
Finite Fields and Their Applications 41 (2016) 174–192
Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

An improvement over the GVW algorithm for

inhomogeneous polynomial systems ✩

Yao Sun a, Zhenyu Huang a,∗, Dingkang Wang b, Dongdai Lin a

a SKLOIS, Institute of Information Engineering, CAS, Beijing 100093, China
b KLMM, Academy of Mathematics and Systems Science, CAS, Beijing 100190,
China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2015
Received in revised form 2 March
2016
Accepted 14 June 2016
Communicated by S. Gao

MSC:
13P10
13P15
11T55
68W30

Keywords:
Gröbner basis
The GVW algorithm
Signature-based algorithm
Linear algebra
Boolean polynomial ring

The GVW algorithm provides a new framework for computing
Gröbner bases efficiently. If the input system is not homo-
geneous, some J-pairs with larger signatures but lower
degrees may be rejected by GVW’s criteria, and instead,
GVW has to compute some J-pairs with smaller signatures
but higher degrees. Consequently, degrees of polynomials
appearing during the computations may unnecessarily grow
up higher, and hence, the total computations become more
expensive. This phenomenon happens more frequently when
the coefficient field is a finite field and the field polynomials
are involved in the computations. In this paper, a variant
of the GVW algorithm, called M-GVW, is proposed. The
concept of mutant pairs is introduced to overcome the
inconveniences brought by inhomogeneous inputs. In aspects
of implementations, to obtain efficient implementations of
GVW/M-GVW over boolean polynomial rings, we take
advantages of the famous library M4RI. We propose a new
rotating swap method of adapting efficient routines in M4RI to
deal with the one-direction reductions in GVW/M-GVW. Our
implementations are tested with many examples from Boolean
polynomial rings, and the timings show M-GVW usually

✩ The authors are supported by National Key Basic Research Program of China (No. 2013CB834203),
National Natural Science Foundation of China (No. 11301523 and No. 61502485), the Strategic Priority
Research Program of the Chinese Academy of Sciences (No. XDA06010701), and IEE’s Research Project
on Cryptography (No. Y4Z0061A02).
* Corresponding author.

E-mail addresses: sunyao@iie.ac.cn (Y. Sun), huangzhenyu@iie.ac.cn (Z. Huang),
dwang@mmrc.iss.ac.cn (D. Wang), ddlin@iie.ac.cn (D. Lin).
http://dx.doi.org/10.1016/j.ffa.2016.06.002
1071-5797/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ffa.2016.06.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ffa
mailto:sunyao@iie.ac.cn
mailto:huangzhenyu@iie.ac.cn
mailto:dwang@mmrc.iss.ac.cn
mailto:ddlin@iie.ac.cn
http://dx.doi.org/10.1016/j.ffa.2016.06.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ffa.2016.06.002&domain=pdf

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 175
performs much better than the original GVW algorithm if
mutant pairs are found.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Gröbner bases, proposed by Buchberger in 1965 [5], have been proven to be very
useful in many aspects of algebra. In the past forty years, many efficient algorithms have
been proposed to compute Gröbner bases. One important improvement is that Lazard
pointed out the strong relation between Gröbner bases and linear algebra [23]. This idea
has been implemented in F4 by Faugère [15], and also as XL type algorithms by Courtois
et al. [7] and Ding et al. [9].

Faugère introduced the concept of signatures for polynomials and presented the
famous F5 algorithm [16]. Since then, signature-based algorithms have been widely
investigated, and several variants of F5 have been presented, including F5C [11], ex-
tended F5 [22], F5 with revised criterion (the AP algorithm) [4], and RB [13]. Gao et al.
proposed another signature-based algorithm G2V [19] in a different way from F5, and
GVW [20,21] is an extended version of G2V. The authors studied generalized criteria and
signature-based algorithms in solvable polynomial algebra in [26,27]. For an overview of
all signature-based algorithms, readers are referred to the survey by Eder and Faugère
[14].

For implementations of signature-based algorithms, Roune and Stillman efficiently
implemented GVW and AP without using linear algebra [24]. Faugère gave the matrix-F5
algorithm in [18]. An F5 in F4-style was described in more details by Albrecht and
Perry [1].

In GVW, criteria always reject J-pairs with larger signatures, and process J-pairs with
smaller signatures instead. Unfortunately, when the input systems are inhomogeneous,
J-pairs with larger signatures probably have relatively lower degrees, where by saying
degrees of polynomials, we mean the total degrees of polynomials. This phenomenon hap-
pens more frequently when the coefficient field is a finite field and the field polynomials
are involved in the computations. This is not good for efficient Gröbner basis computa-
tions, because rejecting polynomials of lower degrees and reducing those of higher degrees
will take more computing time. The case may be even worse if linear algebra is used for
reductions. As suggested by Faugère in [15,16], a good strategy of dealing with critical
pairs (equivalent to J-pairs in GVW) in a batch is to select all critical pairs with the min-
imal degree. So if polynomials with larger signatures and lower degrees are rejected by
criteria, matrices with higher degrees may be constructed instead, which definitely leads
to more computations. In fact, this case really happens when we are computing Gröb-
ner bases for the HFE systems by using GVW. Some other influences of inhomogeneous
input systems were discussed by Eder [12].

176 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
According to our observations, GVW’s criteria may reject J-pairs with larger signa-
tures and lower degrees. We believe such phenomenons are caused by a kind of mutant
pairs, which will be defined in Section 3. On seeing this, we propose a variant algorithm
of GVW, called M-GVW, to deal with mutant pairs. In M-GVW, criteria are not ap-
plied to mutant pairs anymore, such that J-pairs with larger signatures and lower degrees
will not be rejected. Please note that for homogeneous polynomial systems, M-GVW is
exactly the GVW algorithm since no mutant pairs are generated.

We implemented both the original GVW and M-GVW over Boolean polynomial rings.
On eliminations of matrices, we hope to take advantages of fast arithmetics for dense
matrices over GF(2) provided by the library M4RI [3]. However, reductions in signature-
based algorithms must be done in one direction, i.e. rows with higher signatures can only
be eliminated by rows with lower signatures. So routines from M4RI cannot be used di-
rectly. We present a method of doing such one-direction eliminations for dense matrices
by modifying routines from M4RI. The experimental results show M-GVW usually per-
forms much better than the original GVW algorithm if mutant pairs are found.

This paper is organized as follows. In Section 2, we introduce some necessary nota-
tions and revisit the GVW algorithm. In Section 3, M-GVW is presented. In Section 4,
we discuss some details on implementing M-GVW over Boolean polynomial rings and
show how routines from M4RI are modified to do one-direction eliminations. Some ex-
perimental results are shown in Section 5. Concluding remarks follow in Section 6.

2. The GVW algorithm revisited

Most of notations and definitions are inherited from Gao et al.’s original paper. For
more details, please see [20,21].

Let R = K[x1, . . . , xn] be a polynomial ring over a field K with n variables, and
{f1, · · · , fm} is a finite subset of R. We want to compute a Gröbner basis for the ideal

I = 〈f1, · · · , fm〉 = {p1f1 + · · · + pmfm | p1, · · · , pm ∈ R}

with respect to some monomial ordering on R.
Let F = (f1, · · · , fm) ∈ Rm, and consider the following R-module of Rm ×R:

M = {(u, f) ∈ Rm ×R | u · F = f}.

Let ei be the i-th unit vector of Rm, i.e. (ei)j = δij where δij is the Kronecker delta.
Then the R-module M is generated by {(e1, f1), · · · , (em, fm)}.

A monomial in R has the form xα = Πn
i=1x

ai
i , where α = (a1, . . . , an) ∈ N

n and N
is the set of all non-negative integers. A monomial in Rm is of the form xαei, where
1 ≤ i ≤ m and α ∈ N

n. For monomials in Rn, we say xαei divides xβej (or xαei | xβej
for short), if i = j and xα divides xβ , and the quotient is defined as (xβei)/(xαei) =
xβ−α ∈ R.

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 177
Fix any monomial ordering ≺p on R and any monomial ordering ≺s on Rm (subscripts
p and s stand for polynomial and signature respectively). Please note that ≺s may or
may not be related to ≺p in theory, although we always assume ≺s is compatible with ≺p

practically, i.e. xα ≺p xβ if and only if xαei ≺s x
βei for 1 ≤ i ≤ m. To make descriptions

simpler, we use the following notations for leading monomials:

lm(f) = lm≺p
(f) and lm(u) = lm≺s

(u),

for any f ∈ R and any u ∈ Rm. Leading monomials of f ∈ R and u ∈ Rm are monomials
without coefficients in R and Rm respectively. We define lm(f) = 0 if f = 0, and 0 ≺p xα

for any non-zero monomial xα in R; similarly for monomials in Rm. In the rest of this
paper, we use ≺ to represent ≺p and ≺s for short, if no confusion occurs.

For a pair (u, f) ∈ M, lm(u) is called the signature of (u, f). This definition is the
same as that used in GVW, but different from those used in [16,4]. The differences are
discussed in [20,21].

Let (u, f) ∈ M and B ⊂ M, we say (u, f) is top-reducible by B, if there exists
(v, g) ∈ B with g �= 0, such that lm(g) divides lm(f) and lm(u) 	 lm(tv) where t =
lm(f)/lm(g). The corresponding top-reduction is then

(u, f) − ct(v, g) = (u − ctv, f − ctg),

where c = lc(f)/lc(g) and lc(f) denotes the leading coefficient of f . Particularly, this
top-reduction is called regular, if lm(u)
 lm(tv); and super if lm(u) = lm(tv).1 Clearly,
(u − ctv, f − ctg) is also an element in M.

A subset G of M is called a strong Gröbner basis for M if every nonzero pair (pairs
�= (0, 0)) in M is top-reducible by G. By Proposition 2.2 of [20,21], let G = {(vi, gi) |
1 ≤ i ≤ s} be a strong Gröbner basis for M. Then {gi : 1 ≤ i ≤ s} is a Gröbner basis
for I = 〈f1, . . . , fm〉.

Next, we define joint pairs/J-pairs. Suppose (u, f), (v, g) ∈ M are two pairs with f
and g both nonzero. Let t = lcm(lm(f), lm(g)), tf = t/lm(f) and tg = t/lm(g). Then
the J-pair of (u, f) and (v, g) is defined as: tf (u, f) (or tg(v, g)), if lm(tfu)
 lm(tgv)
(or lm(tfu) ≺ lm(tgv)). For the case lm(tfu) = lm(tgv), the J-pair is not defined. Note
that the J-pair of (u, f), (v, g) ∈ M is also a pair in M. Assume tf (u, f) is the J-pair
of (u, f) and (v, g), the degree of tf (u, f) is defined as deg(tff), i.e. the degree of the
polynomial part. For convenience, we call a J-pair is of G ⊂ M, if it is the J-pair of two
pairs in G.

For a pair (u, f) ∈ M and a set G ⊂ M, we say (u, f) is covered by G, if there is
a pair (v, g) ∈ G, such that lm(v) divides lm(u) and tlm(g) ≺ lm(f) (strictly smaller)
where t = lm(u)/lm(v).

Gao, Volny, and Wang give a simple characterization of strong Gröbner bases.

1 Regular top-reduction defined here is slightly different from its original version in [20,21], but this will
not affect proofs of related propositions and theorems.

178 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
Algorithm 1: The GVW algorithm.
Input : f1, . . . , fm ∈ R = K[x1, . . . , xn], monomial orderings for R and Rm.
Output: A Gröbner basis of I = 〈f1, . . . , fm〉.

1 begin
2 H ←−{lm(fjei − fiej) | 1 ≤ i, j ≤ m}
3 G←−{(lm(ei), fi) | 1 ≤ i ≤ m}
4 JPairSet←− all J-pairs of G
5 while JPairSet �= ∅ do
6 Let t(xαei, f) ∈ JPairSet and remove t(xαei, f) from JPairSet.
7 if txαei is divisible by some monomial in H(Syzygy Criterion) or t(xαei, f) is covered by

G(Rewriting Criterion) then
8 GotoLine 5

9 (xγei, h)←−Regular top-reduce (txαei, tf) by G.
10 if h = 0 then
11 H ←−H ∪ {xγei}
12 else
13 for (xβej , g) ∈ G s.t. lm(g)xγei �= lm(h)xβej do
14 H ←−H ∪ {max(lm(g)xγei, lm(h)xβej)}
15 JPairSet←− JPairSet ∪ {J-pair of (xγei, h) and (xβej , g)}
16 G←−G ∪ {(xγei, h)}

17 return {g | (xβej , g) ∈ G}

Theorem 2.1 (Gao–Volny–Wang [21]). Suppose G ⊂ M contains pairs with signatures
{e1, . . . , em}. Then G is a strong Gröbner basis for M if and only if every J-pair of G
is covered by G.

Note that checking whether a pair is covered by G does not need any reduction of
polynomials. This immediately leads to the various rewrite rules used in the literature.
Indeed, the rewrite rules can be rephrased as the following two criteria.

[Syzygy Criterion] For a J-pair tf (u, f) of a set G ∈ M, if there exists (v, 0) ∈ G such
that lm(v) divides tf lm(u), then this J-pair can be discarded.

[Second Criterion] For a J-pair of a set G ∈ M, if this J-pair is covered by G, then this
J-pair can be discarded.

In this paper, we call the second criterion Rewriting Criterion. Arri and Perry pro-
posed a quite similar criterion to Rewriting Criterion in [4]. Comments on Arri–Perry’s
criterion and Rewriting Criterion can be found in [20,21,24].

The following GVW algorithm is slightly modified from its original version (see Al-
gorithm 1). We delete the output of a Gröbner basis for the syzygy module of input
polynomials, because we only care about the Gröbner basis of input polynomials in cur-
rent paper. We emphasize that for a pair (u, f) ∈ M, only (lm(u), f) is stored in the
latest version of the GVW algorithm. Related conceptions, such as top-reduction, J-pairs
and cover, are defined similarly. Please see [20,21] for more details.

There are some remarks on the GVW algorithm.

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 179
1. At Step 6, a J-pair can be selected from the set JPairSet in any order. In Section 4,
we prefer to choosing J-pairs with minimal degrees first.

2. Proposition 2.2 in [20,21] ensures the correctness of GVW when J-pairs are computed
in any order. The finite termination of GVW is proved by Theorem 3.1 in [20,21]
when monomial orderings of R and Rm are compatible.

3. The GVW algorithm in [20,21] retains only one J-pair (the one with the minimal
polynomial part) when there are several J-pairs having the same signature. This
process can be implied by the “cover check” at step 7.

3. The M-GVW algorithm

3.1. Motivations and main ideas

The motivation of varying GVW arises from our implementation of GVW by using
linear algebra for reductions. To control the size of matrices as small as possible during
the computations, we deal with the J-pairs with the minimal degree first. That is, at
Step 6 of GVW, we find the minimal degree of all J-pairs in JPairSet first, and then
choose the J-pair with the smallest signature among the J-pairs with the minimal degree.

However, we are quite surprised to find that when computing a Gröbner basis for
the HFE_25_96 system (from [25]), the degrees of matrices always grow up to 5. This
phenomenon makes the efficiency of our implementation very poor, because the sizes of
5-degree matrices are much larger than those of degree 4. Here the degree of a matrix
is the maximal degree of the polynomials used to construct this matrix. But it has been
shown in [17] that the Gröbner basis of this example can definitely be obtained from
matrices whose degree is not bigger than 4. So we believe there are some peculiar cases
not considered in GVW when the input systems are inhomogeneous. We also notice that,
this phenomenon has no relations to the computing orders of J-pairs.

We can illustrate this phenomenon clearly by the following example.

Example 3.1. Let {f1, f2, . . . , f11} ⊂ R = F2[x1, x2, . . . , x9], where F2 is the Galois Field
GF (2), and

f1 = x1x2x5x6 + x2x3x7x9 + x7, f2 = x1x2x6x8 + x3x4x7,

fi+2 = x2
i + xi, for 1 ≤ i ≤ 9.

Monomial ordering ≺p in R is the Graded Reverse Lexicographic ordering, and ≺s in
R11 is a position over term extension of ≺p:

xαei ≺s x
βej iff i > j, or i = j and xα ≺p xβ .

Thus, we have e1
 e2
 · · ·
 e11.

180 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
For this example, GVW needs to process J-pairs of degrees bigger than 5 before
a Gröbner basis is obtained. But the maximal degree of matrices in the F4 algorithm
using criteria of [6] is 5. This implies some “useful” J-pairs with degrees not bigger than 5
have been rejected by GVW’s criteria.

Now, we discuss this example in details. We compute a Gröbner basis for 〈f1, . . . , f11〉
by GVW with the following strategy for selecting J-pairs from the set JPairSet:

1. d←− the minimal degree of J-pairs in the set JPairSet.
2. t(xαei, f)←− J-pair with the smallest signature in {t(xαei, f) ∈ JPairSet |

deg(tf) = d}.

Since the fi’s are all inhomogeneous, the above strategy implies that J-pairs are not
handled in an increasing order on signatures.2

Initially, we have G = {(e1, f1), (e2, f2), . . . , (e11, f11)}.
Before processing J-pairs of degree 6, the following polynomials are generated one by

one:

(x8e2, f12 = x3x4x7x8 + x3x4x7),

(x6e2, f13 = x3x4x6x7 + x1x2x6x8),

(x2e2, f14 = x2x3x4x7 + x1x2x6x8),

(x1e2, f15 = x1x3x4x7 + x1x2x6x8),

(x8e1, f16 = x2x3x7x8x9 + x3x4x5x7 + x7x8),

(x6e1, f17 = x2x3x6x7x9 + x1x2x5x6 + x6x7),

(x5e1, f18 = x2x3x5x7x9 + x1x2x5x6 + x5x7),

(x2e1, f19 = x2x7 + x7),

(x1e1, f20 = x1x2x3x7x9 + x1x2x5x6 + x1x7),

(x2x3x8x9e1, f21 = x3x4x5x7 + x3x7x8x9 + x7x8),

(x2x3x6x9e1, f22 = x3x6x7x9 + x3x7x9 + x6x7 + x7),

(x2x3x5x9e1, f23 = x3x5x7x9 + x3x7x9 + x5x7 + x7),

(x1x2x3x9e1, f24 = x1x3x7x9 + x2x3x7x9 + x1x7 + x7).

During the computations, many leading monomial of syzygies in M have been gen-
erated, among them the one x2x3x4e1 (obtained before f20) is important, since it has
been used to reject many other J-pairs.

2 Even if J-pairs are processed in an increasing order on signatures, GVW still has to reduce J-pairs with
degrees bigger than 5 before a Gröbner basis is obtained.

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 181
So far, all J-pairs with degrees not bigger than 5 have been considered. It is easy
to check {f1, f2, . . . , f24} is not a Gröbner basis of 〈f1, f2, . . . , f11〉. However, for the
same ideal, F4 using criteria from [6] can obtain a Gröbner basis without computing any
critical pairs of degrees bigger than 5. Comparing GVW and F4 step by step, we finally
find the following J-pairs:

x4(x2x3x5x9e1, f23), x4(x1x2x3x9e1, f24),
x4(x2x3x6x9e1, f22), x1x5x6(x2e1, f19),
x1x6x8(x2e1, f19), x3(x2x3x8x9e1, f21),
x4(x2x3x8x9e1, f21), x3(x1x2x3x9e1, f24),
x9(x1x2x3x9e1, f24), x3(x2x3x5x9e1, f23),
x9(x2x3x5x9e1, f23), x3(x2x3x6x9e1, f22),
x9(x2x3x6x9e1, f22).

These J-pairs are rejected by GVW’s criteria, but those corresponding critical pairs in
F4 are not rejected by Buchberger’s criteria.

Reducing these J-pairs, we get the following pairs:

(x2x3x4x5x9e1, x3x4x7x9 + x3x7x8x9 + x4x5x7 + x7x8x9 + x4x7),

(x1x2x3x4x9e1, x1x4x7 + x4x7),

(x2x3x4x6x9e1, x4x6x7 + x4x7),

(x1x2x5x6e1, x1x5x6x7 + x2x3x7x9 + x2
7),

(x1x2x6x8e1, x1x6x7x8 + x3x4x7),

(x2x
2
3x8x9e1, x3x7x8 + x7x8),

(x2x3x4x8x9e1, x3x4x7x9 + x3x7x8x9 + x4x7x8 + x7x8),

(x1x2x
2
3x9e1, x1x3x7 + x1x7 + x3x7 + x7),

(x1x2x3x
2
9e1, x1x7x9 + x1x7 + x7x9 + x7),

(x2x
2
3x5x9e1, x3x5x7 + x3x7 + x5x7 + x7),

(x2x3x5x
2
9e1, x5x7x9 + x5x7 + x7x9 + x7),

(x2x
2
3x6x9e1, x3x6x7 + x3x7 + x6x7 + x7),

(x2x3x6x
2
9e1, x6x7x9 + x6x7 + x7x9 + x7).

There are 9 polynomials of degree 3 and 4 polynomials of degree 4. These polynomials
are computed in F4, and prevent F4 to deal with critical pairs of degree bigger than 5.

182 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
However, these J-pairs are rejected by GVW’s criteria, so GVW has to compute J-pairs
of degree 6.

Next, we analyze why GVW is possible to reject J-pairs of lower degrees and pre-
fer to reducing higher degree J-pairs. Take the J-pair x3(x1x2x3x9e1, f24) for example.
Reducing this J-pair, we get

(x1x2x
2
3x9e1, x1x3x7 + x1x7 + x3x7 + x7).

But this J-pair is rejected by ((x2
3 +x3)e1−f1e5, 0) ∈ M in GVW, which is the principal

syzygy of f1 and f5. After GVW finishing all computations, we find the polynomial
x1x3x7 + x1x7 + x3x7 + x7 is obtained from reducing the J-pair x3(x1e1, f20), whose
degree is 6 and whose signature is smaller. Combined with our experiences of proving
F5 in [28], we have the following observation.

Observation 3.2. GVW’s criteria alway reject J-pairs with higher signatures, and process
some J-pairs with smaller signatures instead.

When the input systems are inhomogeneous, J-pairs with bigger signatures may have
lower degrees than J-pairs with smaller signatures.

Consider the 5-degree J-pair x3(x1x2x3x9e1, f24) again. The syzygy ((x2
3 + x3)e1 −

f1e5, 0) ∈ M, which rejects this J-pair, corresponds to the equation

f5f1 − f1f5 = 0,

in which monomials of degree 6 appear. Thus, we believe that if we use the syzygy
((x2

3 + x3)e1 − f1e5, 0) to reject this 5-degree J-pair, it is possible to deal with some
J-pairs involving polynomials of degree 6 instead later, since the degrees of f5f1 and
f1f5 are 6. On seeing this, our idea is to prevent GVW from rejecting J-pairs like
x3(x1x2x3x9e1, f24).

Analyzing all J-pairs we have listed earlier, we find they have one common property:
for any J-pair t(xαe1, fj) that is listed, we have

deg(xα) + deg(f1) > deg(fj).

This property makes the degree of x3(x1x2x3x9e1, f24) lower than the degree of f5f1. In
order to prevent this J-pair to be rejected, we should treat the pair (x1x2x3x9e1, f24)
specially. We find such pairs are similar to mutant polynomials defined in [9], so we give
the following definition.

Definition 3.3. Let M be an R-module generated by {(e1, f1), . . . , (em, fm)}. A pair
(u, f) ∈ M with lm(u) = xαei and f �= 0, is called mutant, if deg(xα) +deg(fi) > deg(f).
Particularly, a J-pair t(u, f) is called mutant where t is a monomial, if (u, f) is mutant.

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 183
Algorithm 2: The M-GVW algorithm.
Input : f1, . . . , fm ∈ R = K[x1, . . . , xn], monomial orderings for R and Rm.
Output: A Gröbner basis of I = 〈f1, . . . , fm〉.

1 begin
2 H ←−{lm(fjei − fiej) | 1 ≤ i, j ≤ m}
3 G←−{(lm(ei), fi) | 1 ≤ i ≤ m}
4 JPairSet←− all J-pairs of G
5 while JPairSet �= ∅ do
6 Let t(xαei, f) ∈ JPairSet and remove t(xαei, f) from JPairSet.
7 if (1) deg(xα) + deg(fi) = deg(f), and (2) either txαei is divisible by some monomial in

H or t(xαei, f) is covered by G then
8 GotoLine 5

9 (xγei, h)←−Regular top-reduce (txαei, tf) by G.
10 if h = 0 then
11 H ←−H ∪ {xγei}
12 else
13 for (xβej , g) ∈ G s.t. lm(g)xγei �= lm(h)xβej do
14 H ←−H ∪ {max(lm(g)xγei, lm(h)xβej)}
15 JPairSet←− JPairSet ∪ {J-pair of (xγei, h) and (xβej , g)}
16 G←−G ∪ {(xγei, h)}

17 return {g | (xβej , g) ∈ G}

Due to the existence of syzygy pairs, there are lots of mutant pairs in M. But only a
few of mutant pairs will appear in the practical computations.

Remark 3.4. We only consider mutant pairs when the ordering ≺p is a graded ordering.

3.2. The M-GVW algorithm

From Example 3.1, we see that applying Syzygy Criterion to mutant J-pairs can cause
an unexpected rise of the computing degree of J-pairs. In more complicated examples,
we find that applying Rewriting Criterion to mutant J-pairs can also cause such phe-
nomenon. So the main idea of M-GVW is to avoid applying both criteria to mutant
J-pairs.3 This idea is simple, but it works very well. We give M-GVW in Algorithm 2.

Please note that the only difference between M-GVW and GVW is that, in M-GVW
criteria are not applied to mutant J-pairs. Particularly, mutant pairs cannot be found
in M-GVW when input systems are homogeneous. In this case, M-GVW is exactly the
GVW algorithm.

Lemma 3.5 (a© and c© of Thm. 2.4 in [20]). Suppose G is a subset of M such that, for
any monomial xαei ∈ Rm, there exists a pair (v, g) ∈ G and a monomial t such that
xαei = tlm(v). Then G is a strong Gröbner basis for M if and only if every J-pair of G
is covered by G.

3 Another method of dealing with mutant J-pairs is to append them to the input polynomials. This method
is discussed in the previous version of current paper, and it can be found in [30].

184 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
Algorithm 3: M-GVW in matrix style.
Input : f1, . . . , fm ∈ R = K[x1, . . . , xn], monomial orderings for R and Rm.
Output: A Gröbner basis of I = 〈f1, . . . , fm〉.

1 begin
2 H ←−{lm(fjei − fiej) | 1 ≤ i, j ≤ m}
3 G←−{(lm(ei), fi) | 1 ≤ i ≤ m}
4 JPairSet←− all J-pairs of G
5 while JPairSet �= ∅ do
6 d←− the minimal degree of J-pairs in JPairSet
7 Todo←− all J-pairs of degree d in JPairSet and remove Todo from JPairSet
8 P ←− SymbolicProcess(Todo, G, H) (element in P has the form of (xαei, f))
9 F ←− Elimination(P) (element in F has the form of (xγei, h))

10 F+ ←−F \ {pairs that are super top-reducible by G}
11 for each (xγei, h) ∈ F+ s.t. h = 0 do
12 H ←−H ∪ {xγei}
13 for each (xγei, h) ∈ F+ s.t. h �= 0 do
14 for (xβej , g) ∈ G, lm(g)xγei �= lm(h)xβej do
15 H ←−H ∪ {max(lm(g)xγei, lm(h)xβej)}
16 JPairSet←− JPairSet ∪ {J-pair of (xγei, h), (xβej , g)}
17 G←−G ∪ {(xγei, h)}

18 return {g | (xβej , g) ∈ G}

Since if t(xαei, f) is a J-pair and is regular top-reduced to (xγei, h) by G, then
t(xαei, f) is covered by (xγei, h). Using this lemma, we directly have the following the-
orem.

Theorem 3.6. The M-GVW algorithm is correct.

4. On implementing M-GVW over Boolean polynomial rings

In this section, we discuss some details on implementing M-GVW over Boolean poly-
nomial rings. First, to speed up M-GVW by using linear algebra, we rewrite M-GVW
in a matrix style in Subsection 4.1. Next, we briefly mention how Gröbner bases are
computed over Boolean polynomial rings in Subsection 4.2. At last in Subsection 4.3,
we show how to do one-direction reductions in M-GVW by using routines modified from
M4RI.

4.1. M-GVW in a matrix style

The matrix version of M-GVW is similar to F4. This matrix-style algorithm is also
similar to Albrecht–Perry’s version [1], but has small differences. The main function is
given in Algorithm 3.

The function SymbolicProcess(Todo, G, H) does three things (see Algorithm 4).
First, check whether J-pairs are rejected by criteria. Second, for each monomial that is
not a leading monomial, search polynomials from G to reduce it. Third, sort all pairs
according their signatures. Please note that, here we do not remove the pairs whose sig-

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 185
Algorithm 4: SymbolicProcess.
Input : Todo, a set of J-pairs; G, a set of pairs; H, a set of monomials in Rm.
Output: P , each element in P has the form of (xαei, f).

1 begin
2 P ←−∅
3 for each t(xαei, f) in Todo do
4 if (1) deg(xα) + deg(fi) = deg(f), and (2) either txαei is divisible by some monomial in

H or t(xαei, f) is covered by G then
5 GotoLine 3

6 P ←−P ∪ {(txαei, tf)}
7 Done←−∅
8 while M(P) �= Done do
9 m←− an element of M(P) \ Done

10 Done←−Done ∪ {m}
11 if ∃(xβej , g) ∈ G s.t. lm(g) | m then
12 P ←−P ∪ {(m/lm(g))(xβej , g)}

13 Sort P by an increasing order on signatures.
14 return P

natures equal to those of some other pairs, because we cannot apply Rewriting Criterion
to mutant J-pairs. Besides, the function elimination() is not affected if there are some
pairs having the same signatures. Denote M(P) be the union of the sets of all monomials
in h for all (xγei, h) ∈ P .

This function is a bit different from Albrecht–Perry’s version [1]. First, any monomial
m can be selected from M(P) \Done, while in [1] the maximal one is selected each time.
Second, for any selected monomial m, we do not need to know its signature information.

The function Elimination(P) does three things. First, it writes pairs in P as rows of a
matrix. Second, it computes the echelon form of this matrix. Third, it reads polynomials
from rows of this matrix. In the first step, please note that building matrices from
Boolean polynomials is a bit different from building matrices from polynomials in general
polynomial rings, because the product of a monomial and a Boolean polynomial should
be reduced by field polynomials automatically. We report our method in [29] and omit
details here. The second step is critical for efficiency. Since naive Gaussian eliminations
seem less efficient, we hope to take advantages of the efficient routines from M4RI to
improve the efficiencies. However, in signature-based algorithms, since rows with higher
signatures can only be eliminated by rows with lower signatures, routines from M4RI
can not do this one-direction elimination directly. So we use a special kind of row swaps
to replace the original row swaps in the routines of M4RI. This new swapping method
will be discussed in Subsection 4.3.

4.2. On computing Gröbner basis over Boolean polynomial rings

In the rest of this section, we discuss the implementations of M-GVW over Boolean
polynomial rings.

186 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
The polynomial ring is specialized as R = F2[x1, x2, . . . , xn] with n variables over the
Galois Field GF (2). Polynomials E = {x2

1+x1, . . . , x2
n+xn} are called field polynomials.

Let F = {f1, . . . , fm} be a subset of R. Then computing a Gröbner basis for the ideal
generated by F over the Boolean polynomial ring R/〈E〉, is equivalent to computing
a Gröbner basis for the ideal generated by F ∪ E over R. In our implementation, we
aim to compute Gröbner bases for F ∪ E over R, so all the computations are done
in R. Since field polynomials have quite simple forms, we do not need to store them in
practical implementations. Besides, normal forms of polynomials in R w.r.t. E are also
done automatically in the implementation.

We specialize the monomial ordering ≺p on R to be the Graded Reverse Lexicographic
ordering. And the monomial ordering ≺s on modules is a position over term extension
of ≺p, such that e1
s e2
s · · ·
s em
s em+1
s · · ·
s em+n, where ei corresponds
to fi for i = 1, 2, . . . , m, and em+j corresponds to x2

j + xj for j = 1, 2, . . . , n. With this
monomial ordering ≺s, field polynomials can be used to reduce other polynomials all the
time.

4.3. One-direction elimination

Unlike F4, eliminations in signature-based algorithm can only be done from one di-
rection. Because each row of matrix in signature-based algorithms corresponds to a
signature, and rows with higher signatures can only be reduced by rows with lower sig-
natures. Naive Gaussian eliminations can control eliminating directions easily. But to
take advantages of efficient elimination routines from the library M4RI [3], we should
revise the swapping methods in these routines. We call our method rotating swap. This
method is a bit similar to that in [10].

We illustrate our rotating swap method through the following example. Let A be a
matrix with entries in F2. Assume A has the following form:

S1
S2
S3
S4
S5
S6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where “∗” may be 1 or 0, Si is the signature of each row, and we assume S1 ≺s S2 ≺s

· · · ≺s S6.
To reduce A to row-echelon form, we first find the pivot entry in the first column.

We must search the pivot entry from top to bottom (i.e. from lower signatures to higher
signatures). Then we find the entry at row 5 and col 1 is a pivot. If we use general
methods of elimination, we need to swap row 1 and row 5 directly, and clear entries at
column 1 by the row with signature S5. Then matrix becomes:

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 187
S5
S2
S3
S4
S1
S6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, when doing elimination in the second column, the row with signature S4 is selected
as pivot row, and needs to eliminate other rows. However, this will leads to errors in
signature-based algorithms, because the row with signature S1 has a smaller signature
than S4 and cannot be eliminated by the row with signature S4. Thus, in signature-based
algorithms, we cannot swap row 1 and row 5 directly.

To make further eliminations correct, we swap row 1 and row 5 in a special manner.
First, we pick up the row 5 with signature S5. Second, we move rows 4, 3, 2, and 1 to
rows 5, 4, 3, and 2 respectively. At last, we put the row with signature S5 at row 1. After
this swap, matrix A becomes the following form:

S5
S1
S2
S3
S4
S6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗ ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 1 ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we use the row with S5 to clear all entries at column 1 below this row, and then
column 1 is done. For column 2, we find pivots from rows with S1, ..., S4 and S6, and
repeat the above processes. Elimination terminates when the matrix becomes an upper
triangular form.

This rotating swap method can ensure the rows with larger signatures are only reduced
by rows with smaller signatures. Firstly, when we eliminating entries in some column (e.g.
column 1), the pivot row (e.g. row of S5) is always found from low signatures to high
signatures (e.g. the row with the smallest signature such that its entry at column 1 is
nonzero), so the rows with smaller signatures (e.g. rows of S1, . . . , S4) will not be reduced
by the pivot row (e.g. row of S5). Thus, elimination in current column (e.g. column 1)
is correct. Secondly, after this rotating swap, the rows (e.g. rows of S1, . . . , S4 and S6)
below the pivot row (e.g. row of S5) are still in an increasing order on signatures. So the
eliminations afterwards (e.g. column 1) are correct as well.

Using this rotating swap, the echelon form of A is in an upper triangular form, such
that divide-and-conquer methods of PLE decomposition [2] can be used, and hence, the
eliminations can be speeded up significantly.

In our implementation, we modify many subroutines of mzd_ple() in the M4RI li-
brary to use this rotating swap. Our new function is called gvw_ple(). We compare

188 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
Table 1
mzd_ple() vs. gvw_ple().

Examples
(1k = 1000)

Density ≈ 50% Density ≈ 3%
mzd_ple() gvw_ple() mzd_ple() gvw_ple()

10k × 10k 0.378 0.382 0.345 0.354
10k × 30k 1.342 1.301 1.268 1.262
30k × 10k 1.432 1.443 1.403 1.418
30k × 30k 7.661 7.655 7.604 7.577
30k × 60k 18.684 18.671 18.651 18.634
60k × 30k 19.396 19.296 19.282 19.298
60k × 60k 58.373 58.636 54.509 54.263
60k × 100k 123.321 123.298 119.479 122.523

100k × 60k 119.991 118.388 108.565 108.501
100k × 100k 266.817 267.191 237.401 237.560
150k × 150k 817.682 817.750 700.032 700.781

the efficiency of mzd_ple() and gvw_ple() in the next section. The results show both
functions almost have the same efficiency.

5. Experimental results

We implemented both the GVW and M-GVW algorithm over Boolean polynomial
rings in C++. The library M4RI (ver. 20130416) [3] is used.4

Since our experiments in this paper only aim to test the affects of mutant pairs,
our implementations here simply use routines for dense matrices. To obtain the best
performance of the implementation, structured Gaussian eliminations and many other
techniques should be used. We will report these techniques in another paper.

5.1. Tests for gvw_ple()

We tested the efficiency of the function gvw_ple(),5 which is modified from mzd_ple()
by using the rotating swap method. Examples with density ≈ 50% are generated directly
by routines from M4RI, and we also generate some randomized matrices with density
≈ 3%. In Table 1, the first column is the size of matrices, and the timings in the other
columns are given in seconds.

From Table 1, we can see that mzd_ple() and gvw_ple() almost have the same effi-
ciency. So the new proposed rotating swapping method does not slow down the efficiency
of eliminations.

5.2. Tests for M-GVW

In this subsection, we compare the performance of GVW and M-GVW when the
input systems are inhomogeneous. We implemented both GVW and M-GVW in matrix

4 Up to now, the latest version of M4RI is ver. 20140914. By our experiments, the latest routines are
about 5% faster than those from ver. 20130416.
5 The codes of gvw_ple() based on M4RI ver. 20130416 can be found at http :/ /www .mmrc .iss .ac .cn /

~dwang /software .html.

http://www.mmrc.iss.ac.cn/~dwang/software.html
http://www.mmrc.iss.ac.cn/~dwang/software.html

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 189
Table 2
GVW vs. M-GVW.

Example GVW M-GVW
max mat. (deg) time for

max mat.
total
time

max mat. (deg) time for
max mat.

total
time

mutant
pairs

MQ16 9023 × 6863(5) 0.412 0.608 9023 × 6863(5) 0.404 0.611 0
MQ20 22875 × 21656(5) 4.445 5.918 22875 × 21656(5) 4.446 5.918 0
MQ24 226386 × 189944(6) 1546 1686 226386 × 189944(6) 1543 1684 0
HFE_25_96 60279 × 68334(5) 72.52 104.3 12903 × 14104(4) 1.479 4.527 1050
HFE_30_96 127991 × 174308(5) 697.0 994.0 20843 × 30259(4) 6.256 17.18 1320
HFE_35_96 240727 × 383969(5) 5495 8373 31430 × 57261(4) 23.01 57.77 1680

style over Boolean polynomial rings. Almost all of the implementations are the same,
except that we do not apply both criteria to mutant J-pairs in M-GVW. On eliminating
matrices over GF (2) in both GVW and M-GVW, we use the routine gvw_ple() which
is for dense matrices, although the practical matrices are really very sparse.

We tested many inhomogeneous systems over Boolean polynomial rings. Examples
include “MQ n” systems (n quadratic equations with n variables) given by Courtois [8],
and a few smaller HFE systems (HFE25/ HFE30/HFE35, 25/30/35 quadratic equations
with 25/30/35 variables and D = 96) downloaded from [25].6 The ordering ≺p is the
Graded Reverse Lexicographic ordering, and ≺s is a position over term extension of ≺p.
The experimental platform is MacBook Pro with 2.6 GHz Intel Core i7, 16 GB memory.

Table 2 gives the global comparisons of GVW and M-GVW for all examples. For both
GVW and M-GVW, we list the largest matrices generated during the computations,
degrees of the largest matrices, the timings for eliminating these matrices by gvw_ple(),
and the total computing time. For M-GVW, we also give the number of new mutant
pairs. All the timings in this table are given in seconds. Please note that the number of
mutant pairs is counted before linear polynomials are found, while the number of mutant
pairs that are generated in the same matrix with linear polynomials, is not counted.

From Table 2, we can find that the maximal size of the matrix generated during the
computations is exactly the same for Courtois’ examples, and the corresponding comput-
ing time are also almost the same. This is because we can not find mutant polynomials
in these examples. For the HFE systems, M-GVW performs much better than GVW be-
cause many mutant polynomials have been found in M-GVW and their J-pairs are not
rejected in the following computations. So the maximal sizes of the matrix in M-GVW
become much smaller than those in GVW, which results in that M-GVW cost much less
eliminating time.

We also give some detailed comparisons for some HFE systems. In the following two
tables, “no. of mat.” means the i-th matrix computed in the corresponding algorithms.
We also list: the numbers of J-pairs to be reduced (these J-pairs are not rejected by
criteria), the size and degree of the matrices, the numbers of new generated pairs after
eliminations, the number of new mutant pairs, the number of rows that are eliminated

6 All tested systems can be found at http :/ /www .mmrc .iss .ac .cn /~dwang /software .html.

http://www.mmrc.iss.ac.cn/~dwang/software.html

190 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
Table 3
HFE_30_96 for GVW vs. M-GVW.

No. of mat. Alg. J-pairs Mat. (deg) New
pairs

New mutant
pairs

Zeros Timing

1 GVW 186 930 × 4526(3) 278 0 0 0.020
M-GVW 186 930 × 4526(3) 278 0 0 0.020

2 GVW 1433 13558 × 31861(4) 2864 60 113 4.408
M-GVW 1433 13558 × 31861(4) 2864 60 113 4.394

3 GVW 379 12705 × 30202(4) 379 379 0 4.058
M-GVW 1260 14007 × 30623(4) 1260 1260 0 4.782

4 GVW 10760 127991 × 174308(5) 27816 6083(3) 1046 746.0
M-GVW 5450 20843 × 30259(4) 5095 5095(26) 425 7.949

Table 4
HFE_35_96 for GVW vs. M-GVW.

No. of mat. Alg. J-pairs Mat. (deg) New
pairs

New mutant
pairs

Zeros Timing

1 GVW 232 1260 × 7176(3) 345 0 0 0.047
M-GVW 232 1260 × 7176(3) 345 0 0 0.047

2 GVW 1886 21470 × 59416(4) 3818 70 135 14.60
M-GVW 1886 21470 × 59416(4) 3818 70 135 14.47

3 GVW 502 20490 × 57227(4) 504 504 0 13.75
M-GVW 1608 22098 × 57729(4) 1610 1610 0 15.90

4 GVW 15120 240727 × 383969(5) 39970 7844(2) 1335 5676
M-GVW 6720 31430 × 57261(4) 6224 6224(30) 496 27.26

to 0, and the timing for finishing this loop (given in seconds). We do not give the data
after linear polynomials are obtained.

In last matrices of Tables 3 and 4, the number of new mutant pairs “7844(2)” means
there are 7844 new mutant pairs in current matrices and 2 of them correspond to lin-
ear polynomials. Besides, since linear polynomials are found, the number 7844 are not
counted in Table 2.

It is not quite strange to find that we get more new pairs than the J-pairs to be
reduced, e.g. in the second matrix of HFE_35_96, we get 3818 new pairs by reducing
1886 J-pairs. Because in the matrix version of M-GVW, pairs that used to reduce J-pairs
can also be reduced by other pairs, which is the same as F5 does in [16].

From Tables 3 and 4, we can see that the computing procedures of these two examples
are quite similar. Taking the system HFE_35_96 for example, GVW and M-GVW
perform exactly the same for the first two matrices. Note that there are 70 mutant pairs
generated in the second matrix. To build the third matrix, GVW applies both criteria
to the J-pairs generated by these 70 mutant pairs, and only 502 pairs are not rejected.
After the elimination, 504 new pairs are found, but unfortunately, non of them are of
degree 3. So GVW has to build the forth matrix with 5-degree polynomials, and the
matrix is extremely large. Reducing this large 5-degree matrix cost 5495 seconds. To
make it worse, only two linear polynomials are found, which results in that GVW still
have to take about 2600 seconds to find all other linear polynomials. However, the case

Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192 191
of M-GVW is completely different. 1608 J-pairs are generated by the 70 mutant pairs.
Although it takes a bit more time for M-GVW to reducing the third matrix, we get
more new pairs and many of these new pairs are of degree 3. Finally, after eliminating
a 4-degree matrix, M-GVW get 30 linear polynomials, and the algorithm terminates
immediately.

6. Conclusions

In this paper, we present a variant of the GVW algorithm, called M-GVW, to avoid
rejecting J-pairs with larger signatures and lower degrees. M-GVW is exactly the same
as GVW when input systems are homogeneous, but M-GVW usually has a better per-
formance when the input systems are inhomogeneous, particularly for the HFE systems.

On implementing GVW/M-GVW, to take advantages of the efficient routines from
M4RI, we proposed a rotating swap method to do one-direction eliminations of matrices.
We modified the routine mzd_ple() of M4RI, and obtain gvw_ple(). The experimental
results show that our rotating swap method does not slow down gvw_ple(). We also
believe this rotating swap method can be easily applied to other linear algebraic package.

To obtain the best performance of the implementations of GVW/M-GVW, techniques
of sparse linear algebra must be used, since the matrices generated by Gröbner basis al-
gorithms are quite sparse. By using more sparse techniques, our implementations of
GVW/M-GVW have been greatly improved and we will report more implementing de-
tails in another paper.

References

[1] M. Albrecht, J. Perry, F4/5, preprint, arXiv:1006.4933v2 [math.AC], 2010.
[2] M. Albrecht, C. Pernet, Efficient decomposition of dense matrices over GF(2), arXiv:1006.1744,

2011.
[3] M. Albrecht, G. Bard, The M4RI library – version 20130416, http://m4ri.sagemath.org, 2013.
[4] A. Arri, J. Perry, The F5 criterion revised, J. Symb. Comput. 46 (2011) 1017–1029.
[5] B. Buchberger, Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem

nulldimensionalen Polynomideal, PhD thesis, 1965.
[6] B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Gröbner

basis, in: Proceedings of EUROSAM’79, in: Lect. Notes in Comp. Sci., vol. 72, Springer, Berlin,
1979, pp. 3–21.

[7] N. Courtois, A. Klimov, J. Patarin, A. Shamir, Efficient algorithms for solving overdefined systems
of multivariate polynomial equations, in: Proc. EUROCRYPT’00, in: Lect. Notes in Comp. Sci.,
vol. 1807, Springer, Berlin, 2000, pp. 392–407.

[8] N. Courtois, Benchmarking algebraic, logical and constraint solvers and study of selected hard
problems, http://www.cryptosystem.net/aes/hardproblems.html, 2013.

[9] J. Ding, J. Buchmann, M.S.E. Mohamed, W.S.A.E. Mohamed, R.-P. Weinmann, MutantXL, in: Pro-
ceedings of the 1st International Conference on Symbolic Computation and Cryptography, SCC08,
Beijing, China, 2008, pp. 16–22.

[10] J-G. Dumas, C. Pernet, Z. Sultan, Simultaneous computation of the row and column rank profiles,
in: Proc. ISSAC’13, ACM Press, New York, USA, 2013.

[11] C. Eder, J. Perry, F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases, J. Symb.
Comput. 45 (12) (2010) 1442–1458.

[12] C. Eder, An analysis of inhomogeneous signature-based Gröbner basis computations, J. Symb.
Comput. 59 (2013) 21–35.

http://refhub.elsevier.com/S1071-5797(16)30024-7/bib416C6272656368743130s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib416C6272656368743131s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib416C6272656368743131s1
http://m4ri.sagemath.org
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib417272693131s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib427563686265726765723635s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib427563686265726765723635s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib427563686265726765723739s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib427563686265726765723739s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib427563686265726765723739s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib436F7572746F69733030s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib436F7572746F69733030s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib436F7572746F69733030s1
http://www.cryptosystem.net/aes/hardproblems.html
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib44696E673038s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib44696E673038s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib44696E673038s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib44756D61733133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib44756D61733133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723133s1

192 Y. Sun et al. / Finite Fields and Their Applications 41 (2016) 174–192
[13] C. Eder, B.H. Roune, Signature rewriting in Gröbner basis computation, in: Proc. ISSAC’13, ACM
Press, New York, USA, 2013, pp. 331–338.

[14] C. Eder, J.-C. Faugère, A survey on signature-based Gröbner basis computations, arXiv:1404.1774,
2014.

[15] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra
139 (1–3) (1999) 61–88.

[16] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero
(F5), in: Proc. ISSAC’02, ACM Press, New York, USA, 2002, pp. 75–82.

[17] J.-C. Faugère, A. Joux, Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems
using Gröbner bases, in: Proc. CRYPTO’03, in: LNCS, vol. 2729, Springer, Berlin/Heidelberg,
2003, pp. 44–60.

[18] J.-C. Faugère, S. Rahmany, Solving systems of polynomial equations with symmetries using SAGBI-
Gröbner bases, in: Proc. ISSAC ’09, ACM Press, New York, USA, 2009, pp. 151–158.

[19] S.H. Gao, Y.H. Guan, F. Volny, A new incremental algorithm for computing Gröbner bases, in:
Proc. ISSAC’10, ACM Press, New York, USA, 2010, pp. 13–19.

[20] S.H. Gao, F. Volny, M.S. Wang, A new algorithm for computing Gröbner bases, Cryptology ePrint
archive, report 2010/641, 2010.

[21] S.H. Gao, F. Volny, M.S. Wang, A new framework for computing Gröbner bases, Math. Comput.
85 (297) (2016) 449–465.

[22] A. Hashemi, G. Ars, Extended F5 criteria, J. Symb. Comput. 45 (12) (2010) 1330–1340.
[23] D. Lazard, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations,

in: Proc. EUROCAL’83, in: Lect. Notes in Comp. Sci., vol. 162, Springer, Berlin, 1983, pp. 146–156.
[24] B.H. Roune, M. Stillman, Practical Gröbner basis computation, in: Proc. ISSAC’12, ACM Press,

2012.
[25] A. Steel, Allan Steel’s Gröbner basis timings page, http://magma.maths.usyd.edu.au/~allan/gb/,

2004.
[26] Y. Sun, D.K. Wang, A generalized criterion for signature related Gröbner basis algorithms, in: Proc.

ISSAC’11, ACM Press, 2011, pp. 337–344.
[27] Y. Sun, D.K. Wang, D.X. Ma, Y. Zhang, A signature-based algorithm for computing Gröbner bases

in solvable polynomial algebras, in: Proc. ISSAC’12, ACM Press, 2012, pp. 351–358.
[28] Y. Sun, D.K. Wang, A new proof for the correctness of the F5 algorithm, Sci. China Math. 56 (4)

(2013) 745–756.
[29] Y. Sun, D.D. Lin, D.K. Wang, On implementing the symbolic preprocessing function over Boolean

polynomial rings in Gröbner basis algorithms using linear algebra, J. Syst. Sci. Complex. 29 (3)
(2016) 789–804.

[30] Y. Sun, D.D. Lin, D.K. Wang, An improvement over the GVW algorithm for inhomogeneous poly-
nomial systems, arXiv:1404.1428 [cs.SC], 2014.

http://refhub.elsevier.com/S1071-5797(16)30024-7/bib45646572313362s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib45646572313362s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723134s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib456465723134s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753939s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753939s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753032s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753032s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753033s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753033s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753033s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4661753039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3130s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3130s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3136s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib47616F3136s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4172733039s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4C617A6172643833s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib4C617A6172643833s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib526F756E653132s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib526F756E653132s1
http://magma.maths.usyd.edu.au/~allan/gb/
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673131s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673131s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673132s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673132s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E57616E673133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E3133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E3133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E3133s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E3134s1
http://refhub.elsevier.com/S1071-5797(16)30024-7/bib53756E3134s1

	An improvement over the GVW algorithm for inhomogeneous polynomial systems
	1 Introduction
	2 The GVW algorithm revisited
	3 The M-GVW algorithm
	3.1 Motivations and main ideas
	3.2 The M-GVW algorithm

	4 On implementing M-GVW over Boolean polynomial rings
	4.1 M-GVW in a matrix style
	4.2 On computing Gröbner basis over Boolean polynomial rings
	4.3 One-direction elimination

	5 Experimental results
	5.1 Tests for gvw_ple()
	5.2 Tests for M-GVW

	6 Conclusions
	References

