concept of parametric
Gröbner systemwas introduced) is proposed. Themain advantage of the proposed algorithm is that it
generates fewer branches (segments) compared to other related algorithms; as a result, the algorithm
is able to compute comprehensive Gröbner systems for many problems from different application do-
mains which could not be done previously. In the rest of this section, we provide some motivations
for comprehensive Gröbner systems and approaches used for computing them.

Many engineering problems are parameterized and have to be repeatedly solved for different val-
ues of parameters (Donald et al., 1992). A case in point is the problem of finding solutions of a param-
eterized polynomial system. One is interested in finding parameter values for which the polynomial
systemhas a common solution;more specifically, if there are solutions, one is also interested in finding
out the structure of the solution space (finitely many, infinitely many, in which case, their dimension
is of interest, etc.). One recent application of comprehensive Gröbner systems is in automated geom-
etry theorem proving (Chen et al., 2005) and automated geometry theorem discovery (Montes and
Recio, 2007). In the former, the goal is to consider all possible cases arising from an ambiguous prob-
lem formulation to determine whether the conjecture is generic enough to be valid in all cases, or
certain cases have to be ruled out. In the latter, one is interested in identifying different relationship
among geometric entities for different parameter values. Another recent application is in the auto-
matic generation of loop invariants and inductive assertions of programs operating on numbers using
quantifier elimination methods as proposed in Kapur (2006). The main idea is to hypothesize invari-
ants/assertions to have a template like structure (such as a polynomial in which the degree of every
variable is≤2, or a polynomial with a predetermined support), in which the presence/coefficient of a
power product is parameterized. Verification conditions from the program are then generated which
are formulas involving parameterized polynomial equations. The objective is to generate conditions
on parameters which make these verification conditions valid, (see Kapur (2006) for more details).

Let k be a field, R be the polynomial ring k[U] in the parameters U = {u1, . . . , um}, and R[X] be
the polynomial ring over the parameter ring R in the variables X = {x1, . . . , xn}; it is assumed that
X ∩ U = ∅, i.e., X and U are disjoint sets.

Given a polynomial set F ⊂ R[X], we are interested in identifying conditions on parametersU such
that the solution structure of the specialized polynomial system F for the values of U satisfying these
conditions is different fromother parameter values. Oneway to do this is to compute a comprehensive
Gröbner system as introduced by Weispfenning, which is a finite set of triples of the form (Ei,Ni,Gi),
where Ei,Ni are finite sets of polynomials in k[U] and σ(Gi) is a Gröbner basis of σ(F) for every
specialization σ such that for every ei ∈ Ei, ei vanishes and for at least one ni ∈ Ni, ni does not vanish;
we will say that in that case σ satisfies the parametric constraints specified by Ei and Ni. Furthermore,
for every specialization, there is at least one triple whose parametric constraints satisfy it. Wewill call
each triple a branch (also called a segment) in a comprehensive Gröbner system.

In 1992, Weispfenning (1992) gave an algorithm for computing a comprehensive Gröbner system
but it suffered from the problem of too many branches, many of which leading to the Gröbner basis
{1}, implying the inconsistency of the corresponding parameterized polynomial systems for those
specific parametric specializations.2 Since then, many improvements have been made to improve

2 Kapur’s algorithm for parametric Gröbner bases suffered from similar weaknesses.
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these algorithms to make them useful for different applications; see Montes (2002), Suzuki and
Sato (2003, 2004), Manubens and Montes (2006) and Wibmer (2007). A major breakthrough was an
algorithm proposed by Suzuki and Sato (2006) (henceforth called the SS algorithm) in which they
showedhow traditional implementations of Gröbner basis algorithms for polynomial rings over a field
could be exploited for computing a comprehensive Gröbner basis system. More recently, there is an
interesting related concept of Gröbner cover introduced in Montes and Wibmer (2010). Parametric
polynomial systems have also been investigated using parametric characteristic sets (Gao and Chou,
1992; Chen et al., 2007). Below, we discuss the main ideas of Suzuki and Sato’s algorithm and
Nabeshima’s algorithm because of the close relationship with the proposed algorithm in this paper.

Themain idea of the SS algorithm is to compute a Gröbner basisG from the parametric ideal basis in
k[U, X] using the block ordering in which U ≪ X . In case G has polynomials purely in the parameters
U , there are branches corresponding to each such polynomial being not equal to 0 in which case
the Gröbner basis is {1} for the specialization. For the branch when all these polynomials are 0, the
Gröbner basis is Gminus these polynomials under the additional condition that the leading coefficient
of each polynomial is nonzero. In addition, there are branches corresponding to the cases when each
of these leading coefficients is 0.

Nabeshima’s speed-up algorithm (Nabeshima, 2007) improves upon the SS algorithm by using the
fact that (i) for every leading power product, only one coefficient needs to be made nonzero, and
(ii) Rabinovitch’s trick of introducing a new variable can be used to make that polynomial monic.
Nabeshima reported that these tricks led to fewer branches of the SS-algorithm for most examples.

First, let G be the the reduced Gröbner basis of a parametric ideal ⟨F⟩ ⊂ k[U, X] w.r.t. ≺X,U , and
let Gr = G ∩ k[U], the polynomials in parameters only in G. A minimal Dickson basis Gm, which
is defined in Section 4, is extracted from G \ Gr , consisting only of polynomials with nondivisible
power products in X in G. Let h be the product of the leading coefficients of the polynomials in Gm.
(Gr , {h},Gm) is one of the branches of the comprehensive Gröbner system of F . Based on case analysis
over the leading coefficients of the polynomials inGm, it is possible to compute the remaining branches
of a comprehensive Gröbner system.

For computing a Gröbner basis for specializations along many branches, it is useful to perform
radical membership check of a parametric constraint in an ideal of other parametric constraints for
checking consistency. Instead of using Rabinovitch’s trick of introducing a new variable for radical
membership check as proposed in Nabeshima’s speed-up version of the SS algorithm, we have
developed a collection of useful heuristics for this check based on case analysis on whether the ideal
whose radical membership is being checked, is 0-dimensional or not. In case of a positive dimensional
ideal, a probabilistic check is employed after randomly specializing the independent variables of the
ideal. The general check is performed as a last resort.

The paper is organized as follows. Section 2 gives notations and definitions used. Section 3 briefly
reviews the Suzuki–Sato algorithm. Section 4 is the discussion of the key insights needed for the
proposed algorithm. This is followed by a high-level description of the algorithm and its termination
proof. Section 5 discusses different methods for checking consistency of parametric constraints based
on the dimension of the ideal generated from equality constraints. Section 6 illustrates the proposed
algorithm on a simple example. Section 7 discusses optimizations for making the implementation of
the proposed algorithm more efficient by processing parametric constraints using quotient ideals as
well as by exploiting the dimensionality of the parametric equality constraints. Empirical data and
comparisonwith several other existing algorithms are presented in Section 8, where the performance
comparison of different heuristics for checking consistency of parametric constraints are discussed.
Concluding remarks follow in Section 9.

2. Notations and definitions

Let k be a field, R be the polynomial ring k[U] in the parameters U = {u1, . . . , um}, and R[X] be the
polynomial ring over R in the variables X = {x1, . . . , xn} and X ∩ U = ∅.

Let PP(X), PP(U) and PP(U, X) be the sets of power products of X , U and U ∪ X respectively.≺X,U
is an admissible block term order on PP(U, X) such that U ≪ X . ≺X and ≺U are restrictions of ≺X,U
on PP(X) and PP(U), respectively.
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For a polynomial f ∈ R[X] = k[U][X], the leading power product, leading coefficient and leading
monomial of f w.r.t. the order≺X are denoted by lppX (f ), lcX (f ) and lmX (f ) respectively. Since f can
also be regarded as an element of k[U, X], in this case, the leading power product, leading coefficient
and leading monomial of f w.r.t. the order ≺X,U are denoted by lppX,U(f ), lcX,U(f ) and lmX,U(f )
respectively.

Given a field L, a specialization of R is a homomorphism σ : R −→ L. In this paper, we assume
L to be the algebraic closure of k, and consider the specializations induced by the elements in Lm.
That is, for ā ∈ Lm, the induced homomorphism σā is denoted as σā : f −→ f (ā), where f ∈ R.
Every specialization σ : R −→ L extends canonically to a homomorphism σ : R[X] −→ L[X] by
applying σ coefficient-wise. For an F ⊂ R = k[U], the variety defined by F in Lm is denoted by V (F).
Parametric specializations can be grouped together using parametric constraints defined below and
the associated algebraic constructible subsets.

Definition 2.1. For E,N ⊂ R = k[U], a pair (E,N) is called a parametric constraint. A parametric
constraint (E,N) is said to be consistent if the set V (E)\V (N) is not empty. Otherwise, (E,N) is called
inconsistent.

It is easy to see that the consistency of (E,N) can be checked by ensuring that at least one f ∈ N
is not in the radical of ⟨E⟩. The above parametric constraint corresponds to a formula


ei∈E

(ei = 0)
∧ ¬(


nj∈N

(nj = 0)) over the parameters.

Definition 2.2. A constructible set A is defined as a pair of finite sets of polynomials (E,N) such that
A = V (E) \ V (N) where E,N are subsets of k[U].

Definition 2.3. Let F be a subset of R[X], A1, . . . , Al be algebraically constructible subsets of Lm and
G1, . . . ,Gl be subsets of R[X], and S be a subset of Lm such that S ⊆ A1 ∪ · · · ∪ Al. A finite set
G = {(A1,G1), . . . , (Al,Gl)} is called a comprehensive Gröbner system on S for F if σā(Gi) is a
Gröbner basis of the ideal ⟨σā(F)⟩ ⊂ L[X] for ā ∈ Ai and i = 1, . . . , l. Each (Ai,Gi) is called a branch of
G. Particularly, if S = Lm, then G is called, simply, a comprehensive Gröbner system for F .

Definition 2.4. A comprehensive Gröbner system G = {(A1,G1), . . . , (Al,Gl)} on S for F is said to be
minimal if for every i = 1, . . . , l,

1. Ai ≠ ∅, and furthermore, for each i, j = 1 · · · l, Ai ∩ Aj = ∅whenever i ≠ j, and
2. σā(Gi) is a minimal Gröbner basis of the ideal ⟨σā(F)⟩ ⊂ L[X] for ā ∈ Ai, and
3. for each g ∈ Gi, σā(lcX (g)) ≠ 0 for any ā ∈ Ai.

If Ai = V (Ei) \ V (Ni) is empty, the branch (Ai,Gi) is redundant.

3. The Suzuki–Sato algorithm

In this section, we briefly review the key ideas of the Suzuki–Sato algorithm (Suzuki and Sato,
2006). The following two lemmas serve as the basis of the SS algorithm. The first lemma is a corollary
of Theorem 3.1 given by Kalkbrener (1997).

Lemma 3.1. Let G be a Gröbner basis of the ideal ⟨F⟩ ⊂ k[U, X] w.r.t. the order≺X,U . For any ā ∈ Lm, let
G1 = {g ∈ G | σā(lcX (g)) ≠ 0}. Then σā(G1) = {σā(g) | g ∈ G1} is a Gröbner basis of ⟨σā(F)⟩ in L[X]
w.r.t.≺X if and only if σā(g) reduces to 0modulo σā(G1) for every g ∈ G.

The next lemma, which follows from the first lemma, plays the key role in the design of the SS
algorithm.

Lemma 3.2. Let G be a Gröbner basis of the ideal ⟨F⟩ ⊂ k[U, X] w.r.t. the order ≺X,U . If σā(lcX (g)) ≠ 0
for each g ∈ G \ (G ∩ R), then σā(G) is a Gröbner basis of ⟨σā(F)⟩ in L[X] w.r.t.≺X for any ā ∈ V (G ∩ R).
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The main idea of the SS algorithm is to first compute a reduced Gröbner basis, say G, of ⟨F⟩ ⊂
k[U, X]w.r.t.≺X,U , which is also aGröbner basis of the ideal ⟨F⟩ ⊂ k[U][X]w.r.t.≺X . Let {h1, . . . , hl} =

{lcX (g) | g ∈ G \ R} ⊂ R. By the above lemma, (G ∩ k[U], V (h1) ∪ · · · ∪ V (hl),G) forms a branch of
the comprehensive Gröbner system for F . That is, for any ā ∈ V (G ∩ k[U]) \ (V (h1) ∪ · · · ∪ V (hl)),
σā(G) is a Gröbner basis of ⟨σā(F)⟩ in L[X]w.r.t.≺X . To compute other branches corresponding to the
specialization ā ∈ V (h1)∪· · ·∪V (hl), Lemma 3.2 is used for each F∪{hi}, the above steps are repeated.
Since hi /∈ ⟨F⟩, the algorithm terminates in finitely many steps.

As stated earlier, this algorithmcanbe easily implemented inmost of the computer algebra systems
already supporting an efficient implementation of a Gröbner basis algorithm over a polynomial
ring over a field. It has very good performance since it can take advantage of well-known fast
implementations for computing Gröbner bases.

The algorithm however suffers from certain weaknesses. The algorithm does not check whether
V (G ∩ R) \ V (h) is empty; as a result, many redundant/unnecessary branches may be produced. In
Suzuki and Sato (2006), an improved version of the algorithm is reported which removes redundant
branches. To reduce the number of branches generated from the SS algorithm, Nabeshima proposed
a speed-up algorithm in Nabeshima (2007). The main idea of that algorithm is to exploit disequality
parametric constraints for simplification. For every leading power product in G \ R that is a nontrivial
multiple of any other leading product in it, a branch is generated by asserting its leading coefficient hi
to be nonzero. The corresponding polynomial ismademonic using Rabinovitch’s trick of introducing a
new variable to handle the disequality hi ≠ 0, and the Gröbner basis computation is performed again,
simplifying polynomials whose leading power products are multiples, including their parametric
coefficients.

4. The proposed algorithm

We present below a new algorithm for computing a comprehensive Gröbner system which avoids
unnecessary branches in the SS algorithm. This is done using the radical ideal membership check for
parametric constraints asserted to be nonzero. Heuristics are employed to do this check; when these
heuristics fail, as exhibited by Table 2 in Section 8 on experimental results, only then the general check
is performed by introducing a new variable, since this check is very inefficient because of the extra
variable. Further, all parametric constraints leading to the specializedGröbner basis being 1 are output
as a single branch, leading to a compactified output.

Anothermajor improvement of the proposed algorithm is that along anyother branch forwhich the
specialized Gröbner basis is different from 1, exactly one polynomial from G \ R per minimal leading
power product is selected. This is based on a generalization of Kalkbrener’s Theorem 3.1. All these
results are integrated into the proposed algorithm, resulting in considerable efficiency over the SS
algorithm and Nabeshima’s improved algorithm by avoiding expensive Gröbner basis computations
along most branches.

The proposed algorithm is based on the following theorem. The definitions below are used in the
theorem.

Definition 4.1 (Minimal Dickson Basis). Given a set G of polynomials which are a subset of k[U, X]
and an admissible block order with U ≪ X , we say F ⊂ k[U, X], denoted as MDBasis(G), is aminimal
Dickson basis of G, if

1. F is a subset of G,
2. for every polynomial g ∈ G, there is some polynomial f ∈ F such that lppX (g) is a multiple of

lppX (f ), i.e. ⟨lppX (F)⟩ = ⟨lppX (G)⟩, and
3. for any two distinct f1, f2 ∈ F , neither lppX (f1) is a multiple of lppX (f2) nor lppX (f2) is a multiple of

lppX (f1).

The following simple example shows that given G ⊂ k[U, X], MDBasis(G) may not be unique. Let
G = {ax2 − y, ay2 − 1, ax− 1, (a+ 1)x− y, (a+ 1)y− a} ⊂ Q[a, x, y], with the lexicographic order
on terms with a < y < x. Then F = {ax− 1, (a+ 1)y− a} and F ′ = {(a+ 1)x− y, (a+ 1)y− a} are
both MDBasis(G). It is easy to verify ⟨lppX (F)⟩ = ⟨lppX (F ′)⟩ = ⟨lppX (G)⟩ = ⟨x, y⟩.
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Definition 4.2. Given F ⊂ k[U, X] and p ∈ k[U, X], p is said to be divisible by F if there exists an
f ∈ F such that some power product in X of p is divisible by lppX (f ).

We should emphasize that ‘‘some power product’’ in the above definition may not be the leading
power product.

Theorem 4.3. Let G be a Gröbner basis of the ideal ⟨F⟩ ⊂ k[U, X] w.r.t. an admissible block order with
U ≪ X. Let Gr = G ∩ k[U] and Gm = MDBasis(G \ Gr). If σ is a specialization from k[U] to L such that

1. σ(g) = 0 for g ∈ Gr , and
2. σ(h) ≠ 0, where h =


g∈Gm lcX (g) ∈ k[U],

then σ(Gm) is a (minimal) Gröbner basis of ⟨σ(F)⟩ in L[X] w.r.t.≺X .

Proof. Consider any p ∈ G \ (Gr ∪ Gm); p is divisible by Gm. p can be transformed by multiplying it
with the leading coefficients of polynomials in Gm and then reduced using Gm, and then this process
can be repeated on the result. Let r be the remainder of p w.r.t. Gm in X obtained by multiplying p by
the leading coefficient of g ∈ Gm such that r does not have any power product that is a multiple of any
of the leading power products of polynomials in Gm (r could be different depending upon the order in
which different polynomials in Gm are used to transform p). Thus,

(lcX (g1))α1 · · · (lcX (gs))αsp = q1g1 + · · · + qsgs + r, (1)

where gi ∈ Gm, qi ∈ k[U, X] for i = 1, . . . , s, r ∈ k[U, X] such that no power product of r in X is a
multiple of any of the leading power products of Gm. Since p ∈ ⟨F⟩, r ∈ ⟨F⟩. Since G is a Gröbner basis
of ⟨F⟩ in k[U, X], r reduces to 0 by G. However, r is reduced (in normal form) w.r.t. Gm in X (and hence
reduced w.r.t. G\Gr in X also, by the definition of Gm); so r reduces to 0 by Gr only and further no new
power products in X can be introduced during the simplification of r by Gr . So r ∈ ⟨Gr⟩ ⊂ k[U, X].
Additionally, lppX (p) ≽ lppX (qigi) since lcX (gi) ∈ k[U].

Let c = (lcX (g1))α1 · · · (lcX (gs))αs . Apply σ to the both sides of (1), then we have:

σ(c)σ (p) = σ(q1)σ (g1)+ · · · + σ(qs)σ (gs)+ σ(r).

Since σ(h) ≠ 0 by assumption, σ(lcX (g)) ≠ 0 for g ∈ Gm; σ(g) = 0 for g ∈ Gr which implies that
σ(r) = 0. Notice 0 ≠ σ(c) ∈ L and lppX (p) ≽ lppX (qigi), using Lemma 4.5, σ(Gm) is a Gröbner basis
of ⟨σ(G)⟩ = ⟨σ(F)⟩. �

In the above theorem, if Gr = ∅, then Gm is actually a Gröbner basis of the ideal ⟨F⟩ generated in
k(U)[X].

We assume that the reader is familiar with the concept of t-representations which is often used
to determine if a set of polynomials is a Gröbner basis; for details, the reader should consult (Becker
et al., 1993). Here we only list the main results about t-representations.

Let f ∈ k[X] and G ⊂ k[X] be a finite subset. Given a power product t , we say f has a
t-representationw.r.t. G, if there exist p1, . . . , ps ∈ k[X] such that

f = p1g1 + · · · + psgs,

where gi ∈ G and t ≽X lppX (pigi) for i = 1, . . . , s.

Lemma 4.4. Let G ⊂ k[X] be a finite subset. The set G is a Gröbner basis for ⟨G⟩ ⊂ k[X], if and
only if for any gi, gj ∈ G, the s-polynomial spolyX (gi, gj) has a t-representation w.r.t. G, where
t ≺X lcm(lppX (gi), lppX (gj)).

The following lemma is used in the proof of Theorem 4.3.

Lemma 4.5. Let G be a Gröbner basis of ⟨G⟩ ⊂ k[U, X] w.r.t. an admissible block order with U ≪ X. Let
G1 = {g1, . . . , gs} ⊂ G and σ be a specialization from k[U] to L such that σ(lcX (gi)) ≠ 0 for i = 1, . . . , s.
If for each p ∈ G \ G1, there exist p1, . . . , ps ∈ L[X] such that:

σ(p) = p1σ(g1)+ · · · + psσ(gs),

where lppX (p) ≽ lppX (piσ(gi)) for i = 1, . . . , s, then σ(G1) is a Gröbner basis of ⟨σ(G)⟩ in L[X]
w.r.t.≺X .
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Proof. By the hypothesis, it is easy to check σ(G) ⊂ ⟨σ(G1)⟩ and hence σ(G1) is a basis of ⟨σ(G)⟩. So
it remains to show σ(G1) is a Gröbner basis.

For each gj, gk ∈ G1, we compute the s-polynomial of σ(gj) and σ(gk) in L[X]. Since σ(lcX (gj)) ≠ 0
and σ(lcX (gk)) ≠ 0, we have

spoly(σ (gj), σ (gk)) = cσ(spolyX (gj, gk)), (2)

where c is a nonzero constant in L and spolyX (gj, gk) ∈ k[U][X] is the s-polynomial of gj and gk w.r.t. X .
Assume G \ G1 = {gs+1, . . . , gl}. Since G is a Gröbner basis of ⟨G⟩ ⊂ k[U, X] and spolyX (gj, gk) ∈

⟨G⟩ ⊂ k[U, X], there exist h1, . . . , hl ∈ k[U, X] such that

spolyX (gj, gk) = h1g1 + · · · + hlgl,

where lcm(lppX (gj), lppX (gk)) ≻ lppX (higi) for i = 1, . . . , l. Substitute back to (2), then obtain:

spoly(σ (gj), σ (gk)) = c(σ (h1)σ (g1)+ · · · + σ(hl)σ (gl)), (3)

where lcm(lppX (σ (gj)), lppX (σ (gk))) = lcm(lppX (gj), lppX (gk)) ≻ lppX (higi) ≽ lppX (σ (hi))lppX (gi)
for i = 1, . . . , l. The next step is to use the hypothesis that for each p ∈ G \ G1, there exist
p1, . . . , ps ∈ L[X] such that: σ(p) = p1σ(g1) + · · · + psσ(gs), where lppX (p) ≽ lppX (piσ(gi)) for
i = 1, . . . , s. Substitute these representations back to (3), we get

spoly(σ (gj), σ (gk)) = p′1σ(g1)+ · · · + p′sσ(gs), (4)

where p′1, . . . , p
′
s ∈ L[X] and lcm(lppX (σ (gj)), lppX (σ (gk))) ≻ lppX (p′iσ(gi)) for i = 1, . . . , s. In fact,

(4) is a t-representation of spoly(σ (gj), σ (gk)) with t ≺ lcm(lppX (σ (gj)), lppX (σ (gk))). Therefore, by
Lemma 4.4, σ(G1) is a Gröbner basis. �

4.1. Algorithm

We are now ready to give the algorithm for computing a minimal comprehensive Gröbner system.
Theorem 4.3 serves as the basis of its proof of correctness.

In order to keep the presentation simple so that the correctness and termination of the algorithm
are evident, we have deliberately avoided tricks and optimizations such as factoring h below. All
the tricks suggested in the SS algorithm can be used here as well. In fact, our implementations fully
incorporate these optimizations.

Below we assume that all Gröbner basis computations are done using the ordering≺X,U .
Algorithm PGBMain(E, N, F)
Input: (E,N, F): E, N , finite subsets of k[U]; F , a finite subset of k[U, X].
Output: a finite set of 3-tuples (Ei,Ni,Gi) such that {(V (Ei)\V (Ni),Gi)} constitutes aminimal

comprehensive Gröbner system of F on V (E) \ V (N).

1. If inconsistent(E,N), then return ∅.
2. Otherwise, G := ReducedGröbnerBasis(F ∪ E).
3. If 1 ∈ G, then return {(E,N, {1})}.
4. Let Gr := G ∩ k[U].
5. If inconsistent(E,Gr × N), then PGB := ∅, else PGB := {(E,Gr × N, {1})}.
6. If inconsistent(Gr ,N), then return PGB.
7. Otherwise, let Gm := MDBasis(G \ Gr).
8. if consistent(Gr ,N × {h}), then PGB := PGB ∪ {(Gr ,N × {h},Gm)}, where h = lcm{h1, . . . , hk},

hi = lcX (gi) and gi ∈ Gm.
9. Return PGB ∪


hi∈[h1,..., hk]

PGBMain(Gr ∪ {hi},N × {h1h2 · · · hi−1},G \ Gr).

In the above algorithm, A × B = {fg | f ∈ A, g ∈ B}. Inconsistent (E,N) checks whether
V (E) \ V (N) is empty; below we discuss a number of algorithms to perform this check. If i = 1,
then N × {h1h2 · · · hi−1} = N .

Theorem 4.6. Algorithm PGBMain terminates.
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Proof. Using König’s Lemma, it suffices to show that (1) in each step, the algorithm only creates finite
branches; (2) each branch terminates after finite steps. (1) follows from the fact that in each call of
PGBMain the number of polynomials in Gm is finite. Since hi = lcX (g) ∈ k[U] for some g ∈ G, where
G is a reduced Gröbner basis for ⟨F ∪ E⟩ ⊂ k[U, X] and Gr = G ∩ k[U], hi /∈ ⟨Gr⟩ ⊂ k[U], as otherwise,
the polynomial g ∈ G can be simplified further by Gr . In the next recursive call of PGBMain, the input
E ′ = Gr ∪{hi}whose ideal is strictly larger than ⟨E⟩ from the previous call of PGBMain. So each branch
terminates after finite steps. �

As should be evident from the discussion of the algorithm, a branch is never generated for the
case when (Ei,Ni) is inconsistent. Further, the constructible sets are disjoint by construction. More
importantly, branching is done only based on the leading coefficients of Gm = MDBasis(G \ Gr),
instead of the whole G\Gr , which is typically much smaller in size than G\Gr . As a result, the number
of branches generated by the above algorithm is strictly smaller than that of the branches in Suzuki–
Sato’s algorithm.

Efficient heuristics are employed to perform the consistency check; as a last resort onlywhen other
heuristics do not work, Rabinovitch’s trick is employed for consistency check by introducing a new
variable. As confirmed by experimental data discussed in Section 8, this general check is rarely needed.
Because of these optimizations, the proposed algorithm has a much better performance than Suzuki–
Sato’s algorithm as well as Nabeshima’s speed-up algorithm, as experimentally shown in Section 8.

4.2. Computing a comprehensive Gröbner Basis

Along with an algorithm for computing a comprehensive Gröbner system for a parametric
polynomial system, Weispfenning (1992) also defined a comprehensive Gröbner basis for the
polynomial system and gave an algorithm for computing it from the comprehensive Gröbner system.

Suzuki and Sato (2006) showed how a comprehensive Gröbner basis can be computed from a
comprehensive Gröbner system using a new variable. The same idea can be used to adapt the above
algorithm for computing a comprehensive Gröbner basis.

In Kapur et al. (2011), we have developed a modification of the algorithm proposed in this paper
using which both a comprehensive Gröbner system as well as a faithful comprehensive Gröbner basis
of a parametric polynomial system can be computed simultaneously. The ideas used in that paper
for computing a comprehensive Gröbner basis can be adapted to other algorithms for computing
comprehensive Gröbner systems as well.

5. Consistency of parametric constraints

As should be evident from the above description of the algorithm, there are two main
computational steps which are being repeatedly performed: (i) Gröbner basis computations, and
(ii) checking consistency of parametric constraints. As stated above, a parametric constraint (E,N),
E,N ⊂ k[U] is inconsistent if and only if for each f ∈ N , f is in the radical ideal of ⟨E⟩. This
section discusses heuristicswe have integrated into the implementation of the algorithm for the check
whether (E, {f }) is inconsistent. In this section, we always assume that E itself is a Gröbner basis.

A general method to check whether f ∈
√
⟨E⟩ is to introduce a new variable y and compute the

Gröbner basis Gy of ⟨E ∪ {fy − 1}⟩ ⊂ k[U, y] for any admissible monomial order. If Gy = {1}, then
f ∈
√
⟨E⟩ and (E, {f }) is inconsistent. Otherwise, (E, {f }) is consistent. However, this method can be,

in general, very expensive partly because of introduction of a new variable. Consequently, thismethod
is used only as a last resort when other heuristics fail.

The first heuristic is to check whether f is in the ideal generated by E; since in the algorithm, a
Gröbner basis of E is already available, the normal form of f is computed; if it is 0, then f is in the ideal
of E implying that (E, {f }) is inconsistent. This heuristic turns out to be quite effective as shown from
experimental results in Section 8.

In case f is not in the ideal generated by E different heuristics are used for checking radical ideal
membership, depending upon whether E is 0-dimensional or not. In case E is 0-dimensional, the
method discussed in the next subsection for the radical membership check is complete, i.e., it decides
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whether f is in the radical ideal of E or not. In case E is of positive dimension, then independent
variables of E are assigned random values, hopefully, resulting in a 0-dimensional ideal, for which the
radicalmembership check can be done. However, this heuristic is not complete. If this heuristic cannot
determine whether (E, {f }) is inconsistent, then another heuristic is employed that checks whether
f 2

k
is in the ideal of E for a suitably small value of k.

5.1. Ideal(E) is 0-dimensional

For the case when E is 0-dimensional, linear algebra techniques can be used to check the radical
membership in E. The main idea is to compute the characteristic polynomial of the linear map
associated with f , which can be efficiently done using a Gröbner basis of E.

Let A = k[U]/⟨E⟩. Consider the map induced by f ∈ k[U]: mf : A −→ A, [g] −→ [fg], where
g ∈ k[U] and [g] is its equivalence class in A.

See Cox et al. (2005); Sun and Wang (2009) for the proofs of the following lemmas.
Lemma 5.1. Assume that the map mf is defined as above. Then,
(1) mf is the zero map exactly when f ∈ ⟨E⟩.
(2) For a univariate polynomial q over k, mq(f ) = q(mf ).
(3) pf (f ) ∈ ⟨E⟩, where pf is the characteristic polynomial of mf .
Lemma 5.2. Let pf ∈ k[λ] be the characteristic polynomial of mf . Then forα ∈ L, the following statements
are equivalent.
(1) α is a root of the equation pf (λ) = 0.
(2) α is a value of the function f on V (E).

Using these lemmas, we have:
Proposition 5.3. Let pf ∈ k[λ] be the characteristic polynomial of mf and d = deg(pf ).

(1) pf = λd if and only if f ∈
√
⟨E⟩.

(2) pf = q and λ - q if and only if there exists g ∈ k[U] such that gf ≡ 1mod ⟨E⟩.
(3) pf = λd′q, where 0 < d′ < d and λ - q if and only if f /∈

√
⟨E⟩ and there exists g /∈

√
⟨E⟩ such that

fg ∈
√
⟨E⟩.

Proof. (1) ⇒) If pf = λd, then pf (f ) = f d ∈ ⟨E⟩ by Lemma 5.1, which shows f ∈
√
⟨E⟩.⇐) Since

f ∈
√
⟨E⟩, 0 is the sole value of the function f on V (E). By Lemma 5.2, pf = λd.

(2) ⇒) If pf = q and λ - q, then there exist a, b ∈ k[λ] such that aλ+bpf = 1. Substitute λ by f . Then
obtain a(f )f + b(f )pf (f ) = 1. pf (f ) ∈ ⟨E⟩ shows a(f )f ≡ 1 mod ⟨E⟩.⇐) If there exists g ∈ k[U]
such that gf ≡ 1 mod ⟨E⟩, then all the values of the function f on V ({f }) are not 0, which means
the roots of pf (λ) = 0 are not 0 as well by the above lemma. So λ - pf .

(3) ⇒) If pf = λd′q, where 0 < d′ < d and λ - q, then we have f /∈
√
⟨E⟩ by (1). By Lemma 5.1,

pf (f ) = f d
′

q(f ) ∈ ⟨E⟩, and hence, fq(f ) ∈
√
⟨E⟩. It remains to show q(f ) /∈

√
⟨E⟩. We prove this

by contradiction. If q(f ) ∈
√
⟨E⟩, then there exists an integer c > 0 such that qc(f ) ∈ ⟨E⟩, which

implies mqc (f ) = qc(mf ) = 0. Thus, qc is a multiple of the minimal polynomial of mf and hence
all the irreducible factors of pf should be factors of qc . But this contradicts with λ - q.⇐) Since
f , g /∈

√
⟨E⟩ and fg ∈

√
⟨E⟩, both f and g are nonzero functions on V (E), but fg is a zero function

on V (E). This implies that f vanishes on some but not all points of V (E). By Lemma 5.2, pf = λd′q,
where 0 < d′ < d and λ - q. �

For the case (2) of Proposition 5.3, clearly V (E) \ V ({f }) = V (E) holds. For the case (3), it is easy to
check V (E)\V ({f }) = V (E∪{q(f )}) by Lemma 5.2. So the parametric constraint (E, {f }) is equivalent
to (E ∪ {q(f )}, {1}), which converts the disequality constraint into equality constraint. Both (2) and
(3) contribute to the speeding of the implementation of the new algorithm.

If E is zero-dimensional, then k[U]/⟨E⟩ is a finite vector space and the characteristic polynomial
of mf can be generated in Cox et al. (2005). Since in our algorithm, E itself is a Gröbner basis, the
complexity of doing radical membership check is of polynomial time, which is much more efficient
than the general method based on Rabinovitch’s trick.
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The following algorithm is based on the above theory:

Algorithm 1 — Zero-DimCheck

Input: (E, {f }): E is the Gröbner basis of the zero dimensional ideal ⟨E⟩; f , a polynomial in
k[U].

Output: true (consistent) or false (inconsistent).

begin
pf← characteristic polynomial ofmf defined on k[U]/⟨E⟩
d←deg(pf )
if pf ≠ λd then return true else return false end if

end

5.2. Ideal(E) is of positive dimension

We discuss two heuristics, CCheck and ICheck, for radical membership check; neither one is
complete.

A subset V of U is independent modulo the ideal I if k[V ] ∩ I = {0}. An independent subset of U is
maximal if there is no independent subset containing V properly.

The following proposition is well-known.

Proposition 5.4. Let I ⊂ k[U] be an ideal and≺U be a graded order on k[U]. If k[V ] ∩ lppU(I) = ∅, then
k[V ]∩I = ∅. Furthermore, themaximal independent subsetmodulo lppU(I) is also amaximal independent
subset modulo I.

A maximal independent subset modulo the monomial ideal of ⟨E⟩ can be easily computed; the
above proposition thus provides a method to compute the maximal independent subset modulo an
ideal.

The following theorem is obvious, so the proof is omitted.

Theorem 5.5. Let ⟨E⟩ ⊂ k[U] with positive dimension, V be a maximal independent subset modulo ⟨E⟩,
and ᾱ be an element in kl where l is the cardinality of V . If f |V=ᾱ /∈

√
⟨E|V=ᾱ⟩, then f /∈

√
⟨E⟩ i.e. (E, {f })

is consistent.

Since V is a maximal independent subset modulo ⟨E⟩, the ideal ⟨E⟩ becomes a zero dimensional
ideal in k[U \V ]with probability 1 by setting V to a value in kl randomlywhen the characteristic of k is
0. In this case, we can use the technique provided in the last subsection to check if f |V=ᾱ /∈

√
⟨E|V=ᾱ⟩.

If (E|V=ᾱ, f |V=ᾱ) is consistent, then (E, {f }) is consistent. This gives an algorithm for checking the
consistence of (E, {f }). When f /∈

√
⟨E⟩, this algorithm can detect it efficiently.

In the above algorithm, we only need to compute the Gröbner basis of ⟨EV=ᾱ⟩which is usually zero
dimensional and has fewer variables. So CCheck ismore efficient than the generalmethodwhich needs
to compute the Gröbner basis of ⟨E ∪ {fy− 1}⟩whose dimension is positive.

If CCheck(E, {f }) returns true, then (E, {f }) is consistent. However, if CCheck(E, {f }) returns false,
it need not be the case that (E, {f }) is inconsistent.

The following simple heuristic ICheck checks whether f 2
k
is in the ideal generated by E by

repeatedly squaring the normal form of f 2
i
in an efficient way.

Clearly, if ICheck(E, {f }) returns true, then (E, {f }) is inconsistent.

5.3. Putting all together

The above discussed checks are done in the following order for checking the consistency of a
parametric constraint (E, {f }). First check whether f is in the ideal of E; this check can be easily done
by computing the normal form of f using a Gröbner basis of E which is readily available. If yes, then
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Algorithm 2 — CCheck

Input: (E, {f }): E is the Gröbner basis of ⟨E⟩ w.r.t. a graded monomial order ≺U ; f , a
polynomial in k[U].

Output: true (consistent) or false .

begin
V← independent variables of ⟨lppU(E)⟩
ᾱ← a random element in kl
spE← GröbnerBasis(E|V=ᾱ,≺U )
if ⟨spE⟩ is zero dimensional in k[U \ V ] then

if Zero-DimCheck(spE, f |V=ᾱ) =true then
return true

end if
end if ;
return false

end

Algorithm 3 — ICheck

Input: (E, {f }): E is the Gröbner basis of ⟨E⟩ w.r.t. a graded monomial order ≺U ; f , a
polynomial in k[U].

Output: true (inconsistent) or false .

begin
loops← an integer given in advance
p←f
for i from 1 to loops do
{m1, . . . ,ml}←monomials of p
s←0
for m ∈ {m1, . . . ,ml} do

s←s+NormalForm(p ·m, E)
end for
if s = 0 then return true end if
p←s

end for
return false

end

the constraint is inconsistent. If no, then depending upon the dimension of the ideal of E, either Zero-
DimCheck or CCheck is performed. If E is 0-dimensional, then the check is complete in that it decides
whether the constraint is consistent or not. If E is of positive dimension then if CCheck returns true,
the constraint is consistent; otherwise, ICheck is performed. If ICheck succeeds, then the constraint is
inconsistent. Finally, the general check is performed by computing a Gröbner basis of E∪{fy−1 = 0},
where y is a new variable different from U .

6. An illustrative example

The proposed algorithm is illustrated on a simple example. We do not show some of the
optimizations discussed in the next section so as not to complicate the discussion.

Example 6.1. Let F = {ax − b, by − a, cx2 − y, cy2 − x} ⊂ Q[a, b, c][x, y], with the block order
≺X,U , U ≪ X where U = {a, b, c} and X = {x, y}; within each block, ≺X and ≺U are graded reverse
lexicographic orders with y < x and c < b < a, respectively.
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(1) We have E = ∅, N = {1}: the parametric constraint (E,N) is consistent. The reduced
Gröbner basis of ⟨F⟩w.r.t.≺X,U is G = {x3− y3, cx2− y, ay2− bc, cy2− x, ax− b, bx− acy, a2y− b2c ,
by − a, a6 − b6, a3c − b3, b3c − a3, ac2 − a, bc2 − b}; Gr = G ∩ Q[a, b, c] = {a6 − b6, a3c − b3,
b3c − a3, ac2 − a, bc2 − b}. It is easy to see that (E,Gr) and (E,Gr × N) are consistent. This leads to
the trivial branch of the comprehensive Gröbner system for F : (∅,Gr , {1}).

(2) G \ Gr = {x3 − y3, cx2 − y, ay2 − bc, cy2 − x, ax − b, bx − acy, a2y − b2c, by − a}; Gm =

MDBasis(G \ Gr)= {bx− acy, by− a}. Further, h = lcm{lcX (bx− acy), lcX (by− a)} = b. This results
in another branch of the comprehensive Gröbner system for F corresponding to the case when all
polynomials in Gr are 0 and b ≠ 0: (Gr , {b},Gm). Notice that (Gr , {b}) is consistent, which is detected
using the Zero-DimCheck.

(3) The next case to consider is when b = 0. The Gröbner basis of Gr ∪ {b} is {a3, ac2 − a, b}.
This is the input E ′ in the recursive call of PGBMain, with the other input being N ′ = {1} and
F ′ = G \ Gr . It is easy to see that (E ′,N ′) is consistent. The reduced Gröbner basis for F ′ ∪ E ′ is:
G′ = {x3− y3, cx2− y, cy2− x, a, b} of which G′r = {a, b}. It is easy to check the parametric constraint
(E ′,G′r) is inconsistent: the check for a being in the radical ideal of E ′ is confirmed by ICheck; b is in
the ideal of E ′. So no branch is generated from this case.

G′m = MDBasis(G′ \ G′r) = {cx
2
− y, cy2 − x} and h′ = lcm{lcX (cx2 − y), lcX (cy2 − x)} = c. This

results in another branch: (G′r , {c},G
′
m).

(4) For the case when h′ = c = 0, E ′′ = {a, b, c} is the Gröbner basis of G′r ∪ {c} and N ′′ = {1},
F ′′ = {x3−y3, cx2−y, cy2−x}. The Gröbner basis for F ′′∪E ′′ is G′′ = {x, y, a, b, c}. Then G′′r = {a, b, c}
and G′′m = {x, y}. Since h′′ = lcm{lcX (x), lcX (y)} = 1, this gives another branch: (G′′r , {1},G

′′
m). As

h′′ = 1, no other branches are created and the algorithm terminates.
The result is a comprehensive Gröbner system for F :

{1}, if (a6 − b6 ≠ 0 or a3c − b3 ≠ 0 or b3c
−a3 ≠ 0 or ac2 − a ≠ 0 or bc2 − b ≠ 0),

{bx− acy, by− a}, if (a6 − b6 = a3c − b3 = b3c − a3

= ac2 − a = bc2 − b = 0) and (b ≠ 0),
{cx2 − y, cy2 − x} if (a = b = 0) and (c ≠ 0),
{x, y} if (a = b = c = 0).

7. Some optimizations

In this section, we briefly discuss some optimizations used in the implementation of the proposed
algorithm in the Magma computer algebra system.

7.1. Choosing a minimal Dickson basis

As discussed above, Step 7 in the algorithm proposed in Section 4.1 chooses a minimal Dickson
basis of G \ Gr ; this subset is usually not unique. The leading coefficients of the polynomials in Gm
thus chosen are subsequently used as equality constraint along other branches in the algorithm. We
have experimented with a strategy in which a polynomial with the same leading power product
but ‘‘simpler’’ leading coefficient is preferred. One notion of simpler we have experimented with is
to minimize the degree of maximal factors of the leading coefficient. For example, let G \ Gr =

{(a3 + a+ 1)x+ b, (a4 − 1)x− c, by+ 1}where x, y are variables and a, b, c are parameters. Notice
Gm1 = {(a3+ a+ 1)x+ b, by+ 1} and Gm2 = {(a4− 1)x− c, by+ 1} are both minimal Dickson bases
of G \ Gr . Our strategy is to choose Gm2 instead of Gm1, since among the factors of a4 − 1, a2 + 1 is of
the highest degree and it is of lower degree than the irreducible coefficient a3 + a + 1, even though
the degree of the leading coefficient a4 − 1 is higher.

Another heuristic we plan to experiment with is whether there is a common factor among the
leading coefficients of polynomials which are candidates for inclusion in minimal Dickson basis. In
the example discussed in Section 6, in Step 2, {bx − acy, by − a} is selected from {x3 − y3, cx2 −
y, ay2 − bc, cy2 − x, ax− b, bx− acy, a2y− b2c, by− a} instead of {ax− b, by− a}.
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An optimization introduced in Manubens andMontes (2009) for reducing the number of branches
in the output is to combine the branches corresponding to Gröbner baseswhich have the same leading
power products,much like it has been done for the branch corresponding to theGröbner basis {1}. This
heuristic/optimization is likely to be more useful if quotient ideals are used to process parametric
constraints by using disequality constraints as well (see discussion below). In the example discussed
in Section 6, branches 2 and 4will be combined since their Gröbner bases have the same leading power
products {x, y}.

7.2. Computing quotient ideals of parametric equality constraints with a parametric disequality constraint

As should be evident from the algorithm in Section 4.1, it is often necessary to compute a
Gröbner basis of the ideal ⟨F ∪ E⟩; this computation is also the most time consuming in the algorithm.
Because of the special role of parametric constraints, it is often possible to use simple algebraic
functions tomake constraints in E of lower degree. Some of the possibilities are replacing a parametric
constraint in E by its square-free part and/or factoring the parametric constraint. Further, disequality
constraints in N can be used to simplify E by computing quotient ideals since

V (E) \ V (N) = V (⟨E⟩ : ⟨N⟩) \ V (N) and V (E) \ V ({f }) = V (⟨E⟩ : f∞) \ V ({f }).

This technique is also used in Montes and Wibmer (2010); the computation of a saturation ideal
is a special case of the quotient ideal computation when N contains only a single polynomial. It
is hoped that the generators of ⟨E⟩ : ⟨N⟩ are ‘‘simpler’’ than the elements in E. For example, Let
E = {a6 − b6, a3c − b3, b3c − a3, ac2 − a, bc2 − b} and N = {b}. Notice that V (E) \ V (N) is the
constructible set corresponding to the branch obtained in (2) of Example 6.1. The generators of the
quotient ideal ⟨E⟩ : ⟨N⟩ are {a3 − b3c, c2 − 1}, which is simpler than the set E.

Computation of quotient ideals is most useful if the generators of the quotient ideal ⟨E⟩ : ⟨N⟩ are
simpler than E. In that case, the Gröbner basis computation for (⟨E⟩ : ⟨N⟩)+⟨F⟩ is oftenmore efficient
than for ⟨E ∪ F⟩. We however observed in many examples that particularly when E is complicated,
the two ideals ⟨E⟩ : ⟨N⟩ and ⟨E⟩ are identical; as a result, computing quotient ideals does not help at
all. Because of these reasons, we have used a heuristic of computing quotient ideals only if the size of
E is <5, or elements of E are of low degree (no more than the total degree 3). These heuristics need to
be further experimented with on a larger set of examples and their effectiveness should be analyzed.

7.3. Further exploiting 0-dimensionality of equality constraints

When the equality constraints constitute a 0-dimensional ideal, a more efficient algorithm for
computing comprehensive Gröbner systems which is a variation over the proposed algorithm is
discussed below. This is based on the following proposition, which is a direct consequence of
Theorem 3.3 in Kalkbrener (1997), which can be given that minimizes the number of Gröbner basis
computations.

Proposition 7.1. Let G be a Gröbner basis of the ideal ⟨F⟩ ⊂ k[U, X]w.r.t. an admissible block order with
U ≪ X. Let Gr = G∩k[U]. If ⟨Gr⟩ ⊂ k[U] is a radical 0-dimensional ideal, then σ(G\Gr) is a Gröbner basis
of ⟨σ(F)⟩ ⊂ L[X] for any specialization σ from k[U] to L such that σ(g) = 0 for all g ∈ Gr .3

This proposition is also mentioned in Suzuki and Sato (2006). Using this proposition and Theo-
rem 4.3, an efficient algorithm to compute a minimal comprehensive Gröbner system is presented
below.
Algorithm Zero-Dim(E, N, F)
Input: (E,N, F): E, N , finite subsets of k[U] and ⟨E⟩ is a zero dimensional ideal in k[U]; F , a

finite subset of k[U, X].
Output: a finite set of 3-tuples (Ei,Ni,Gi) such that {(V (Ei)\V (Ni),Gi)} constitute aminimal

comprehensive Gröbner system of F on V (E) \ V (N).

3 In fact, the set G \ Gr is a comprehensive Gröbner basis for F on Gr .
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1. If inconsistent(E,N), then return ∅.
2. LetG := ReducedGröbnerBasis(F∪radE), where radE is the Gröbner basis of the radical ideal of ⟨E⟩.
3. If 1 ∈ G, then return {(radE,N, {1})}.
4. Let Gr := G ∩ k[U].
5. If inconsistent(radE,Gr × N), then PGB := ∅, else PGB := {(radE,Gr × N, {1})}.
6. If inconsistent(Gr ,N), then return PGB.
7. Return PGB ∪ Split(Gr ,N,G \ Gr).

The reader would notice that Steps 1–6 of the above algorithm and PGBMain are identical. Steps
7–9 of PGBMain have been replaced by Step 7 in which Split is called, exploiting the 0-dimensionality
of Gr . By Proposition 7.1, σ(G \ Gr) is a Gröbner basis of ⟨σ(F)⟩ ⊂ L[X] for any specialization σ from
k[U] to L such that σ(g) = 0 for all g ∈ Gr . However, (V (Gr)\V (N),G\Gr) is not a branch of minimal
comprehensive Gröbner system for F , since the leading coefficients of polynomials in G \ Gr may be
zero under the specializations. Note that no extra Gröbner basis computations in k[U, X] are needed
in Split discussed below.
Algorithm Split(E, N, F)
Input: (E,N, F): E, N , finite subsets of k[U] and ⟨E⟩ is a radical zero dimensional ideal in

k[U]; F , a finite subset of k[U, X] such that σ(F) is a Gröbner basis in L[X] for any
specialization σ from k[U] to L such that σ(g) = 0 for all g ∈ E.

Output: a finite set of 3-tuples (Ei,Ni,Gi) such that {(V (Ei)\V (Ni),Gi)} constitute aminimal
comprehensive Gröbner system of F on V (E) \ V (N).

1. If inconsistent(E,N), then return ∅.
2. Otherwise, let G := {the normal form of f w.r.t. Gröbner basis of ⟨E⟩ | f ∈ F}.
3. Let Gm := MDBasis(G).
4. If consistent(E,N × {h}), then PGB := PGB ∪ {(E,N × {h},Gm)}, where h = lcm{h1, . . . , hk},

hi = lcX (gi) and gi ∈ Gm.
5. Return PGB ∪


hi∈[h1,...,hk]

Split(E ∪ {hi},N × {h1h2 · · · hi−1},G).

For checking consistency in Step 1, techniques discussed in Section 5 can be used as well in the
above algorithms. Since ⟨E⟩ is a 0-dimensional ideal, a disequality constraint f from N can be used
to compute E ′ such that V (E ′) = V (E) \ V ({f }). As in Section 5, let pf ∈ k[λ] be the characteristic
polynomial of the map mf induced by f and defined on k[U]/⟨E⟩. Using Proposition 5.3, if pf = λd′q,
0 ≤ d′ ≤ deg(pf ) andλ - q, then V (E∪{q(f )}) = V (E)\V ({f }), evenwhen q = 1 or q = pn, where q(f )
is the polynomial obtained by substituting f forλ. The radical ideal of ⟨E⟩ can be computed similarly as
follows: let pxi ∈ k[λ] be the characteristic polynomial ofmxi defined on k[U]/⟨E⟩. Then pxi(xi) ∈ ⟨E⟩.
By Proposition 2.7 of Cox et al. (2005), ⟨E ∪ {qx1(x1), . . . , qxn(xn)}⟩ is the radical ideal of ⟨E⟩, where
qxi(xi) is the square-free part of pxi(xi).

8. Implementation and comparative performance

The proposed algorithm has been implemented on the computer algebra system Magma.4
The implementation has been experimented on a number of examples from different application
domains including geometry theorem proving and computer vision, and it has been compared with
implementations of other algorithms. Since the proposed algorithm is able to avoidmost unnecessary
branches and computations, it is efficient and can compute comprehensive Gröbner systems for most
problems in a few seconds. In particular, we have been successful in solving a particular case of the
famous P3P problem for pose-estimation from computer vision, which is investigated by Gao et al.
(2003) using the characteristic set method; see the polynomial system below.

4 Software is available at http://www.mmrc.iss.ac.cn/~dwang/. We also implemented a simple version of the proposed
algorithm in Singular, in which Theorem 4.3 is applied, but the techniques for checking consistency introduced in Section 5
and optimizations in Section 7.3 are not supported.

http://www.mmrc.iss.ac.cn/~dwang/
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The following table shows a comparison of our implementations on Magma with other existing
algorithms for computing comprehensive Gröbner systems, including: Suzuki–Sato’s algorithm and
Nabeshima’s speed-up version both implemented by Nabeshima (2007) (package PGB, ver20090915)
in Risa/Asir, Suzuki–Sato algorithm’s implemented by Suzuki (ver20091102) in Singular, Montes’
function ‘‘cgsdr’’ which is the first step of the Gröbner cover algorithm (package grobcov.lib) in
Singular5 and the function ‘‘gsys’’ for computing comprehensive Gröbner system (package RedLog) in
Reduce. The versions of Risa/Asir, Magma, Singular and Reduce are ver20090715, v2.12–16, ver3-1-2
and free CSL version, respectively.

We tried all the implementations on Examples F6 and F8 fromNabeshima (2007) and Examples E4
and E5 from Montes and Recio (2007). Many other examples that were tried could be solved in little
time. To generate complex examples, wemodified problems F3, F4, F5, F6 and F8 inNabeshima (2007),
and labeled them as S1, S2, S3, S4 and S5. As stated above, we also tried the famous P3P problem from
computer vision. The polynomials for all these problems are given below:

F6: F = {x4 + ax3 + bx2 + cx+ d, 4x3 + 3ax2 + 2bx+ c}, X = {x},U = {a, b, c, d};
F8: F = {ax2 + by, cw2

+ z, (x− z)2 + (y− w)2, 2dxw − 2by}, X = {x, y, z, w},U = {a, b, c, d};
E4: F = {(a− 1)y2− b(x2− 1), (a− 1)(x2+ 1)+ by2, (a+ 1)y3− b(x3+ 1), (a+ 1)(x3− 1)+

by3, (x3− a)2 + y32
− (x2− a)2 − y22

}, X = {x2, x3, y2, y3},U = {a, b};
E5: F = {(x1− a)2 + (y1− 1)2 − a2 − 1, (x2+ b)2 + (y2− 1)2 − b2 − 1, a(x1− a)+ (y1− 1)+

(a2 + 1)cv,−b(x2+ b)+ (y2− 1)+ (1+ b2)cw, a(y1− 1)− (x1− a)+ (a2 + 1)sv,−b(y2−
1) − (x2 + b) + (b2 + 1)sw, x1y2 − 2x1 − x2y1 + 2x2, cv2

+ sv2
− 1, cw2

+ sw2
− 1}, X =

{x1, y1, x2, y2},U = {a, b, sv, cv, sw, cw};
S1: F = {ax4 + cx2 + y, bx3 + x2 + 2, cx2 + dx+ y}, X = {x, y},U = {a, b, c, d};
S2: F = {ax3y+cxy2+bx+y, x4y+3dy, cx2+bxy, x2y2+ax2, x5+y5}, X = {x, y},U = {a, b, c, d};
S3: F = {ax2y+ bx2 + y3, ax2y+ bxy+ cy2, ay3 + bx2y+ cxy}, X = {x, y},U = {a, b, c};
S4: F = {x4 + ax3 + bx2 + cxy+ d, 4x3 + 3ax2y+ 2bx+ c + y}, X = {x},U = {a, b, c, d};
S5: F = {ax2+ byz+ czw, cw2

+ by+ z, (x− z)2+ (y−w)2, 2dxw− 2byz}, X = {x, y, z, w},U =
{a, b, c, d};

P3P: F = {(1−a)y2−ax2−py+arxy+1, (1−b)x2−by2−qx+brxy+1}, X = {x, y},U = {p, q, r, a, b}.

For all the examples, the term orders used on X are graded reverse lexicographic orders.
In Table 1, the entry labeled with New(M) is the proposed algorithm implemented in Magma;

(S), (R) and (A) stand for Singular, Reduce and Risa/Asir, respectively. The label ‘‘error" is included
if an implementation ran out of memory or broke down. The timings were obtained by running the
implementations on Core i5 4× 2.8GHz with 4GB Memory running Windows 7.

As is evident from Table 1, the proposed algorithm usually generates fewer branches, which
is an important reason for the better performance of the proposed algorithm in contrast to other
algorithms.

An efficient check for the consistency of parametric constraints is important for the performance
of the proposed algorithm as well. The role of various checks discussed in Section 5 was investigated
in detail. This is reported in Table 2 and Fig. 1, where Tri, 0-dim, C, I, and Gen stand, respectively, for
the trivial check, Zero-DimCheck, CCheck, ICheck, and the general method.

About 59% of the consistency check is settled by the trivial check that a polynomial is in the ideal;
about the remaining 39% of the consistency check is resolved by the Zero-DimCheck, CCheck and ICheck.
The general method for checking consistency using Rabinovitch’s trick of introducing a new variable
is rarely used (almost 2%). We also tested the above examples by using only the trivial check and
the general method. Table 3 shows that the new checks are especially helpful for complex examples;
typically, they are more efficient than the general method.

Even though the proposed algorithm performs quite well on a large class of parametric polynomial
systems, there are many problems still beyond its reach. A case in point is the fully general version

5 The package grobcov.lib (Beta version) is downloaded from http://www-ma2.upc.edu/~montes/.

http://www-ma2.upc.edu/~montes/
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Table 1
Timings.

Exa. Algorithm Br. Time (s) Exa. Algorithm Br. Time (s)

New(M) 8 0.062 New(M) 18 0.140
SuzukiSato(S) – error SuzukiSato(S) 821 0.66

F6 Montes(S) 8 0.245 F8 Montes(S) 18 5.110
gsys(R) 8 0.105 gsys(R) 54 278.846
SuzukiSato(A) 875 29.33 SuzukiSato(A) – >1h
Nabeshima(A) 17 0.078 Nabeshima(A) – >1h

New(M) 6 0.031 New(M) 22 0.374
SuzukiSato(S) 26 0.032 SuzukiSato(S) 181555 160.652

E4 Montes(S) 12 0.310 E5 Montes(S) 26 1.125
gsys(R) 12 0.565 gsys(R) 41 0.219
SuzukiSato(A) 15 0.078 SuzukiSato(A) 98 16.72
Nabeshima(A) 24 0.640 Nabeshima(A) 102 8.923

New(M) 11 0.031 New(M) 15 7.301
SuzukiSato(S) 24 0.020 SuzukiSato(S) – error

S1 Montes(S) 27 1.365 S2 Montes(S) – error
gsys(R) 41 0.175 gsys(R) 155 758.749
SuzukiSato(A) 14 0.046 SuzukiSato(A) – error
Nabeshima(A) 8 0.047 Nabeshima(A) – >1h

New(M) 18 1.217 New(M) 24 0.920
SuzukiSato(S) – error SuzukiSato(S) – error

S3 Montes(S) – error S4 Montes(S) – error
gsys(R) 48 315.340 gsys(R) – >1h
SuzukiSato(A) – >1h SuzukiSato(A) – >1h
Nabeshima(A) – >1h Nabeshima(A) – >1h

New(M) 23 1.498 New(M) 36 2.527
SuzukiSato(S) – error SuzukiSato(S) – error

S5 Montes(S) – error P3P Montes(S) 30 2.660
gsys(R) – > 1h gsys(R) – >1h
SuzukiSato(A) – >1h SuzukiSato(A) – >1h
Nabeshima(A) – >1h Nabeshima(A) – error

Table 2
Info about various consistence checks.

Exa. Tri. 0-dim pos-dim Gen. Total
C. I.

F6 20 0 7 3 4 34
F8 45 0 29 0 0 74
E4 8 2 3 0 0 13
E5 36 2 34 0 0 72
S1 15 0 17 0 0 32
S2 93 1 37 1 0 132
S3 44 0 27 0 4 75
S4 44 4 33 0 0 81
S5 63 0 39 1 0 103
P3P 84 2 53 0 9 148

of the P3P problem; its polynomial system is presented below; neither our implementation nor other
implementations we experimented with are able to produce any output in an hour of execution time.

P3Pgeneral : F = {y2 + z2 − pyz − a, z2 + x2 − qxz − b, x2 + y2 − rxy− c},

where X = {x, y, z},U = {p, q, r, a, b, c}.
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Fig. 1. Percentage of checks.

Table 3
Info about various consistence checks.

Exa. F6 F8 E4 E5 S1 S2 S3 S4 S5 P3P

With New Checks 0.062 0.140 0.031 0.374 0.031 7.301 1.217 0.920 1.498 2.527
Gen. method only 0.062 0.156 0.031 0.406 0.031 8.377 1.264 1.014 2.590 4.836

9. Concluding remarks

A new algorithm for computing a comprehensive Gröbner system has been proposed using ideas
from papers by Kalkbrener, Weispfenning, Suzuki and Sato. Preliminary experiments suggest that
the algorithm is superior in practice in comparison to other existing algorithms; an experimental
comparative analysis is reported in the paper. New techniques for checking the consistency of
polynomial equality anddisequality constraints are proposed aswell. Experimental results show these
new techniques are more efficient than the general method based on Rabinovitch’s trick, especially
in complicated examples. Particularly, we have been able to make substantial progress in attacking
problems such as the famous P3P problem from computer vision, which have been found extremely
difficult to solve using most symbolic computation algorithms.

We believe that the proposed algorithm can be further improved. We are exploring conditions
underwhich the radicalmembership ideal check (i.e., consistency check) is either unwarranted aswell
as whenever needed, can be done efficiently. Using insights developed during this research, we are
also exploring newmethods for computing a comprehensiveGröbner basis of a parametric polynomial
system.
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