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ABSTRACT
A new algorithm, which combines the GVW algorithm with the

Mora normal form algorithm, is presented to compute the standard

bases of ideals in a local ring. Since term orders in local ring are

not well-orderings, there may not be a minimal signature in an

infinite set, and we can not extend the GVW algorithm from a

polynomial ring to a local ring directly. Nevertheless, when given

an anti-graded order in R and a term-over-position order in Rm

that are compatible, we can construct a special set such that it

has a minimal signature, where R, Rm are a local ring and a R-
module, respectively. That is, for any given polynomial v0 ∈ R,
the set consisting of signatures of pairs (u,v) ∈ Rm × R has a

minimal element, where the leading power products of v and v0
are equal. In this case, we prove a cover theorem in R, and use three
criteria (syzygy criterion, signature criterion and rewrite criterion)

to discard useless J-pairs without any reductions. Mora normal form

algorithm is also extended to do regular top-reductions in Rm × R,
and the correctness and termination of the algorithm are proved.

The proposed algorithm has been implemented in the computer

algebra system Maple, and experiment results show that most of

J-pairs can be discarded by three criteria in the examples.
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1 INTRODUCTION
The Gröbner bases was first presented by Buchberger in 1965 [3].

It is useful for solving polynomial equations, the ideal membership

problem and so on. The original algorithm of computing Gröbner

bases was proposed by Buchberger, and it has been implemented

in most computer algebra systems. Since then, many researchers

have done some works to improve the efficiency of the algorithm,

such as Buchberger[4], [5], Faugère [12], Gebauer and Möller [16],

Giovini et.al. [18], Mora et.al. [21]. One important improvement is

that Lazard pointed out the connection betwwen Gröbner basis and

linear algebra [20], which will speed up the reduction step. In Buch-

berger original algorithm, there are many useless S-polynomials

which are reduced to zero. The other improvement is deleting these

useless S-polynomials without performing any reduction. In 2002,

the notation of “signature" and rewriting rules, which can detect

many useless S-polynomials, were proposed by Faugère in the F5 al-

gorithm [13]. After that, several variants of F5 have been presented

including Arri and Perry [1], Eder and Perry [9, 10], Hashemi and

Ars [2], Sun and Wang [23],[24], Gerdt, Hashemi and M.-Alizadeh

[17]. Eder et.al. [11] generalized signature-based Gröbner basis al-

gorithms to Euclidean rings, in particular, the integers. They also

shown how signature based computation can be efficiently used as

a pre-reduction step for a classical Gröbner basis computation over

Euclidean rings. There is by now a large literature on signature-

based Gröbner basis computation; see [8] for a comprehensive

survey.
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Gao et. al. presented a new simple theory for computing Gröbner

bases. Based on the theory, they proposed an incremental signature-

based algorithm G
2
V [14], and an extended version GVW algorithm

[15]. The correctness and finite termination of the GVW algorithm

have been proved.

In algebraic geometry, many questions are related to the local

properties of varieties. Such as given a zero-dimensional ideal I
in k[x1, . . . ,xn ], we want to know the multiplicity of an isolated

singular point p in the variety V(I ) ⊂ kn , or the Milnor and Tjurina

numbers of the point. The local ring is useful for solving these

questions.

As Gröbner bases in polynomial ring, there is a similar notation

called standard bases in local ring. Through computing a standard

bases G of the ideal I in local ring, the local properties of origi-

nal point can be got. For other point p, we only need change the

coordinates to translate the point p to the origin.

Given a collection f1, . . . , fs of polynomials which generate the

ideal I , we would like to find a standard bases of I in a local ring with
respect to some semigroup orders. There are two main algorithms

to compute the standard bases of the ideal I in the local ring. One is

based on the Lazard’s homogeneous idea, and the other one is based

on the Mora normal form algorithm. Let f H be the homogenization

of f in k[t ,x1, . . . ,xn ]. According to Lazard’s idea, we only need

to compute a Gröbner basis of ⟨f H
1
, . . . , f Hs ⟩ with respect to some

special global semigroup orders, then the dehomogenizations of

elements of the Gröbner basis is a standard basis of I in the local

ring. The other one is combining the Mora normal form algorithm

[22] with Buchberger algorithm to compute the standard basis. The

algorithm has been implemented in Singular and REDUCE, but not

in Maple or Mathematica. The experience seems to indicate that

standard bases computation with Mora’s normal form algorithm

is more efficient than computations using Lazard’s method (quote

from [6]).

Since the GVW algorithm is more efficient than the Buchberger

algorithm for computingGröbner bases, it is asked naturallywhether

the GVW algorithm can be used to compute the standard bases

instead of Buchberger algorithm. The answer is yes. In this paper,

we will combining the Mora normal form algorithm with GVW

algorithm to compute the standard bases in the local ring. What’s

more, we have implemented the idea in the Maple.

The paper is organized as follows. Some basic notations about

local ring, signature, and strong standard basis are introduced in the

section 2. In section 3, we present the GVW algorithm in local ring.

The correctness and finite termination of the algorithm are proved

in this section. An example is given for illustrating our method in

the section 4. We conclude this paper in the last section.

2 PRELIMINARIES
In this section, we first review some basic definitions about local

ring. The details can refer to [6]. Then we give the definition of

strong standard bases in local ring, which is similar to strong Gröb-

ner bases [15] in polynomial ring. Finally, we propose the term

orders that we should consider in this paper.

2.1 Local Ring
Let X be the n variables x1, . . . ,xn ; k[X ] be the polynomial ring in

variables X with coefficients in a field k ; {Xα
: α ∈ Zn

≥0
} be the set

of monomials in k[X ].

Definition 2.1 (Semigroup Order). An order ≻ on Zn
≥0

or, equiv-

alently, on {Xα
: α ∈ Zn

≥0
}, is said to be a semigroup order if it

satisfies:

(1) ≻ is a total order on Zn
≥0
;

(2) ≻ is compatible with multiplication of monomials.

As in Definition 2.1, being a total order means that for any α , β ∈

Zn
≥0
, exactly one of the following is true:

Xα ≻ X β , Xα = X β , or Xα ≺ X β .

Compatibility with multiplication means that for any Xγ
in {Xα

:

α ∈ Zn
≥0
}, if Xα ≻ X β

, then XαXγ ≻ X βXγ
.

For any α , (0, . . . , 0), if Xα ≻ 1, the semigroup order is called

global order; and if Xα ≺ 1, it is called local order. For example,

the lexicographic order is a global order and the antigraded lexico-

graphic order (abbreviated alex ) is a local order. The definition of

alex is as follows.

Definition 2.2. Let α , β ∈ Zn
≥0
. We say Xα ≻alex X β

if |α | =∑n
i=1 αi < |β | =

∑n
i=1 βi , or if |α | = |β | and Xα ≻lex X β

.

Let f be a polynomial in k[X ], ≻ be a semigroup order on the

monomials in k[X ], the leading power product, the leading coeffi-

cient of f is denoted by lpp(f ), lc(f ) respectively, and the leading

term, lt(f ) = lc(f )lpp(f ). The localization of k[X ] with respect to

≻ is defined as follows.

Definition 2.3 (Localization of Ring). Let ≻ be a semigroup order

on monomials in k[X ], and let S = {1 + д : д = 0 or lt(д) ≺ 1}. The

localization of k[X ] w.r.t. ≻ is the ring

Loc≻(k[X ]) = { f /(1 + д) : f ,д ∈ k[X ] and 1 + д ∈ S}.

Notes that, if ≻ is a global order, Loc≻(k[X ]) = k[X ]. On the

other hand, if ≻ is a local order, Loc≻(k[X ]) = k[X ]⟨x1, ...,xn ⟩ . For

briefly, we denote Loc≻(k[X ]) by R w.r.t. a local order ≻ in the

following.

The semigroup order ≻ on the monomials in k[X ] can be natu-

rally extended to R. For any h = f /(1 + д) ∈ R, the leading power
product, the leading coefficient, and the leading term of h are de-

fined to be same as those of f , that is, lpp(h) = lpp(f ), lc(h) = lc(f ),
and lt(h) = lt(f ).

For any h1, . . . ,hm in R, an ideal I ⊂ R generated by them is

I = ⟨h1, . . . ,hm⟩ = {
∑m
i=1 uihi : ∀u1, . . . ,um ∈ R}. The n-tuple

(u1, . . . ,um ) is called a syzygy of {h1, . . . ,hm }, if
∑m
i=1 uihi = 0.

Definition 2.4 (Standard basis). Let ≻ be a semigroup order on

the monomials in k[X ], and I be an ideal in R. A standard basis of I
is a set {д1, . . . ,дs } in I such that ⟨lt(I )⟩ = ⟨lt(д1), . . . , lt(дs )⟩.

Since k is a field, the set {д1, . . . ,дs } is a standard basis of I if
and only if ⟨lpp(I )⟩ = ⟨lpp(д1), . . . , lpp(дs )⟩. If ≻ is a global order,

the standard basis is exactly the Gröbner basis. So the standard

bases in R is more extensive than Gröbner bases.

In order to compute a standard basis of I ⊂ R w.r.t. a local order,

we need to develop an extension of the division algorithm in k[X ]
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which will yield information about ideals in R. Since we deal with
orders that are not well-orderings, the difficult part is to give a

division process that is guaranteed to terminate. We can evade this

difficulty with a splendid idea of Mora, and obtain the Mora normal

form algorithm in R.

Corollary 2.5 (Mora Normal Form Algorithm). Let ≻ be a
semigroup order on the monomials in k[X ], д ∈ R and д1, . . . ,дs ∈

k[X ] be nonzero. Then there is an algorithm for producing poly-
nomials a1, . . . ,as ,h ∈ R such that д = a1д1 + · · · + asдs + h,
where lpp(ai )lpp(дi ) ⪯ lpp(д) for all i with ai , 0, and either
h = 0, or lpp(h) ⪯ lpp(д) and lpp(h) is not divisible by any of
lpp(д1), . . . , lpp(дs ).

Remark 1. Based on Mora’s research, Greuel and Pfister in [19]

obtained a normal form algorithm in Rm , when they studied the

standard bases for modules. That is, for any given module order ≺′

in Rm , u ∈ Rm and u1, . . . ,us ∈ (k[X ])m are nonzero, then there is

an algorithm for producing polynomials b1, . . . ,bs ∈ R and r ∈ Rm

such that u = b1u1+ · · ·+bsus + r, where lpp(bi )lpp(ui ) ⪯′
lpp(u)

for all i with bi , 0, and either r = 0, or lpp(r) is not divisible by
any lpp(ui ), i = 1, . . . , s .

2.2 Strong Standard Basis
By analogy with the notation of strong Gröbner bases [15] in

(k[X ])m ×k[X ], we will define the strong standard bases in Rm ×R
w.r.t a local order ≻. Cox et.al. [6] proved that every ideal I ⊂

k[X ]⟨x1, ...,xn ⟩ has a generating set consisting of polynomials in

k[X ]. By the above fact, restricting to ideals generated by polyno-

mials in this paper entails loss of generality when we are studying

ideals in R = k[X ]⟨x1, ...,xn ⟩ for a local order ≻.

In this paper, elements in Rm are denoted by the bold letters

f , u etc., while elements in R are denoted by the letters v, r etc. Let
f = (f1, . . . , fm ) in (k[X ])m , we can define a subset in Rm × R:

M = {(u,v) ∈ Rm × R : u · f = v, u ∈ Rm },

For any (u1,v1), (u2,v2) ∈ M , and r ∈ R, since ru1 · f + u2 · f =
(ru1 + u2) · f = rv1 + v2, so (ru1 + u2, rv1 + v2) ∈ M , and M is

a R-submodule in Rm × R. It is obvious that M is generated by

(e1, f1), . . . , (em , fm ), where ei is the i-th unit vector of Rm , i.e.,

(ei )j = δi j , δi j is the Kronecker delta. We say Xα ei divides X β ej if
Xα

divides X β
and i = j.

Fix any local order ≺1 in R, and any module order ≺2 in Rm . For

any element v ∈ R, the leading power product, the leading coef-

ficient of v w.r.t. ≺1 is denoted by lpp≺1

(v), lc≺1
(v) respectively.

Similarly, any element u ∈ Rm , the leading power product, the lead-

ing coefficient of u w.r.t. ≺2 is denoted by lpp≺2

(u), lc≺2
(u) respec-

tively. For convenient, we denote them by lpp(v), lc(v), lpp(u), lc(u)
with no confusion. For any p = (u,v) inM , the lpp(u) is called the

signature of p.
We say ≺2 is compatible with ≺1, if it satisfies that: X

α ≺1 X
β
if

and only if Xα ei ≺2 X
β ei for all i = 1 . . .m.

Definition 2.6 (Top-reducible). Let p1 = (u1,v1), p2 = (u2,v2) be
two elements inM . We say p1 is top-reducible by p2, if it satisfies:

(1) when v2 = 0, lpp(u2) divides lpp(u1); and
(2) when v1v2 , 0, lpp(v2) divides lpp(v1) and t lpp(u2) ⪯2

lpp(u1), where t = lpp(v1)/lpp(v2).

When v1v2 , 0, the corresponding one-step top-reduction is

OneRed(p1,p2) = p1 − ctp2 = (u1 − ctu2,v1 − ctv2),

where c = lc(v1)/lc(v2). Such a top-reduction is called regular if
lpp(u1 − ctu2) = lpp(u1), and super otherwise. When v1 is zero,
the corresponding top-reduction is always called super. Let G be

any set of pairs in Rm × R, we call a pair (u,v) eventually super
top-reducible by G if there is a sequence of regular top-reductions

by pairs in G that reduce (u,v) to a pair (û, v̂) that is no longer

regular top-reducible by G but is super top-reducible by at least

one pair in G.

Definition 2.7 (Strong standard bases). Let G = {(u1,v1), . . . ,
(us ,vs )} be a finite subset of M , where u1, . . . ,us ∈ (k[X ])m and

v1, . . . ,vs ∈ k[X ]. ThenG is called a strong standard basis forM , if

for any nonzero (u,v) inM , (u,v) is top-reducible by some element

in G.

In Gao et. al. [15], the authors have proved that if G = {(u1,v1),
. . . , (us ,vs )} is a strong standard basis forM , then {vi : 1 ⩽ i ⩽ s}
is a Gröbner basis for I = ⟨f1, . . . , fm⟩ in k[X ] w.r.t. a global order.

In their proof, they can select a minimal lpp(u) such that u · f =
v , since the monomials order in k[X ] satisfies the well-ordering

relation. However, local orders are not well-orderings, and we can

not get a minimal lpp(u). Therefore, we need a newmethod to solve

this problem.

Proposition 2.8. Let ≺1 be an arbitrary local order in R and ≺2

be a module order in Rm . Suppose that G = {(u1,v1), . . . , (us ,vs )}
is a strong standard basis forM , then

(1) G0 = {ui : vi = 0, 1 ⩽ i ⩽ s} is a standard basis for the
syzygy module of { f1, . . . , fm }, and

(2) G1 = {vi : 1 ⩽ i ⩽ s} is a standard basis for ideal I =
⟨f1, . . . , fm⟩ in R.

Proof. Since the proof of (1) is same as the proposition 2.2 in

Gao et. al. [15], we only prove the second assertion.

Without loss of generality, let G0 = {ui : vi = 0, 1 ⩽ i ⩽ k}
and G1 = {vi : k + 1 ⩽ i ⩽ s}, where 1 ≤ k < s . We select v ∈ I
such that v , 0. Then there exists u ∈ Rm so that u · f = v . Remark

1 implies that there exist a1, . . . ,ak ∈ R and h ∈ Rm such that

u = a1u1 + · · · + akuk + h, where lpp(ai )lpp(ui ) ⪯2 lpp(u) for
all i with ai , 0, and either h = 0, or h < ⟨G0⟩. It follows from

v , 0 that h , 0. Hence, (u,v) ∈ M can be top-reducible to (h,v)
by {(ui , 0) : ui ∈ G0}. Since (h,v) ∈ M and h < ⟨G0⟩, it can be

top-reducible by some (ui ,vi ) ∈ G with vi ∈ G1. So vi , 0 and

lpp(vi ) divides lpp(v). Hence G1 is a standard basis for I . □

2.3 Term Orders
In the following, we consider a local order ≺1 in R and a module

order ≺2 inR
m
. For any ≺1, there are manyways that we can extend

≺1 to ≺2. For example, we get ≺2 as follows.

(1) Position Over Term (POT). We say that X β ej ≺2 Xα ei if
j > i , or if j = i and X β ≺1 X

α
.

(2) Term Over Position (TOP). We say that X β ej ≺2 Xα ei if
X β ≺1 X

α
, or if X β = Xα

and j > i .
(3) f-weighted anti-degree followed by TOP. We say that X β ej

≺2 Xα ei if tdeg(X β fj ) > tdeg(Xα fi ), or if tdeg(X
β fj ) =
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tdeg(Xα fi ) and X β ej ≺TOP Xα ei , where tdeg is for total

degree.

(4) f-weighted ≺1 followed by POT. We say that X β ej ≺2 X
α ei

if lpp(X β fj ) ≺1 lpp(Xα fi ), or if lpp(X
β fj ) = lpp (Xα fi )

and X β ej ≺POT Xα ei .
For any (u0,v0) ∈ M , we consider the set

L(lpp(v0)) = {lpp(u) : (u,v) ∈ M and lpp(v) = lpp(v0)}.

Note that L(lpp(v0)) is a nonempty set. But, L(lpp(v0))may not have

a minimal element. For example, let ≺1 be an anti-graded lex order

with x2 ≺1 x1 on R, and ≺2 be a POT order with e2 = (0, 1) ≺2 e1 =
(1, 0) on R2, where R = k[x1,x2]⟨x1,x2 ⟩ . Consider M generated by

(e1,x1) and (e2,x2). Let p0 = (u0,v0) = ((x1,x1+1),x
2

1
+x1x2+x2),

then p0 ∈ M and lpp(u0) = x1e1, lpp(v0) = x2. We can construct

pi = (ui ,vi ) = ((x1+i
1
,x1 + 1),x2+i

1
+ x1x2 + x2), where i ∈ Z≥1.

Then pi ∈ M , lpp(vi ) = lpp(v0) and L(lpp(v0)) ⊇ {x i
1
e1 : i ∈ Z≥1}.

Obviously, L(lpp(v0)) has not a minimal element. Moreover, if G is

a subset ofM and p0 is not top-reducible by any pair in G, then pi
is also not top-reducible by any pair in G.

Nevertheless, if ≺1 is an anti-graded order in R and ≺2 is a TOP

order in Rm , then we can prove that L(lpp(v0)) has a minimal ele-

ment.

Lemma 2.9. Let ≺1 be an anti-graded order in R, and ≺2 be a
TOP order in Rm , where ≺2 is compatible with ≺1. Then for any
(u0,v0) ∈ M , L(lpp(v0)) has a minimal element.

Proof. Without loss of generality, we suppose lpp(f1) is max-

imal in {lpp(f1), . . . , lpp(fm )}. For any (u,v) ∈ M which satisfies

lpp(v) = lpp(v0), we have u1 f1 + · · · + um fm = v , where u =
(u1, . . . ,um ). Let lpp(u) = lpp(ui )ei for some i , where 1 ≤ i ≤ m.

Since ≺2 is a TOP order in Rm and is compatible with ≺1, lpp(ui ) =
max{lpp(u1), . . . , lpp(um )}. It follows from v =

∑m
j=1 uj fj that

there exists some j such that lpp(v) = lpp(v0) ⪯1 lpp(uj )lpp(fj ),
where 1 ≤ j ≤ m. Then we have lpp(v0) ⪯1 lpp(uj )lpp(f1) ⪯1

lpp(ui )lpp(f1). Since ⪯1 is an anti-graded order, there are a finite

number of lpp(ui ) forwhich the inequality lpp(v0) ⪯1 lpp(ui )lpp(f1)
holds. Therefore, L(lpp(v0)) is a finite set, and has a minimal ele-

ment. □

Remark 2. If ≺2 is not a TOP order in Rm , then lpp(ui ) = max

{lpp(u1), . . . , lpp(um )} may not hold. Moreover, if ≺1 is not an anti-

graded order in R, there may be an infinite number of lpp(ui ) for
which the inequality lpp(v0) ⪯1 lpp(ui )lpp(f1) holds. In either case,

L(lpp(v0)) may not have a minimal element.

3 THE GVW ALGORITHM IN LOCAL RING
In order to compute the strong standard basis for M , we need

to define a concept of J-pair which is similar to S-polynomial in

Buchberger’s algorithm. Suppose p1 = (u1,v1),p2 = (u2,v2) are
two pairs in M with v1v2 , 0. Let t = lcm(lpp(v1), lpp(v2)), t1 =
t/lpp(v1), t2 = t/lpp(v2), c = lc(v1)/lc(v2), andT = max{t1lpp(u1),
t2lpp(u2)}. Without loss of generality, we assume T = t1lpp(u1). If

lpp(t1u1 − ct2u2) = T ,

then t1p1 is called the J-pair of p1 and p2, and T is called the J-
signature of the J-pair. It is obvious that the J-pair t1p1 is regular
top-reducible by p2.

We say that a pair (u,v) ∈ M is covered by G ⊂ M , if there is a

pair (ui ,vi ) ∈ G such that lpp(ui ) divides lpp(u) and t lpp(vi ) ≺1

lpp(v), where t = lpp(u)/lpp(ui ).

3.1 The Algorithm
The following theorem is the theoretical foundation of the GVW

algorithm in local ring.

Theorem 3.1 (Cover Theorem). Suppose the TOP order ≺2 in
Rm is compatible with the anti-graded order ≺1 in R. Let G be a
finite subset of M such that, for any term T ∈ Rm , there is a pair
(u,v) ∈ G and a monomial t such that T = t lpp(u), where for every
pair (u,v) ∈ G, u ∈ (k[X ])m and v ∈ k[X ]. Then the following are
equivalent:

(a) G is a strong standard basis forM ;
(b) every J-pair of G is eventually super top-reducible by G;
(c) every J-pair of G is covered by G.

Proof. We only prove (c) ⇒ (a), other proofs are same as the

Theorem 2.4 in Gao et. al. [15]. We prove by contradiction.

LetW = {(u,v) ∈ M : (u,v) is not top-reducible by any pair in

G}. Since ≺1 is a local order in R, we can construct a subsetW1 ⊂W
such thatW1 = {(u,v) ∈ W : lpp(v) is maximal}. Then, for any

element (u,v) ∈W1, the leading power product of v is equal and

maximal inW . Since ≺2 in Rm is compatible with ≺1, according

to Lemma 2.9 we can also construct a subsetW2 ⊂ W1 such that

W2 = {(u,v) ∈ W1 : lpp(u) is minimal}. Therefore, we can pick

a pair p0 = (u0,v0) ∈ W2 such that lpp(v0) is maximal inW and

lpp(u0) is minimal inW1. Next, we select a pair p1 = (u1,v1) from
G such that

(i) lpp(u0) = t lpp(u1) for some monomial t , and
(ii) t lpp(v1) is minimal among all p1 ∈ G satisfying (i).

Then t(u1,v1) is not regular top-reducible by G (this proof can be

found in Theorem 2.4, [15]). Consider

(u∗,v∗) := (u0,v0) − ct(u1,v1), (1)

where c = lc(u0)/lc(u1) so that lpp(u∗) ≺2 lpp(u0). Note that

lpp(v0) , t lpp(v1), since otherwise (u0,v0) would be top-reducible
by p1 ∈ G contradicting the choice of (u0,v0). Then, we consider
the following two cases:

• If lpp(v0) ≺1 t lpp(v1), then lpp(v∗) = t lpp(v1). Since every
element (u,v) ∈W satisfies that lpp(v) ⪯1 lpp(v0), we have
that (u∗,v∗) <W and it is top-reducible by G. Without loss

of generality, we assume that (u∗,v∗) is top-reducible by

p2 = (u2,v2) ∈ G with v2 , 0. Hence, lpp(v2) | t lpp(v1) and
t2lpp(u2) ⪯2 lpp(u∗) ≺2 t lpp(u1), t2 = t lpp(v1)/lpp(v2). It
follows that t(u1,v1) is regular top-reducible by p2 ∈ G.
Since t(u1,v1) is not regular top-reducible by any pair in G,
this case impossible.

• If t lpp(v1) ≺1 lpp(v0), then lpp(v∗) = lpp(v0). We assert

that (u∗,v∗) < W . If otherwise, lpp(v∗) = lpp(v0) implies

that (u∗,v∗) ∈W1. It follows that lpp(u∗) ⪰2 lpp(u0), which
leads to a contradiction. So (u∗,v∗) < W is top-reducible

by G. Without loss of generality, we assume that (u∗,v∗)
is top-reducible by p3 = (u3,v3) ∈ G with v3 , 0. We

have lpp(v3) | lpp(v0) and t3lpp(u3) ⪯2 lpp(u∗) ≺2 lpp(u0),
where t3 = lpp(v0)/lpp(v3). Therefore, (u0,v0) is regular
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top-reducible by p3 ∈ G, contradicting the fact that (u0,v0)
is not top-reducible by any pair in G.

Therefore such a pair (u0,v0) does not exist inM , so every pair in

M is top-reducible by G. This proves (c) ⇒ (a). □

Remark 3. If L(lpp(v0)) has not a minimal element, then (u∗,v∗)
may not be top-reducible by any pair inG under the case of t lpp(v1)
≺1 lpp(v0). If (u∗,v∗) ∈ W , we need to select another pair p4 =
(u4,v4) fromG and repeat the process of equation (1). Since ≺2 is a

local order, the process of equation (1) may not terminate, and the

above theorem can not be justified.

It follows from Theorem 3.1 that any J-pair that is covered by G
can be discarded without performing any reductions. As a conse-

quence, there are three criteria used to discard superfluous J-pairs.

Corollary 3.2 (Syzygy Criterion). For any J-pair (u,v) of G,
it can be discarded if lpp(u) is divided by lpp(w) for some (w, 0) in
M .

Corollary 3.3 (Signature Criterion). Among all J-pairs with
a same signature, only one (with the polynomial part minimal) needs
to be stored.

Corollary 3.4 (Rewrite Criterion). For any J-pair (u,v) of
G, it can be discarded if (u,v) is covered by G.

Before presenting the GVW algorithm in local ring, we need to

make some explanations. Since storing and updating vectors u ∈

Rm are expensive, we will store lpp(u) instead of u in our compu-

tation, which does not effect the correctness and termination of the

algorithm. That is, for any given setG ′ = {(u1,v1), . . . , (us ,vs )} ⊂
M , we will use the setG = {(lpp(u1),v1), . . . , (lpp(us ),vs )} instead
ofG ′

to compute a standard basis of ⟨f1, . . . , fm⟩ ⊂ R. Assume that

the J-pair of (ui ,vi ) and (uj ,vj ) is (u,v), then the J-pair (T ,v)
of (lpp(ui ),vi ) and (lpp(uj ),vj ) is defined as (lpp(u),v), where

1 ≤ i , j ≤ s . For simplicity, we use (T ,v)
G
to denote the remain-

der obtained by using G to regular top-reduce (T ,v) repeatedly
until it is not regular top-reducible, we will prove that this process

is terminated within a finite number of steps in Section 3.2.

According to the Theorem 3.1, and the Corollary 3.2, 3.3, 3.4, the

GVW algorithm in local ring is presented below.

♦
: The trivial principle syzygies are used to delete the redundant

J-pairs.

♣
: Only storing the J-pairs whose signatures are not divided by

{(T , 0) | T ∈ H } and only storing one J-pair for each distinct

signature with v-part minimal. (syzygy criterion and signature

criterion)

♠
: The principle syzygy is stored only when lpp(vjT0 − v0Tj ) =
max{lpp(vjT0), lpp(v0Tj )}.

The correctness of the algorithm follows directly from the theo-

rem 3.1. The algorithm can terminate if the regular top-reduction

can terminate in the local ring.

3.2 Regular Top-Reduction in Local Ring
Since the local order is not a well-ordering, a sequence of successive

one-step regular top-reductions may not terminate.

Algorithm 1: GVW algorithm in local ring

Input :F = { f1, . . . , fm } ⊂ k[X ], an anti-graded order ≺1 in

R, and a TOP order ≺2 in Rm , where ≺2 is compatible

with ≺1.

Output : two sets V and H , where V is the set of a standard

basis for ⟨f1, . . . , fm⟩ ⊂ R, and H is the set

consisting of the leading power products of a

standard basis for the syzygy of F .
1 begin
2 Initial:
3 G := {(e1, f1), . . . , (em , fm )};

4 H := {lpp(fiej − fjei ) | 1 ⩽ i < j ⩽m}♦;

5 JP := {J-pairs of G}♣;

6 while JP , ∅ do
7 choose (T ,v) ∈ JP , and JP := JP \ {(T ,v)};

8 if (T ,v) is covered by G then
9 next;

10 else

11 (T0,v0) := (T ,v)
G
;

12 if v0 = 0 then
13 H := H ∪ {T0};

14 JP := JP \ {(T ′,v ′) ∈ JP satisfies T0 divides T
′};

15 else
16 H := H ∪ {lpp(v0Tj −vjT0) | (Tj ,vj ) ∈ G}♠;

17 JP := JP ∪ {J-pairs between (T0,v0) and G}♣;

18 G := G ∪ {(T0,v0)};

19 end if
20 end if
21 end while
22 return V := {v | (T ,v) ∈ G} and H .

23 end

Example 3.5. Let p1 = (u1,v1) = (e1,x1), p2 = (u2,v2) =
(e2,x1 − x2

1
), ≺1 is the anti-graded lexicographic order, ≺2 is a

TOP order and compatible with ≺1, where e2 ≺2 e1.
Since lpp(v2) = lpp(v1) = x1 and lpp(u2) = e2 ≺2 lpp(u1) = e1,

p1 is regular top-reducible by p2. Then we have

p3 = (u3,v3) = OneRed(p1,p2) = (e1 − e2,x21 ).

Similarly, x1lpp(v2) = lpp(v3) and x1lpp(u2) = x1e2 ≺2 lpp(u3) =
e1 imply that p3 is still regular top-reducible by p2:

p4 = OneRed(p3,p2) = (e1 − (1 + x1)e2,x31 ).

Continue the regular top-reduction steps, we have:

p5 = OneRed(p4,p2) = (e1 − (1 + x1 + x
2

1
)e2,x4

1
);

p6 = OneRed(p5,p2) = (e1 − (1 + x1 + x
2

1
+ x3

1
)e2,x5

1
);

p7 = OneRed(p6,p2) = (e1 − (1 + x1 + x
2

1
+ x3

1
+ x4

1
)e2,x6

1
);

· · ·

The above example shows that the top-reduction steps may not

terminate in the local ring, if we use the usual division algorithm

in the polynomial ring [7]. Thanks to the splendid idea of Mora,

the termination problem can be solved by the Mora Normal Form

Algorithm [6]. The notation écart will be used in the algorithm. Let
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f ∈ k[X ], the écart of f is

ecart(f ) = deg(f ) − deg(lpp(f )),

where deg(f ) is the total degree of f . For an element p = (u, f ) in
(k[X ])m × k[X ], we define the écart of p is equal to ecart(f ).

Theorem 3.6. Assume ≺1,≺2 be the semigroup orders on the
monomials in the ring k[X ] and (k[X ])m respectively, where ≺1 is a
local order and ≺2 is compatible with ≺1. Let p = (u, f ) be a J-pair
of G = {p1 = (u1, f1), . . . ,ps = (us , fs )} ⊂ (k[X ])m × k[X ] and p
is not covered by G . Then there is an algorithm for producing polyno-
mials h,a1, . . . ,as in k[X ] and r = (w,v) in (k[X ])m × k[X ] such
that

hp = a1p1 + · · · + asps + r , (2)

where lpp(h) = 1 (so h is a unit in R), lpp(ai fi ) ⪯1 lpp(f ), lpp(aiui )
⪯2 lpp(u) for all i with ai , 0, lpp(w) = lpp(u), and either v = 0 or
lpp(v) is not divisible by any lpp(fi ). The r is called the remainder of
p regular top-reduced by G.

Proof. Since p = (u, f ) is a J-pair of G, there exists a pair

pi = (ui , fi ) ∈ G such that p is regular top-reducible by pi . Let

r0 := (w0,v0) = p − c
(0)

i t
(0)

i pi , where c
(0)

i = lc(f )/lc(fi ) and

t
(0)

i = lpp(f )/lpp(fi ), then lpp(v0) ≺1 lpp(f ) and lpp(w0) = lpp(u).
If r0 can be expressed ashr0 = a1p1+· · ·+asps+r , then the equation
(2) holds for (u, f ). We give a constructive proof by the following

algorithm, which is similar to the algorithm in page 173 of [6].

Input: r0 = (w0,v0),p1 = (u1, f1), . . . ,ps = (us , fs );
Output: r as statement of theorem 3.6.

Initial: r := (w,v); w := w0; v := v0; L := {p1, . . . ,ps };
M := {д ∈ L : r is regular top-reducible by д}.

WHILE (v , 0 ANDM , ∅) THEN

SELECT д ∈ M with ecart(д) minimal;

IF ecart(д) > ecart(r ) THEN
L := L ∪ {r };

END IF;

r := OneRed(r ,д);
IF v , 0 THEN

M := {д ∈ L : r is regular top-reducible by д};
END IF;

END DO.

To prove the correctness, we will prove by induction on j ≥ 0

that we have identities of the form

hjr0 = a
(j)
1
p1 + · · · + a

(j)
s ps + r j , (3)

where lpp(hj ) = 1, lpp(a
(j)
i fi ) ⪯1 lpp(v0), lpp(a

(j)
i ui ) ⪯2 lpp(w0),

and lpp(wj ) = lpp(w0). Setting h0 = 1 and a
(0)

i = 0 for all i shows
that everything works for j = 0. Now suppose that in the first l − 1

steps, the equation (3) is satisfied, where l ≥ 1. Then we need to

prove that rl = (wl ,vl ) produced by the l-th pass through the loop

satisfies the above conditions.

If vl−1 , 0 and Ml−1 , ∅, in the step l , there is дl = (sl ,bl ) ∈
Ml−1 such that rl−1 is regular top-reducible by дl . Then

rl = OneRed(rl−1,дl ) = rl−1 − cl tlдl , (4)

where tl = lpp(vl−1)/lpp(bl ), cl = lc(vl−1)/lc(bl ) and lpp(wl ) =

lpp(wl−1). For дl , there are two cases:

(⋆) дl = pi ∈ {p1, . . . ,ps };
(⋆⋆) дl = rn ∈ {r0, r1, . . . , rl−2}.

In case (⋆), substituting rl−1 = cl tlpi + rl to the right-side of

equation (3) for j = l − 1, we have

hl−1r0 = a
(l−1)
1

p1 + · · · + a
(l−1)
s ps + cl tlpi + rl .

Setting hl := hl−1, a
(l )
i := a

(l−1)
i + cl tl and a

(l )
k := a

(l−1)
k for k ∈

{1, . . . , s} \ {i}, the equation (3) holds for j = l .

In case (⋆⋆), дl = rn = hnr0 −
∑s
i=1 a

(n)
i pi and lpp(bl ) ≻1

lpp(vl−1), wheren ∈ {0, . . . , l−2}. Substitutingдl to the right-hand

side of (4), we have rl−1 = cl tl (hnr0−
∑s
i=1 a

(n)
i pi ) +rl . Substituting

rl−1 to the right-hand side of (3) for j = l − 1, we have

hl−1r0 = a
(l−1)
1

p1 + · · · + a
(l−1)
s ps + cl tl (hnr0 −

s∑
i=1

a
(n)
i pi ) + rl ,

i.e., (hl−1 − cl tlhn )r0 =
∑s
i=1(a

(l−1)
i − cl tla

(n)
i )pi + rl . Setting hl :=

hl−1 − cl tlhn and a
(l )
i := a

(l−1)
i − cl tla

(n)
i . lpp(bl ) ≻1 lpp(vl−1)

implies that lpp(cl tl ) = lpp(vl−1)/lpp(bl ) , 1. Since ≺1 is a local

order, 1 = lpp(hl−1) ≻1 lpp(cl tlhn ), where lpp(hn ) = 1. Therefore,

lpp(hl ) = lpp(hl−1 − cl tlhn ) = 1, and the equation (3) also holds

for j = l .
If the algorithm terminates after N steps, then h := hN , ai :=

a
(N )

i and r := rN satisfy the conditions in Theorem 3.6, so the

algorithm is correct.

To prove the termination, the order ≺1 extends to a semigroup

order ≺′
on monomials in t ,x1, . . . ,xn in the following way. Define

taXα ≺′ tbX β
, if either a + |α | < b + |β |, or a + |α | = b + |β |

and Xα ≺1 X β
. The order ≺′

is a global order. Let f H denote

the homogenization of f with respect to a new variable t . For

any f ∈ k[X ], we have lpp≺′(f H ) = tecar t (f )lpp≺1

(f ). For any
r = (w,v) ∈ (k[X ])m × k[X ], the homogenization of r is defined

by rH = (tecar t (v)w,vH ). And for any pairs r1 = (w1,v1), r2 =
(w2,v2), we say that r1 divides r2 if lpp(w1) | lpp(w2) and lpp(v1) |
lpp(v2).

Let IniHom(L) = {(tecar t (v)lpp(w), lpp≺′(vH )) : (w,v) ∈ L},
we claim that if rl−1 = (wl−1,vl−1) is added to the set Ll in the step

l , the (tecar t (vl−1)lpp(wl−1), lpp≺′(vHl−1)) is not divisible by any

element in IniHom(Ll−1). We prove it by contradiction. Assume that

(tecar t (vl−1)lpp(wl−1), lpp≺′(vHl−1)) is divisible by some element in

IniHom(Ll−1), then there exists д = (s,b) ∈ Ll−1 such that{
tecar t (b)lpp(s) | tecar t (vl−1)lpp(wl−1),

lpp≺′(bH ) | lpp≺′(vHl−1).

Therefore, lpp(s) | lpp(wl−1), lpp(b) | lpp(vl−1) and ecart(b) ⩽
ecart(vl−1). Let lpp(vl−1) = Xα

lpp(b) and lpp(wl−1) = X β
lpp(s).

For д, there are two cases:

• д ∈ Ll−1\G ⊂ {r0, r1, . . . , rl−2};
• д ∈ G.

If д ∈ Ll−1\G, then lpp(s) = lpp(wl−1) = lpp(w0) and lpp(vl−1)

, lpp(b). Then Xα ≺1 X β
since ≺1 is a local order, X

α , 1 and

X β = 1. We have:

lpp(vl−1)

lpp(b)
lpp(s) = Xα

lpp(s) ≺2 X
β
lpp(s) = lpp(wl−1),
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and lpp(b) | lpp(vl−1), so rl−1 is regular top-reducible by д and

д ∈ Ml−1. But ecart(д) ⩽ ecart(rl−1), this contradicts that rl−1 is
added to Ll only when ecart(rl−1) < ecart(д′) for any д′ ∈ Ml−1.

If д ∈ G and Xα ≺1 X
β
, it is contradictory by the same analysis

as above. If д ∈ G and Xα ⪰1 X
β
, then

X β
lpp(b) ⪯1 X

α
lpp(b) = lpp(vl−1) ⪯1 lpp(v0) ≺1 lpp(f ),

and lpp(s)|lpp(wl−1) = lpp(w0) = lpp(u). This contradicts that
p = (u, f ) is not cover by G.

Above all, (tecar t (vl−1)lpp(wl−1), lpp≻′(vHl−1)) is not divisible by

IniHom(Ll−1). Therefore, we have a sequence r j1 , r j2 , . . . , r ji , . . . ∈
L, which corresponds to a sequence

(tecar t (vj1 )lpp(wj1 ), lpp(v
H
j1 )), (t

ecar t (vj
2
)
lpp(wj2 ),

lpp(vHj2 )), . . . , (t
ecar t (vji )lpp(wji ), lpp(v

H
ji )), . . .

(5)

with no pair divisible by any previous one.

We introduce new variables ®yi = (yi0 ,yi1 , . . . ,yin ). Each pair

(taXα ei , taX β ) corresponds to a term ®y
(a,α )
i taX β

in the variables

xi , t ,yi j (this idea is similar to that on Page 4 of the paper [10]),

where i = 1, . . . ,n, j = 0, . . . ,n. Then the pairs in (5) give us a

list of monomials in xi , t ,yi j , i = 1, . . . ,n, j = 0, . . . ,n with no one

divisible by any previous one. Since every polynomial ring over a

field is Noetherian, the list of monomials must be finite. So there is

some N such that LN = LN+1 = LN+2 = · · · . Then the algorithm

continues with a fixed set of L. Form ⩾ N , since any regular top-

reduction of rm by Lm corresponds to a regular top-reduction of rHm
by LHm = LHN , the reduction must terminate after finite steps. □

Example 3.7 (Continue Example 3.5). The J-pair of p1 and p2 is
p = (u,v) = (e1,x1), which is not covered byp1 andp2. We start the

division algorithmwith r0 := p−p2 = (e1−e2,x2
1
), andL0 = {p1,p2}.

Since r0 is regular top-reducible by p1 and p2,M0 = {p1,p2}. In the

step 1, p1 is chosen to reduce r0 since ecart(p1) = 0 < 1 = ecart(p2).
r1 := OneRed(r0,p1) = r0 −x1p1 = ((1−x1)e1 − e2, 0). The division
algorithm terminates, and p = x1p1 + p2 + ((1 − x1)e1 − e2, 0).

4 AN ILLUSTRATIVE EXAMPLE
The following is an example to illustrate our algorithm in local ring.

Example 4.1. Let R = Loc≺1
(C[x1,x2,x3]), and I = ⟨f1, f2, f3⟩ =

⟨x2
1
−5x2x3−2x2

2
x3, 2x1x2+2x

3

2
−x3

3
,−x1x2+x2x

2

3
⟩ ⊂ R, where ≺1

is the anti-graded revlex order with x1 ≻1 x2 ≻1 x3. Suppose ≺2 is

a TOP order in R3 and compatible with ≺1, where e1 ≻2 e2 ≻2 e3.
Computing a standard basis for I and the leading power products

of a standard basis for the syzygy module of { f1, f2, f3}.

Initial:
G0 := {p1,p2,p3} = {(e1, f1), (e2, f2), (e3, f3)};
H0 := {x2

1
e2,x2

1
e3,x1x2e2} is the set of the leading power products

of principle syzygies {e1 f2 − e2 f1, e1 f3 − e3 f1, e2 f3 − e3 f2};
JP0 := {(T1,v1), (T2,v2), (T3,v3)} = {(x1e3,x1 f3), (x1e2,x1 f2), (e2,
f2)} is the J-pairs set of G0.

First cycle:
We select the J-pair (T1,v1) from JP0 and use G0 to reduce it. By

computing, (T1,v1) is not covered by G0. So (T1,v1) can be regular

top-reducible by G0 to p4 = (T1, ṽ1) = (x1e3,−5x2
2
x3 + x1x2x

2

3
−

2x3
2
x3). Since ṽ1 , 0, computing the principle syzygies ofp4 withG0,

and adding the leading power product of these syzygies toH0 (delete

any redundant ones), we obtain H1 := H0. Computing the J-pairs

of p4 with elements in G0 and getting JP1 := {(T2,v2), (T3,v3)}.
Moreover, G1 := G0 ∪ {p4}.
Second cycle:
We select (T2,v2) from JP1 and JP2 := {(T3,v3)}. (T2,v2) can be reg-
ular top-reducible by G1 to p5 = (T2, ṽ2) = (x1e2,−x1x3

3
+ 2x3

2
x2
3
+

2x2x
4

3
). According to syzygy criterion and signature criterion, we

obtain H2 := H0, JP2 := {(T3,v3)} and G2 := G1 ∪ {p5}.
Third cycle:
We select (T3,v3) from JP2 and JP3 := ∅. (T3,v3) can be regular top-

reducible byG2 to p6 = (T3, ṽ3) = (e2, 2x3
2
+ 2x2x

2

3
−x3

3
). According

to syzygy criterion and signature criterion, we obtain H3 := H0 ∪

{x2
2
x3e2}, JP3 := {(T4,v4), (T5,v5)} and G3 := G2 ∪ {p6}, where

(T4,v4) = (x3e2,x3ṽ3) and (T5,v5) = (x1e2,x1ṽ3).
Fourth cycle:
We select (T4,v4) from JP3 and JP4 := {(T5,v5)}. (T4,v4) can be

regular top-reducible by G3 to p7 = (T4, ṽ4) = (x3e2, 2x2x3
3
− x4

3
+

2

5
x1x

2

2
x2
3
− 4

5
x4
2
x3). According to syzygy criterion and signature

criterion, we obtain H4 := H3, JP4 := {(T6,v6), (T7,v7), (T5,v5)}
andG4 := G3 ∪ {p7}, where (T6,v6) = (x2x3e2,x2ṽ4) and (T7,v7) =
(x1x3e2,x1ṽ4).
Fifth cycle:
We select (T6,v6) from JP4 and JP5 := {(T7,v7), (T5,v5)}. (T6,v6)
can be regular top-reducible byG4 top8 = (T6, ṽ6) = (x2x3e2, (− 1

2
x5
3

− 4

5
x5
2
x3+

2

5
x1x

3

2
x2
3
− 2

5
x4
2
x2
3
+ 1

5
x1x

2

2
x2
3
− 4

5
x3
2
x3
3
+ 2

5
x1x2x

4

3
). Accord-

ing to syzygy criterion and signature criterion, we obtain H5 := H4,

JP5 := {(T7,v7), (T5,v5)} and G5 := G4 ∪ {p8}.
Sixth cycle:
We select (T7,v7) from JP5 and JP6 := {(T5,v5)}. By computing,

(T7,v7) is covered by G5. According to rewrite criterion, we get

H6 := H5, JP6 := {(T5,v5)} and G6 := G5.

Seventh cycle:
We select (T5,v5) from JP6 and JP7 := ∅. By computing, (T5,v5)
is covered by G6. According to rewrite criterion, we get H7 := H7,

JP7 := ∅ and G7 := G6.

Output:
Since JP7 is empty, the algorithm terminates. Therefore, the stan-

dard basis of I in R is { f1, f2, f3, ṽ1, ṽ2, ṽ3, ṽ4, ṽ6}, and the leading

power products of the standard basis for the syzygy module is

{x2
1
e2,x2

1
e3,x1x2e2, x2

2
x3e2}.

It is apparent from the above example that we discard 23 J-pairs

by using three criteria, and only do 5 regular top-reductions. In

order to illustrate that the three criteria can improve the computa-

tional efficiency, we compare our algorithmwith a classical Gröbner

basis algorithm (non signature-based) [19] that uses standard cri-

teria to discard useless S-polynomials. We randomly generate 10

ideals in R = Loc≺1
(C[x1,x2,x3,x4]), and they are as follows.

• I1 = ⟨−x3
1
+ x3

3
,−x1x3x4 + x

2

2
x3,x

2

1
x4 − x3x

2

4
,x2

2
x4 + x2x4⟩;

• I2 = ⟨x1x
2

4
,x3

1
− x2

3
x4 − x3

4
,x2

1
x4 − x2

2
,−x2

2
x3 − x1x2⟩;

• I3 = ⟨−x1x
2

2
,x2

1
x3x4 + x1x3,x

4

2
− x1x3 + x4,x

4

3
+ x1x

2

2
+ x1⟩;

• I4 = ⟨x1x
3

2
− x2

1
x4,x

4

3
+ x3

3
x4,−x3,−x

2

1
x2
2
− x1x

2

4
− x2x

2

4
⟩;

• I5 = ⟨x2x3x4−3x2x
2

4
−4x2x3,−4x

2

1
x3x4−4x3

2
,−5x2

4
,−4x2

1
x2
4

+2x3
3
x4 − 3x1x2x4⟩.
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• I6 = ⟨8x2
1
x3x4 − 7x1x

3

3
+ 8x3x4,x1x

2

2
− 6x1x

2

3
− 7x4,−5x

4

2
+

2x1x2x4⟩;
• I7 = ⟨5x2

1
x2
2
− 3x1x2x

2

3
+ x2

1
x2, 3x2x

3

3
+ 2x2

3
x2
4
+ x3x

3

4
, 5x4

1
−

x1x2x
2

3
− 7x2x

2

4
⟩.

• I8 = ⟨−6x3
4
− x1x3 + 7x

2

4
,−x4

2
+ 4x1x2x3 + 4x3x4, 2x1x

2

3
x4 −

3x1x3x
2

4
+ 7x2

2
x2
4
⟩.

• I9 = ⟨−x3
2
x3+6x

2

2
x2
4
−4x1x2x4, 2x

3

1
x4−4x2x3x4+2x3, 6x1x

2

3

+4x1x
2

2
x4 + 3x1x

2

4
⟩.

• I10 = ⟨3x1x
2

4
+ 7x3

2
+ 4x2x

2

3
, 5x1x3 − 10x1x4 − 5x2

3
,−8x1x2 +

3x2
3
+ 4x2

2
x4⟩.

For all these examples, the term order in R and Rm (3 ≤ m ≤ 4) is

anti-graded revlex order and TOP order, respectively.We implement

the two algorithms on the computer algebra system Maple, and the

codes and examples are available on the web: http://www.mmrc.

iss.ac.cn/~dwang/software.html.

Table 1: examples

ideal

signature-based method classical method

J-pairs discard ratio S-polys discard ratio

I1 21 14 67% 28 6 21%

I2 21 14 67% 21 9 43%

I3 15 12 80% 15 8 53%

I4 20 16 80% 21 10 48%

I5 15 9 60% 15 4 27%

I6 20 16 80% 21 6 29%

I7 14 11 79% 15 4 27%

I8 35 29 83% 28 9 32%

I9 10 7 70% 15 6 40%

I10 21 17 81% 66 28 43%

The second column and fifth column in Table 1 represents the

total number of J-pairs and S-polynomials (abbreviated S-polys)

generated during the calculation, respectively. The third column

(sixth column) represents the useless J-pairs (useless S-polys) that

are discarded. The fourth column (last column) shows the percent-

age of the number of discarded J-pairs (S-polys) to the number of

the total J-pairs (S-polys). Experimental data in Table 1 suggests

that the proposed algorithm is superior in practice in comparison

with the classical Gröbner basis algorithm.

5 CONCLUDING REMARKS
The paper proposed an efficient algorithm to compute the standard

bases in local ring. In the process of extending the GVW algorithm

from polynomial ring to local ring, we solved two key problems.

First, an infinite set has not a minimal element in local ring. Under

the situation that ≺1 is an anti-graded order in k[X ] and ≺2 is a

TOP order in (k[X ])m , we proved that the signature set L(lpp(v0))
w.r.t. v0 has a minimal element. Then we generalized the cover

theorem to local ring to discard the useless J-pairs. Second, since

the general division algorithm may not terminate in local ring,

Mora normal form algorithm is used to do regular top-reduction,

and the proposed algorithm terminates in finite steps.

Although we only consider the case that ≺2 is a TOP order in

(k[X ])m , if ≺2 is an f-weighted anti-degree followed by TOP or

an f-weighted ≺1 followed by POT, Lemma 2.9 and Theorem 3.1

are also established. Moreover, an alternative method to compute

the standard bases is using the Lazard’s homogeneous idea. In the

future work, we will consider the case of ≺1 is not an anti-graded

order in k[X ]. We hope that the results of this paper will motivate

new progress in this research topic.
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