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Abstract A complete solution classification of the perspective-three-point (P3P) problem is given by
using the Grébner basis method. The structure of the solution space of the polynomial system deduced
by the P3P problem can be obtained by computing a comprehensive Grobner system. Combining
with properties of the generalized discriminant sequences, the authors give the explicit conditions to
determine the number of distinct real positive solutions of the P3P problem. Several examples are
provided to illustrate the effectiveness of the proposed conditions.
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1 Introduction

The Perspective-n-Point (PnP) problem comes from camera calibration, which is to deter-
mine the position of the camera with respect to a scene object from n corresponding points. It
is a classical problem in many research fields such as image analysis, automated cartography,
robotics, etc.

In 1981, Fischler and Bolles!!l gave the general mathematical definition of the problem as
follows:

“Given the relative spatial locations of n control points, and given the angle to every pair of
control points from an additional point called the Center of Perspective Cp, find the lengths of
the line segments joining C'p to each of the control points”.

In 1984, Ganapathy!? proved that the position of the center of perspective was uniquely
determined when the number of control points were equal or greater than six. Hu, et al.[’]
showed that the P5P problem could have 2 solutions and P4P problem had at most 5 solutions.
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SOLVING THE P3P PROBLEM USING CGS 1447

In [4], Wu, et al. revised the PnP problem, and gave a systematic investigation on it from both
geometric and algebraic standpoints. Moreover, Fischler and Bolles!! also noticed that the P3P
problem had at most four possible solutions. Recently, there were some other researches about
the PnP problem, including [5-10].

There were many algorithms designed for solving the P3P problem. In 1991, Haralick, et
al.'!l reviewed the major direct solutions up to that time. Yang!*?! gave a solution classification
of the P3P problem under some non-degenerate conditions. Gao, et al.['3] used the Wu-Ritt’s
zero decomposition method, Descartes’ rule of sign and the Sylvester-Habicht sequences to
obtain a complete solution classification of the P3P problem for the first time. In [14], Reid, et
al. introduced a symbolic-numeric method, which was based on the geometric theory of partial
differential equations, for solving the problem of camera pose estimation. In 2008, Faugere,

[15] ysed the discriminant variety to give a full classification of the P3P problem in the

et al.
case where the three control points formed an isosceles triangle. In [16], Yang gave an explicit
criterion on determining the number of real roots of parametric polynomial systems.

In this article, we use the comprehensive Grobner system (CGS) and the discriminant se-
quence to solve the P3P problem. The definition of CGS was first introduced by Weispfenning
in 1992017, It can give the structure of solution space (finitely many, infinitely many, in which
their dimension) of the parametric polynomial systems in the whole parametric space. It is

el18] of a polynomial

similar to the properties of the Grébner basis. The discriminant sequenc
f(x) is similar to the sturm sequencel'® | which can give the number of distinct real roots of
f(x). By computing a minimal CGS of the parametric polynomial system deduced by the P3P
problem, we can obtain the structure of the solution space of the P3P problem. The minimal
CGS gives a disjoint partition of the parametric space. In every partition, the number of com-
plex solutions counted with multiplicities of the polynomial system is decided. Then by using
the discriminant sequence, the number of distinct real positive solutions of the P3P problem
can be determined. As a result, we give a complete solution classification of the P3P problem
by using the Grobner basis method, and the explicit conditions under which the P3P problem
has one, two, three, or four real positive solutions. Some values of parameters are given such
that the P3P problem has different number of real positive solutions.

The rest of the paper is organized as follows. In Section 2, we describe the P3P problem
and give the polynomial systems of this problem. Some notations and preliminaries about CGS
and discriminant sequence are presented in Section 3. In Section 4, a minimal CGS of the
parametric polynomial system deduced by P3P problem is computed. In Section 5, we give the
specific analysis about the solution classification of the P3P problem. Conclusions are presented

in Section 6.

2 Description of the Perspective-Three-Point Problem

Let P be the perspective point, A, B, C be the control points, l4p,lpc,lac be the length of
the three sides AB, BC, AC respectively, and p = 2 cos ZBPC,q = 2cos ZAPC,r = 2 cos ZAPB.
Let X,Y, Z be the distances between the point P and the points A, B, C, respectively.
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1448 ZHOU JIE - WANG DINGKANG

Figure 1 The P3P problem

From the triangles PBC, PAC, PAB and the Cosine Law, we obtain the following paramet-

ric polynomial system as in [13]:

Y2+ 22 —pYZ —1%, =0,
X24+ 22 —gXZ -3, =0, (1)
X24Y2—rXY — 13, =0.
In (1), Igc,lac,laB,p,q,r are parameters, and X,Y,Z are variables. The real positive
values of X, Y, Z are the solutions of the P3P problem. In the general case, the points P, A, B,C
are not co-planar, that is, p?> + ¢>+ 12 —pgr —4 # 0, and Ipc > 0,lac > 0,145 > 0. As in[13],
to simplify the equation system, we let a = ({22)%,b = (j42)?,v = (42)% 0 = £,y = L.
Then, we have
y?+1—py—av=0,
22 +1—qx—bv=0, (2)
22 +y? —ray —v=0.

The last equation of (2) is equivalent to v = 22 + y* — ray. Eliminating v in the parametric

polynomial systems (2), we obtain

p1=(1—a)y?+arzy —py —az?+1=0,

(3)
po = —by? +bray + (1 —b)x®> —qr +1=0,

where a > 0,b > 0 and p? + ¢®> + 72 — pgr — 4 # 0. The P3P problem is transformed to solve
the real positive solutions of the quadratic parametric polynomial system (3).

3 Preliminaries About CGS and Discriminant Sequence

In this section, we review the definitions of the CGS and the discriminant sequence. The
part of CGS is similar to that given by Kapur, et al.l2%, and the notation of discriminant

sequence follows that given in [18] and [21].

@ Springer



SOLVING THE P3P PROBLEM USING CGS 1449

3.1 Comprehensive Grobner System

Let k be a field, R be a polynomial ring k[U] in parameters U = {uy, ug, - , U}, and R[X]
be a polynomial ring over R in variables X = {1, 22, - ,2,} where X and U are disjoint. For
a polynomial f € R[X] = k[U][X], the leading power product and leading coefficient of f w.r.t.
the ordering <x are denoted by Ipp y (f) and lex(f), respectively. Note that lex (f) € k[U].

Given a field L, a specialization of R is a homomorphism o : R — L. We always assume L
is an algebraically closed field containing k£ and we only consider the specializations induced by
the elements in L™. That is, for @ € L™, the induced specialization oz is defined by

O-E:f'_)f(a)v

for any f € R. Every specialization ¢ : R — L extends canonically to a specialization o :
R[X] — L[X] by applying o coefficient-wise.

For a parametric polynomial system, a CGS is defined below.

Definition 3.1 Let F be a subset of R[X], A, As, -+, A; be algebraically constructible
subsets of L™, S be a subset of L™ such that S = A1 UAsU---U A, and G1,Go,--- ,G; be
subsets of R[X]. A finite set G = {(41,G1), (A2,G2), - ,(4;,Gi)} is called a comprehensive
Grobner system on S for F, if 07(G;) is a Grobner basis for the ideal (oz(F)) in L[X] for
any a € A;, i = 1,2,---,1. Each (4;,G;) is called a branch of G. If S = L™, G is called a
comprehensive Grobner system for F.

For a set A C R = k[U], the affine variety defined by A in L™ is denoted by V(A).
Following [20], a constructible set A; is defined to be of the form: A; = V(E;) \ V(N;), where
E;, N, are subsets of k[U]. We call A; the parametric constraint of the branch (4;, G;).

Definition 3.2 A comprehensive Grobner system G = {(A1, G1), (A1,G1), -+, (A1, Gi)}
for F is said to be minimal, if for each i =1,2,---,1,

1) A; # 0, and furthermore, for each 4,5 =1,2,--- 1, A; N A; = () whenever i # j;

2) for each g € G;, og(lcx(g)) # 0 for any @ € A;;

3) for all g € G4, Ippx(g) is not divisible by any leading power products of G; \ {g}.

For any branch (A;,G;) € G, under the parametric constraint A;, the total number of
solutions of the system {g =0 | g € G;} can be decided by the following lemma. See Chapter 4
of [22] for details.

Lemma 3.3 Let k be a field, L be an algebraically closed field containing k, and I =
(f1, f2, -+, fs) be a zero dimensional ideal in k[X]. Then the quotient ring k[X]/I is a vector
space over k. Furthermore, the total number of solutions of the system {f1 =0, fo=0,---, fs =
0} in L™, counted with multiplicities, is the dimension of k[X]/I.

Let I be a zero dimensional ideal, and G be a Grobner basis of I w.r.t. a monomial order
<. Since dim k[X]/I = dim k[X]/(Ipp(I)), the dimension of k[X]/I is equal to the number
of the monomials which are not divided by any leading power products of polynomials in G,
where (lpp(I)) is the ideal generated by the leading power product of polynomials in I.

We give an example to illustrate the minimal CGS and the above Lemma 3.3.
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1450 ZHOU JIE - WANG DINGKANG

Example 3.4 Let Fy = {2% — 32, ab’z? — b?xy?,y? — ax + 1} = {f1, f2, f3} be a subset
of kla,b][z,y], where a,b are parameters and z,y are variables. We compute a minimal CGS
for Fy, and determine the number of solutions (counted with multiplicities) of the system
Fy={fi=0,f2=0, f3 =0}.

A minimal CGS for F; w.r.t. the lexicographic term ordering = > y is

G={(V@)\V®*),{1}), (V) \ V(a), {y* — a*y* + 20" + 1,az — y* — 1}),
(V(a,b) \ V(0), {y* + 1,2% + 1})}.

The branch (V(0) \ V(b?), {1}) indicates that a Grobner basis of (Fy) is G1 = {1} when b # 0.
Thus, F» has no solution when b # 0.

The branch (V(b) \ V(a), {y* — a®y® + 2y? + 1, ax — y* — 1}) indicates that a Grébner basis
of (F1) is Go = {y* —a®y? +2y? + 1,az — y* — 1} when a # 0 and b = 0. Since the monomials
1,9,y? and y? are not divided by the leading power products of polynomials in G, Fy has four
solutions when a # 0 and b = 0.

The branch (V(a,b) \ V(0), {y? + 1,2? + 1}) indicates that a Grébner basis of (F}) is G3 =
{y?>+ 1,22 + 1} when a = 0 and b = 0. Since the monomials 1, x,y, and zy are not divided by
the leading power products of polynomials in G35, F> also has four solutions when a = 0 and
b=0.

3.2 Discriminant Sequence

Given two parametric polynomials f(z) = apz™ + a12" ! + -+ + a,, and g(x) = boa™ +
bix™ ! + ... +a,, in k[z], where agby # 0, we define the resultant of f and g w.r.t. x to be the
determinant

ag bo
ai ao b1 bo
a - by
“lag by
Res(f, g,2) = det : a : by
an bm,
an 1 bn
an bin

(m+n)x(m+n)
From the property of resultant, f and g have common zeros if and only if Res(f, g, x) = 0.
Let f’ be the derivative of f w.r.t. z, r(x) be the remainder of f’g divided by f. Assume

r(z) = 1zt 4+ 2™ 2 + - 4+ ¢,. The following 2n x 2n matrix is called the generalized
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SOLVING THE P3P PROBLEM USING CGS 1451

discrimination matrix of f(x) with respect to g(x):

ap ai az --+ Qap
0crco-- cp
ag ai * - Ap—1 Gn
Discr(f,g) = 0 ¢ -+ cpo1 Cn
apg a1 a2 -+ ap
0 ¢ ¢+ ¢y

Let Dy = 1 and denote the even principal minors of Discr(f, g) by D1, D2, -+, D,. We call
the n + 1 tuple
[D07D17 e 7Dn]

the generalized discriminant sequence of f(z) w.r.t. g(x) and denote it by GDL(f, g). Particu-
larly, we call GDL(f,1) the discriminant sequence of f(z).

Given a sequence D = [Dg, D1, - -+, D], we call Sign(D) = [sign(Dy), sign(D1), - - - ,sign(Dy,)]
the sign list of the sequence D, where

1, if D; > 0;
sign(D;) =< 0, if D; = 0;
-1, if D; < 0.
We construct the revised sign list S = [sq, $1,- - , $n] of D according to the following rule:
(i) If [sign(D;),sign(Dit1),- - ,sign(Dit;)] is a section of Sign(D), where sign(D;) # 0,
sign(D;y1) = - - - =sign(D;yj-1) = 0, sign(D;4,) # 0, then we replace the subsection [sign(D;1),

Ty, sign(Diﬂ;l)] with
[_Sign(Di)7 _Sign(Di)7 blgn(Dl)v SigH(Di), _blgn(Dl)7 _Sign(Di)7 blgn(D1)7 blgn(Dl)v e ]

keeping the number of terms;
(ii) Otherwise, let sy = sign(Dy).
For simplicity, we use the notation RSGDL(f, g) to denote the revised sign list of GDL(f, g).
Yang, et al.['8] gave a method to determine the number of distinct real roots of a polynomial.
Lemma 3.5 Given two polynomials f(x) and g(z) with real coefficients, if the number of
the sign changes of the revised sign list of GDL(f, g) is v, and the number of the non-vanishing
members of the revised sign list is I, then

I—2v—1=t{zeR[f(x) =0,9(x) >0} — t{z € R[f(2) = 0,9(x) <0},

where #{-} represents the card of the set {-}. In particular, if g(x) = 1, then the number of
distinct real Toots of f(x) equals I —2v — 1.
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1452 ZHOU JIE - WANG DINGKANG

Since {x € R|f(xz) =0} = {z € R|f(x) = 0,g9(z) > 0} U {z € R|f(x) =0,9(x) =0} U{z €
R|f(z) = 0,g(z) < 0}, the following consequence!'®! is obvious by Lemma 3.5.

Lemma 3.6 For two polynomials f(z) and g(x) with real coefficients, let l1,l2,v1,v2 be
the number of the non-vanishing members and the sign changes of RSGDL(f,1), RSGDL(f, g)
respectively. If f and g have no common zero, then #{z € R|f(z) = 0,g(z) > 0} = 3(I1 + 2 —
2u1 — 2uy — 2).

Let f(x),g(x), h(z) be polynomials in R[x]. The card of {x € R | f(x) = 0} is denoted by
Cardg(f), the card of {x € R | f(z) = 0,g(x) > 0} is denoted by Cardg(f,g > 0), and the card
of {x e R| f(z) = 0,g9(x) > 0,h(x) > 0} is denoted by Cardgr(f,g > 0,h > 0). The following

result is similar to the equation (7) in [13].

Proposition 3.7 Let f(z) and g(x) be two polynomials in R[z]. If Res(f,z,z) # 0 and
Res(f,g,x) # 0, then
Cardgr(f,g > 0,z > 0)
1
= §(CardR(f,x > 0) + Cardg(f,g > 0) + Cardgr(f, zg > 0) — Cardg(f)). (4)

Proof  Since

Cardg(f) = Cardgr(f,z > 0) 4+ Cardr(f,z = 0) + Cardr(f,z < 0),

(f,g > 0) = Cardg(f,g > 0,z > 0) + Cardg(f,g > 0,z = 0) + Cardr(f,g > 0,z < 0),
Cardg(f,z < 0) = Cardr(f,g > 0,2 < 0) 4+ Cardr(f,g = 0,2 < 0) + Cardr(f,g < 0,z < 0),
Cardg(f,zg > 0) = Cardg(f,g > 0,z > 0) + Cardr(f,g < 0,z < 0),

we have

Cardr(f,g > 0,2 > 0)
1

= §(CardR(f, zg > 0) 4+ Cardr(f,z > 0) + Cardgr(f, g > 0) — Cardr(f)
+Cardgr(f,x = 0) + Cardgr(f,g9 = 0,2 < 0) — Cardr(f,g > 0,z = 0)). (5)

If Res(f,z,z) # 0 and Res(f,g,z) # 0, then Cardg(f,z = 0) = 0, Cardg(f,g > 0,2 =0) =0
and Cardg(f,g =0,z < 0) = 0. Thus, we have

Cardr(f,g > 0,2 > 0) = %(CardR(f,a: > 0) + Cardg(f, g > 0)+ Cardr(f,xg > 0) — Cardg(f)).

The proof is completed. 1
Using the same notation as in [13], C}n’J)(g > 0) denotes the conditions that make f(z)

having j real solutions such that g > 0 if f(x) = 0 has n real solutions.

4 The CGS of P3P Problem

In this section, we first compute a minimal CGS of the parametric polynomial systems (3),

and then analyze the number of complex solutions of the P3P problem from the CGS.
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Many algorithms have been provided for computing the CGS, such as CGBI'", ACGB[?3,
and BUILDTREER4. In this article, we use the implementation’ given by Kapur, et al.[??! in
the computer algebra system Singular.

We computed a minimal CGS G on S = V(0)\V(a, b, p? + ¢ + 72 — pgr — 4) for {p1,p2}
in (3) w.r.t. the lexicographic term ordering y > x. There are total 13 branches in G, which
have complex solutions. We list them in the following.

Branch 1 (V(E)\V(N)),G)
Ey={ei1,e1,2,-- ,e143},

Ny = {abg(—pgr + p* + ¢*> +1r? — 4)(—pqr + ar* + ¢* + r* — 4a)(—pq + 1)},
Gl - {f1791}7

fil@) = (par — ar® = ¢* — ¢r® + 4a)(qz — 1),
g1(x,y) = b11y + b1 ox* + b1 322 + by 47 + by 5.
Branch 2 (V(E2)\V(N2),G2)
Ey={b—1,a—3,7%—3,qr — 3p,pr — q,3p* — ¢*},
Ny = {abg(—ar? + p* + 4a — 4)(¢* - 3)},
G2 = {f2, 92},

fa(z) = (¢* = 3¢)r — ¢* +3,
g92(z,y) = (¢* — 3)y + (3r — 3pq)=.
Branch 3 (V(E3)\V(N3),Gs)
Es ={e31,€32," "+ ,e37},
N3 = {abpr(—pqr + p? + ¢® + r? — 4)(=bpgr + bp? + bg* + ar? + br? — p* — 4a — 4b + 4)(ar?
—p* —4a+4)},
Gs = {f3,93},

fa(z) = CL?,,NC2 + ag2x + as 3,
g3(x,y) = b3 1y + b3 22> + b3 322 + by 4.
Branch 4 (V(E4)\V(N4),G4)
Ey={q,p,abr?> — (a +b—1)?},
Ny = {abr(r* —4)(ar? + br? —4a — 4b+4)(a® —2ab+b* —a—b)(a+b—1)(—a+ b+ 1)},
Gy = {f1, 94},

fa(x) = (a+b—1)(a® — 2ab+ b?> — a — b)a® + a®br? — 4ab + 4ab,
ga(z,y) = (a —b—1)ry + (br? — 2a — 2b + 2)z.

fThe implementation can be found at http://www.mmrc.iss.ac.cn/ dwang/software.html.
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Branch 5 (V(E5)\V(N5),G5)

Es ={r,a+b—1,p* — 4b},

N5 = {bp(q* +4b — 4)(=b + 1)(bg® + 4b* — 4b)(¢* + 4b — 4)},
Gs ={f5:95},

fs(x) = (¢* +4b — 4)a?,
g5(2,y) = 2py + (¢ + 4b — 4)2% + 22q — 4.

Branch 6 (V(Es)\V(Ng),Gs)

Ee¢={r,a+b—1},

N = {bp(p* + ¢* — 4)(=b + 1)(bp? + bg® — p*)(—p* + 4b)},
Go = {fs, 96},

g6(2,y) = py +2q — 2.
Branch 7 (V(E;)\V(N7),Gr)
E7; = {abr? — (a +b— 1)},
N7 = {ab(—pqr + p* + ¢* + 12 — 4)(aqr? — apr + bpr — 2aq — 2bq — pr + 2q)((a — 1)pgr
—(a+b—1)p* - (a—b—1)r?})},
Gr ={f7,97},

{ fo(x) = (bp* + bg® — p?)a® + (p*q — 4bq)x — p* + 4b,

fr(z) = ar12® + a7 22 + a7 3% + ar 4,
97(1‘, y) = b7,1y + b7721‘3 + b773.132 + b774.13 + b775.
Branch 8 (V(Eg)\V(Ng),Gs)

Es =10,

Ng = {ab(—pgr +p* + ¢* + 1% = 4)(abr? — (a + b —1)*)((a — 1)pgr — (a +b—1)p?
—(a=b-1)r?)},

Gs = {fs, g3},

fe(z) = a&lx4 + a8,2$3 + a8,3$2 + ag 4% + asg s,

gs(@,y) = bs 1y + bs 22 + bg 322 + bg 4 + bs 5.
Branch 9 (V(Ey)\V(Ng),Gy)
Eg = {p,a—b—1,br> +r% — 4b},
No = {b(¢*> + 1% —4)(b+ 1)(bg* + 2br* + 1> — 8b)},
Go = {f9, 99},

fo(z) = (> +r? = 4)z,
99(z,y) = by + (=br — r)zy + (b +2)z* — 1.

@ Springer



SOLVING THE P3P PROBLEM USING CGS 1455

Branch 10 (V(E10)\V(N1o), G1o)
Eyo={r,p,a+b—1},

Nio = {bg(q® = 4)(=b+ 1)},

G1o = {f10, 910},

fro(z) = 2q -2,
gro(x,y) = by? + (b — 1)a® + 1.
Branch 11 (V(E11)\V(N11),G11)
Ey = {r,p},
Nii = {ab(¢®> —4)(a+b—1)},
G = {fi1,911},

fu@)=(a+b—-1)2%2+(¢—aq)r+a—b—1,
g1 (x,y) =by? + (b —1)2® + 2q — 1.

Branch 12 (V(E12)\V(N12),G12)

Eiz ={abr?* — (a+b—1)2,(a — D)pgr — (a +b—1)p? — (a — b — 1)r?, bp*r + pgr? — br3
—apq — bpg — p?r — 3 + pq + 2ar + 2br — 2r,bp> — apg® + p?qr — bpr? — p* + pg?
+agqr — bqr — pr? + 2ap + 2bp — qr — 2p},

N1z = {abpr(—pqr + p* + ¢* + 2 — 4)(aqr? — apr + bpr — 2aq — 2bq — pr + 2q)(—pqr
+ar? +br? + 1% — 4a — 4b + 4)},

G2 = { f12, 912, h2},

Ji2(x) = CL12,1$2 + ai2,2x + a2 3,
g12(z,y) = by? — bpy — ax® + agr — a + b,
his(z,y) = broy —ybp + (1 —a — b)x? + (aq — ¢)xr —a + b+ 1.
Branch 13 (V(E13)\V(Ni3),G13)
Bz ={(a—1)pgr — (a+b—1)p* = (a = b—1)r?},
Niz = {abr(abr® — (a +b—1)?)(=pqr + p> + ¢* + 1> — 4)},
Gi3 = {f13,913, h13},
fis(x) = CL13,13?3 + a13,2$2 + ai13,3¢ + ai3 4,
g13(z,y) = by? — bpy — ax?® + agr — a + b,
hiz(z,y) = broy —bpy + (1 —a — b)x? + (ag — ¢)x —a + b+ 1.
In the above, by 1,---,b15; a3,1,a32,033; b3,1,b32,b33; ar1,---,ar4; by, ,bra; agy, -,
asg 5; b8,1> ce 7b8,5§ a12,1,012,2,a12,3; A13,1, 13,2, @13,3 and €1,1," "
nomials in k[a, b, p, ¢, 7], which can be found in the appendix.
In every branch (A;, G;), since G; is a Grobner basis of {p1,p2} under the parametric

constraint A;, the number of complex solutions counted with multiplicities of polynomials in
G; is decided. From Lemma 3.3, we have the following results.

,€1,45;€3,1, " , €37 are poly-
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Theorem 4.1 The P3P problem has one complex solution under the parametric constraint
Ay or As; has two complex solutions under the parametric constraint As, Ay, As, Ag, Ag or
Aqp; has three complex solutions under the parametric constraint Ay or Aia; and has four

complex solutions under the parametric constraint Ag, A1 or Ais.

Note that the number of complex solutions may be different from the number of real solu-

tions.

5 The Number of Real Solutions of P3P Problem

In this section, combing the minimal CGS G with the discriminant sequence, we give explicit
conditions to determine the number of distinct real positive solutions of the P3P problem in
every branch of G.

In Branch 5, the solution of {f5 = 0,95 =0} is {x =0,y = %} In Branch 9, the solutions

of {fo =0,g9 =0} are {x =0,y = \/%} and {a: =0,y = —\/%} There is no positive solution
in these two branches, so we do not discuss them below. We divide the rest 11 branches of G
into six cases to analyze the number of real solutions of the P3P problem.

Case 1 Branch 1, Branch 2 and Branch 10;

Case 2 Branch 3, Branch 4, Branch 6, and Branch 11;

Case 3 Branch 7;

Case 4 Branch §;

Case 5 Branch 12;

Case 6 Branch 13.

In each case, some values of parameters are given such that the P3P problem has different

number of real positive solutions.

5.1 The Number of Real Solutions in Case 1

In Case 1, f;(x) is linear in x, and g;(x,y) is linear or quadratic in y, for ¢ = 1,2, 10.
Under the parametric constraint A;, the P3P problem has at most one positive solution by
Theorem 4.1, where ¢ = 1,2, 10.

In Branch 1, the solution of {f; = 0,91 =0} is {z = %,y = —ﬁ(bm +b1,3¢% + b1.4q® +
b15¢*)}. Hence, the conditions under which the P3P problem has one positive solution are
g>0and —by1(b12+ b1,3q2 + b1}4q3 + b1}5q4) > 0, under the parametric constraint A;.

In Branch 2, the solution of {fo = 0,92 = 0} is {z = %7 Y= %} Hence, the conditions under
which the P3P problem has one positive solution are p > 0 and ¢ > 0, under the parametric
constraint As.

In Branch 10, the solutions of {fi0 = 0,910 = 0} are {x = %,y = %} and

{a: = %,y = —,/4(1;(1#}. Hence, the conditions under which the P3P problem has one

positive solution are ¢ > 0 and 4(1 — b) — ¢*> > 0, under the parametric constraint Ajg.
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5.2 The Number of Real Solutions in Case 2

In Case 2, f;(z) is quadratic in = and g;(x,y) is linear or quadratic in y, i = 3,4,6,11. Under
the parametric constraint A;, the P3P problem has at most two distinct positive solutions by
Theorem 4.1, where i = 3,4,6, 11.

Since g;(x,y) is linear for ¢ = 3,4,6, we can express y as a polynomial g;(z) with the
variable . In Branch 11, we can express y2 = —%((b —1)2% +2q — 1) from g11(x,y) = 0. Let
gii(x) = —(b—1)x? — xq + 1. The card of {(z,y) € (R")? | fi(x) = 0, gi(z,y) = 0} is equal to
the card of {z € RT | fi(z) = 0,gi(x) > 0}, for i = 3,4,6, 11.

All these branches can be treated similarly. We take Branch 11 as an example.

fitlz) =(a+b-1)2?+ (¢ —ag)r+a—-b—-1=0,

6
gu(x) =—(b—-1)2° —2q¢+1>0. (6)

Firstly assume that Res(f11,z,x) # 0 and Res(f11, 911, %) # 0. We have the following corollary
from Proposition 3.7.

Corollary 5.1 Under the parametric constraint Aq1, if Res(f11,2,2) =a—b—1+#0 and
Res(fi1,911,2) = b*((a — b+ 1) — ag®) # 0, then

(i) P3P problem has two positive solutions if and only if Cardr(f11) = 2, C}?f) (x > 0),
¢ (g1 > 0) and € (zg11 > 0).

(ii) P3P problem has one positive solutions if and only if one of the following conditions
hold:

1) Cardz(fi1) = 2, €2 (z > 0), ¢V (g > 0) and ) (wgry > 0);
2) Cardg(f11) = 2. €V (@ > 0), ¢2? (g1 > 0) and C§ o (a: > 0);
3) Carde(fu) = 2. €2V (2 > 0), ¢V (g1 > 0) and c}1; )(xgu > 0);

4) Cardz(f11) = 1, C{"V(@ > 0), ¢V (gn1 > 0) and " (zg11 > 0).

According to Lemmas 3.5 and 3.6, we have the following results.

Corollary 5.2 Let f(z) and g(x) be two polynomials having no common zero, where f(x)
is quadratic. Assume GDL(f,1) = [1, By, B2|, GDL(f, g) = [1,C4,Cs], and let l1,1lz,v1,v2 be
the numbers of the non-vanishing members and the sign changes of RSGDL(f,1), RSGDL(f, g)
respectively. Then the following assertions hold:

1) Cardr(f) =2 if and only if [y = 3,v1 = 0;

1.1) C(2 2)(9 > 0) if and only if lo = 3,v3 = 0;

1.2) Cj(c2 1)(g > 0) if and only if lo =3,v9 =1, orls = 1,v3 = 0;

2) Cardg(f) =1 if and only if Iy = 2,v1 = 0;

2.1) C](cl’l)(g > 0) if and only if lo = 2,v2 = 0.

If Res(f11,2,2) =a—b—1 =0, we have following results.

Theorem 5.3 Under the parametric constraint A1, if Res(fi1,2z,2) = 0, then P3P
problem has at most one positive solution. Furthermore, it has one positive solution if and only
if >0 and (b+1)¢*> —4 < 0.
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Proof 1If Res(f11,2,2) = a —b—1 = 0, then the number of real positive solution of
System (6) is equal to the following system:

7
gn(e) =—(b-1)z* —2¢+1>0. (7)

The solution of fAlll(x) is 2 = Z. Hence, the system (7) has at most one real positive solution.
Furthermore, it has one real positive solution if and only if ¢ > 0 and (b+ 1)¢? — 4 < 0. The
proof is completed. |

If Res(fi1,011,7) =b%((a —b+1)? — ag?) = 0, we have following results.

Theorem 5.4 Under the parametric constraint A1y, if Res(fi1,g11,2) =0, then

1) If ¢ = =21 P3P problem has one positive solutions if and only if a —b+1#0, x5 > 0

\/_ )
and (1 = b)z3 — qra +1 >0, where 5 = \fa(ibbll)'
2) Ifq=—*% \/bfl , P3P problem has one positive solutions if and only ifa—b+1# 0, T3 > 0
and (1 —b)T3” — qT2 + 1 > 0, where T3 = \/;(ibbl :

Proof  If Res(f11,911,2) = 0, then f11(z) and g11(z ) have common zeros.

_ Va(a—b—-1)
T atb—1

When g = 2=t the solutions of fi; = 0 are {z; = \/—, To = }, and the solutions

\/E 9
of g11 = 0 are {2} = ﬁ,x'g = 1—‘/5)} If 2y = ab, i.e. a+b—1=0, then {f11 = 0,911 > 0}
has no real positive solution. If xo # 24, 72 > 0 and (1 — b)a3 — gz2 + 1 > 0, then system
{f11 = 0,911 > 0} has one real positive solution.

When ¢ = “\}’—“, the solutions of f1; = 0 are {F1 = —ﬁ,x_g = —%} and
the solutions of g11 = 0 are {T1’ = —ﬁ,@' = —1—‘/_Eb} If 73 = 75/, ie., a+b—1 = 0, then
{f11 = 0,911 > 0} has no real positive solution. If 73 # T3’ , Tz > 0 and (1 —b)T3> —gTz +1 > 0,
then system {f11 = 0,g11 > 0} has one real positive solution. The proof is completed. |

The following example shows that there are values of parameters in A;; such that the P3P
problem has one or two real positive solutions.

Example 5.5 Let P, ={a=1,b= %,7‘ =0,p=0,q= ——} and P, = {a = ,b =1,r=
0,p=0,qg = 19—4} in A;; = V(E11) \ V(N11). When the parameters a, b, 7, p, g are assigned the
value Pj, the P3P problem has one real positive solution. When the parameters are assigned

the value P», the P3P problem has two real positive solutions.

When the parameters are assigned the value P;, we have Res(f11,,2)|p, # 0, Res(f11, 911,
z)|p, # 0, RSGDL(f11,1)[p, = [1,1,1], RSGDL(f11,2)|p, = [1, -1, —1], RSGDL(f11, 911)|p, =
[1,1,-1) and RSGDL(f11,zg11)p, = [1,1,1]. By Corollary 5.2, Cardg (f11) = 2, C¥:"(z > 0),
C}il)(gn > 0), C( ’ )(J;gll > 0). According to Corollary 5.1, the P3P problem has only one
real positive solutlon when {a =1,b= %,r =0,p=0,q9= _Z .

When the parameters are assigned the value P, we have ReS(f117 x,2)|p, # 0, Res(f11, 911,
@)|p, # 0, RSGDL(f11,1)|p, = [1,1,1], RSGDL(f11,2)|p, = [L,1,1], RSGDL(f11,911)|p, =
[1,1,1] and RSGDL(f11,zg11)|p, = [1,1,1]. By Corollary 5.2, Cardz(fu) = 2, Cy>? (z > 0),
C;iz) (911 > 0), C](cli )(xgﬁ > 0). According to Corollary 5.1, the P3P problem has two real
positive solutions when {a = 5,b=1,r=0,p=0,9 = 4 }.

@ Springer



SOLVING THE P3P PROBLEM USING CGS 1459

5.3 The Number of Real Solutions in Case 3

In Case 3, f7(x) is cubic in « and g7(x,y) is linear in y, where

fr(z) = a7 123 + a7 20® + a7 3 + a7 =0,

g7(z,y) = by 1y + by 22> + b7 327 + by sz + by 5 = 0.

(®)

Under the parametric constraint A7, the P3P problem has at most three different positive
solutions by Theorem 4.1.
The number of positive solutions of the system (8) equals that of the system:

fr(x) = a712 + aro2® + a7 3x 4+ a7y =0,

9)
g~7(33) = —b7,1(b772333 + b7,3a:2 + b774a: + b7,5) > 0.

We first assume Res(f7,x,x) = ar4 # 0 and Res(f7, g7, ) # 0. As in Case 2, from Propo-
sition 3.7, we have the following results.

Corollary 5.6  Under the parametric constraint Az, if Res(f7, 2, x) # 0 and Res(f7, g7, x)
#0, then

(i) P3P problem has three positive solutions if and only if

Cardz(fr) =3, 1% (2 > 0), (g7 > 0) and ¢ (xg7 > 0);

(ii) P3P problem has two posztwe solutwns if and only if

1) Cardz(f7) =3, C2% (@ > 0), €2 (g7 > 0) and 7 (27 > 0);

2) Cardg(f7) =3, C(3 2)(x > 0), C(3 3)(97 > 0) and C(3 2)(9697 > 0);

3) Cardg(f7) = 3, c](;j Dz >0), c< (g7 > 0) and € )

4) Cardz(fy) = 2, PP (2 > 0), c< 2 (Gr > 0) and €7 (g7 > 0);

(iii) P3P problem has one posztwe solutzons if and only if one of the following conditions
hold:

xg7 > 0);

1) Cardz(fr) = 3, ¥ (2 > 0), €2V (g7 > 0) and 2 (27 > 0);
2) Cardg(f7) =3, V(x> 0), C <3 (g > 0) and C§ G (2g7 > 0);
3) Cardz(fr) =3, C{*V(z > 0), C f V(g > 0) and c<3 (2G> 0);
4) Cardz(fr) =3, V(> 0), ¢ >(g > 0) and c<3 2 (zge > 0);
5) Cardg(f7) =3, 3% (z > 0), ¢V (g7 > 0) and C§ G (2g7 > 0);
6) Cardz(fr) =3, % (x> 0), C <3 (G > 0) and c<3 D(zgr > 0);
7) Cardg(fr) = 2, % (2 > 0), c<2 ”(97 > 0) and c<2 ”(xg; > 0);
8) Cardg(f7) = 2, ¢V (@ > 0), ¢ (g7 > 0) and ¢V (2g7 > 0);
9) Cardz(fr) = 2, €2V (@ > 0), c<2 V(g > 0) and c< 2 (2G> 0);

10) Cardg(f7) = 1, "V (@ > 0), c<1 (g7 > 0) and c<1 Y(zg > 0).
According to Lemmas 3.5 and 3.6, we have the following results.

Corollary 5.7 Let f(z) and g(x) be two polynomials having no common zero, where f(x)
is cubic. Assume GDL(f,1) = [1, B1, B2, B3], GDL(f,g) = [1,C1, Ca, Cs], and let Iy, 1, v1,v2 be
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the numbers of the non-vanishing members and the sign changes of RSGDL(f, 1), RSGDL(f, g)
respectively. Then the following assertions hold:

1) Cardr(f) = 3 if and only if [y = 4,v1 = 0;

1.1) 0;3,3) (g >0) if and only if lo = 4,v3 = 0;

1.2) C;B’Q)(g > 0) if and only if lo =4,v9 =1, orls = 2,v3 = 0;

1.3) C](cg’l)(g > 0) if and only if lo = 4,v9 =2, orlo =2,v3 = 1;

2) Cardg(f) = 2 if and only if Iy = 3,v1 = 0;

2.1) C;Q’z)(g > 0) if and only if lo = 3,v3 = 0;

2.2) C;Q’l)(g > 0) if and only if lo =3,v2 =1, orle = 1,v3 =0;

3) Cardgr(f) =1 i¢f and only if h =4,v1 =1 orly =2,v1 =0;

3.1) Cj(cl’l)(g >0) if and only if l; =4,v1 =1 orly =2,u3 =0.

If Res(f7,x,x) = 0 or Res(f7, g7, ) = 0, the problem degenerates to a quadratic case which
can be treated similarly as in Case 2.

The following example shows that there are values of parameters in A7 such that the P3P
problem has one, two or three real positive solutions.

Example 5.8 Let P, ={a=1,b=1,r=1,p = %,q =-3} Ph={a=1b=1r=
O,p=itg=3%},and s={a=1b=1,r=1,p=2¢=2%}in A; = V(E7) \ V(N;). When
the parameters a,b,r,p,q are assigned the value P;, the P3P problem has one real positive
solution. When the parameters are assigned the value P,, the P3P problem has two real
positive solutions. When the parameters are assigned the value Ps, the P3P problem has three

real positive solutions.

When the parameters are assigned the value Py, we have Res(f7, z, x)|p, # 0, Res(f7, g7, 2)|p,
7& 0, RSGDL(f7,1)|p1 = [1,1,—1,—1], RSGDL(f7,x)|p1 = [1,1,1,—1], RSGDL(f7,_§7)|P1
= [1,1,-1,-1] and RSGDL(f7,zg7)|p, = [1,-1,—1,1]. By Corollary 5.7, Cardg(f7) = 1,

C}i’l)(x > 0), Cj(cl’l)(g? > 0), Cj(ci’l)(a:g? > 0). According to Corollary 5.6, the P3P problem has
3
5 .

When the parameters are assigned the value P, we have Res(f7, z, x)|p, # 0, Res(f7, g7, )| p,
7& 0, RSGDL(f7, 1)|P2 = [1, 1, ]., 1], RSGDL(f7,x)|p2 = [1, ]., 1, 1], RSGDL(f7,§7)|P2 = [1, —1,
—1,-1] and GDL(f7,zg7)|p, = [1,—1,—1,—1]. By Corollary 5.7, Cardr(f7) = 3, C;f’g)(x > 0),

C}?’Q) (g7 > 0), Cj(ci”z)(a:g? > 0). According to Corollary 5.6, the P3P problem has two real

positive solutions when {a =1,b=1,7=0,p = %7 qg= %}

only one real positive solution when {a =1,b=1,r=1,p= %, q=—

When the parameters are assigned value Ps, we have Res(f7, z, z)|p, # 0, Res(f7, g7,)|p, #
0, RSGDL(f7,1)|p, = [1,1,1,1], RSGDL(fr,2)|p, = [1,1,1,1], RSGDL(f1,§7)|p, = [1,1,1,1]
and RSGDL(fr, 247)|p, = [1,1,1,1]. By Corollary 5.7, Cardz(f7) = 3, €2 (z > 0), €2 (g7 >
0), C}?’B) (zg7 > 0). According to Corollary 5.6, the P3P problem has three real positive solutions

when {a=1,b=1r=1p=7%q9=2}
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5.4 The Number of Real Solutions in Case 4

In Case 4, fs(x) is quartic in « and gg(z,y) is linear in y, where

fs(z) = ag2? + ag 22 + as 32% + ag ax + ag s = 0,

(10)
gs(z,y) = bs 1y + bg 22> + bg 322 + bg 4z + bg 5 = 0.

Under the constraint of Ag, the P3P problem has at most four different positive solutions by
Theorem 4.1.

The number of positive solutions of the system (10) equals that of the system:

fs(z) = ag2? + ag 22 + as 32% + ag 4z + ag s = 0,

(11)
gs(x) = —bs1(bg 213 + bg 322 + bg 47 + bg 5) > 0.

We first assume Res(fs,r,x) = ags # 0 and Res(fs, gs,x) # 0. Similarly, from Proposi-
tion 3.7, we have the following results.

Corollary 5.9 Under the parametric constraint As, if Res(fs, gs, z) # 0, and Res(fs, z, x)
# 0, then

(i) P3P problem has four positive solutions if and only if Cardr(fs) = 4, C;:’Al) (x > 0),
C4 (g > 0) and €Y (2G5 > 0);

(ii) P3P problem has three positive solutions if and only if one of the following conditions
hold:

1) Cardz(fs) = 4, €'Y (z > 0),¢" (G5 > 0) and ¢ (xgs > 0);
2) Cardg(fs) = 4, Ci% (z > 0),C3" (G5 > 0) and ¢ gz > 0);
3) Carda(fs) = 4, "% (z > 0,4 (gs > 0) and €5 (xgs > 0);
4) Cardg(fs) = 3, 2% (@ > 0),¢% (G5 > 0) and ¥ (xgs > 0);

hold:

1) Carda(fs) = 4, C(@ > 0),¢%% (G5 > 0) and ¢ (g5 > 0);
2) Cardg(fs) = 4, C\% (z > 0),¢5"" (G > 0) and c< 2 (255 > 0);
3) Cardz(fs) =4, Co% (z > o>,c}8 (gs > 0) and c<4 (2G5 > 0);
4) Cardg(fs) = 4, 1% (x> 0),¢5” (g5 > 0) and c<4 (2G5 > 0);
5) Cardg(fs) = 4, C% (z > 0),¢5"% (G > 0) and c<4 D (zgs > 0);
6) Cardg(fs) = 4, C12% (@ > 0),¢52% (g5 > 0) and c<4 2 (255 > 0);
7) Cardg(fs) = 3, 2% (z > 0),¢>% (G5 > 0) and c<3 2 (2G5 > 0);
8) Cardg(fs) = 3, 1% (x> 0),C2% (g5 > 0) and c< ’ >( 2gs > 0);
9) Cardg(fs) = 3, 1% (x> 0),C2? (g5 > 0) and c< )(zgs > 0);
10) Cardg(fs) = 2, 2% (z > 0),C2?(gs > 0) and c< D (zgs > 0);

(iv) P3P problem has one posztwe solutzon if and only if one of the following conditions
hold:
1) Carda(fs) = 4, Ci- V(2 > 0),¢V (g5 > 0) and €5 (25 > 0);
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2) Cardg(fs) = 4, Ci (> 0),¢5"" (G > 0) and ¢V (ags > 0);
3) Cardg(fs) = 4, 17 (@ > 0),¢ (G5 > 0) and €Y (xgs > 0);
4) Cardg(fs) = 4, 1V (@ > 0),¢5% (g5 > 0) and % (xgs > 0);
5) Cardg(fs) = 4, CiV (@ > 0),¢% (G > 0) and €1 (xgs > 0);
6) Cardg(fs) = 4, 1% (@ > 0),¢ (G5 > 0) and ¥ (xgs > 0);
7) Cardg(fs) = 4, Ci% (z > 0),C% (G5 > 0) and €V (wgs > 0);
8) Cardg(fs) = 4, "% (@ > 0),¢ (G5 > 0) and () (xgs > 0);
9) Cardz(fs) = 4, 7% (2 > 0),¢%% (Gs > 0) and C§V (2gs > 0);
10) Cardg(fs) =4, C% (x> 0),¢45? (g5 > 0) and c<4 2 (2gs > 0);
11) Cardg(fs) = 3, 2V (x> 0),¢2?(gs > 0) and c<3 2>(ng > 0);
12) Cardg(fs) = 3, €2 (z > 0),¢2 (gs > 0) and c<3 2 (2G5 > 0);
13) Cardg(fs) = 3, 2% (x> 0),¢2?(gs > 0) and c<3 Y(zgs > 0);
14) Cardg(fs) = 3, 2V (x> 0),¢2(gs > 0) and c<3 3 (2gs > 0);
15) Cardg(fs) = 3, 2V (x> 0),¢2Y (g5 > 0) and c<3 Y(2gs > 0);
16) Cardg(fs) = 3, C2% (x> 0),¢2(gs > 0) and c<3 Y(zgs > 0);
17) Cardg(fs) = 2, C- (x> 0),¢2V (g5 > 0) and c<2 Y(zgs > 0);
18) Cardg(fs) = 2, >V (x > 0),€2?(gs > 0) and c<2 ”(x"g; > 0);
19) Cardg(fs) = 2, 2V (x> 0),¢2(gs > 0) and c< (2G5 > 0);
20) Cardg(fs) = 1, C5" (x> 0),C4" (g5 > 0) and cjﬁs (zgs > 0).

According to Lemmas 3.5 and 3.6, we have the following results.

Corollary 5.10 Let f(x) and g(x) be two polynomials having no common zero, where f(x)
is quartic. Assume GDL(f,1) = [1, By, B2, Bs, Bs|, GDL(f,g) = [1,C1,C2,C5,Cy], and let
ly,13,v1,v2 be the numbers of the non-vanishing members and the sign changes of RSGDL(f, 1),
RSGDL(f, g), respectively. Then the following assertions hold:

1) Cardr(f) =4 if and only if Iy = 5,v1 =0, that is, B; > 0, fori=1,2,3,4;

1.1) C§c4’4)(g > 0) if and only if lo = 5,v9 =0, that is, C; >0, fori=1,2,3,4;

1.2) C(4’3)(g > 0) if and only if lo =5,v9 =1 orly = 3,v2 =0;

1.3) C(42)(g > 0) if and only if lo =5,v20 =2 orlo =3,v9=1 orls =1,v0 =0;

1.4) Cj(fl 1)(g > 0) if and only if lo =5,v9 =3 orly = 3,vy = 2;

2) Cardg(f) = 3 if and only if Iy =4,v1 =0, that is, By =0, B; >0, fori=1,2,3;

2.1) C{** (g > 0) if and only if Iy = 4,v> = 0, that is, C4 =0, C; > 0, for i =1,2,3;

2.2) C](cs 2)(9 > 0) if and only if lo = 4,v2 =1, orlo = 2,v3 = 0;

2.3) C§c3’1)(g > 0) if and only if lo =4,v9 =2, orls =2,v3 = 1;

3) Cardgr(f) =2 if and only if i =5,v1 =1, orly = 3,v2 = 0;
3.1) C;Q’Q)(g > 0) if and only if lo =5,va =1, orle = 3,v3 =0;
3.2) C;Q’l)(g > 0) if and only if lo =5,v9 =2, orlo =3,v3 =1, orly =1,v9 = 0;
4) Cardgr(f) =1 if and only if Iy =4,v1 =1, orly = 2,v; = 0;
4.1) Cj(cl’l)(g > 0) if and only if lo = 4,v2 =1, orle =2,v3 = 0.

O = =
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If Res(fs,x,z) = 0, then the system (11) becomes

— 4 3 / 2 / / _
fs(x) = ag 1x° +ag 27" + ag 3 +ag 4 = 0,

(12)
Js(x) = —bg 1(bs 22 + bg 322 + bg 4 + b 5) > 0,

which can be treated with the same method as in Case 3. It is similar when Res(fs, gs, z) = 0.

The following example shows that there are values of parameters in Ag such that the P3P
problem has one, two, three or four real positive solutions.

Example 5.11 Let Py ={a=1b=2r=3p=2¢g=1} , P ={a=1b=2r=
%,p:%,q: S P={a=1b=%ir=1p=1q= %} and P, ={a=1,b=1,r= %,p:
%, q= %} in Ag = V(Es) \ V(Ns). When the parameters a, b, r,p, ¢ are assigned the value P,
the P3P problem has one real positive solution. When the parameters are assigned the value
P5, the P3P problem has two real positive solutions. When the parameters are assigned the
value Ps, the P3P problem has three real positive solutions. When the parameters are assigned

the value Py, the P3P problem has four real positive solutions.

When the parameters are assigned the value P;, we have Res(fs,z,z)|p, # 0, Res(fs,
Gs,2)|p, #0, RSGDL(fs,1)|p, = [1,1,1,—1,—1], RSGDL(fs,z)|p, = [1,—1,—1,1,1], RSGDI(
fs,8)|lp, = [1,1,—1,1,1] and RSGDL(fs, zgs)|p, = [1,1,1,—1,—1]. By Corollary 5.10, Cardg(
fs) =2, Cj(ci’l)(a: > 0), C}i’”(g} > 0), C}i’m (xgs > 0). According to Corollary 5.9, the P3P
problem has only one real positive solution when {a = 1,b=2,r = %,p = %, qg=1}.

When the parameters are assigned the value Ps, we have Res(fs, z, )| p, # 0, Res(fs, gs, )| p,
# 0, RSGDL(fs, 1)|p, = [1,1,1,1,1], RSGDL(fs, z)|p, = [1, =1, -1, —1,1], RSGDL( fs, gs)|p, =
[1,1,—1,—1,—1] and RSGDL(fs,zgs)|p, = [1,1,1,1,—1]. By Corollary 5.10, Cardr(fs) = 4,
C}:’Q) (x >0), CJ(E:’S) (gs > 0), C;:’S)(xg?; > 0). According to Corollary 5.9, the P3P problem has
two real positive solutions when {a =1,b=2,r=1,p= %, q=13}

When the parameters are assigned the value Ps, we have Res(fs, z, x)|p, # 0, Res(fs, gs, )| p;
# 0, RSGDL(fs,1)|p, = [1,1,1,1,1], RSGDL( fs, z)|p, = [1,—1,—1, -1, —1], RSGDL(fs, g3)|p, =
[1,-1,-1,—1,—1] and RSGDL(fs, zgs)|p, = [1,1,1,1,1]. By Corollary 5.10, Cardr(fs) = 4,
C}:’B) (x > 0), C](c:’g) (gs > 0), C](C:A)(xgé > 0). According to Corollary 5.9, the P3P problem has
three real positive solutions when {a =1,b = %,r = %,p =1,q= % .

When the parameters are assigned the value Py, we have Res(fs, z, x)|p, # 0, Res(fs, gs, ©)|p,
# 0, RSGDL(fs,1)|p, = [1,1,1,1,1], RSGDL(fs,z)|p, = [1,1,1,1,1], RSGDL(fs, gs)|p, =
[1,1,1,1, 1] and RSGDL(fs, zgs)|p, = [1.1,1,1,1]. By Corollary 5.10, Cardg (fs) = 4, 4" (2 >
0), C;3’4)(9A§; > 0), C;:’4)(xg'§g > 0). According to Corollary 5.9, the P3P problem has four real
positive solutions when {a =1,b=1,r=3,p=3,¢=3}.
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5.5 The Number of Real Solutions in Case 5

In Case 5, fi2(z) is quadratic in z, g12(z, y) is quadratic in y, and there is a third polynomial
h12, where

f12(x) = a1212°% 4+ a12,20 + a12,3 = 0,
gr2(x,y) = by? — bpy — ax® + aqr —a+b =0,
hia(z,y) = (brz —bp)y + (1 —a —b)z? + (ag —q)x —a+b+1=0.

Under the constraint of A;5, the P3P problem has at most three different positive solutions by
Theorem 4.1.

Since his is linear in y, if bra — bp #£ 0, we can express y as

_(1—a—b)x2—|—(aq—q)x—a+b+l
brz — bp '

Y= (13)

If bra—bp = 0, then © = p/r. Let 1 = p/r. It is easy to check fi2(z1) = 0 and hia(z1,y) =0
under the constraint Ajs. So 1 = p/r is a zero of fia(x). Let xo be another zero of fia(x).
According to the Viete’s theorem, we have z1x2 = a12,3/a12,1, S0 T2 = 22

paiz,1’
Substituting = 1 into gi2(x,y) and eliminating the denominator, we have

g12(y) = br2y? — bpry + apgr — ap® — ar® + br?.

If Res(g12,v,y) = apqr — ap® — ar® + br?> # 0, then y = 0 is not a solution of gio.
We let GDL(Gi2,1) = [1, Dy, Do) and GDL(G12,y) = [1, Fi, Fy], where Dy = 26%7%, Dy =
b3rS(—dapqr + 4ap® + 4ar? — 4br? + br2p?), Fy = pb*rt, Fy = —b%rt(—apqr + ap? + ar? —
br?)(—4apqr + 4ap® + 4ar? — 4br? + br?p?)]. By Lemma 3.6, Corollaries 5.1 and 5.2, g12(y) has
two real positive solutions if and only if D1 > 0,Dy > 0,F; > 0,F> > 0, and g12(y) has one
real positive solution if and only if one of following conditions hold:

1) D1 >0,D,=0,F; >0,F, =0.

2) Dy >0,Dy>0,Fy =F, =0;

3) Dy > O,DQ >0, Fy < 0;

If apgr — ap? — ar? + br? = 0, then y; = 0 and y, = p are solutions of gi2(y).

Substituting x = x5 into hia(x,y) = 0, we have

(1 —a—b)r?afy 3 +pgla — Draiziaizs +p*afys(—a+b+1)

bpa12,1(p2a12,1 - 7‘2@12,3)

Ys = : (14)
By simple computations, we have gi2(x2, y3) = 0 under the constraint Ajo. Hence, {z = z9,y =
y3} is a solution of {fi2 = 0,912 = 0, h12 = 0}. By the aforementioned analysis, we have the
following results.

Theorem 5.12 Under the parametric constraint Ais, let x1 = p/r, xo = ;Zi?, and ys
be the same as in (14). Then:

(i) P3P has three positive solutions if and only if 1 > 0, apqr —ap® —ar® +br? # 0, D1 > 0,
Dy >0, 1 >0, Fy, >0, x2>0andy3>0;
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(ii) P3P has two positive solutions if and only if one of the following conditions hold:
1> 0,apqr —ap? —ar? +br?2 #0, D1 > 0,D3 > 0,F, > 0,F, >0 and x5 < 0;

1)z

2) 21 > 0,apgr — ap® — ar®> + br2 #0, D1 > 0,Dy > 0, Fy > 0,F, > 0 and y3 < 0;

3) w1 > 0,apqr — ap? —ar? +br?2 = 0,p > 0, 22 > 0 and y3 > 0;

4) 1 > 0,apqr — ap? —ar? +br2 #£0,D; > 0,Dy =0, F; > 0,F, =0, 2 > 0 and y3 > 0;
5) 21 > 0,apgr — ap® —ar®> + br2 #0,D1 > 0,Dy > 0,F} = F5 =0, 22 > 0 and y3 > 0;

6) 1 > 0,apqr — ap® — ar® +br? #0,D1 > 0,Dy > 0, F5 <0, x5 > 0 and y3 > 0;

(iii) P3P has one positive solution if and only if one of the following conditions hold:

1) 29 > 0,y3 > 0 and 1 < 0;

2) 29 > 0,93 > 0, 1 > 0,apqr — ap® — ar®> + br? =0 and p < 0;

3) w2 > 0,y3 > 0, 21 > 0,apgr — ap® — ar® + br? # 0, and none of the following conditions
hold (a) D1 > 0,D3 > 0,F; > 0,F, >0, (b) D1 >0,D3=0,F; >0,F» =0, (c) D; >0,Dy >
0,Ff =F,=0,(d) Dy >0,Ds >0, F> <0;

4) w5 <0, 1 > 0, apgr — ap? —ar? +br?> =0 and p > 0;

5) 22 <0, 21 >0, apgr — ap® — ar®> +br? #0, Dy > 0,Dy = 0, F; > 0 and F» = 0;

6) x2 <0, 21 >0, apqr — ap® —ar? +br? #0, Dy > 0,D2 > 0 and F; = Fy = 0;

7) 22 <0, 1 > 0, apgr — ap? —ar® + br?2 # 0, D1 > 0,Ds > 0 and Fy < 0;

8) y3 <0, x1 >0, apgr — ap? —ar? +br2 =0 and p > 0;

9) y3 <0, 11 >0, apgr —ap? —ar? +br> #0, D1 >0,Dy =0,F; >0 and F, = 0;

10) y3 <0, 21 > 0, apgr — ap® —ar?> +br?> #0, D1 > 0,Dy > 0 and Fy = F, = 0;

11) y3 <0, 21 > 0, apgr — ap? —ar? + br?> # 0, D1 > 0, Dy > 0 and Fy < 0.

The following example shows that there are values of parameters in A5 such that the P3P
problem has one, two or three real positive solutions.

Example 5.13 Let Py ={a=1b=1r=1,p=1q¢=1} , P, ={a=1b=1r=
%,p = %,q = %}, and P3 = {a = %,b = %,7‘ = %,p =1,q= %} in Ajo = V(E12) \ V(N12).
When the parameters a,b,r,p,q are assigned the value P;, the P3P problem has one real
positive solution. When the parameters are assigned the value P,, the P3P problem has two
real positive solutions. When the parameters are assigned the value Ps, the P3P problem has

three real positive solutions.

When the parameters are assigned the value P;, we have 21 = 1, (apqr—ap?® —ar?+br?)|p, =
0,p > 0,and x2 = 0. According to Theorem 5.12, the P3P problem has one real positive solution
when {a =1,b=1,r=1,p=1,¢=1}.

When the parameters are assigned the value P, we have z; = 1, (apqr — ap® — ar® +
br?)|p, = 1/512, [1, D1, Do]|p, = [1,1/128,1/524288)], [1, F1, F3]|p, = [1,1/512,1/16777216],

and zo = 0. According to Theorem 5.12, the P3P problem has two real positive solutions when

— _ 1 . _ 1 . _1 . _ 225
{G—Lb—zﬂ"—@p—@Q—m-

When the parameters are assigned the value P3, we have r1 = 6/7, (apgr — ap? — ar? +
br?)|p, = 5/27, [1,D1, Ds)|p, = [1,2401/1458,117649/944784], [1, F1, Fy]|p, = [1,2401/2916,
12005/472392], z2 = 1, and y3 = 1. According to Theorem 5.12, the P3P problem has three

real positive solutions when {a = 2,b=2r=1 p=1,9= 2}
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5.6 The Number of Real Solutions in Case 6

In Case 6, fiz(x) is cubic in x, g13(z,y) is quadratic in y, and there is a third polynomial

h13, where

fis(z) = a13,1$3 + 611372&62 + ai1337 +aizqa =0,

g13(z,y) = by? — bpy — ax® + agr —a+b =0,

hiz(x,y) = bray —bpy + (1 —a — b)z? + (aqg — ¢)r —a +b+1=0.
Under the constraint of Ajs, the P3P problem has at most four different positive solutions by
Theorem 4.1.

By the similar analysis of Case 5, 1 = p/r is a solution of fi3(z) = 0. So fi3(x) can be
expressed as fiz3(z) = (rx — p)(c12? + caw + ¢3) = (rx — p)f:/;),(x), where ¢1 = a131/7,¢c2 =
(a1327r + paisi)/r?, cs = —aiz.4/p. The polynomial J/”I),(x) is quadratic in x, thus it is easy to
obtain the two solutions of flvg(a:) Assume them be x5 and x3.

Substituting x = x1 into the polynomial hi3(z,y) = 0, we have hi3(z1,y) = 0. Let y; and yo
be the two solutions of gi3(x1,y) = 0. Then {z = z1,y = y1} and {x = 1,y = y2} are the so-
lutions of { f13(z) =0, g13(z,y) = 0, h13(z,y) = 0}. Assume y3 and y4 be the zeros of hy3(z2,y)
and hiz(xs,y) respectively. It is easy to check g13(z2,y3) = 0 and ¢13(zs3,y4) = 0. Hence,
(x1,91), (x1,v2), (z2,y3), (x3,y4) are the solutions of { fi3(x) = 0, 13(x,y) = 0, h1s(x,y) = 0}.
The analysis of real positive solutions can be treated similarly as in Case 5.

The following example shows that there are values of parameters in A;3 such that the P3P
problem has one, two, three or four real positive solutions.

Example 5.14 Let Py ={a=1,b=1r=-1p=-1q¢=1} P={a=1b=1r=
%,p: %,q: %}, Ps={a=1b=1,r= %,p: %,qzl} and P,={a=1,b=1,r = %,p:
3,q=3}in A13 = V(E13)\ V(N13). When the parameters a, b, 7, p, ¢ are assigned the value Py,
the P3P problem has one real positive solution. When the parameters are assigned the value
P,, the P3P problem has two real positive solutions. When the parameters are assigned the
value Ps, the P3P problem has three real positive solutions. When the parameters are assigned

the value P,, the P3P problem has four real positive solutions.

6 Conclusion

The solution classification of a parametric polynomial system can be obtained by combining
the CGS with discriminant sequence. The minimal CGS can give a disjoint partition of the
parametric space. In every partition, the number of complex solutions counted with multiplic-
ities of the equation system is decided. We use this method to solve the P3P problem. As
a result, we give a complete classification of solutions of the P3P problem, and the explicit
conditions under which the P3P problem has one, two, three, or four different real positive

solutions.
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Appendix

The following is some symbols using in the minimal CGS of P3P equation system in Section 4.
bi,1 = 64b(pg — 1),
bi2 = 8a®qr® — 8abgr® — Sapr® — 8a’pr + 8b*pr 4 8bgr? — 16bpr — 8qr? + Spr,
b1z = 8abq®r? —40a%¢*r? — 24apqr® + 8abr* + 104apgr 4+ 80abpqr — 8bpqr + 64ap®r? — 8bp?r? + 40aq>r?
+24bg?r? —64a’p? —88abp? — 24b% p? — 244 ¢* — 24abq® — 96apqr — 16bpgr +32a°r2 +48abr? 432212
+8p?r? — 16¢%r% + 88ap? + 48bp? + 80aq? + 56bq> + 24pgr — 24ar® — 24br? — 144a® — 288ab — 144b°
— 24p® — 56¢° — 8r® 4 288a + 288b — 144,
bia = 30bp*r? — 4242 pg®r — 30ap*r? + 32ap? ¢ r? — 32bp2¢%r? + 2242 pgr® — 60abpgr® + 42a%p?¢* + 42a%¢*
—62apqr + 38bp3qr + 32bpg>r — 60ap>r? + 60abp>r? — 30ptr? — 148a2¢°r? + 38abq?r? + 96p>¢>r?
— 37apqr® + Thpgr® — 8abr* + 22ap?q? — 98bp2q® + 6ag” + 198apqr + 46abpgr — 124b% pgr — 86p>qr
— 106pg®r + 39ap®r? — 35bp>r? + 253aq>r? + 21bg*r? — 126pgr> + 36br* — 60ap? + 88abp? — 28b%p>
+160a®q* + 196abg” + 148b*¢* + 18p°¢” + 38¢" — 108apgr + 310bpgr + 60a>r* + 48abr® — 68b°r>
+43p°r? — 13¢*r* — 38ap® — T4bp® — 730aq” — 170bg> + 138pgr — 114ar® — 194br® — 264a> — 16ab
+248b% + 102p? + 226¢° + 8272 + 536a + 24b — 272,
bis = 30ap®r® — 32apq®r® + 42a%pg®r — 42abpg®r + 38ap®qr? — 6bpqr? + 8a’pr3 + 82abpr® — 60b%pr3
— 25aqrt — 42a2p? g+ 42abp>q — 42a°¢> + 42abq® — 36ap>®r — 54bp>r + 64apq®r + 20bpg>r + 192a%gr?
—334abgr? +38b%qr? — 64p>qr? 4+ 5apr® — bpr® — 140ap® g+ 40bp? g — 6aq> + 18bg> — 230apr + 100abpr
+10b°pr 4+ 102p°r + 42pg°r — 82aqr” + 76bgr> + 151pr® — 308a>q + 352abq + 372b%q + 40p*q — 38¢°
+ 106apr — 2bpr — 118qr? + 740aq — 732bq — 168pr — 88q,
as.1 = bpqr — bp® —bq® — ar® — br® + p? + 4a + 4b — 4,
as,2 = aqr? — p?q — daq + 4q,
asz,z = —ar? + p2 + 4a — 4,
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bs1 = apr® — p3r — dapr + 4pr,

bz = apr? — aqr® — bpr® + 2aqr + 2bqr + pr? — 2qr,

b3z = ag’r® — ap®r + bp?r — 3ag®r — bg*r — pqr® — p*r + 3¢°r,

bs.a = p°qr — aqr® + dagr — 4qr,

a7,1 = aqr® — apr + bpr — 2aq — 2bq — pr + 2q,

az2 = apqr — aq*r® + abr® — bp® 4 2aq® + bg® + pqr — ar? — br? —a® — 2ab — b* + p? — 2¢* + 6a + 6b — 5,

ar3 = 2aq7"2 — p2q — apr + bpr — 6aq — 2bq — pr + 64,

ar,4 = —ar® + p2 + 4a — 4,

br1 = (a—Dpgr—(a+b—1)p? = (a —b—1)r?,

br o = abr® — ar — 2abr — b2r + 2ar + 2br — r,

brz = abpr2 — abqr3 + aqr3 + a2qr + 2abqr + qur — apr2 + bp?"2 — a2p — 2abp — b2p — 4aqr — 4bqr — pr
+ 2ap + 2bp + 3qr — p,

br.a = apqr® — ag*r® + 2aq¢®r + bg®r + pgr? — br® — apq — bpq — 2¢*r + pq + 2ar + 2br — 2r,

brs = aqr3 — apT2 — 3aqgr — bqr — p’l"2 + 2ap + 2bp + 3qr — 2p,

as,1 = abr® — (a 4+ b — 1),

ag2 = b’pr — abgr® — abpr + 2a%q + 2abq — bpr — 4aq — 2bq + 2q,

as.3 = abpqr — b2p? — a’q® + bpqr + abr? — b2r® + bp® + 2a¢® — 20 + 2% — ¢* + 4a — 2,

ag,4 = b2pr — bp2q — abpr + 2a%q — 2abq — bpr — 4aq + 2bq + 2q,

as,s =bp®> —a®+2ab—b>+2a—2b—1,

b1 = b((a—1)pgr — (a +b—1)p* — (a —b—1)r?),

bg2 = abr® — a®r — 2abr — b%r + 2ar + 2br — 7,

bg,z = b2pr? — abgr® + 2a’qr + 2abgr — bpr? — a®p — 2abp — b%p — dagr — 2bqr + 2ap + 2bp + 2qr — p,

bg,a = bpgr? — a?¢®r + abr® — b2r® + a%pq + abpg + 2aq*r — 2apq — bpq — a®r + b*r — ¢*r + pg+ 2ar —r,

2

bs,s = a’qr — abqr — bpr® — a®p + b%p — 2aqr + bgr + 2ap + qr — p,

a1z = (pgr — ar® —br? —r? +da +4b — 4)r,

a1z = aqr® — p*qr + bpr? — 3aqr — bgr — 2ap — 2bp + 3qr + 2p,

a12,3 = —ar> + p*r + dar — 4r,

aiz1 = (abr® — (a +b—1)%r,

aiz,2 = b2pr? — abgr® + 2a*qr + 2abgr — bpr? — a*p — 2abp — b*p — daqr — 2bqr + 2ap + 2bp + 2qr — p,

a13,3 = bpgr® — a’q*r + abr® — b*r® 4+ a®pq + abpq + 2a¢*r — 2apq — bpg — a*r + b*r — ¢*r +pg+ 2ar —r,
a13.4 = a’qr — abgr — bpr? — a’p + b*p — 2aqr + bgr + 2ap + qr — p,

e11 = aqr? — apr + bpr — 2aq — 2bq — pr + 2q,

e12 =abr® —(a+b—1)2,

e1,3 = bpgr — bp® — bg® — ar® — br? + p® + 4a + 4b — 4,

e1,4 = abpr — b*pr — a’q + b2q + bpr + 2aq — g,

abp? —b*p* —a?® +abg® +a?r? —b%r? —ap®4+-2bp* 4+2a¢> + b +ar? +br? —4a® +4b% —p? — ¢® —8b+4,
ar* + brt — dar? — 4br? + 42,

e1,7 = bgr® — apr? — bpr? 4 pr?,

e1,s = pore +¢*r® — 2bp*r — 2aq*r — 4pqr® + 2ar® 4 2br® + dapq + 4bpq + 2p*r + 2¢°r — 4pg — Sar — 8br +8r,
e1,0 = bpr® — bgr® — apr — 3bpr — qr? + 2aq + 2bq + 3pr — 2q,

e1,s

€1,6

e110 = apr® + bpr® — 2bgr® — 2apr — 2bpr + 2pr,

e111 = a’r® + 0213 — ar® — br® — 2a%r — dabr — 2b%r + 4dar + 4br — 2r,

e112 = b2qr? — a’pr — 3b%pr — bqr® — a®q + 2abq + 3b%q + 2apr + 4bpr + 2aq — 2bq — pr — q,

e113 = bp*r? —apqr — p?r? — ¢*r® — 3bp® + 2aq* — bq* + 3pgr — 3ar® — 3br? + 3p® — 2¢% + 120+ 12b — 12,

@ Springer



1470 ZHOU JIE - WANG DINGKANG

€1,14 = ap27"2 - bq2r2,

e115 = b2pr? 4+ a’qr — b2qr — bpr? — a*p — 2abp — b*p — 2aqr + 2ap + 2bp + qr — p,

e116 = a’pr? — a’qr — 2abqr — b2qr — apr? + a*p + 2abp + b p + 2aqr + 2bgr — 2ap — 2bp — qr + p,

e11r = a’r? +b3r? — 2a%r? — 20%1% — a® — 3a®b — 3ab® — b° + ar? + br? 4+ 2a% + 4ab + 20 —a — b,

= a?¢®r — abg®r — a®r® +b*r® — a®pq + b pq + ap®r — bp®r — 2aq®r — bg*r — ar® — br® + 2apq + 4a’r

— 4b°r + p*r + ¢*r — pq + 8br — 4r,

e1,19 = a2pqr + bq2r2 — a2p2 — L12q2 — 2apqr + 2a%r* + b*r? — bp2 + 2aq2 + pqr — 2ar? — 2br? — 5a% — 6ab
—b* +p* —¢*> +10a + 6b — 5,

e1,20 = a’bgr + 2ab*qr + b3qr — a®p — 3a®bp — 3ab®p — b3p — 2abgr — 2b%qr + 3a®p + 6abp + 3b%p + bgr
— 3ap — 3bp + p,

e1,01 = a’qr — ab®qr — a®p — a®bp + ab®p + b3p — 2a°qr + a®p — 2abp — 3b%p + aqr + ap + 3bp — p,

€1,18

e122 = bpPr — apg®r — pPqr? — ¢®r? — 2bp>q + 2aq® — p3r + 3pgPr + 2p%q — 2¢° — dapr + daq + 4bg — 4q,
e1,23 = b2 pPr+abg’r—b*r® —2abpg—2b*pg—ap?®r —bp?r+ar’ +br3 4+ 2bpg—a’r+2abr+3b*r —2ar—6br+-3r,
e1,24 = a’p*r — 2abg®r — b2¢®r + b2 + a’pq + 2abpq + b2pq + bg*r — ar® — br® — 2apq — 2bpq + a*r
— 2abr — 3b%r + pq + 2ar + 6br — 3r,
e1,05 = a’pr + 3b3pr + a®q — 5ab®q — 4b3q — 2a°pr — TV pr — 5a’q + Tb%q + apr + 4bpr + Taq — 3q,
e1.26 = a'r — 2a%V%r + b'r — 3a®r — a®br — ab®r — 3b>r + 3a®r + 2abr + 3b*r — ar — br,
e127 = a’p? + 303p? + 2a3¢® — 5ab’q® — B3¢ + 5b°r% — 92 p? — Ta2q® — 3abg® — b ¢® — 3a*r? — 106772
+3a® + 2a%b — 13ab® — 120 + 9bp® + 8aq® + 5bg> + Sar® + 5br® — 7a® + 16ab + 31b°
—3p®> —3¢° — 3a — 26b + 7,
e128 = a® + a*b — 2a%b? — 24263 + ab* + b° — 4a* — 4a%b — 4ab® — 4b* 4 66> + 6a%b + 6ab? + 6b° — 4a
—dab — 4b® + a + b,
e1,29 = b2rt + a?r? — 2abr? — 3b%r? — 2ar? + 2br% 4+ 12,
€1,30 = b3r3 — abr® — b2r3 + a®r — 3ab%r — 2031 — 2a%r + 2abr + 4b%*r + ar — 2br,
e1,31 = bg®r? — ap®r + bp®r — 2ap?q — 2bp*q — PPr + 2p?q,
e1,32 = br? —2a%br? — 20372 + a* + a®b — 2a%0% — 3ab® — bt +abr? + b%r? — 24> + 4ab® +2b% +a% —ab— 1327
e133 = ap@’r + p2¢*r? + ¢*r? — bp* + bp?¢® — 2aq* + pPgr — 3pgr — ap®r? — bp*r® + p* — 2p%¢% + 2¢*
+ dapgr + 4dap® + 4bp? — daq? — 4bg® — 4p* + 4¢>,
e1,34 = 2P +bpg®r? + b2 qr® — a?p® — 262 p® — 2apq® + 2abpq® + b*pg® + 2bp>qr — bg>r +2apr? — 2abpr?
— b2 pr? — aqr® — bgr® 4+ bp® + dapq® — 2bpg® + a*qr — 2abqr — 3b%qr + p2qr — 2apr® — 2bpr® — 5a’p
+ 2abp + TH%p + p3 — 2pq* + 2aqr + 6bgr + 10ap — 2bp — 3gr — 5p,
e1,35 = 2abg®r + b2¢3r + bpg®r? — b2qr® — a®p® — 2a®pg® — 2abpg® — b pg® — 2ap?qr — bgPr + 2a%pr?
+b2pr? 4+ aqr® + bgr3 — bp® + 4apq® + 2bpg® — a’qr + 2abqr + 3b%qr + p?qr — 2apr? — 2bpr? — 5a%p
— 6abp — b%p + p* — 2pg® — 2aqr — 6bgr + 10ap + 6bp + 3qr — 5p,
e1,36 = 3ab’q®r + b3¢%r + a®br® — b3r® — a®pq — 2a%bpq — 3ab’pq — 20°pq — abp®r + b2 p*r — b2¢r + abr®
+ b%r® + 3a®pq + dabpg + 3b%pg — 4abr + 4b3r — bp*r — 3apg — 2bpg — 8b>r + pq + 4br,
e137 = 2ab3qr + 2b%qr + a'p — 4a*b*p — 4ab3p — b p — 2ab*qr — 4b3qr — 3a3p + a®bp + Tab’p + 3b°p
+ 2b%gr + 3a%p — 2abp — 3b%*p — ap + bp,
e1,3s = ap'r —ap’q*r —bg'r —pqr® — pg®r® + 2ap®q — bpPq + 2apq® — bpg® + 4p>¢*r + p*q — 2pg® — Tap®r
+ 20p%r + 2a¢%r + bg®r — ar® — br® + 2apq + 2bpq — 2p*r — 2¢°r — 2pq + dar + 4br — 4r,
e1,30 = 4btpr + atq + 2a3bq — 6ab>q — 5b*q — 3abpr — ab’pr — 8b3pr — 2a3q — Ta’bq — 2ab*q + Tb3q
+ abpr + 4b%pr + a®q + 8abgq + b%q — 3bq,
e1,40 = b2p* — 202p?¢® — a’q* + 2abg* — apiqr — 2bp* — 2ap?®¢® + 3bp?¢® + 2aq* + bg + bg*r? — 8b2p?
+ p* — 8a%¢? + 8abg® + 8b%¢% — p?¢® — ¢* + Sapgr + 4a®r? — 4b*r? 4 15bp? + 10aq® — Tbq? + pgr
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+ 3ar® 4 3br® — 16a® + 160> — 7p® — 2¢° + 4a — 28b + 12,
e1,41 = a’p* +2a%p?q® — 2abg* — b2 q* + 2ap qr — 2ap® ¢ — 2bp2¢* — 2bg* 12 + 4a>p? + 4b%p? + 4a’¢® — 8abg?
—4b%¢2% 4 2p%¢® — 2apqr — 4a%r? + 4b%r% — 6bp? — 4aq® + 6bg® — 2pqr — 2ar? — 2br? 4 1642 — 16b*
+2p® — 8a + 24b — 8,
e1.42 = 4 p* 4+ a'¢> +2a°bg® — 6ab®¢® — b q* — a'r? — aPbr? + ab®r? +6b1r2 + a®p® — a?bp® — ab®p? — 116°p>
—2a3¢%* —10a°bg? — 6ab’¢® — 2b3¢® — a®r? — 5a%br? — 2ab%r? — 116312 + 4a + 7a®b + 2a%b% — 17ab®
— 16b* + a?p? + abp? + 10b%p? + a®¢> + 9abg® + 6b%¢> + 5abr? + 5b%r% + a?b + 24ab? + 39b> — 3bp?
— 3bg? — 4a® — Tab — 30b2 + 7b,
€1,43 = Ab g% r — 262623 + 20*12 + 3a*pg + 2a3bpg — 8ab%pg — 6ab®pg + bipg + 2ab’p*r — 263 p3r — 6ab?g?r
— 1063¢%r — 2ab?r® — 20°1® — 9a3pq — 3a2bpg + 13ab’pg + 3b>pq + 8a2br — 8b*r + 2% p%r + 6b%¢>r
+ 9a%pq — 5b%pq + 16b3r — 3apq + bpg — 8b>r,
e1.41 = bq"r + pPq?r2 + p3qir? — bpT + 20p°q® — dap®q® + bpg® + pPoar — ApgPr — p2Br — ap®r? — bp®r?
+apPri+bpP P ri4p” — 35 +3p3 ¢t +daptqr+ 3ap® P r — 2bp* ¢Pr — 2a¢°r —bg r+ ag®r3 +bgdrd
+4ap® +4bp® — 8ap®¢® — 8bp> ¢* + 2apq™* 4+ 2bpg™* 4+ 2p2 P + 2¢°r — 4p° +8p> ¢ — 2pq* — daq®r — 4bgPr
+4¢°r,
e1.45 = pPg2r? + pigtr? — bp® + 2bpPq? — dapiqt + 2bp2q® +bg® + pTqr — ApPgPr — pPgPr — apdr? — bpr?
T apt®r? + bpd?r? + ag®r? + bg®r? + p® — 3p°¢2 + 3piqt — p2¢° + dap®qr + 3ap® P — 2p°r
— 2apg®r — bpg®r + apg®r® + bpgrd + dap® + 4bp® — 8ap?q® — 8bpq® + 2ap?q* + 2bp ¢t — 4aq®
— 4bg® + 2p3Pr + 2pg°r — 4p° + 8prg® — 2p%¢* + 4¢° — dapg®r — 4bpgPr + 4pg>.
es1 = aqr?® — apr + bpr — 2aq — 2bq — pr + 2q,
es2 = abr® — (a +b—1)2,
e3,3 = abpr — b2pr — a%q + b%q + bpr + 2aq — q,
es,q = bpr® — bgr? — apr — 3bpr — qr? + 2aq + 2bq + 3pr — 2q,
ess = b2pr? + a®qr — b2qr — bpr? — a*p — 2abp — b*p — 2aqr + 2ap + 2bp + qr — p,
es6 = a’qr — ab’qr — a®p — a*bp + ab®p + b3p — 2a*qr + a*p — 2abp — 3b*p + aqr + ap + 3bp — p,
es.r = abp?+a2b2p? —abp? —bip? —atq? —abg? +a2b2 g +ab3 g +4b° pgr — a2bp? 4+ 2ab?p? 4+ 363 p% £ 5a3¢?
+6a%bg? — 3ab’q® — 4b3¢% — 8b%pgr — abp? — 3b%p? — 11a%¢* — Yabg® + 4b%¢? + 4bpgr + bp® + 11ag?
+ 4bg® — 4¢>.
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