
J Syst Sci Complex (2016) 29: 789–804

On Implementing the Symbolic Preprocessing Function

over Boolean Polynomial Rings in Gröbner Basis

Algorithms Using Linear Algebra∗

SUN Yao · HUANG Zhenyu · LIN Dongdai · WANG Dingkang

DOI: 10.1007/s11424-015-4085-1

Received: 4 April 2014 / Revised: 11 September 2014

c©The Editorial Office of JSSC & Springer-Verlag Berlin Heidelberg 2016

Abstract Some techniques using linear algebra was introduced by Faugère in F4 to speed up the

reduction process during Gröbner basis computations. These techniques can also be used in fast imple-

mentations of F5 and some other signature-based Gröbner basis algorithms. When these techniques are

applied, a very important step is constructing matrices from critical pairs and existing polynomials by

the Symbolic Preprocessing function (given in F4). Since multiplications of monomials and polynomials

are involved in the Symbolic Preprocessing function, this step can be very costly when the number of

involved polynomials/monomials is huge. In this paper, multiplications of monomials and polynomials

for a Boolean polynomial ring are investigated and a specific method of implementing the Symbolic

Preprocessing function over Boolean polynomial rings is reported. Many examples have been tested by

using this method, and the experimental data shows that the new method is very efficient.

Keywords Boolean polynomial rings, Gröbner basis, implementation, linear algebra.

1 Introduction

Gröbner basis is a powerful tool of solving systems of polynomial equations as well as
many important problems in algebra. Since Gröbner basis was proposed in 1965[1], many
improvements have been made to speed up the algorithms for computing Gröbner bases. One

SUN Yao · HUANG Zhenyu (Corresponding Author) · LIN Dongdai

SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China.

Email: sunyao@iie.ac.cn; huangzhenyu@iie.ac.cn; ddlin@iie.ac.cn.

WANG Dingkang

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100090, China.

Email: dwang@mmrc.iss.ac.cn.
∗This research is supported by the National Key Basic Research Program of China under Grant Nos.

2013CB834203 and 2011CB302400, the National Nature Science Foundation of China under Grant Nos.

11301523, 11371356, 61121062, the Strategic Priority Research Program of the Chinese Academy of Sciences

under Grant No. XDA06010701, and IEE’s Research Project on Cryptography under Grant Nos. Y3Z0013102,

Y3Z0018102, and Y4Z0061A02.
�This paper was recommended for publication by Editor LI Ziming.



790 SUN YAO, et al.

important improvement is that Lazard pointed out the strong relation between Gröbner bases
and linear algebra[2]. This idea has been implemented in F4 by Faugère[3], and in XL type
algorithms by Courtois, et al.[4] and Ding, et al.[5]. Up to now, Faugère’s F4[3] and F5[6] are
the most efficient algorithms for computing Gröbner bases, particularly in finite fields.

The efficiency of the F4 algorithm mainly comes from the usage of linear algebra for re-
ductions, because the most costly computation in Gröbner basis algorithms is the reduction of
polynomials. Linear algebra has also been introduced to signature-based algorithms to speed
up the efficiency, including F5 in matrix style[7, 8] and the GVW algorithm[9] in matrix style[10].

One important step in Gröbner basis algorithms that use linear algebra is to convert poly-
nomials to matrices. The matrices are constructed from two kinds of polynomials, polynomials
to be reduced and polynomials used to reduce others. When the matrices are constructed, then
the elimination of matrices can be done. The procedure of constructing matrices is done by
the Symbolic Preprocessing function in F4. There are similar functions in [7, 10]. Since mul-
tiplications of monomials and polynomials are involved in the function, constructing matrices
may be very costly if the number of polynomials/monomials is huge. This procedure may be
even more expensive over Boolean polynomial rings, because for monomials m1, m2, and t in
a Boolean polynomial ring, m1 � m2 does not always imply tm1 � tm2 w.r.t. the orderings on
monomials.

According to the authors’ knowledge, there are few papers discussing about the implemen-
tation details of the Symbolic Preprocessing function, particularly over the finite field GF (2).
In this paper, we will report our method of implementing the Symbolic Preprocessing function
over Boolean polynomial rings. The experimental results show our method is very efficient.

This paper is organized as follows. We introduce some notations and give the description of
the Symbolic Preprocessing function in Section 2. We report a method for implementing the
Symbolic Preprocessing function over Boolean polynomial rings in Section 3. Some experimental
results are given in Section 4, and concluding remarks follow in Section 5.

2 Preliminaries

2.1 Notations

Let F2[X ] := F2[x1, x2, · · · , xn] be a polynomial ring over the finite field F2 = GF (2) in n

variables X = {x1, x2, · · · , xn}, and we always require x1 > x2 > · · · > xn in this paper. Given a
monomial ordering≺ on monomials in F2[X ], for a polynomial f = xα1+xα2 +· · ·+xαt ∈ F2[X ],
the leading monomial of f w.r.t. ≺ is defined as lm(f) := max≺{xαi | i = 1, 2, · · · , t}.

Let E := {x2
1 + x1, x

2
2 + x2, · · · , x2

n + xn} be a set of polynomials in F2[X ], and we call
these polynomials field polynomials. Then Bn := F2[X ]/〈E〉 is a Boolean polynomial ring
in n variables. Elements in Bn are called Boolean polynomials. For a Boolean polynomial
f = [xα1 ] + [xα2 ] + · · ·+ [xαt ] ∈ Bn, where [xαi ] denotes the coset of xα

i ∈ F2[X ] in F2[X ]/〈E〉
and xαi is a normal form w.r.t. 〈E〉, we still write f = xα1 +xα2 + · · ·+xαt ∈ Bn in this paper
if no confusions occur. Please note that for each monomial in Bn, the degree of each variable is
at most 1.



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 791

Let M(X) := {xα | α ∈ {0, 1}n} be all monomials in Bn. Monomial orderings on F2[X ]
can be deduced to orderings on monomials of Bn directly. Please note that orderings on M(X)
are not real monomial orderings in mathematical senses. With orderings on M(X), leading
monomials of Boolean polynomials can be defined similarly.

Let f be a Boolean polynomial in Bn. Then M(f) denotes the set of all monomials appearing
in f . For a set of Boolean polynomials H ⊂ Bn, M(H) denotes the set of all monomials in
polynomials in H , i.e., the union of M(f) for all f ∈M .

2.2 The Symbolic Preprocessing Function

In Gröbner basis algorithm that uses linear algebra for reductions, including F4[3], F5 in
matrix style[7] and GVW in matrix style[10], one important procedure is constructing matrices
for eliminations. Constructing a matrix in Gröbner basis algorithms usually contains two steps.
The first step is to generate polynomials to be reduced. These polynomials generally come
from critical pairs/S-pairs. The second step is to generate polynomials that are used to reduce
others. These polynomials are always obtained from a given polynomial set. During these two
steps, all involved polynomials are converted to rows of a matrix. When all needed polynomials
have been put into this matrix, the elimination of this matrix can then be done.

In F4, Faugère gives the following function to construct matrices for eliminations. Notations
are slightly different from Faugère’s original version. Matrix F5 in [7] and matrix GVW in [10]
have similar functions.

Function Symbolic Preprocessing

Input : G, a finite subset of Bn;
L = {(t, f) | t ∈M(X), f ∈ G}, a finite subset of M(X)× Bn.

Output: H , a finite subset of Bn.

begin
H←−{tf | (t, f) ∈ L}
Done←−{lm(h) | h ∈ H}
while M(H) 
= Done do

m←− a monomial of M(H) \ Done

Done←−Done ∪ {m}
if there exists g ∈ G such that lm(g) | m then

H←−H ∪ {(m/lm(g))g}
return H

end

In the above function, the input set L are obtained from critical pairs which have been
generated earlier, and the polynomials in {tf | (t, f) ∈ L} are all polynomials to be reduced.
Polynomials used to reduce others are obtained from the set G after multiplying proper multi-
pliers at Line 8.

This function is straight, but does not contain implementing details. To implement the
Symbolic Preprocessing function efficiently over Boolean polynomial rings, we need to consider



792 SUN YAO, et al.

the following two problems.
(a) Multiplying t ∈ M(X) and f ∈ G over a Boolean polynomial ring often creates many

duplicated monomials, and these duplicated monomials usually will vanish in the product. For
example, in the Boolean polynomial ring B4 = F2[x1, x2, x3, x4]/〈x2

1 + x1, x
2
2 + x2 . . . , x2

4 + x4〉,
the product of x1x2 and x1x3 +x2 +x3 +x4 is x1x2x3 +x1x2 +x1x2x3 +x1x2x4. The monomial
x1x2x3 appears twice and should vanish. However, the duplication of monomials is usually
not easy to be detected in Boolean polynomial rings, because xα ≺ xβ does not always imply
xγxα ≺ xγxβ in Boolean polynomial rings, and consequently, monomials in the product are
usually not in a sorted order.

If the duplicated monomials in the product tf are not detected, more space will be used
to store the product and many checks, such as at Line 5, may be done to the same monomial
several times.

(b) At Line 5, we have to determine whether a monomial is in M(H) and not in Done.
This procedure may be costly when the size of M(H) and Done are huge. Unfortunately, the
size of M(H) is often very large in practical problems. For example, to break HFE challenge
1[11], a 307126× 1667009 matrix over F2 is constructed. This means about 1.7 million distinct
monomials will appear, and billions of monomials will be considered when constructing the
matrix.

Moreover, polynomials may be appended to H at Line 8, and consequently, the set M(H)
should be also enlarged. In this case, we should make sure no duplicated monomials are ap-
pended to M(H), i.e., monomials in both m/lm(g)g and M(H) should not be put into M(H),
since duplicated monomials in M(H) will cost redundant checks at Line 5.

3 On Implementing the Symbolic Preprocessing Function

In this section, we will introduce our method more specifically. First, main ideas of our
method are given in Subsection 3.1. In Subsection 3.2, we discuss about basic data structures
used in our implementation. Next, we present our method of implementing the Symbolic
Preprocessing function in Subsection 3.3. In the next following subsection, a related sub-
function is discussed. At last, a toy example is given to illustrate the method in Subsection 3.5.

In our implementation, the monomial ordering is the Graded Reverse Lexicographic (GRLex
for short) ordering.

3.1 Main Ideas

We find the two problems given in Subsection 2.2 can be abstracted to the following specific
problems:

(A) How to determine whether a monomial appears in one polynomial more than once?
(B) How to determine whether a monomial appears in a set of monomials?
A trivial method of solving the above problems is to compare monomials. That is, for

Problem (A), we can simply compare every two monomials in a polynomial to find duplicated
ones, and for Problem (B), we can simply compare the monomial with every monomial in the



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 793

set. Obviously, this trivial method is not very efficient, even though sorting monomials in the
polynomial and the set can decrease the number of comparisons.

Our main idea of solving the above two problems is using a unique monomial list for all
monomials. We require the monomial list having two properties: 1) Each monomial is at a
unique position of the monomial list; and 2) different monomials are at different positions.

Using this monomial list, Problems (A) and (B) can be solved easily.
For Problem (A), let f be a Boolean polynomial. For any monomial m in f , we can find the

position of m in the monomial list first, and then mark the information of f at m’s position. If
for some m, the information of f appears for even times, then the monomial m should vanish
in f . So to check whether a monomial is redundant in a polynomial, we only need to find the
position of this monomial in the monomial list, and check the marks for the polynomial.

For Problem (B), let M be a set of monomials. For any monomial m in M , we can find the
position of m in the monomial list, and then at m’s position we make a mark which shows that
m appears in M . Then for any monomial m′, to check whether m′ appears in M , we only need
find the position of m′ in the monomial list and check the mark whether m′ appears in M .

A key step in our method is to find the position of a given monomial in the monomial list.
This step is done efficiently by using a hash table, and it will be discussed in Subsection 3.4.

Compared with the trivial method for solving Problems (A) and (B), our method avoids
comparing and sorting monomials, and only needs to access the information of the monomial
list repeatedly. So the complexity of our method is relatively low, and the experimental results
in Section 4 show our method is indeed very efficient.

3.2 Data Structure

There are two important data structures will be used: Data structures for monomials and
for the output of the Symbolic Preprocessing function.

First, we use a monomial list to store monomials that will be used during computations. The
monomial list is an array of monomials sorted in an ascending order w.r.t. the GRLex ordering.
The length of this monomial list is dominated by a degree, say Deg Limit. That is, we always
store all monomials with degrees smaller or equal to Deg Limit in the monomial list. Positions
of monomials in the monomial list become the unique identity numbers of these monomials
throughout the computations. For example, monomials in B4 = F2[x1, x2, x3, x4]/〈x2

1 +x1, x
2
2 +

x2, · · · , x2
4 + x4〉 with Deg Limit = 2 are stored in the following list, where x1 > x2 > x3 > x4

in letters:

Identity Number 0 1 2 3 4 5 6 7 8 9 10

Monomial 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2

Please note that positions of arrays start from 0 not 1 in this paper. With this monomial list,
each monomial can be referred by its identity number, and Boolean polynomials can be stored
as arrays of identity numbers. For example, the polynomial x2x3 + x2 + x4 + 1 can be stored
as [8, 3, 1, 0].



794 SUN YAO, et al.

Second, we use a sparse matrix in row-compressed form to store all polynomials in the
output of the Symbolic Preprocessing function. This sparse matrix contains two arrays. The
array ids stores all identity numbers of the monomials that appear in the output polynomials.
For the first monomial of each polynomial, the position of its identity number in ids is stored
in the array startpos. Moreover, the last element of the array startpos gives the length of the
array ids.

For example, assume H = {x2x3 +x2 +x4 +1, x2x4 +x3, x3x4 +x1} is the output set. Using
the monomial list in the last paragraph, we can store H by the following two arrays:

startpos 0 4 6 8

ids 8 3 1 0 6 2 5 4

The identity numbers of monomials in the i-th polynomials is stored in the array ids from the
position startpos[i] to startpos[i + 1]−1.

In practical implementation, more auxiliary information should be stored. The monomial
list and the sparse matrix are defined below in C++:

monnode t ∗mon l i s t ;
matr ix t mat ;

In our implementation, the mon list array is unique, and is updated due to the maximal degree
of polynomials appearing in computations. We may use several matrices of type matrix t, since
several matrices may be constructed.

Definition of matrix t is given below:

struct matr ix t
{

int num;
int ∗ s t a r tpo s ;
int ∗ i d s ;

} ;

Annotations of members in the above structure is given below:
1) Num, gives the number of rows in a row-compressed sparse matrix, and gives the number

of columns in a column-compressed sparse matrix.
2) Startpos, points to an allocated array of integers that stores the starting position of each

row (or column). The starting position of the i-th row (or column) in the array ids is startpos
[i], where i = 0, 1, · · · , num−1.

3) Ids, points to an allocated array of all identity numbers in this matrix.



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 795

The structure monnode t is presented below:

struct monnode t
{

mon t mon ;
char type ;
int appeart imes ;
int l a s trowpos ;
int l a s t po s ;

} ;

Here are some annotations for the members of monnode t. Assume mat is a matrix to be
constructed, i.e., mat will contain all information in the output of the Symbolic Preprocessing
function.

1) Mon, is a monomial stored in type of mon t. Each monnode t corresponds to one and
only one monomial, and the monomial is stored in mon. The position of monnode t in the
array mon list is then the unique identity number of the monomial mon. Since there are many
methods of storing a monomial in Bn, the definition of mon t can be various. Take the monomial
x1x3x4 ∈ B4 for example, one can either stores exponents of each variable by bits like [1, 0, 1, 1],
or only stores the appearing subscripts of x like [1, 3, 4]. Ether method can be used as the
definition of mon t.

2) Type, shows the status of the monomial mon. type = 0, means mon does not appear
in the output matrix mat; type = 1, means mon has appeared in the output mat but is not a
leading monomial of some polynomial; type = 2, means mon has appeared in mat and is the
leading monomial of some polynomial. type is set to 0 initially. The type of mon is used to
decide whether it is necessary to search polynomials from G to eliminate the monomial mon at
Line 7 of the Symbolic Preprocessing function.

3) Appeartimes, shows how many times the monomial mon has appeared in the output
mat. This value is used to check whether mon really appears in mat, and it is also useful when
transforming mat to column-compressed form.

4) Lastrowpos, shows the position of the row where mon appears in mat for the last time.
This value is used to check whether mon appears in the same row twice (or for even times).
lastrowpos is set to −1 initially.

5) Lastpos, shows where the identity number of mon is stored in mat when mon appears
for the last time. The value of lastpos is only used when mon will appear in the same row
twice (or for even times). Specifically, if mon has already appeared in some row and the same
mon will also be appended to the same row, then both mon should vanish in this row. In
practical implementation, the identity number of the second mon will not be appended to mat,
and besides, we should also clear the record of first mon in mat. Then lastpos is used.

Please note that, memories for the arrays mon list, startpos and ids should be allocated
and adjusted during computations.



796 SUN YAO, et al.

3.3 Implementing the Symbolic Preprocessing Function

Our main implementation algorithm for the Symbolic Preprocessing function is given below.

Algorithm 2: Symbolic Preprocessing in Implementation (SPI)
Input : G, a finite subset of Bn;

L = {(t, f) | t ∈M(X), f ∈ G}, a finite subset of M(X)× Bn;
mon list, an array of monnode t;
mat, a matrix of type matrix t.

Output: The matrix mat.

begin
rowpos←−0
id length←− the length of mon list

for i from 0 to id length− 1 do
mon list[i].type ←− 0
mon list[i].appeartimes ←− 0
mon list[i].rowpos ←−− 1

for each (t, f) ∈ L do
multplypoly (t, f , mat, rowpos, mon list)
rowpos←−rowpos + 1

for i from id length− 1 to 0 do
if mon list[i].type = 1 and mon list[i].appeartimes > 0 then

if there exists g ∈ G such that lm(g) | mon list[i].mon then
multplypoly (mon list[i].mon/lm(g), g, mat, rowpos, mon list)
rowpos←−rowpos + 1

mat.num←−rowpos

return mat
end

The algorithm SPI contains three steps.
In the first step (Lines 2–7), the algorithm SPI initializes some data, including the initial

position of the row, and the members type, appeartimes, rowpos of each monomial node in the
monomial list mon list.

In the second step (Lines 8–10), the algorithm SPI computes the product of t and f from
each pair in L. The product is computed by the procedure multiplypoly, which is given later,
and the product tf is appended to the matrix mat.

In the last step (Lines 11–17), the algorithm SPI traverses all monomials in the monomial list
to find monomials that appear in mat but are not leading monomials of polynomials. In this al-
gorithm, for each monomial mon list[i].mon, mon list[i].appeartimes > 0 means mon list[i].mon
really appears in mat, and mon list[i]. type = 1 means mon list[i].mon is not a leading mono-
mial of some polynomial. If the monomial mon list[i]. mon meets the two conditions at Line 12,
then the algorithm searches G to find a polynomial g satisfying conditions at Line 13. If such
a polynomial g is found, then the product of mon list[i]. mon/lm(g) and g is computed by the



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 797

procedure multiplypoly and appended to mat. Since the algorithm SPI traverses all monomials
by a decreasing order on the monomial ordering, when adding a new polynomial (mon list[i].
mon/lm(g))g to mat at Line 14, monomials bigger than mon list[i]. mon are not affected.

In the algorithm SPI, the procedure multiplypoly(t, f , mat, rowpos, mon list) computes the
product of t and f , and append the product to mat at the row rowpos. Pseudo codes are given
below.

Procedure multiplypoly(t, f , mat, rowpos, mon list)
Input: t, a monomial in Bn;

f , a polynomial in Bn;
mat, a matrix of type matrix t;
rowpos, an integer shows a position of row in mat;
mon list, an array of monnode t.

begin
nextpos←−mat.startpos[rowpos]

if gcd(t, lm(f)) = 1 then
id←−getID(tlm(f))
mon list[id].type←−2

for each m in M(f) do
id←−getID(tm)
if mon list[id].lastrowpos = rowpos then

mon list[id].lastrowpos←−− 1
mat.ids[mon list[id].lastpos]←−− 1
mon list[id].appeartimes←−mon list[id].appeartimes− 1

else
mon list[id].lastrowpos←−rowpos

mat.ids[nextpos]←−id

mon list[id].lastpos←−nextpos

nextpos←−nextpos + 1
mon list[id].appeartimes←−mon list[id].appeartimes + 1
if mon list[id].type = 0 then

mon list[id].type←−1

mat.startpos[rowpos + 1]←−nextpos

end

The procedure multiplypoly does two things.
First, if tlm(f) is the leading monomial of tf , then the procedure multiplypoly sets the type

of the monomial tlm(f) to be 2. In the algorithm SPI, if the type of a monomial is set to 2,
it will never change until the algorithm is over. Please note that if gcd(t, lm(f)) = 1, then we
always have lm(tf) = tlm(f), but the converse is not always true in Boolean polynomial rings.



798 SUN YAO, et al.

Second, for each monomial m appearing in f , the procedure multiplypoly computes the
product tm, and then check whether the monomial tm has already appeared in the row rowpos
in mat, i.e., check whether tm will appear in the same row twice (or for even times). If tm has
already appeared at the row rowpos, then the latest appearing record of tm is cleared at Line
10; otherwise, the identity number of tm is appended to mat.

A key subroutine in the procedure multiplypoly is the function getID, which gets the identity
number of a given monomial. We will discuss this function in the next subsection.

Please note that when the algorithm SPI is over, there may exist many −1’s in the array
ids of mat. So when reading mat, such −1’s should be skipped directly.

3.4 Getting Identity Numbers of Given Monomials

In this subsection, we present our method of getting identity numbers of given monomials.
A simple method of getting the identity number of a given monomial m, is to search m

in the monomial list. However, no matter which searching algorithm is used, this searching
procedure will cost O(log(length)) comparisons of monomials, where length is the length of the
monomial list. After testing many examples, we find this searching method is not very efficient,
particularly for complicated examples.

Another method of getting the identity number of a given monomial is through a multipli-
cation table suggested by Cabarcas[12]. That is, for any monomial represented by its identity
number and any variable, we can store the identity number of the product in a table in ad-
vance. By this method, getID becomes a memory accessing process which is much faster than
a searching process. In our tests, we find this method is very efficient, but the main drawback
of this method is that the multiplication table will cost too much memory when the number of
variables is large.

In our implementation, the identity number of a given monomial is obtained through a hash
table. Specifically, let table be an array of integers, table size be the length of table, and φ be
a mapping from monomials to integers, then for each monomial m in the monomial list, we set
the value table[φ(m) mod table size] to the identity number of m. The values of table should
be updated when the monomial list is enlarged. In our implementation, chaining is used for
collision resolution[13]. By this hash table, for any given monomial m, we can compute the
value of φ(m) mod table size first, and then read the identity number of m from table directly.
Experimental results in Section 4 show this method is very efficient.

For the hash function φ, there may be many choices. In our implementation, we use the
following function. Let xα = xi0xi1 · · ·xil


= 1, where 1 ≤ i0 < i1 < · · · < il ≤ n, then we set

φ(xi0xi1 · · ·xil
) = i0 + i1 · (n + 1) + · · ·+ il · (n + 1)l.

Then φ(xα) ≥ 1 for any xα 
= 1, and we define φ(1) = 0. The idea of this hash function is to
regard (i0, i1, · · · , il) as an (n + 1)-adic number. So we have φ(xα) 
= φ(xβ) whenever xα 
= xβ .
But please note that φ(xα) ≡ φ(xβ)mod table size may hold for xα 
= xβ .

Since the time complexity of the above method is dominated by the time of accessing table,
the size of table is usually not set very large.



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 799

The above procedure of getting identity numbers for monomials can be speeded up sig-
nificantly by avoiding duplicated hash procedure of monomials. That is, if there are several
polynomials p1, p2, · · · , pl that share many monomials, then instead of getting identity numbers
for M(p1), M(p2), · · · , M(pl) separately, we can get identity numbers for M(p1, p2, · · · , pl) one
time. This method avoids many duplicated hash procedure, and makes our implementation of
F4 (given in Section 4), which uses the algorithm SPI for constructing matrices, very efficient.

3.5 A Toy Example

In this subsection, we give a toy example to illustrate how our method works.

Example 3.1 Let B4 := F2[x1, x2, x3, x4]/〈x2
1 +x1, · · · , x2

4 +x4〉 be a Boolean polynomial
ring in {x1, x2, x3, x4}, G = {f1, f2} be a subset of B4, where f1 = x1x2 + x3x4 + x2 + x4 and
f2 = x2x3 + x2, and L := {(x3, f1), (x1, f2)}. The monomial ordering is the Graded Reverse
Lexicographical ordering with x1 > x2 > x3 > x4.

Next, we construct a matrix from G and L by the algorithm SPI.
The initial monomial list used in this example is

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mon 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2 x2x3x4 x1x3x4 x1x2x4 x1x2x3

type 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

appeartimes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lastrowpos −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

lastpos 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1) The output mat is empty initially. After appending x3f1 to mat, we get

startpos 0 3

ids 14 −1 8

The monomial x3x4 vanishes because it appears twice, and the monomial list becomes

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mon 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2 x2x3x4 x1x3x4 x1x2x4 x1x2x3

type 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2

appeartimes 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

lastrowpos −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 0

lastpos 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0



800 SUN YAO, et al.

2) After appending x1f2 to mat, we get

startpos 0 3 5

ids 14 −1 8 14 10

The monomial list becomes

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mon 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2 x2x3x4 x1x3x4 x1x2x4 x1x2x3

type 0 0 0 0 0 1 0 0 1 0 1 0 0 0 2

appeartimes 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2

lastrowpos −1 −1 −1 −1 −1 −1 −1 −1 0 −1 1 −1 −1 −1 1

lastpos 0 0 0 0 0 1 0 0 2 0 4 0 0 0 3

3) Since the type of x1x2 is 1 and appeartimes = 1, the polynomial f1 is found and appended
to mat and we get

startpos 0 3 5 9

ids 14 −1 8 14 10 10 5 3 1

The monomial list becomes

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mon 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2 x2x3x4 x1x3x4 x1x2x4 x1x2x3

type 0 1 0 1 0 1 0 0 1 0 2 0 0 0 2

appeartimes 0 1 0 1 0 1 0 0 1 0 2 0 0 0 2

lastrowpos −1 2 −1 2 −1 2 −1 −1 0 −1 2 −1 −1 −1 1

lastpos 0 8 0 7 0 6 0 0 2 0 5 0 0 0 3

4) Similarly, since the type of x2x3 is 1 and appeartimes = 1, the polynomial f2 is found
and appended to mat and we get

startpos 0 3 5 9 11

ids 14 −1 8 14 10 10 5 3 1 8 3

The monomial list becomes

id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

mon 1 x4 x3 x2 x1 x3x4 x2x4 x1x4 x2x3 x1x3 x1x2 x2x3x4 x1x3x4 x1x2x4 x1x2x3

type 0 1 0 1 0 1 0 0 2 0 2 0 0 0 2

appeartimes 0 1 0 2 0 1 0 0 2 0 2 0 0 0 2

lastrowpos −1 2 −1 3 −1 2 −1 −1 3 −1 2 −1 −1 −1 1

lastpos 0 8 0 10 0 6 0 0 9 0 5 0 0 0 3



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 801

So far, no more polynomials will be appended to mat, and mat can be eliminated by linear
algebra.

4 Experimental Data

We implemented the F4 algorithm (called New-F4) over Boolean polynomial rings in C++
by using the proposed method of constructing matrices. The method of splitting matrices
given in [14] is used, and the library M4RI (version 20130416)[15] is used for the eliminations
of matrices. The monomial ordering is the Graded Reverse Lexicographic ordering.

We tested our implementation for square polynomial systems generated by Courtois[16] (Exa.
“n × n”), and HFE systems from [17]. In the examples generated by Courtois, n × n means
that the input square polynomial system has n polynomials with n variables. Our computation
platform is a MacBook Pro with 2.6 GHz Intel Core i7 CPU and 16 GB memory.

In Table 1, we list the size and density of the maximal matrices generated during the
computations of Gröbner bases. We compare the time of constructing matrices (Const. time)
with the total time of computing the whole Gröbner bases (Total time), and the ratios are also
presented (Const./Total).

From Table 1, we can see that the ratio of constructing time and total time is very low,
this show that the major time of computing a Gröbner basis is spent on eliminating matrices,
which implies our method of constructing matrices is very efficient.

Table 1 Constructing time and total time

Exa. Max matrix Density Const. time Total time Const./Total

20 × 20 23160 × 15548 3.90% 0.026 0.614 4.2%

21 × 21 27924 × 20791 3.67% 0.033 1.310 2.52%

22 × 22 63636 × 21870 3.40% 0.051 4.215 1.20%

23 × 23 41807 × 28951 4.40% 0.051 7.622 0.67%

24 × 24 241087 × 107518 2.08% 0.499 70.736 0.70%

25 × 25 290361 × 143449 2.25% 0.658 162.113 0.41%

26 × 26 347090 × 190355 2.31% 0.851 365.672 0.23%

27 × 27 409930 × 246525 2.36% 1.095 737.831 0.15%

28 × 28 489311 × 319837 2.62% 1.419 1582.947 0.09%

HFE 25 96 12479 × 13680 7.1% 0.012 0.748 1.60%

HFE 30 96 19988 × 29404 6.5% 0.024 3.622 0.66%

HFE 35 96 30081 × 55912 5.87% 0.047 12.854 0.37%

The densities of matrices reflect the number of monomials that are involved in constructing
the maximal matrices. The value of the density is affected significantly by the algorithm used
for computing Gröbner basis. Since many polynomials may have the same leading monomial,



802 SUN YAO, et al.

choosing which polynomial to construct the matrices will affect the density of the matrix. Ac-
cording to our experiments, polynomials that are generated later usually have more monomials
than the polynomials that are generated earlier, so choosing these lately generated polynomials
for constructing matrices may make the matrices denser. But the monomials in the polynomi-
als that are generated later are usually relatively smaller in the monomial ordering, since these
polynomials have probably been reduced more times. So using polynomials that are generated
later may save some time for eliminating matrices. We tested several strategies for choosing
polynomials in our implementation, and find there is no much difference in the timings. We
think this is because we use linear techniques of dense matrices for eliminations, and the timings
are not so sensitive to the densities of matrices.

We also test our implementation with intrinsic Gröbner basis functions on Maple (version
17, setting “method = fgb”), Singular (version 3-1-6), and Magma (version 2.20-3) for solving
the above systems, and the computing times in seconds are listed in Tables 2 and 3.

Table 2 Maple, Singular and Magma vs New-F4

Exam. Maple Singular Magma New-F4

16 × 16 4.088 5.210 0.130 0.066

17 × 17 9.891 12.886 0.230 0.117

18 × 18 22.340 31.590 0.950 0.209

19 × 19 48.314 84.771 0.860 0.353

20 × 20 107.064 265.325 1.000 0.614

21 × 21 218.479 724.886 2.670 1.310

22 × 22 839.067 > 1h 7.410 4.215

HFE 25 96 121.681 > 1h 1.160 0.748

HFE 30 96 619.745 > 1h 2.550 3.622

HFE 35 96 2229.239 > 1h 6.950 12.854

Table 3 Magma vs New-F4

Exam. 23 × 23 24 × 24 25 × 25 26 × 26 27 × 27 28 × 28

Magma 15.630 100.600 139.100 306.570 560.150 1169.150

New-F4 7.622 70.736 162.113 365.672 737.831 1582.947

From the above tables, we can see that our implementation of F4 is very efficient when
the examples have relative small size. We think this is because the efficient routines of dense
matrices from package M4RI are used. As the examples become complicated, the matrices
become sparser, and the dense matrix techniques will become not so efficient. So to improve
the performance of our implementation for complicated examples, we believe sparse linear
algebraic techniques must be used.



ON IMPLEMENTATION OF GRÖBNER BASIS ALGORITHMS 803

5 Conclusions

In this paper, we present a method of implementing the Symbolic Preprocessing function
over Boolean polynomial rings in Gröbner basis algorithms using linear algebra. A monomial
list is introduced to detect duplicated monomials in the products of monomials and polynomials.
The monomial list can also record the statuses of monomials, i.e., whether a monomial appears
in the matrix and whether a monomial is a leading monomial of some polynomial. When
searching polynomials that are used to reduce others, the algorithm SPI only needs to traverse
the monomial list once. Another crucial step in our method is to get the identity numbers of
given monomials, and this step is done by using a hash table as well as some techniques for
avoiding duplicated hash procedure. The experimental results show the proposed method is
very efficient. In the future, we will try to improve our implementation of F4 by using sparse
linear algebraic techniques.

References

[1] Buchberger B, Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem

nulldimensionalen Polynomideal, PhD thesis, 1965.

[2] Lazard D, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations,

Proc. EUROCAL’83, Lect. Notes in Comp. Sci., 1983, 162: 146–156.

[3] Faugère J C, A new effcient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra,

1999, 139(1–3): 61–88.

[4] Courtois N, Klimov A, Patarin J, and Shamir A, Efficient algorithms for solving overdefined

systems of multivariate polynomial equations, Proc. of EUROCRYPT’00, Lect. Notes in Comp.

Sci., 2000, 1807: 392–407.

[5] Ding J, Buchmann J, Mohamed M S E, Mohamed W S A E, and Weinmann R P, Mutant XL,

Proc. SCC’08, 2008, 16–22.

[6] Faugère J C, A new effcient algorithm for computing Gröbner bases without reduction to

zero (F5), Proc. ISSAC’02, ACM Press, 2002, 75–82, Revised version downloaded from fg-

brs.lip6.fr/jcf/Publications/index.html.

[7] Albrecht M and Perry J, F4/5, Preprint, arXiv:1006.4933v2 [math.AC], 2010.

[8] Faugère J C and Rahmany S, Solving systems of polynomial equations with symmetries using

SAGBI-Gröbner bases, Proc. ISSAC’09, ACM Press, New York, USA, 2009, 151–158.

[9] Gao S H, Volny F, and Wang M S, A new algorithm for computing Gröbner bases, Cryptology

ePrint Archive, Report 2010/641, 2010.

[10] Sun Y, Lin D D, and Wang D K, An improvement over the GVW algorithm for inhomogeneous

polynomial systems, Preprint arXiv:1404.1428, 2014.



804 SUN YAO, et al.

[11] Faugère J C and Joux A, Algebraci cryptanalysis of Hidden Field Equation (HFE) cryptosystems

using Gröbner bases, Proc. Advances in Cryptology - CRYPTO 2003, LNCS, Springer Berlin/Hei-

delberg, 2003, 2729: 44–60.

[12] Cabarcas D, An implementation of Faugère’s F4 algorithm for computing Gröbner bases, Thesis,

2010.

[13] Skiena S S, The Algorithm Design Manual, Second Edition, Springer, 2008.

[14] Faugère J C and Lachartre S, Parallel Gaussian elimination for Gröbner bases computations in

finite fields, Proc. PASCO 2010, ACM Press, 2010, 89–97.

[15] Albrecht M and Bard G, The M4RI Library — Version 20130416, 2013, http://m4ri.sagemath.org.

[16] Courtois N, Benchmarking algebraic, logical and constraint solvers and study of selected hard

problems, 2013, http://www.cryptosystem.net/aes/hardproblems.html.

[17] Steel A, Allan Steel’s Gröbner basis timings page, 2004, http://magma.maths.usyd.edu.au/ al-

lan/gb/.

[18] Li D, Liu J, Liu W, and Zheng L, GVW algorithm over principal ideal domains, Journal of Systems

Science and Complexity, 2013, 26(4): 619–633.


