
SCIENCE CHINA
Mathematics

. ARTICLES . April 2013 Vol. 56 No. 4: 745–756

doi: 10.1007/s11425-012-4480-1

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 math.scichina.com www.springerlink.com

A new proof for the correctness of the F5 algorithm

SUN Yao1,2 & WANG DingKang2,∗

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China;

2Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

Email: sunyao@iie.ac.cn, dwang@mmrc.iss.ac.cn

Received July 22, 2011; accepted April 17, 2012; published online October 19, 2012

Abstract In 2002, Faugère presented the famous F5 algorithm for computing Gröbner basis where two cri-

teria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the

correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since

then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs

are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an

equivalent version of F5 in Buchberger’s style. The proof is valid for both homogeneous and non-homogeneous

polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of

selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant

of F5 where two revised criteria can be used to remove almost all redundant S-pairs.
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1 Introduction

Solving systems of polynomial equations is a basic problem in computer algebra, through which many

practical problems can be solved easily. Among all the methods for solving polynomial systems, Gröbner

basis is one of the most efficient approaches. Since Gröbner basis was proposed in 1965 in [3], many

algorithms and improvements have been presented for computing Gröbner basis, including [4,8,9,13,14,

17, 18]. Currently, F5 is one of the most efficient algorithms.

Since the F5 algorithm was proposed, it has been widely investigated. For example, Bardet et al. [1]

studied the complexity of this algorithm. Faugère and Ars [10] used the F5 algorithm to attack multi-

variable systems. Stegers [25] revisited the F5 algorithm in his master thesis. Eder discussed the two

criteria of the F5 algorithm in [5] and proposed a variant of the F5 algorithm in [6]. Hashemi and Ars [15]

presented two variants of criteria. Gao et al. gave a new algorithm to compute Gröbner basis in [11,12].

The current authors discussed the F5 algorithm over Boolean ring and presented a branch F5 algorithm

in [19, 20]. We also discussed the F5 algorithm in Buchberger’s style in [21]. Recently, criteria and some

other variants of F5 have been studied in [7, 16, 22–24,26].

Currently, available proofs for the correctness of the F5 algorithm can be found in [5,6,9,25]. However,

these proofs are somewhat not as general as possible, particularly for non-homogeneous systems.
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The main purpose of the current paper is to present a proof for the correctness of the F5 algorithm.

As we have shown in [21] that F5B, the F5 algorithm in Buchberger’s style, is equivalent to the original

F5 algorithm, and F5B may deduce various F5-like algorithms. Therefore, we will focus on proving the

correctness of the F5B algorithm in this paper. The proposed new proof is not limited to homogeneous

systems and does not depend on the strategy of selecting S-pairs, so the correctness of all the variants

of the F5 algorithm mentioned in [21] can be proved at the same time. The correctness of the variant of

the F5 algorithm in [15], which is quite similar to the variant of the F5 algorithm in this paper, can also

be proved by a slight modification.

Meanwhile, according to the new proposed proof, we find that F5-reduction plays a key role in the F5

and F5-like algorithms. F5-reduction, which is a one-direction reduction process, ensures the correctness

of syzygy criterion and rewritten criterion in F5. Many variants of the F5 algorithm become available

whenever maintaining the one-direction reduction. We also propose a non-incremental variant of the F5

algorithm. This variant can avoid computing Gröbner basis incrementally such that the Gröbner bases

for subsets of input polynomials are not necessarily computed. Besides, the two revised criteria in this

variant are able to remove almost all unnecessary reductions as shown in the experimental data.

This paper is organized as follows. We revisit the F5B algorithm after introducing some basic notations

in Section 2. Some results on labeled polynomias are given in Section 3. The complete proof for the

correctness of the F5B algorithm is presented in Section 4. A non-incremental variant of F5 is proposed

in Section 5. This paper is concluded in Section 6.

2 Basic notation

Let K be a field and R = K[x1, . . . , xn] a polynomial ring with coefficients in K. Let N be the set of

non-negative integers and PP (X) the set of power products of {x1, . . . , xn}, i.e., PP (X) := {xα | xα =

xα1
1 · · ·xαn

n , αi ∈ N, i = 1, . . . , n}.
Let � be an admissible order defined over PP (X). Given t = xα ∈ PP (X), the degree of t is

defined as deg(t) := |α| = ∑n
i=1 αi. For a polynomial 0 �= f ∈ K[x1, . . . , xn], we have f =

∑
cαx

α.

The degree of f is defined as deg(f) := max{|α| : cα �= 0} and the leading power product of f is

lpp(f) := max�{xα : cα �= 0}. If lpp(f) = xα, then the leading coefficient and leading monomial of f are

defined to be lc(f) := cα and lm(f) := cαx
α respectively.

Consider a polynomial system {w1, . . . , wm} ⊂ R and (w1, . . . , wm) a polynomial m-tuple in Rm. We

call the wi’s initial polynomials, as they are initial generators of the ideal 〈w1, . . . , wm〉 ⊂ R.

Let ei be the canonical i-th unit vector in Rm, i.e. the i-th element of ei is 1, while the others are 0.

Consider the homomorphism map σ over the free module Rm:

σ : Rm −→ 〈w1, . . . , wm〉,
(f1, . . . , fm) 	−→ f1w1 + · · ·+ fmwm.

Then σ(ei) = wi. More generally, if f = f1e1 + · · · + fmem, where fi ∈ R for 1 � i � m, then

σ(f) = f1w1 + · · ·+ fmwm.

The admissible order � on PP (X) extends to the free module Rm naturally in a POT (position over

term) fashion.

xαei � xβej iff

⎧⎪⎪⎨
⎪⎪⎩

i < j,

or

i = j and xα � xβ .

Thus we have e1 � e2 � · · · � em.

This order was introduced by Faugère [9]. We will introduce another order of signatures to deduce a

natural variant of the F5 algorithm.
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With the admissible order on Rm, we can define the leading power product, leading coefficient and

leading monomial of an m-tuple vector f ∈ Rm in a similar way. For example, let

f = (2x2 + y2, 3xy) ∈ (Q[x, y])2

or equivalently f = (2x2 + y2)e1 + 3xye2. According to the Lex order � on PP (x, y) where x � y, we

have lpp(f) = x2e1, lc(f) = 2 and lm(f) = 2x2e1.

The following are the definitions of labeled polynomial and its signature.

Definition 2.1. Let f ∈ 〈w1, . . . , wm〉 be a polynomial and f ∈ Rm an m-tuple vector such that

σ(f) = f , then we call F = (f , f) a labeled polynomial. For a labeled polynomial F , we define

1. the signature sign(F) := lpp(f), and

2. the polynomial part poly(F) := f .

Suppose F = (f , f) and G = (g, g) are labeled polynomials and u is a non-zero monomial. We define

scaler multiplication and addition for labeled polynomials as follows,

u · F = uF = (uf , uf), F + G = (f + g, f + g).

Let B be a list of labeled polynomials and F be an element in B. The index of F w.r.t B is defined

to be the location of F in B, denoted by index(F , B). For example, if B = [F1,F2, . . . ,Fm], then

index(Fi, B) = i.

Let B be a list of labeled polynomials, p, q be two polynomials in R and F ,G be two labeled polynomials

in B, we define (p,F) � (q,G) (or pF � qG) if either sign(pF) � sign(qG), or sign(pF) = sign(qG) and

index(F , B) < index(G, B).

We also can define S-pairs and S-polynomials of labeled polynomials.

Definition 2.2. Let B be a list of labeled polynomials, F ,G be two labeled polynomials in B, [F ,G] :=
(u,F , v,G) is called an S-pair of F and G if

u =
lcm(lpp(poly(F)), lpp(poly(G)))

lm(poly(F)) and v =
lcm(lpp(poly(F)), lpp(poly(G)))

lm(poly(G)) .

The corresponding S-polynomial of [F ,G] is denoted by spoly(F ,G) := uF − vG.
Let F , G be two different labeled polynomials in B, for the S-pair [F ,G] = (u,F , v,G), we always

assume uF � vG.
For two S-pairs, [F,G] = (u,F , v,G) and [F ′, G′] = (u′,F ′, v′,G′), we define [F,G] � [F ′, G′] if one of

the following two conditions holds,

1. uF � u′F ′.
2. uF = u′F ′ and vG � v′G′.
Before giving the algorithm F5B, we still need several definitions: F5-divisible, F5-rewritable and

F5-reducible.

Definition 2.3 (F5-divisible, Syzygy criterion). Let B be a list of labeled polynomials, u a monomial

and F a labeled polynomial with sign(F) = xαei in B. A pair (u,F) is said to be F5-divisible by B, if

there exists a labeled polynomial G with sign(G) = xβej in B such that

1. lpp(poly(G)) | uxα, and

2. i < j.

Definition 2.4 (F5-rewritable, Rewritten criterion). Let B be a list of labeled polynomials, u a

monomial and F a labeled polynomial in B. A pair (u,F) is said to be F5-rewritable by B, if there exists

a labeled polynomial G in B such that sign(G) | sign(uF) and index(F , B) < index(G, B).

An S-pair [F ,G] = (u,F , v,G) is said to be F5-divisible/F5-rewritable by B if (u,F) or (v,G) is

F5-divisible/F5-rewritable by B.
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The concept of signatures itself is not sufficient to ensure the correctness of the above two new criteria.

It is the F5-reduction procedure that guarantees the S-pairs detected by criteria are really useless. The

same is true for other F5-like algorithms. Let us give the definition of F5-reduction.

Definition 2.5 (F5-reducible). Let F = (f , f) be a labeled polynomial and B a list of labeled poly-

nomials. F is said to be F5-reducible by B if there exists G = (g, g) in B such that

1. lpp(g) | lpp(f), denote u = lpp(f)/lpp(g) and c = lc(f)/lc(g),

2. sign(F) � sign(uG), and
3. (u,G) is neither F5-divisible nor F5-rewritable by B.

If F is F5-reducible by B, let F ′ = F − cuG. Then this procedure: F =⇒B F ′ is called one step F5-

reduction. If F ′ is still F5-reducible by B, then repeat this step until it is not F5-reducible by B any

more. We denote the final F ′ as F∗, i.e. F =⇒∗
B F∗.

Remark. Condition 3 does not affect the correctness of the F5 or F5B algorithm. It only makes the

algorithm more efficient by avoiding some redundant computations/reductions.

The condition 2 implies that F and F∗ should have same signatures, and this property plays a crucial

role in the main proof for the correctness of F5B. For convenience of reference, we describe this property

by the following proposition.

Proposition 2.6 (F5-reduction property). If labeled polynomial F = (f , f) is F5-reduced to F∗ by B,

i.e., F =⇒∗
B F∗, then there exist polynomials p1, . . . , ps and labeled polynomials G1 = (g1, g1), . . . ,Gs =

(gs, gs) in B such that

F = F∗ + p1G1 + · · ·+ psGs,

where lpp(poly(F)) � lpp(pipoly(Gi)) and lpp(f)� lpp(pigi) for 1 � i � s. Moreover, sign(F) =

sign(F∗).

With the definitions of F5-divisible, F5-rewrittable and F5-reducible, we can simplify the F5 algorithm

in Buchberger’s style — F5B as following. We have shown that F5B algorithm is equivalent to the original

F5 algorithm in [21].

The F5 algorithm in Buchberger’s style (F5B)

Input: a polynomial set {w1, . . . , wm} ⊂ R, and an admissible order � for the power products in R.

Output: A Gröbner basis of the ideal 〈w1, . . . , wm〉 ⊂ R w.r.t. the order �.
begin

Fi←−(ei, wi) for i = 1, . . . ,m

B←−[F1,F2, . . . ,Fm]

RedundantSPairs←−∅
Todo←−{S-pair [Fi,Fj ] | 1 � i < j � m}
while Todo �= ∅ do

[F ,G]←− select an S-pair from Todo

Todo ←−Todo \ {[F ,G]}
if [F ,G] is either F5-Divisible or F5-Rewritable

then

RedundantSPairs←− RedundantSPairs∪{[F ,G]}
else

P←−F5-reduction(spoly(F ,G), B)

# spoly(F ,G) =⇒∗
B P

if poly(P) �= 0

then

Todo←−Todo ∪ {[P ,Q] | Q ∈ B}
end if

# no matter whether poly(P) �= 0

B←− append P to the end of B
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end if

end while

return {poly(Q) | Q ∈ B}
end

Notice that B is a list which records all the labeled polynomials generated during the computation.

According to the above algorithm, the index of P w.r.t. B is its position in B. The bigger index(P , B)

is, the later P is generated. Notice that the indexes of the labeled polynomials in B are distinct from

each other.

Notice that Todo records all the generated S-pairs during the computation which remain to be treated.

We have shown in [21] that the only difference between F5 and F5B is that the original F5 algorithm

always selects a minimal S-pair for some order to compute from the set Todo while F5B does not specify

any computing order for the S-pairs. In fact, it is not necessary to specify any strategy of selecting S-pair.

This is because our proof given in this paper for the correctness of F5B does not depend on the computing

order of the S-pairs. Obviously, the proof for F5B is still valid for F5. In the following of this paper, we

focus on proving the correctness of the F5B algorithm.

3 Some results on labeled polynomials

In this section, we will introduce the concepts of t-representation and strict lower representation for

labeled polynomials.

We start this section by introducing the concept of t-representation for labeled polynomials.

Definition 3.1 (t-representation). Let B be a list of labeled polynomials, F ,G labeled polynomials in

B and t a power product. We say the S-pair [F ,G] = (u,F , v,G) has a t-representation w.r.t. B, if there

exist polynomials p1, . . . , ps and labeled polynomials G1, . . . ,Gs in B such that

poly(spoly(F ,G)) = p1poly(G1) + · · ·+ pspoly(Gs),

where uF � piGi and t = lpp(upoly(F)) = lpp(vpoly(G)) � lpp(pipoly(Gi)) for i = 1, . . . , s.

The following theorem is the main result on t-representation for labeled polynomials. Its proof is

straight from its polynomial version, so we omit the detailed proof here. The interested readers are

referred to [2].

Theorem 3.2. Let B be a list of labeled polynomials. The polynomial set {poly(P) | P ∈ B} is

a Gröbner basis if for any two labeled polynomials F ,G ∈ B, the S-pair [F ,G] has a t-representation

w.r.t. B.

Definition 3.3 (Strictly lower representation). Let B be a list of labeled polynomials, u a monomial

and F a labeled polynomial in B. Then a pair (u,F) has a strictly lower representation w.r.t. B, if there

exist polynomials p1, . . . , ps and labeled polynomials G1, . . . ,Gs ∈ B, such that

upoly(F) = p1poly(G1) + · · ·+ pspoly(Gs),

where uF � piGi for i = 1, . . . , s.

The following key lemma builds a relation between strictly lower representation and t-representation.

Lemma 3.4. Let B be a list of labeled polynomials, u a monomial, F a labeled polynomial in B. If

1. (u,F) has a strictly lower representation w.r.t. B,

2. for each S-pair [F ′,G′] = (u′,F ′, v′,G′) where F ′,G′ in B, if uF � u′F ′, then [F ′,G′] has a

t-representation w.r.t. B,

then there exist polynomials p1, . . . , ps and labeled polynomials G1, . . . ,Gs in B such that

upoly(F) = p1poly(G1) + · · ·+ pspoly(Gs),
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where uF � piGi and lpp(upoly(F)) � lpp(pipoly(Gi)). Hence, there exists a labeled polynomial H = Gi
for some i such that lpp(poly(H)) | lpp(upoly(F)) and uF � vH, where v = lpp(upoly(F))/lpp(H).

Proof. Since (u,F) has a strictly lower representation w.r.t.B, by the definition of strictly lower rep-

resentation, there exist polynomials p1, . . . , ps in R and labeled polynomials G1, . . . ,Gs in B, such that:

upoly(F) = p1poly(G1) + · · ·+ pspoly(Gs), where uF � piGi for i = 1, . . . , s.

Let

xδ = max�{lpp(p1poly(G1)), . . . , lpp(pspoly(Gs))},
so lpp(upoly(F)) � xδ always holds. Now consider all possible strictly lower representations of (u,F)
w.r.t. B. For each such expression, we get a possibly different xδ. Since a term order is well-ordering, we

can select a strictly lower representation of F w.r.t. B such that power product xδ is minimal. Assume

this strictly lower representation is

upoly(F) = p1poly(G1) + · · ·+ pspoly(Gs), (3.1)

where pi ∈ R, Gi ∈ B and uF � piGi for i = 1, . . . , s. We will show that once the minimal xδ is chosen,

we have lpp(upoly(F)) = xδ and hence the lemma is proved. We prove this by contradiction.

Equality fails only when lpp(upoly(F)) ≺ xδ. Denote m(i) = lpp(pipoly(Gi)), and then we can rewrite

upoly(F) in the following form:

upoly(F) =
∑

m(i)=xδ

pipoly(Gi) +
∑

m(i)≺xδ

pipoly(Gi)

=
∑

m(i)=xδ

lm(pi)poly(Gi) +
∑

m(i)=xδ

(pi − lm(pi))poly(Gi)

+
∑

m(i)≺xδ

pipoly(Gi). (3.2)

The power products appearing in the second and third sums above are all less than xδ. Thus, the

assumption lpp(upoly(F)) ≺ xδ means that power products in the first sum are also less than xδ. So the

first sum must be a combination of S-polynomials, i.e.,

∑
m(i)=xδ

lm(pi)poly(Gi) =
∑
j,k

wjkpoly(spoly(Gj ,Gk)), (3.3)

where wjk ’s are monomials in R. For each S-pair [Gj ,Gk] = (ujk,Gj , vjk,Gk), we have uF � wjkujkGj �
wjkvjkGk for each j, k, since expression (3.1) is a strictly lower representation of (u,F). And hence, by

the hypothesis, each S-pair [Gj ,Gk] has a t-representation, i.e., there exist polynomials g1, . . . , gr ∈ R and

labeled polynomials R1, . . . ,Rr ∈ B, such that

poly(spoly(Gj ,Gk)) = g1poly(R1) + · · ·+ grpoly(Rr),

where ujkGj � giRi and

lcm(lpp(ujkpoly(Gj)), lpp(vjkpoly(Gk))) � lpp(gipoly(Ri))

for i = 1, . . . , r.

Substitute the above representations back into the equation (3.3) and hence into the equation (3.2).

All the power products in the new expression of (3.2) will be less than xδ. Then a new strictly lower

representation of (u,F) w.r.t. B appears with all power products less than xδ, which contradicts with

the minimality of xδ. So we must have lpp(upoly(F)) = xδ. The lemma is proved.

The following proposition provides a criterion to detect if an S-pair has a t-representation.
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Proposition 3.5. Let B be a list of labeled polynomials, F ,G be labeled polynomials in B. Then S-pair

[F ,G] = (u,F , v,G) has a t-representation w.r.t. B, if

1. (u,F) or (v,G) has a strictly lower representation w.r.t. B, and

2. for each S-pair [F ′,G′] = (u′,F ′, v′,G′) where F ′,G′ in B, if [F ′,G′] ≺ [F ,G], then [F ′,G′] has a

t-representation w.r.t. B.

Proof. (1) First, we assume that (u,F) has a strictly lower representation w.r.t. B. Then there exist

polynomials p1, . . . , ps ∈ R and labeled polynomials G1, . . . ,Gr ∈ B, such that

poly(uF) = p1poly(G1) + · · ·+ prpoly(Gr),

where uF � piGi for i = 1, . . . , r. Since [F ,G] = (u,F , v,G) is an S-pair, we have uF � vG. Hence

poly(uF − vG) = poly(uF)− poly(vG)
= p1poly(G1) + · · ·+ prpoly(Gr)− vpoly(G).

With the same proving method as the one used in Lemma 3.4, we can prove that the S-pair [F ,G] has a
t-representation, where

t = lcm(lpp(poly(F)), lpp(poly(G))) � lpp(poly(spoly(F ,G))).

(2) Second, we assume that (v,G) has a strictly lower representation. For each S-pair [F ′,G′] =

(u′,F ′, v′,G′), if u′F ′ ≺ vG, then u′F ′ ≺ uF since vG ≺ uF . The hypothesis implies that [F ′,G′] has
a t-representation w.r.t. B. By the key lemma, we know that there exists a labeled polynomial H ∈ B

such that lpp(poly(H)) | lpp(vpoly(G)) and vG � wH, where w = lm(upoly(F))/lm(poly(H)).
Notice that lpp(upoly(F)) = lpp(vpoly(G)) = lpp(wpoly(H)) and uF � vG � wH.

poly(spoly(F ,G)) = upoly(F)− vpoly(G)
= (upoly(F)− wpoly(H))− (vpoly(G)− wpoly(H))
= gcd(u,w)poly(spoly(F ,H))− gcd(v, w)poly(spoly(G,H)).

Since [F ,G] � [F ,H] and [F ,G] � [G,H], both [F ,H] and [G,H] should have a t-representation. Hence

[F ,G] also has a t-representation, where t ≺ lcm(lpp(poly(F)), lpp(poly(H))).

4 A proof for the correctness of F5B

For an ideal I = 〈w1, . . . , wm〉 in R, F5 or F5B computes the Gröbner basis of I. The following propo-

sitions show that if a labeled polynomial is either F5-divisible or F5-rewritable by B, then this labeled

polynomial has a strictly lower representation w.r.t. B.

Proposition 4.1. Suppose that B is a list of labeled polynomials and every Fi is an element of B

where Fi = (ei, wi) for i = 1, . . . ,m. Let u be a monomial and F be a labeled polynomial in B. If (u,F)
is F5-divisible by B, then (u,F) has a strictly lower representation w.r.t. B.

Proof. Suppose F = (f , f) and lm(f) = cxαei, since (u,F) is F5-divisible by B, then there exists

G = (g, g) in B such that sign(G) = lpp(g)ej with i < j and lm(g) divides uxα, i.e., there exists a

monomial v such that cuxα = vlm(g). Suppose w = (w1, . . . , wm). We have ei ·w = wi. Then

poly(uF) = uf ·w
= ulm(f) ·w + u(f − lm(f)) ·w
= cuxαei ·w + u(f − lm(f)) ·w
= vlm(g)ei ·w + u(f − lm(f)) ·w
= vlm(g)wi + u(f − lm(f)) ·w
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= v(g − (g − lm(g)))wi + u(f − lm(f)) ·w
= vwig ·w− v(g − lm(g))ei ·w + u(f − lm(f)) ·w.

Clearly,

lpp(uf) � lpp(vwig), lpp(uf) � lpp(v(g − lm(g))ei), lpp(uf) � lpp(u(f − lm(f))).

This shows that (u,F) has a strictly lower representation.

Proposition 4.2. Suppose that B is a list of labeled polynomials and every Fi is an element of B

where Fi = (ei, wi) for i = 1, . . . ,m. Let u be a monomial and F be a labeled polynomial in B. If (u,F)
is F5-rewritable by B, then (u,F) has a strictly lower representation w.r.t. B.

Proof. Suppose that F = (f , f), since (u,F) is rewritable by B, there exists a labeled polynomial

G = (g, g) ∈ B such that sign(G) | sign(uF), i.e., lm(g) | ulm(f), and index(F , B) < index(G, B). Let

ulm(f) = vlm(g). We have

poly(uF) = uf ·w
= ulm(f) ·w + u(f − lm(f)) ·w
= vlm(g) ·w + u(f − lm(f)) ·w
= v(g − (g − lm(g))) ·w+ u(f − lm(f)) ·w
= vg ·w− v(g − lm(g)) ·w + u(f − lm(f)) ·w
= vpoly(G) − v(g − lm(g)) ·w + u(f − lm(f)) ·w.

In the above formula, uF and vG have same signatures, but index(F , B) < index(G, B). This shows

that uF � vG. Clearly, lpp(uf) � lpp(v(g − lm(g))) and lpp(uf) � lpp(u(f − lm(f))), therefore, (u,F)
has a strictly lower representation w.r.t. B.

Now, we are able to prove the correctness of the F5B algorithm.

Theorem 4.3. If F5B terminates in finite steps, the algorithm computes a Gröbner basis {poly(Q) | Q
∈ B} of the ideal generated by the input polynomial set {w1, . . . , wm}.
Proof. To prove the F5B algorithm computing a Gröbner of the ideal 〈w1, . . . , wm〉, it suffices to show

that for every F ,G in B, the S-pair [F ,G] has a t-representation. All these S-pairs can be divided into

two sets SP1 and SP2 as follows:

SP1 = {[F ,G] | F ∈ B,G ∈ B, [F ,G] is neither F5-divisible
nor F5-rewritable by B}, and

SP2 = {[F ,G] | F ∈ B,G ∈ B, [F ,G] is either F5-divisible
or F5-rewritable by B}.

First, we consider the S-pairs in SP1. Suppose that [F ,G] = (u,F , v,G) is an S-pair in SP1. Dur-

ing the computation in F5B, its S-polynomials spoly(F ,G) will be F5-reduced by the current B, i.e.,

spoly(F ,G) =⇒∗
B P . By Proposition 2.6, there exist polynomials pi in R and labeled polynomials Gi,

such that

spoly(F ,G) = P + p1G1 + · · ·+ psGs,

where

lpp(poly(spoly(F ,G))) � lpp(poly(P)),
lpp(poly(spoly(F ,G))) � lpp(pipoly(Gi))
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and sign(uF) � sign(piGi) for i = 1, . . . , s. Moreover, sign(uF) = sign(P). In F5B, the labeled

polynomial P is appended to the end of the current B. After B is updated, we have index(F , B) <

index(P , B). It follows that the S-pair [F ,G] has a t-representation w.r.t. this updated B, and hence has

a t-representation w.r.t. the final B.

Second, we consider the S-pairs in SP2. Notice that SP2 is just the set RedundantSPairs in F5B.

We will prove that all the S-pairs in SP2 also have t-representations. Now, let us take the minimal

S-pair [F ,G] from SP2. Since all the S-pairs smaller than [F ,G] are elements of SP1, they should have

t-representations. It is because we have already shown every S-pair in SP1 had a t-representation. For

this minimal S-pair [F ,G] = (u,F , v,G), [F ,G] is either F5-divisible or F5-rewritable. This implies that

(u,F) or (v,G) is either F5-divisible or F5-rewritable. Propositions 4.1, 4.2 and 3.5 show that [F ,G] has
a t-representation. Next, we move the S-pair [F ,G] from SP2 to SP1, select another minimal S-pair from

SP2, and repeat the above procedures. After all, we can prove that all the S-pairs in the original SP2

have t-representations, and the theorem is proved.

5 Available variants of F5

5.1 Available variants

Generally speaking, F5 or F5B introduces a special reduction (F5-reduction) and provides two criteria

(syzygy criterion and rewritten criterion) to avoid unnecessary computations or reductions.

From the proofs in last section, Lemma 3.4 plays a crucial role in the whole proofs. This key lemma is

based on the property of F5-reduction (Proposition 2.6). So the F5-reduction is the key of the whole F5

or F5B algorithm, and it ensures the correctness of the whole algorithm.

Therefore, various variants of the F5 algorithm become available if we maintain the F5-reduction. For

example,

1. using various strategies of selecting S-pairs, such as incremental F5 algorithm in [9] and the F5

algorithm (reported by Faugère in INSCRYPT 2008);

2. using matrix techniques while processing reductions, such as matrix-F5 algorithm mentioned in [1];

3. adding some new initial polynomials during computation, such as branch Gröbner basis algorithm

over Boolean ring [19, 20];

4. choosing different order for signatures, such as Gröbner basis algorithms in [15, 19, 20].

Next, we introduce a natural variant of the F5 algorithm by giving a new order for signatures. This

natural variant has been reported in [19, 20], and it is also quite similar as the variant in [15].

5.2 A natural variant

In fact, the original F5 algorithm is always an incremental algorithm no matter which strategy of selecting

S-pair is used. Specifically, the outputs of the F5 algorithm not only contain the Gröbner basis of the

ideal 〈w1, . . . , wm〉, but also include the Gröbner bases of the ideals 〈wi, . . . , wm〉 for 1 < i < m. However,

there are some disadvantages for this kind of incremental algorithms.

1. Generally, the ideals 〈wi, . . . , wm〉 for 1 < i < m usually have higher dimensions than the ideal

〈w1, . . . , wm〉, so their Gröbner bases may be expensive to compute.

2. The Gröbner bases of the ideals 〈wi, . . . , wm〉 for 1 < i < m are not necessary, since the Gröbner of

ideal 〈w1, . . . , wm〉 is what we really need.

3. The order of initial polynomials influences the efficiency of algorithm significantly.

If we investigate the algorithm carefully, we would find that it is the order of signatures that makes

the F5 algorithm incremental. The original F5 algorithm uses a POT (position over term) order for

signatures on monomials of Rm. Thus, a natural idea is to change the POT order to the TOP (term over

position) order. When using a TOP order for signatures, the F5 algorithm becomes a non-incremental

algorithm.
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We extend the admissible order � on monomials of R to an order on monomials of Rm in the TOP

fashion as follows:

xαei �′ xβej iff

{
xαlpp(wi) � xβ lpp(wj), or

xαlpp(wi) = xβ lpp(wj) and i < j.

All the definitions and conclusions under this new ordering remain unchanged except the following.

Definition 5.1. Let B be a list of labeled polynomials, u a monomial and F a labeled polynomial in

B. A pair (u,F) is said to be F5-divisible by B, if there exists a labeled polynomial G in B such that if

sign(F) = xαei, sign(G) = xβej

and i < j, we have

1. lpp(poly(G)) | uxα, and

2. uxαei �′ vlpp(wi)x
βej , where

v =
uxα

lpp(poly(G)) .
From the definition, we know that this new syzygy criterion only utilizes the principle syzygies of the

initial polynomials, i.e. wiwj − wjwi = 0, which is the same as the criteria in [15]. The syzygy criterion

in Hashemi and Ars [15] can also be proved in a same way. In order to use more possible syzygies on

initial polynomials, we introduced the following technique in [19, 20].

Suppose the ideal is generated by the initial polynomials w1, . . . , wm. Let B be a list of labeled

polynomials in F5B. When a labeled polynomial P = (p, p) is generated during the computation. We can

treat p as an initial polynomial, and assign p a new signature em+1, i.e., we can rewrite P as P ′=(em+1, p).

The list B will be updated by appending P ′, and the related S-pairs should be updated also.

5.3 Experimental results for Boolean polynomial systems

Although only the principle syzygies of initial polynomials are used, the new syzygy criterion also performs

pretty good in experiments. We have implemented this natural variant of the F5 algorithm over Boolean

ring [19, 20]. The data structure ZDD (zero-suppressed binary decision diagrams) is used to express

Boolean polynomials.

The following is a table of experimental results for computing Gröbner basis of Boolean polynomial

system. In the experiments, Boolean polynomials are randomly generated and the number of initial

polynomials m equals to the number of variables n. The timings are obtained on a computer (OS Linux,

CPU Xion 4*3.0 GHz, 16.0 GB RAM). In the table, the rows F2-divisible, divisible and rewritable indicate

the number of S-pairs which meet the corresponding criteria. For F2-divsible, please see [19,20]. Besides,

the row useful S-pairs indicates the number of S-pairs which are really operated during computation. The

row 0-polys indicates the number of S-pairs which are not removed by the revised criteria but reduced to

0 by F5-reduction.

From Table 1, we can see that all the redundant S-pairs have been rejected. Our experiences also

Table 1 Experiments for the revised criteria

m = n 12 14 16 18 20

divisible 898 72189 68337 99058 136404

F2-divisible 114 7770 6763 9374 11749

rewritable 136 6908 4786 6293 8536

useful S-pairs 305 841 3480 4469 5672

0-polys 0 0 0 0 0

Time(sec.) 0.107 0.778 14.586 77.197 344.875
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show that almost all redundant S-pairs can be removed by the new criteria, especially for large systems.

6 Conclusions

We introduce a concept of t-representation for labeled polynomials, and we also show that an S-pair

should have a t-representation if it is F5-divisible or F5-rewritable. Based on this fact, the correctness of

the F5 algorithm is not affected if discarding the S-pairs which are F5-divisible or F5-rewritable. Hence,

we prove the correctness of the F5B algorithm which has been shown to be equivalent to F5. This new

proof is not limited to homogeneous systems and does not depend on the strategies of selecting S-pairs, so

it can be extended to other variants of the F5 algorithm. From the proof, we find that the F5-reduction

is the key of the whole algorithm and it ensures the correctness of two criteria. With these insights,

various variants of the F5 algorithm become available by maintaining the F5-reduction. We also present

a natural and non-incremental variant of the F5 algorithm, and the experimental results show that this

variant also can reject almost all the redundant S-pairs. Other possible variants of the F5 algorithm will

be studied in the future.

Acknowledgements This work was supported by National Key Basic Research Project of China (Grant No.

2011CB302400) and National Natural Science Foundation of China (Grant Nos. 10971217 and 61121062). We

would also like to thank Xiaoshan Gao, Shuhong Gao, Deepak Kapur and Christian Eder for their constructive

suggestions.

References

1 Bardet M, Faugère J-C, Salvy B. Complexity of Gröbner basis computation for semi-regular overdetermined sequences

over F2 with solutions in F2. Inria Research Report, n 5049, 2003
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