
The Implementation and Complexity Analysis
of the Branch Gröbner Bases Algorithm Over
Boolean Polynomial Rings

Yao Sun and Dingkang Wang

Abstract A new branch of Gröbner basis algorithm over boolean ring has been
presented in an earlier paper. In this paper, the detailed implementation and a rough
complexity analysis is given. The branch Gröbner basis algorithm implements a
variation of the F5 algorithm and bases on the ZDD data structure, which is also the
data structure of the framework PolyBoRi. This branch Gröbner basis algorithm is
mainly used to solve algebraic systems and attack multivariable cryptosystems, and
its goal is to lower the complexity in each branch and expect better total complexity.
An important proposition ensures the two original criteria of the non-branch F5
algorithm could still reject almost all unnecessary computations in this new branch
algorithm. The timings show this branch algorithm performs very well for randomly
generated systems as well as a class of stream ciphers which is generated by the
linear feedback shift register (LFSR).

1 Introduction

Solving system of polynomial equations is a basic problem in computer algebra,
through which many practical problems can be solved easily. Among all the methods
for this purpose, Gröbner bases method, the characteristic set method and resultant
method are the most famous ones [1, 2].

Since Buchberger proposed the Gröbner bases algorithm in 1965, this algorithm
has been improved by many researchers, both from the data structure and the criteria
to remove the redundant S-pairs. Now the most famous Gröbner bases algorithms
are the F4 and F5 algorithms proposed by Faugère [3, 4]. The F4 algorithm imports

Y. Sun (B)

SKLOIS, Institute of Information Engineering, CAS, 100093 Beijing, China
e-mail: sunyao@iie.ac.cn

D. Wang
KLMM, Academy of Mathematics and Systems Science, CAS,
100190 Beijing, China
e-mail: dwang@mmrc.iss.ac.cn

© Springer-Verlag Berlin Heidelberg 2014
R. Feng et al. (eds.), Computer Mathematics, DOI 10.1007/978-3-662-43799-5_14

157

158 Y. Sun and D. Wang

the matrix technique to make the reduction process more efficient, while the F5
algorithm presents two new criteria to eliminate the useless S-pairs, which can be
definitely reduced to 0.

So far, both F4 and F5 algorithms have been implemented. The most efficient
implementation of F4 algorithm is presented by Steel, and is available on the com-
puter algebraic system Magma, while the the most efficient version of F5 algorithm
is implemented by Faugère himself, which is not open. However, the F4 algorithm is
still not perfect, as high efficiency leads to the cost of enormousmemories. For exam-
ple, attacking the cryptographic systemHFE80 by using F4 algorithm inMagmawill
cost nearly 16G memories.

For solving system of boolean polynomial equations, a Gröbner bases algorithm
based on the ZDD data structure has been proposed by Brickenstein in 2007 (the
PolyBoRi framework) [5]. His algorithm works very well for computing Gröbner
basis with the pure lexicographic monomial order. However, since it is expensive
to compute the total degree leading monomial for a polynomial in the ZDD form,
this algorithm possibly does not perform very well with total degree orders. So in
our implementation, we prefer a new graded expression of polynomials such that
the leading monomial for total degree order can be calculated extremely fast, so
our algorithm is more efficient with graded monomial orders. A characteristic set
method for solving system of boolean polynomial equations is presented byGao, and
his method has pretty good performance on the problem of stream cipher systems [6].
Gao’s implementation is also based on ZDD data structure and he uses the branch
technique to compute the ascending set series.

The success of Gao’s algorithm is amotivation for our research on branchGröbner
basis. Our algorithmmakes improvements both on saving the usage of memories and
limiting the size of matrices. That is, on one hand, we utilize the ZDD data structure
to save polynomials and decrease the cost of space, and on the other hand, we make
new branches when the matrix grows bigger so that we only need to handle matrix
with a reasonable size.

In theory, we employ a modified matrix F5 algorithm. Details can be found in [7].
In this paper, we concentrate on the implementation and complexity analysis of our
algorithm. The contents of this paper are organized as follows: the second section
involves some preliminaries and the modified algorithm; the third section introduces
the ZDD data structure and some sub-algorithms; complexity analysis comes in the
fourth section; some examples and timings are given in the fifth section; we end this
paper with conclusions.

2 The Algorithm

2.1 Notations

Let F2 be the finite field with two elements 0 and 1, and X = x1, . . . , xn stands for
the set of variables. Let H be the set of field polynomials {x21 +x1, . . . , x2n +xn}, then

The Implementation and Complexity Analysis … 159

the ring R2 = F2[X]/〈H〉 is actually a boolean ring, where 〈H〉 is the ideal generated
by H in F2[X], and in addition, we call the elements in R2 boolean polynomials.

Let N be the set of nonnegative integer and T be the power set of X, which means
T = {xα1

1 · · · xαn
n |αi ∈ {0, 1}, i = 1, . . . , n}. Assume ≺ is an admissible monomial

order defined over T , then given t = xα1
1 · · · xαn

n ∈ T , we define the degree of t as
deg(t) = ∑n

i=1 αi. For a polynomial 0 �= f ∈ F2[X], we have f = ∑
xα1
1 · · · xαn

n .
Define the degree of f as deg(f) = max{α1 +· · ·+αn}, while the leading monomial
of f is lm(f) = max≺{xα1

1 · · · xαn
n }.

2.2 Definitions

To introduce our algorithm, some definitions are necessary and the following defin-
itions are imported from [7]:

Definition 1 Let L = T × F2[X] × N × F2[X] × N, and a labeled polynomial is a
five-tuple vectorG = (xα, f , i, g, k) ∈ L.We define the signature ofG as S(G) = xα ,
the initial as init(G) = f , the extended signature as ES(G) = S(G)lm(init(G)) =
xαlm(f), the index as G) = i, the polynomial as poly(G) = g and the number as
num(G) = k.

Definition 2 Let F ,G ∈ L be two labeled polynomials. We say F ≺es G (or
G �es F), if one of the following three cases is satisfied: 1. ES(F) ≺ ES(G).
2. ES(F) = ES(G) and F) > G). 3. ES(F) = ES(G), F) = G) and num(F) >

num(G).

The order of labeled polynomials, which alleviate the influence of the order of
the input polynomials or the initial polynomials, is modified from the F5 algorithm.
Therefore, the criteria should be revised correspondingly. In the following two defin-
itions, letF ∈ L be a labeled polynomial and B ⊂ L be a set of labeled polynomials.

Definition 3 We say F is normalized by B, if there do not exist a labeled poly-
nomial G ∈ B and a monomial v ∈ T , such that S(F) = vlm(poly(G)), F �es

vlm(init(F))G . Particularly, in the boolean ring R2, the condition lm(init(F)) �
S(F) should hold as well.

Definition 4 We say F can be rewritten by B, if there exists a labeled polynomial
G ∈ B and amonomial v ∈ T , such that S(F) = S(vG), (F) = (G) and num(F) <

num(G).

2.3 Criteria

Now, we give two new criteria modified from the F5 algorithm without proofs. A
partial proof can be found in [7], and the complete one will come in a future paper.

160 Y. Sun and D. Wang

1. Syzygy criterion: Given a critical pair: s(G1,G2) = (m, u1,G1, u2,G2), where
u1, u2 ∈ T and G1,G2 ∈ B. If either u1G1 or u2G2 is not normalized by B, then
the critical pair s(G1,G2) can be discarded.

2. Rewritten criterion:Given a critical pair: s(G1,G2) = (m, u1,G1, u2,G2), where
u1, u2 ∈ T and G1,G2 ∈ B. If either u1G1 or u2G2 can be rewritten by B, then the
critical pair s(G1,G2) can be discarded.

Our non-branch Gröbner bases algorithm is nothing else than a general Buch-
berger algorithm except replacing the polynomials with the labeled polynomials,
adding two criteria and using matrix reduction. After revising the two criteria, our
algorithm has less influence from the input order of the initial polynomials than the
F5 algorithm. Furthermore, the two revised criteria can also eliminate almost all the
useless critical pairs as the F5 algorithm does. For semi-regular systems, there does
not exist the critical pairs that can be reduced to 0, too. In fact, we proved in [7] that
the modifications in the comparison of two labeled polynomials do not affect the
function of the criteria. To illustrate how the two new criteria work, we have tested
some randomly generated boolean polynomial systems in Sect. 4.

2.4 Trick

Although the two modified criteria can remove almost all the useless critical pairs
generated during the computation, the total efficiency is not as good as we wished.
One possible reason may be the conflict between the signature and the polynomial.

In fact, the motivation of the signature is to record the origin of the present
label polynomial. Take a labeled polynomial, say G = (xα, f , i, g, k) ∈ L, for
example. The signature tells us that the polynomial g is obtained by reducing the
polynomial xαfi with ‘smaller’ labeled polynomials under the order ≺es. So
the signature actually works as a clue of the computation, and that is exactly why
the two criteria work. However, there exists a natural conflict between the signature
and the polynomial. That is, during the computation, the label polynomials gener-
ated later sometimes have smaller size but with bigger signature. By our algorithm
as well as the F5 algorithm, the label polynomial with a bigger signature should be
dealt with later. It is possible that some polynomials of smaller size cannot be used
immediately and this may lead to more computations. One trick can be used to solve
this conflict. The key idea is to clear the signatures of some simple polynomials and
to append them to the initial polynomials. We have

Proposition 1 Adding an initial polynomial with the largest index at any time will
not affect the correctness of the two criteria.

Although adding new polynomials will not affect the correctness of the two cri-
teria, in order to keep the algorithm correct, we must add polynomials that are in the
original ideal. Usually, we add new initial polynomials in the following cases:

1. The new generated polynomial has a very low total degree, such as 1 or 2.

The Implementation and Complexity Analysis … 161

2. The leading monomials of some present initial polynomials can be reduced by
the new generated polynomial.

However, adding too many polynomials cannot speedup the algorithm. Because
adding new initial polynomials is actually to cut off the relationship between this
polynomial and the initial polynomials, which will weaken the criteria, since the
system of initial polynomials may not be semi-regular any more, and many useless
pairs cannot be detected.

2.5 Branch Strategy

In both the F4 and F5 algorithms, the sizes of matrices in the computation grow
quickly with the degree of critical pairs. Huge matrices occupy enormous memories
and are difficult to deal with. In consideration of the complexity, a natural idea comes
to us, and that is, we should prevent the degree of critical pairs growing too high.

In order to control the size of thematrix, we can add polynomials that are not ideal,
but this will apparently make the output incorrect. Fortunately, the cases are better
in the boolean ring R2. Since in R2, any boolean polynomial has only two possible
values 0 and 1, whichmakes the branch algorithm available.We can clone the present
system and add a new polynomial with the value 0 and 1 to them respectively such
that two polynomial sets are obtained. The original ideal is the intersection of the
ideals generated by these two polynomial sets. This fact is important for solving the
original system. Furthermore, after adding the new polynomial, each system may
have smaller matrices and are easier to be dealt with. This is the motivation of our
branch algorithm.

Theoretically, any polynomial can be added. In consideration of the complexity,
we usually add polynomials that are simple enough or that can be used to reduce
other polynomials. When should we add polynomials? Based on our experiments,
we prefer to add polynomials when the degree of critical pairs is high enough. We
can set a degree bound D ∈ N. When the remaining pairs have higher degrees than
D, we add a new polynomial, or equivalently we make a new branch.

We have many options to choose the new polynomials and it is difficult to tell
which is the best. So we list some alternatives that have good performance in the
experiments.

1. The polynomial with degree one.
2. The polynomial which is the highest homogeneous part of some present polyno-

mial.
3. The polynomial with a high reference degree, which is a parameter that comes

from the shared ZDD data structure.

After all, we can present our branch Gröbner bases algorithm.

162 Y. Sun and D. Wang

Algorithm 1 : Branch Grönber bases algorithm

Input: An ordered polynomials set F = (f1, . . . , fm) ⊂ F2[X].
Output:The branch Gröbner bases BranchGB of the ideal generated by F ∪ H ,
where H = {x21 + x1, . . . , x2n + xn} ⊂ F2[X] are the field polynomials.

1 Set Fi := (1, fi, i, fi, i), i = 1, . . . , m, Fm+i := (1, x2i + xi, m + i, x2i + xi, m + i), i = 1, . . . , n.
index := m + n, k := m + n, BranchSet := {{Fi|i = 1, . . . , k}}, BranchGB := {}.

2 While BranchSet �= ∅ do
2.1 Select a B ∈ BranchSet and BranchSet := BranchSet \ {B}.
2.2 Generate CP := {s(P,Q)|P,Q ∈ B}.
2.3 While CP �= ∅ do

2.3.1 d := min{deg(c)|c ∈ CP}, D := {c ∈ CP| deg(c) = d} and CP := CP \ D.
2.3.2 D′ := {c ∈ D|c is not satisfied either of the Syzygy or Rewritten criterion }.
2.3.3 Reduce D′ by matrix and collect the new generated labeled polynomials as F+.
2.3.4 For P ∈ F+ do

2.3.4.1 If P is simple enough
then index := index + 1, P := (1, poly(P), index, poly(P), k + 1).
else num(P) := k + 1.

2.3.4.2 k := k + 1, CP := CP ∪ {s(P,Q)|Q ∈ B}. B := B ∪ {P}.
2.3.5 If the minimal degree of CP is high enough, then

2.3.5.1 choose a new polynomial p ∈ F2[X].
2.3.5.2 index := index + 1, k := k + 1
2.3.5.3 SetP ′ := (1, p + 1, index, p + 1, k), BranchSet := BranchSet ∪ {B ∪ {P ′}}.
2.3.5.4 Set P := (1, p, index, p, k), CP := CP ∪ {s(P,Q)|Q ∈ B}, B := B ∪ {P}.

2.4 BranchGB := BranchGB ∪ {{poly(P)|P ∈ B}}.
3 Return BranchGB.

In this algorithm, step 2.3.4.1 is to clear the signature of a polynomial, and step
2.3.5 is to introduce new polynomials so as to add new branches to the algorithm.
In order to make the algorithm more efficient, some auxiliary data can be kept in
BranchSet as well, such as the number index, k, the set CP and so on.

3 Complexity Analysis

3.1 The Principle for Making Branch

One of the motivations of our branch Gröbner bases algorithm is to decrease the
complexity in each branch so as to lessen the total complexity for solving the boolean
polynomial system. Therefore, if we hope our branch algorithm has better efficiency
than the non-branch algorithms, we should constrain the branch number within a
reasonable bound.

The complexity of Gröbner bases using the F4 and F5 algorithm is determined
by a degree Dreg, which is the upper bound of the highest degree of matrices, say Dp,
constructed during the computation. Then the total complexity ofF4 orF5 algorithm
is roughly O(nωDreg), where n is the number of variables and ω is the efficiency of

The Implementation and Complexity Analysis … 163

matrix elimination that has a bound 2 ≤ ω ≤ 3. Similarly, since we make a new
branch when the degree of pairs exceed a degree D, the complexity of each branch
is roughly O(nω′D), where ω′ is efficiency of our matrix reduction. Assuming the
number of branches is M, the total complexity of our branch algorithm is O(Mnω′D).
If we hope our branch algorithm performs better, the complexity O(Mnω′D) must
smaller thanO(nωDreg). Roughly speaking, the numberM should satisfy the following
inequality:

Mnω′D < nωDreg , or M < nωDreg−ω′D.

However, it is difficult to predict the number of branches produced in our algo-
rithm. What we can do is to set up a bound such that when the number of branches
exceed it, we stop the program. Fortunately, the number of branches for one kind
of examples is usually stable, so we can anticipate the general performance for all
problems of this kind by induction. The principle above sets up a criterion to check
whether it is possible for our algorithm to have good performance.

3.2 The Estimation of Dreg

Before the system is computed by the F5 algorithm, we cannot obtain the practical
value of Dp, so we have to try to estimate it or give an upper bound for it. Fortunately,
the upper bound Dreg for F5 algorithm can be obtained from [8]. For a general semi-
regular system in the boolean ring, Dreg can be achieved from the following series:

Sm,n(z) =
∑

d≥0

hd,m(n)zd = (1 + z)n/

m∏

k=1

(1 + zdk).

where m is the number of the initial polynomials (f1, . . . , fm) and dk = deg(fk). Then
Dreg is the first d such that hd,m is nonpositive. Therefore, the upper bound can be
calculated easily when m, n, and the dks are given.

3.3 Theoretical Analysis of Randomly Generated Systems

Faugère has claimed that almost all the systems are semi-regular systems when n
is not too small. So the randomly generated systems can be supposed to be semi-
regular systems naturally, and the estimation of Dreg is a powerful tool to analyze
the complexity of the F5 algorithm as well as our branch algorithm.

For convenience, we only consider some special cases and the others can be
analyzed in a similar way. We assume the initial polynomials are m quadratic poly-
nomials in R2 and n is the number of variables. So when m = n, we can draw a
picture of Dreg.

164 Y. Sun and D. Wang

4 9 16 24 32 41 49 58 67 77 86 95

2

4

6

8

10

12

14

n

Dreg

Fig. 1 Dreg for m = n quadratic polynomials

Fig. 2 Dreg when adding
polynomials with degree 1

6 11 17 23 31 40

1

2

3

4

5

6

7

8

m

Dreg

Although Dreg is only an upper bound of the practical highest degree Dp, the
degree Dreg is reached almost all the time for randomly generated systems.

The motivation of our branch algorithm is to add new polynomials in order to
lower the degree of matrices in the computation. Since randomly generated systems
are semi-regular, we can use the series in the last subsection to compute Dreg and
then find out how many polynomials should be added such that Dreg becomes lower.
If the number of polynomials is fixed, the number of branches can be obtained easily.

For example, we consider the systems when m = n = 40 and in Fig. 1, the
corresponding Dreg is 7. By the series, we can calculate the specific number of
polynomials we should add in order to lower the degree. Since adding different
polynomials lead to different results, here we only consider two cases, one is adding
polynomials with degree 1 and the other with degree 2. Figure2 shows how the Dreg
varies with m′, which is the number of new added polynomials. We can see that
adding 6 polynomials of degree 1 will lower Dreg to 6, while adding 11 polynomials,
the Dreg becomes 5 and so on. Then we obtain the following table. TH-Num is the
theoretic branch number calculated by the inequality in Sect. 3.1 with ω = ω′ = 2.
NumPoly is the smallest number of m′ to lower Dreg to the corresponding degree and
EXP-Num is the expected branch number calculated by NumPoly.

The Implementation and Complexity Analysis … 165

Table 1 Adding polynomials with degree 1

Dreg 6 5 4 3 2 1

TH-Num 1,600 404 406 408 4010 4012

NumPoly 6 11 17 23 31 40

EXP-Num 64 2,048 217 223 231 240

TH/EXP(≈) 24.6 210.3 214.9 219.6 222.2 223.9

Fig. 3 Dreg when adding
polynomials with degree 2

15 40 88

1

2

3

4

5

6

7

8

m

Dreg

In Table1, all the expected branch numbers are smaller than the theoretical bound,
so as discussed in 3.1, our branch algorithm will have better performance than the
non-branch algorithm and the practical results in Sect. 4 proves this. Recall that,
the proportion in Table1 shows that adding 40 polynomials will lead to the best
efficiency, however, this is not the truth, since the matrices with lower degree are
denser than the bigger ones, then the parameter ω′ is no longer 2 and combined with
other factors, TH-Num will be much smaller than that in the table.

When adding polynomials with degree 2, the cases are not so good as that with
degree 1, and Fig. 3 shows the variation of Dreg. At least 15 quadratic polyno-
mials should be added to lower Dreg to 6, while in Fig. 2, only 6 is enough, so
the corresponding expected branch number will be bigger than in Table1. We can
generate a similar table (Table2).

The expected branch number are all bigger than the theoretic bound, so we cannot
expect a better performance of our branch algorithm. However, the practical cases
are not as bad as the table shows, since the data in the table are calculated under a
hypothesis that the new systems are still semi-regular systems, and so if we add some
special polynomials which can reduce the present system significantly, the practical
branch number can still be control in a reasonable bound.

Other examples can be analyzed in the same way as well. Based on our experi-
mental results, we can conclude that for almost all randomly generated systems, our
branch algorithm has better performance than non-branch algorithms, such as F4 in
Magma.

166 Y. Sun and D. Wang

Table 2 Adding polynomials with degree 2

Dreg 6 5 4 3 2

TH-Num 1,600 404 406 408 4010

NumPoly 15 40 88 207 740

EXP-Num 215 240 288 2207 2704

Table 3 The criteria

n 6 8 10 12 14 16 18

T-pairs 198 740 2,483 3,296 94,077 144,801 211,385

D-pairs 7 64 727 1,146 46,221 80,308 112,925

0-Polys 0 0 0 0 0 0 0

D/T(%) 3.54 8.65 29.28 34.77 49.13 55.46 53.42

4 Computational Examples

In this section, some timings are imported from [7], but the complexity information
is obtained by the method discussed in Sect. 3. The branch strategy we used in the
experiments is the first strategy in Sect. 2.5 and all the timings are obtained from a
computer (OS Linux, CPU Xion 4*3.0GHz, 16.0GB RAM).

4.1 The Criteria

In this subsection, we see how the twomodified criteria work. The initial polynomials
are all randomly generated quadratic polynomials with m = n.

In Table3, T-pairs stand for the total number of pairs generated in the computation,
while D-pairs are the number of pairs detected by the two criteria and D/T is the
proportion of these two numbers. Besides, 0-Polys is the number of polynomials
that are reduced to 0 in the algorithm. From the table, all useless pairs are detected
and the two criteria play an important role for improving the efficiency during the
computation.

4.2 The Randomly Generated Systems

In this section we see how the branch algorithm performs for randomly generated
systems. In the following table, three groups of data will be presented. The first group
involves the theoretical degree bound Dreg and the theoretical upper bound for the
branch number M; the second group consists of the practical degree Dp computed
by the F4 algorithm and the corresponding theoretical upper bound for M; in the

The Implementation and Complexity Analysis … 167

Table 4 The randomly generated systems

n EST MGB BGB

TH-Deg TH-Num P-Deg TH-Num Time P-Deg P-Num Time

18 5 184 6 186 3.890 3 2,048 0.791

20 5 204 6 206 14.220 3 8,160 2.992

22 5 224 6 226 82.790 3 29,046 13.235

24 6 246 − − − 3 65,400 47.682

26 6 266 − − − 3 262,018 149.121

last group, the degree D and the practical number of the branches is given. For the
second and third groups, the practical timings are given as well.

The initial polynomials are randomly generated quadratic polynomials with m =
n. The practical degree Dp in the second group are obtained by the F4 algorithm in
Magma. The upper bound of M is estimated with ω = ω′ = 2. In Table4, we use
EST to represent the estimated data and MGB is the experiments data from the F4
algorithm, while BGB is that from our branch algorithm. TH- is short for theoretical
and P- for practical and “–” means Magma runs out of memory.

Remark that in Table4, the theoretical degrees for n = 18, 20, 22 are lower than
the corresponding practical degrees, and the reason is that the F4 algorithm does not
have a powerful criteria to remove all the useless pairs, so some useless computations
are still done in the F4 algorithm. From the table we can also see that the practical
numbers of branches in our algorithm is always kept within the two theoretical
bounds, so our branch algorithm will have better performance and the timings prove
that.

4.3 The Stream Ciphers

In this section, we use our branch algorithm to attack a class of stream ciphers, which
is an important class of encryption algorithm. Here we only consider stream ciphers
based on the LFSR, and the filter functions are from [9].

• CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5
• CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5
• CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5
• CanFil 9, x2x4x5x7 + x2x5x6x7 + x3x4x6x7 + x1x2x4x7 + x1x3x4x7 + x1x3x6x7 + x1x4x5x7+

x1x2x5x7 + x1x2x6x7 + x1x4x6x7 + x3x4x5x7 + x2x4x6x7 + x3x5x6x7 + x1x3x5x7 + x1x2x3x7+
x3x4x5 + x3x4x7 + x3x6x7 + x5x6x7 + x2x6x7 + x1x4x6 + x1x5x7 + x2x4x5 + x2x3x7 + x1x2x7 +
x1x4x5 + x6x7 + x4x6 + x4x7 + x5x7 + x2x5 + x3x4 + x3x5 + x1x4 + x2x7 + x6 + x5 + x2 + x1

• CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1

The data here consist of two parts: one part involves the practical degree Dp, the
theoretical upper bound for M and the practical time costed by the F4 algorithm in
Magma; the other part includes the degree D which is given by the user, the practical
branch number and the time used by our branch algorithm. Again, ω = ω′ = 2

168 Y. Sun and D. Wang

Table 5 The stream ciphers

Filters n 81 100 128

Time Deg Num Time Deg Num Time Deg Num

MGB 18.730 7 818 32.930 7 1008 − − −
CanFil2 BGB 0.027 3 9 0.172 3 66 0.357 3 40

MGB − − − 1.360 7 1008 − − −
CanFil3 BGB 0.085 3 11 0.150 3 19 1.210 3 17

MGB 49.460 7 818 12.590 7 1008 − − −
CanFil8 BGB 0.046 3 27 0.170 3 190 0.371 3 140

MGB − − − − − − − − −
CanFil9 BGB 0.418 4 40 1.230 4 217 20.901 4 77

MGB 331.880 7 818 − − − − − −
CanFil10 BGB 0.131 3 99 0.612 3 501 1.296 3 340

and MGB and BGB represent the F4 algorithm in Magma and our branch algorithm
respectively.

Table5 shows that the practical number of branches is smaller than the estimated
upper bound, so it is not strange to see that our branch algorithm is more efficient
than the F4 algorithm for such problems.

5 Conclusion

In this paper, we present an implementation of the branch Gröbner bases algorithm
and analyze the complexity briefly. The experimental results show that for both
randomly generated systems and a class of Stream Ciphers problems, our branch
algorithm has better efficiency than the F4 algorithm in Magma. However, there are
some problems that are still not solved completely, for example, how to find a general
strategy for all problems and how to anticipate the number of branches before the
computation, and these can be investigated in the future.

Acknowledgments We thank Professor Xiaoshan Gao for his useful suggestions and Zhenyu
Huang for discussing the programming codes.

References

1. Wu, W.T.: Basic principles of mechanical theorem-proving in elementary geometries. J. Sys.
Sci. Math. Sci. 4, 207–235 (1984)

2. Wu, W.T.: Basic principles of mechanical theorem-proving in elementary geometries. J. Autom.
Reason. 2, 221–252 (1986)

The Implementation and Complexity Analysis … 169

3. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (f4). J. Pure Appl. Algebr.
139(1), 61–88 (1999)

4. Faugère, J.C.: A new efficient algorithm for computing Grönber bases without reduction to zero
(F5). Symbolic and Algebraic Computation, Porc. Conferenz ISSAC 2002, 75–83 (2002)

5. Brickenstein, M., Dreyer, A.: PolyBoRi: A framework for Gröbner basis computations with
boolean polynomials. MEGA 2007, Austria (2007)

6. Gao, X.S., Chai, F.J., Yuan, C.M.: A characteristic set method for equation solving in F2 and
applications in cryptanalysis of stream ciphers. J. Syst. Sci. Complex. 21, 191–208 (2008)

7. Sun, Y., Wang, D.K.: Branch Gröbner bases algorithm over boolean ring (Chinese). Preprint
(2009)

8. Bardet, M., Faugère, J.C., Salvy, B.: Complexity of Grönber basis computation for Semi-regular
overdetermined sequences over F2 with solutions in F2. In: Proceedings of the ICPPSS Interna-
tional Conference on Polynomial System Solving Paris, November 24–25-26 2004 in honor of
Daniel Lazard (2004)

9. Faugère, J.C.,Ars,G.:AnAlgebraicCryptanalysis ofNonlinear FilterGeneratorsUsingGröbner
Bases. Reserch report 4739, Institut National de Recherche en Informatique et en Automatique,
Lorraine (2003)

	14 The Implementation and Complexity Analysis of the Branch Gröbner Bases Algorithm Over Boolean Polynomial Rings
	1 Introduction
	2 The Algorithm
	2.1 Notations
	2.2 Definitions
	2.3 Criteria
	2.4 Trick
	2.5 Branch Strategy

	3 Complexity Analysis
	3.1 The Principle for Making Branch
	3.2 The Estimation of Dreg
	3.3 Theoretical Analysis of Randomly Generated Systems

	4 Computational Examples
	4.1 The Criteria
	4.2 The Randomly Generated Systems
	4.3 The Stream Ciphers

	5 Conclusion
	References

