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Abstract. Checking linear dependence of a finite number of vectors is
a basic problem in linear algebra. We aim to extend the theory of linear
dependence to parametric vectors where the entries are polynomials. This
dependency depends on the specifications of the parameters or values of
the variables in the polynomials. We propose a new method to check if
parametric vectors are linearly dependent. Furthermore, this new method
can also give the maximal linearly independent subset, and by which the
remaining vectors are expressed in a linear combination. The new method
is based on the computation of comprehensive Gröbner system for a finite
set of parametric polynomials.

1 Introduction

One basic problem in linear algebra is to check linear dependence of a finite
number of vectors in a vector space over some field [1]. If the entries of the
vectors are elements of a field, a classical way to solve this dependency problem
is using Gaussian elimination. What if the entries are polynomials? There is
a natural question: how to define the linear dependence of a finite number of
parametric vectors whose entries are polynomials. The vectors whose entries
are polynomials are called polynomial vectors, or parametric vectors without
confusion in this paper.

To answer this, we first introduce the definition of specialization. Let R be a
polynomial ring with variables u1, · · · , um over the field k, i.e. R = k[u1, · · · , um].
Given a field L, a specialization of R is a homomorphism σ : R −→ L. In this
paper, we always assume that L is an algebraically closed field containing k, and
we only consider the specializations induced by the elements in Lm. That is, for
ā ∈ Lm, the induced specialization σā is defined as follows:

σā : f −→ f(ā),
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where f ∈ R.
Given a polynomial vector f = (f1, · · · , fl) ∈ Rl, we can extend a specializa-

tion σā to Rl:
σā(f) = (σā(f1), · · · ,σā(fl)) ∈ Ll.

Note that σā(f) does not contain any variable after the above specialization.
For a simple example, f = u1u2 + u3 ∈ Q[u1, u2, u3] and ā = (1,−1, 2) ∈ C3,
where Q and C are the field of rational numbers and the field of complex numbers
respectively. Then the specialization σā(f) = f(1,−1, 2) = 1.

One main goal of this paper is to solve the following interesting problem.
The dependency problem: given a set of parametric vectors f1, · · · , fs ∈ Rl,
we would like to know for which point ā ∈ Lm, the vectors σā(f1), · · · ,σā(fs) are
linearly independent over L in the vector space Ll; and for which point ā ∈ Lm,
the vectors σā(f1), · · · ,σā(fs) are linearly dependent over L.

We will divide the parametric space into finitely many partitions, such that
the maximal linearly independent subset are fixed for every specification of
the parameters in each partition, and the remaining vectors will be expressed
in the linear combinations of the maximal linearly independent subset after
specialization.

There is a natural way to solve the dependency problem, and it is based on
a generalization of the Gaussian elimination from linear algebra. To some extent
it is a generalization of the classical way of checking linear dependence of vectors
with entries in a field. The difficulty is that we need to discuss every polynomial
entry of the parametric vectors carefully, and the process is very complicated.

In this paper, we propose a new method to solve the dependency problem.
It is based on computing a minimal comprehensive Gröbner system for a spe-
cific parametric polynomials. The new method is easy to implement, and the
advantage is that we can use all existing efficient algorithms for computing com-
prehensive Grönber systems. In addition, we use a trick to record the computa-
tion process in order to find the maximal linearly independent subset, and the
remaining vectors will be expressed in the linear combinations of the maximal
linearly independent subset after specialization.

The paper is organized as follows. Some preliminaries are given in Sect. 2.
In Sect. 3, we propose a new method to solve the dependency problem, which
is based on the minimal comprehensive Gröbner system. A complete example is
given to illustrate the new method in Sect. 4.

2 Preliminaries

Let k be a field, R be the polynomial ring k[u] in the variables u = {u1, · · · , um},
and R[x] be the polynomial ring in the variables x = {x1, · · · , xn} over the ring
R, where the variables x and u are disjoint.

Lexicographic order and graded reverse lexicographic order are two clas-
sic term orders, and are also used in the paper. Let ≻ be a term order on x.
For a nonzero f ∈ k[x], the leading monomial, leading term and leading coef-
ficient of f are denoted by lm(f), lt(f) and lc(f) respectively. For a nonzero
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f ∈ R[x] = k[u][x], the leading monomial, leading term and leading coefficient
of f w.r.t. ≻x are denoted by lmx(f), ltx(f) and lcx(f) respectively. Note that
lcx(f) ∈ k[u] and ltx(f) = lcx(f)lmx(f).

For a specialization σ : R −→ L, it can be extended canonically to a special-
ization σ : R[x] −→ L[x] by applying σ coefficient-wise. Note that the field L is
always assumed to be an algebraically closed field containing k.

Let F be a subset of R[x] and ā be a given point in Lm. Then we set σā(F ) =
{σā(f) | f ∈ F} ⊆ L[x], where σā is the specialization induced by ā. Let ⟨σā(F )⟩
be an ideal generated by the set σā(F ) in L[x].

Let I be an ideal in k[x]. The concept of Groebner basis of I w.r.t ≻ was
proposed by Buchberger, and he also gave an algorithm to compute it. The
Groebner basis and minimal Gröbner basis are introduced as follows. For more
information, please refer to [2,3].

Definition 1. Let I be an ideal. A finite set G = {g1, g2, · · · , gt} ⊆ I is called a
Gröbner basis for I w.r.t ≻, if for any nonzero f ∈ I, < (f) is divisible by < (gi)
for some i.

Definition 2. Let G be a Gröbner basis for I. Then G is called a minimal
Gröbner basis for I if for any f ∈ G, there does not exist g ∈ G \ {f} such
that < (f) is divisible by < (g).

There are many efficient algorithms to compute Gröbner bases and minimal
Gröbner bases. If I is an ideal generated by a set of linear polynomials, a minimal
basis G for I w.r.t. any given term order ≻ can also be obtained by Gaussian
elimination of the corresponding coefficient matrix, and all the polynomials in
G are linear polynomials.

The concept of a comprehensive Gröbner system (CGS) was introduced by
Weispfenning [4]. There are many efficient algorithms to compute CGS, such
as [5–11]. It is a powerful tool and widely used in computer science, algebraic
geometry, engineering problems, automated geometry theorem proving and auto-
mated geometry theorem discovery [12–14]. For a parametric polynomial system
F ⊆ R[x], the CGS and minimal CGS are definition below.

Definition 3 (CGS). For F ⊆ R[x], a finite set G = {(A1, G1), · · · , (Al, Gt)}
is called a comprehensive Gröbner system for F , if for each 1 ≤ i ≤ t, σā(Gi)
is a Gröbner basis for ⟨σā(F )⟩ in L[x], and for each g ∈ Gi, σā(lcx(g)) ̸= 0
for any ā ∈ Ai, where each Ai is an algebraically constructible set such that
Lm = A1 ∪ · · · ∪ At and Ai ∩ Aj ̸= ∅ for i ̸= j, and Gi ⊆ R[x].

A comprehensive Gröbner system G = {(A1, G1), · · · , (Al, Gl)} for F is said
to be minimal if for each 1 ≤ i ≤ t, σā(Gi) is a minimal Gröbner basi s of the
ideal ⟨σā(F )⟩ ⊆ L[X] for ā ∈ Ai.

For a subset E of R = k[u], the variety definition by E in Lm is the set of all
common zeros of the polynomials in E, denoted by V (E). Here, the algebraically
constructible set Ai always has the following form:

Ai = V (Ei) \ V (Ni) = {ā ∈ Lm | ā ∈ V (Ei), ā ̸∈ V (Ni)}.

We also call Ai the constraint.
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3 Checking Linear Dependence of Parametric Vectors

In this section, we propose a new method to solve the dependency problem,
which is based on a minimal comprehensive Gröbner system.

In the following, we will propose a new method to solve the dependency
problem for a finite set of parametric vectors F = {f1, · · · , fs} ⊆ Rl.

Consider the map ϕ : kl → k[z], for any for any f = (a1, · · · , al) ∈ kl,

ϕ(f) = a1z1 + · · ·+ alzl,

where k is a field, and z = {z1, · · · , zl} are distinct variables.
In this paper, we consider the parametric vectors. The map can naturally

extend to k[u]. That is, ϕ : Rl = (k[u])l → k[u][z], for any f = (a1, · · · , al) ∈ Rl,

ϕ(f) = a1z1 + · · ·+ alzl,

where z = {z1, · · · , zl} are new variables different from u = {u1, · · · , um}.
Note that the degree of ϕ(f) w.r.t each variable zi is one, and σā(ϕ(f)) is a

linear polynomial in L[z1, · · · , zl] for each ā ∈ Ll.
Let ϕ(F) = {ϕ(f1), · · · ,ϕ(fs)}. Note that ϕ(F) is a parametric linear system.

For the parametric linear systems, Sit W Y has given an algorithm to solve them.
For more, please see [15].

Let {(A1, G1), · · · , (At, Gt)} be a minimal comprehensive Gröbner system for
ϕ(F) w.r.t. any given term order on z. It is easy to check that each Gi is a
set of liner polynomials in z1, · · · , zl with coefficients in R, and the number of
polynomials in Gi is less or equal to s for 1 ≤ i ≤ t.

In the following, we will give a result for the minimal comprehensive
Gröbner system without proof.

Theorem 1. Let F = {f1, · · · , fs} be a subset of Rl, and G =
{(A1, G1), · · · , (At, Gt)} be a minimal comprehensive Gröbner system for ϕ(F) ⊂
k[u][z] w.r.t. any term order in z, where ϕ(F) = {ϕ(f1), · · · ,ϕ(fs)}. Then for
each ā ∈ Ai, σā(f1), · · · ,σā(fs) are linearly independent over L if and only if the
number of polynomials in Gi is exactly s.

Theorem 1 provides a simple way to compute two subsets A and B such
that Lm = A ∪ B, and for each ā ∈ A, σā(f1), · · · ,σā(fs) are linearly inde-
pendent over L; for each ā ∈ B, σā(f1), · · · ,σā(fs) are linearly dependent over
L. If G = {(A1, G1), · · · , (At, Gt)} is a minimal comprehensive Groebner sys-
tem for ϕ(F) ⊂ k[u][z], where G can be obtained by any existing algorithms for
computing comprehensive Groebner systems. Then we have

A =
⋃

|Gi|=s

Ai, and B =
⋃

|Gi|<s

Ai,

where |Gi| is the number of polynomials in Gi.
To solve the dependency problem for F completely, we also need to compute

the maximal linearly independent subset for the dependent part B. We should
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compute a finite of disjoint subsets B1, · · · , Bt and M1, · · · ,Mt ⊆ F such that
B = B1 ∪ B2 ∪ · · · ∪ Bt, and for each dependent case Bi, Mi is the maximal
linearly dependent subset for F, and every vector f in F \Mi can be expressed
in a linear combination of Mi after specialization.

For this purpose, we need to compute a minimal Gröbner system for

{ϕ(f1) + e1, · · · ,ϕ(fs) + es} ⊆ R[z, e],

w.r.t. a block order ≻:= (≻z,≻e), where e = {e1, · · · , es} are new variables
different from u and z, ≻z and ≻e are two term orders with z1 > z2 > · · · > zl
and e1 > e2 > · · · > es respectively.

Here, we say a term order ≻:= (≻z,≻e) is a block order, if zα1eβ1 ≻ zα2eβ2

if and only if zα1 ≻z zα2 , or zα1 = zα2 and eβ1 ≻e eβ2 .
The variables e1, · · · , es are used to record the computation process of the

minimal comprehensive Gröbner system. This trick has been used in many ways
(such as computing syzygies) in most algebraic computer textbooks, for example
[12]. The trick can also help us to compute the maximal linearly independent
subset, and the expression of the linear combinations of the maximal linearly
independent subset for the remaining vectors after specialization. Thus, we give
the following theorem. We use the notation |G| to be the number of the elements
in G.

Theorem 2. Let F = {f1, · · · , fs} be a subset of Rl, and G =
{(A1, G1), · · · , (At, Gt)} be a minimal comprehensive Gröbner system for

{ϕ(f1) + e1, · · · ,ϕ(fs) + es} ⊆ R[z, e]

w.r.t. a block order ≻:= (≻z,≻e), where ≻z and ≻e are two any term orders
with z1 > z2 > · · · > zl and e1 > e2 > · · · > es respectively, R = k[u],
u = {u1, · · · , um}, e = {e1, · · · , es} and z = {z1, · · · , zl}.

For each 1 ≤ i ≤ t, suppose that G′
i = Gi ∩ R[e] and Gi

′′ = Gi \G′
i.

Then |Gi| = |G′
i| + |G′′

i | = s, and if G′
i is not empty, the polynomials of G′

i

have the following form:

g1 = a1i1ei1 +
s∑

j=i1+1

a1jej ,

g2 = a2i2ei2 +
s∑

j=i2+1

a2jej ,

· · ·

gr = arireir +
s∑

j=ir+1

arjej ,

with 1 ≤ i1 < i2 < · · · < ir ≤ s, where r = |G′
i| and aij ∈ R. Furthermore,
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(i) if |G′′
i | = s, then for each ā ∈ Ai, σā(f1), · · · ,σā(fs) are linearly independent

over L.
(ii) if |G′′

i | < s, then for each ā ∈ Ai, σā(f1), · · · ,σā(fs) are linearly dependent
over L, and for each gk ∈ G′

i, p1, · · · , ps are the corresponding coefficients,
where pi is the coefficient of ei in gk. Moreover, M = {fi | fi ∈ F, i /∈
{i1, · · · , ir}} the maximal linearly independent subset for F, and every para-
metric vector of F\M can be expressed in the linear combination of M over
L after specialization.

Theorem2 can be proved by Theorem1 and the properties of the minimal
Groebner system, and here we omit the proof.

4 A Complete Example

In this section, we will use a complete example to show how to apply Theorem2
to solve the dependency problem.

Example 1. Let F = {f1, f2, f3} ⊂ Q[a, b]3, where

f1 = (a, b, 0), f2 = (0, b+ 1, b), and f3 = (a+ 1, 0,−1)

are three parametric vectors with the parameters a and b, and ≻u be the graded
reverse lexicographic orders with a > b. Here the coefficient field R = Q[a, b].
Next, We use the new method provided by Theorem2 to solve the dependency
problem for F.

To solve the dependency problem for F, we first construct a specific parametric
polynomial system using the map ϕ. Let fi = ϕ(fi) + ei for i = 1, 2, 3. Then we
obtain a parametric polynomial system:

F = {f1 = az1 + bz2 + e1, f2 = (b+ 1)z2 + bz3 + e2, f3 = (a+ 1)z1 − z3 + e3} ⊆ Q[a, b][z, e].

Using the algorithm proposed in [6], we can get a minimal comprehensive
Gröbner system G for F w.r.t. a block order (≻z,≻e), where ≻z and ≻e are two
lexicographical order with z1 > z2 > z3 and e1 > e2 > e3 respectively. Here,
G = {(A1, G1), (A2, G2), (A3, G3), (A4, G4)}, where

A1 = L3 \ V ((ab2 − ab+ b2 − a)(b+ 1)),

G1 = {z1 + z2 + (b − 1)z3 − e1 + e2 + e3, (b+ 1)z2 + bz3 + e2,

(ab2 − ab+ b2 − a)z3 − (ab+ a+ b+ 1)e1 + (ab+ b)e2 + (ab+ a)e3},

A2 = V (ab2 − ab+ b2 − a) \ V (b+ 1),

G2 ={z1 − bz2 − z3 − e1 + e3, (b+ 1)z2 + bz3 + e2, (b+ 1)e1
− (ab2 − ab+ b2 − a+ b)e2 + (ab2 − ab − a)e3},

A3 = V (b+ 1) \ V (a+ 1),
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G3 = {z1 + z2 − 2z3 − e1 + e2 + e3, (a+ 1)z2 − (a+ 1)e1 − ae2 + ae3, z3 − e2}.

A4 = V (a+ 1, b+ 1),

G4 = {z1 + z2 − z3 − e1 + e3, z3 − e2, e2 − e3},

For the minimal comprehensive Gröbner system G, the polynomials in Gi are
all linear in z and e with coefficient in Q[a, b], and the number of polynomials
in Gi is exactly 3 for i = 1, 2, 3.

By Theorem 2, we get the following results.

(1) For A1 and A3, note that

G′
1 = G1 ∩ R[e] = ∅, G′′

1 = G1 \G′
1 = G1,

and

G′
3 = G3 ∩ R[e] = ∅, G′′

3 = G1 \G′
3 = G3.

We have |G′′
1 | = |G′′

3 | = 3. Thus, by Theorem 2, σā(f1),σā(f2),σā(f3) are
linearly independent over L for each ā ∈ A1 ∪ A3.

(2) For case A2, we have

G′
2 = G2 ∩ R[e] = {z1 − bz2 − z3 − e1 + e3, (b+ 1)z2 + bz3 + e2}

and

G′′
2 = G2 \G′

2 = {(b+ 1)e1 − (ab2 − ab+ b2 − a+ b)e2 + (ab2 − ab − a)e3}.

Note that |G′
2| < 3. Then for each ā ∈ A2, σā(f1),σā(f2),σā(f3) are linearly

dependent over L. Moreover, from the polynomial G′′
2 , the maximal linearly

independent subset is M2 = {f2, f3}, and we get a linear combination for f1 after
specialization:

σā(f1) = σā(b+ 1)−1(σā(ab2 − ab+ b2 − a+ b)σā(f2) − σā(ab2 − ab − a)σā(f3)).

And (b+1), −(ab2 −ab+ b2 −a+ b) and (ab2 −ab−a) are the corresponding
coefficients for F, such that

σā((b+ 1)f1 − (ab2 − ab+ b2 − a+ b)f2 + (ab2 − ab − a)f3) = (0, 0, 0).
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(3) For case A4, we have

G′
4 = G4 ∩ R[e] = {z1 + z2 − z3 − e1 + e3, z3 − e2},

and G′′
4 = G4 \G′

4 = {e2 − e3}.
Note that |G′

4| = 2 < 3. Then for each ā ∈ A4, σā(f1),σā(f2),σā(f3) are
linearly dependent over L. From G′′

4 , the maximal linearly independent subset
is M4 = {f1, f3}, and we get a linear combination for f1 after specialization:
σā(f2) = σā(f3). And 0, 1 and −1 are corresponding coefficients such that σā(f2 −
f3) = (0, 0, 0).

Note that L3 = A1 ∪ A2 ∪ A3 ∪ A4, we have solved the dependency problem
for F.
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