
J Syst Sci Complex (20XX) XX: 1–14

A New Algorithm for Computing the Extended Hensel

Construction of Multivariate Polynomials∗

LU Dong · SUN Yao · WANG Dingkang

DOI:

Received: x x 20xx / Revised: x x 20xx

c©The Editorial Office of JSSC & Springer-Verlag Berlin Heidelberg 2014

Abstract We present a new algorithm for computing the Extended Hensel Construction (EHC) of

multivariate polynomials in main variable x and sub-variables u1, . . . , um over a number field K. This

algorithm first constructs a set by using the resultant of two initial coprime factors w.r.t. x, and then

obtains the Hensel factors by comparing the coefficients of xi on both sides of an equation. Since the

Hensel factors are polynomials of the main variable with coefficients in fraction field K(u1, . . . , um), the

computation cost of handling rational functions can be high. Therefore, we use a method which mul-

tiplies resultant and removes the denominators of the rational functions. Unlike previously-developed

algorithms that use interpolation functions (Moses and Yun [6]) or Gröbner basis (Sasaki and Inaba

[9, 10]), Our algorithm rely little on polynomial division, and avoids multiplying by different factors

when removing the denominators of Hensel factors. All algorithms are implemented using Magma, a

computational algebra system and experiments indicate that our algorithm is more efficient than theirs.

Keywords Extended Hensel Construction, Multivariate polynomial, Sylvester matrix, Resultant.

1 Introduction

Being an important technique to deal with multivariate polynomials, Hensel construction

has been applied to many branches of mathematics, such as polynomial factorization [3, 13],

algebra equation solving [11], greatest common divisor computation [8] and other related areas.

As a result, this task has drawn the interest of many researchers over the past several decades.

Let K be a number field and K denote an algebraic closure of K. Let F (x,u) be a square-free

polynomial in K[x,u], f(u) be the leading coefficient of F (x,u) w.r.t. x, where u denotes the

LU Dong1,2 · WANG Dingkang1,2

1KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Email : donglu@amss.ac.cn; dwang@mmrc.iss.ac.cn

SUN Yao

SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Email : sunyao@iie.ac.cn
∗This research was supported in part by the National Natural Science Foundation of China under Grant No.

11371356.
�This paper was recommended for publication by Editor .



2 LU DONG · SUN YAO · WANG DINGKANG

sub-variables u1, . . . , um (m ≥ 2). We call ~α ∈ Km a singular point, if F (x, ~α) is not square-

free. If f(~α) = 0, then we say that the leading coefficient of F (x,u) is singular at ~α. Musser

first invented the Generalized Hensel Construction (GHC) to factorize multivariate polynomials

in [7]. However, GHC fails for multivariate polynomials at a singular point or with singular

leading coefficient. In both cases, we should shift ~α. Nevertheless, shifting ~α often increases

the number of terms and make the computation very time-consuming. This problem is known

as the nonzero substitution problem in [2].

Since shifting ~α leads to a dramatic increase of the computational costs, various attempts

have been made to provide many different solutions to the nonzero substitution problem. Zippel

in [14] attempted to solve the nonzero substitution problem by using Schwartz-Zippel’s lemma.

Unfortunately, this method requires the assumption that F (x,u) is a monic polynomial, which

is a major limitation. In [4], the authors present two new algorithms that extend Zippel’s

mehod to the case where F (x,u) is not monic in the main variable x. A major breakthrough

in Hensel construction was done by Sasaki and Kako [11], using a new method called Extended

Hensel Construction (EHC). EHC can deal with the cases of multivariate polynomials at the

singular point or with singular leading coefficient, without shifting ~α.

A major issue of the application of EHC is the computational efficiency of the Hensel factors

of multivariate polynomials. This problem has been encountered by [6] and [9], who produced

two useful algorithms. In [6], Moses and Yun proposed an algorithm which computes the Hensel

factors of multivariate polynomials using interpolation functions. Moreover, Sasaki and Inaba

in [9] enhanced the EHC of multivariate polynomials by using Gröbner bases. In this article,

we focus on finding a new simple algorithm to compute Hensel factors efficiently. In the rest of

the introduction, we informally sketch the main idea underlying this new algorithm, compare

it with previous algorithms, and briefly describe its performance.

Main idea: It is well-known that the degree of Hensel factors w.r.t. x is bounded by the initial

factors for any given multivariate polynomial, so we present our idea according to the proof of

Proposition 9 in [1]. This proposition says: Given two coprime polynomials f, g ∈ K[x,u] of

positive degree w.r.t. x, there are polynomials A,B ∈ K[x,u] such that resx(f, g) = Af + Bg.

Furthermore, degx(A) < degx(g), degx(B) < degx(f) and resx(f, g) ∈ K[u], where resx(f, g)

denotes the resultant of f and g w.r.t. x. We generalize the proposition to obtain a set

{(Ai, Bi)}Ni=0 by utilizing Cramer’s Rule, where

xi =
1

resx(f, g)
· (Aif +Big),

Ai, Bi ∈ K[x,u] and degx(Ai) < degx(g), degx(Bi) < degx(f), N = degx(g)+degx(f)−1. With

the help of this set, Hensel factors can be efficiently calculated by comparing the coefficients

of xi on both sides of an algebraic equation. This step can save a lot of computation time.

In order to avoid the high computational cost of handling rational functions, we remove the

denominators of rational functions by introducing a new auxiliary variable M . We treat M

as 1
resx(f,g)

, and all computations are performed in K[M , x,u]. If we combine the two steps

mentioned above, we get a simple and efficient algorithm for computing the Hensel factors of



A New Algorithm for Computing the EHC of Multivariate Polynomials 3

multivariate polynomials.

Relation to the previous algorithms: The main idea of [6] is to construct some interpolation

functions, and then convert them to the Hensel factors of multivariate polynomials. Moses

and Yun used the extended Euclidean algorithm to compute the expression for xi. They need

to do many polynomial reductions in K(u)[x], and the computation is quite time-consuming.

By contrast, we utilize the resultant of two initial coprime factors w.r.t. x to calculate the

expressions for xi. We only need to do some polynomial multiplication in K[x,u], which can

help us improve computational efficiency.

Sasaki and Inaba compute the Hensel factors of polynomials by using the Gröbner basis of

two initial coprime factors in [9], and make various enhancements to improve the Gröbner basis

computation in [10]. The computation of the syzygies of elements in Gröbner basis is a crucial

step of their algorithm. This step is equivalent to the computation of the expressions of xi in

our algorithm. Moreover, their method requires the introduction of many different auxiliary

variables to avoid dealing with fractional functions, when polynomials are reduced to nonzero

by using Gröbner basis. However, our approach performs all calculations in a polynomial ring

by introducing a auxiliary variable.

Performance: Without loss of generality, we assume that the arithmetic operations run in

constant time. Our algorithm, as well as Moses and Yun’s (MY), and Sasaki and Inaba’s (SI)

algorithms have all been implemented on Magma computational algebra system. Experiments

indicate that our algorithm is faster than theirs. The codes (EHC Package) of our algorithm

are available on the web: http://www.mmrc.iss.ac.cn/~dwang/software.html.

This paper is structured as follows: In Section 2, we introduce the EHC of multivariate

polynomial, and present the problem that we shall consider. Section 3 contains our main

theoretical results and a new efficient algorithm. Furthermore, an enhancement which improves

our algorithm is described. In Section 4, we implement the three algorithms mentioned above

and compare the performance of these algorithms by using three examples. Finally, Section 5

includes a conclusion as well as a discussion about the influence of the number of sub-variables

between our algorithm and SI algorithm, and a future research direction.

2 Preliminaries

We treat x, u as the main variable and the sub-variables, respectively, where u = u1, . . . , um

(m ≥ 2). Let K[u], K(u) and K{(u)} be the ring of polynomials, the field of rational functions

and the ring of formal power series of rational functions, respectively, over K, in sub-variables

u. Let F , G and H be three polynomials in K[x,u]. By degx(F ) and resx(G,H), we denote

the degree of F and the resultant of G and H, respectively, w.r.t. x. Let rem(G,H) be the

remainder of G and H.

Next, we first review some useful notions which play a central role in EHC, and then

introduce the procedure of EHC. Finally, we present the problem we are considering.



4 LU DONG · SUN YAO · WANG DINGKANG

2.1 Newton Line and Newton Polynomial

Definition 2.1 Let F (x,u) ∈ K[x,u]. For each nonzero term cxdteue11 · · ·uemm of F (x, tu),

plot a dot at the point (d, e) in the descartes coordinate system (X,Y )-plane, where t is the

total-degree variables for u and e = e1+ · · ·+em. The Newton polygon N of F (x,u) is a convex

hull containing all the dots plotted. Let the lower sides of N , traced clockwise, be N1, . . . ,Np
which we call Newton lines. For each i ∈ {1, . . . , p}, the Newton polynomial FNi

(x,u) is the

sum of all the terms of F (x,u) plotted on Ni.
For example, let F = x3(u21+u22+u32)+x2(2u21−u22+u31)+x(u1−u2+2u22)+3u22+2u1−1. Then

the Newton Line N of F is as follows, and the Newton polynomial FN of F is x3(u21 + u22)− 1.

Figure 1 The Newton Line of F

Remark 2.2 When F (x,u) ∈ K{(u)}[x], the definitions of Newton polygon, Newton line

and Newton polynomial of F (x,u) are similar to the Definition 2.1. We refer [3] for more

detials.

2.2 The Procedure of EHC

For any given square-free polynomial F (x,u), the EHC of F (x,u) is performed successively

on N1 → N2 → · · · → Np (see [3]). Let (n0, v0) and (ni, vi) be the coordinate of right end

of N1 and left end of Ni, respectively, where 1 ≤ i ≤ p. Then the slope of Ni is given by

λi = (vi−1 − vi)/(ni−1 − ni). Let n̂i and v̂i be integers satisfying n̂i > 0, λi = v̂i/n̂i and

gcd(n̂i, v̂i) = 1. Then we define Fi(x,u, t) as follows:

Fi(x,u, t) , tn̂i(λini−vi)F (x/tv̂i , tn̂iu). (1)

Assume that the Newton polynomial of F (x,u) on Ni is FNi
(x,u). We use a conventional

method to factorize FNi(x,u) in K[x,u] as follows:FNi
(x,u) = G

(0)
i1 (x,u) · · ·G(0)

iri
(x,u), ri ≥ 2

gcd(G
(0)
ij , G

(0)
il ) = 1 for any j 6= l.

(2)

Note that, if FNi
(x,u) is irreducible, then F (x,u) is also irreducible. According to some

iterative relations, we can construct G
(k)
ij (x,u, t) (j = 1, . . . , ri), k = 0 → 1 → 2 → · · · , such



A New Algorithm for Computing the EHC of Multivariate Polynomials 5

that

Fi(x,u, t) ≡ G(k)
i1 (x,u, t) · · ·G(k)

iri
(x,u, t) (mod tk+1). (3)

We refer to [11] for more details of the construction procedure of G
(k)
ij (x,u, t). Let t = 1,

then G
(k)
ij (x,u, 1) is called a Hensel factor of F (x,u) corresponding to G

(0)
ij (x,u), where

G
(k)
ij (x,u, 1) ∈ K(u)[x], k = 1, 2, . . .. The above steps are the procedure of EHC. By applying

the EHC to F (x,u) w.r.t. Ni infinite times with initial factors G
(0)
ij (x,u) (j = 1, . . . , ri), F (x,u)

can be factorized as

F (x,u) = G
(∞)
i1 (x,u) · · ·G(∞)

iri
(x,u), (4)

where G
(∞)
ij (x,u) , G

(∞)
ij (x,u, 1), and G

(∞)
ij (x,u) ∈ K{(u)}[x]. If G

(∞)
ij (x,u) contain reducible

factors in K[x,u], then we can factorize G
(∞)
ij (x,u) further. We factorize the Newton polynomial

for G
(∞)
ij (x,u) similarly, and continue the above procedure.

2.3 The Problem

In this paper, we focus on how to quickly compute the Hensel factors {G(k)
ij (x,u, 1)}rij=1

(k = 1, 2, . . .) of F (x,u) on Newton line Ni. Without loss of generality, we can assume that the

square-free polynomial F (x,u) has only one Newton line N . Moreover, each Hensel factor of

F (x,u) is mutually prime, and computed independently from others. Therefore, it is enough

to discuss the case of two initial coprime factors, i.e., FN (x,u) = G0(x,u)H0(x,u), where

G0, H0 ∈ K[x,u]. Then, the formulas on EHC become as follows.F(x,u, t) ≡ G(k)H(k) (mod tk+1),

tk · δF (k) ≡ F − G(k−1)H(k−1) (mod tk+1).
(5)

These formulas must satisfy the following relations.

δF (k) = δH(k)G0 + δG(k)H0,

G(k) = G(k−1) + tk · δG(k),

H(k) = H(k−1) + tk · δH(k),

G(0) = G0,H(0) = H0,

degx(δH(k)) < degx(H0),

degx(δG(k)) < degx(G0).

(6)

According to the above formulas and relations, our goal is to quickly compute the Hensel

factors of F (x,u): G(k) and H(k), where G(k) , G(k)(x,u, 1), H(k) , H(k)(x,u, 1), k = 1, 2, . . ..

When k =∞, we can factorize F (x,u) into the following form:

F (x,u) = G(∞)(x,u)H(∞)(x,u), (7)

where G(∞)(x,u), H(∞)(x,u) ∈ K{(u)}[x].

From the equation (6), it can be shown that degx(H(k)) = degx(H0) and degx(G(k)) =

degx(G0) for every k. Note that δH(k), δG(k) ∈ K(u)[x] in general, will take a vast amount of



6 LU DONG · SUN YAO · WANG DINGKANG

processing time to deal with the complex fractional functions. Furthermore, another difficulty

in calculating the Hensel factors of F (x,u) lies to the degree constraint w.r.t. x. Therefore, it

is essential to present a new algorithm for computing the Hensel factors G(k), H(k) faster.

3 Main Results

In this section, we first propose a method to efficiently compute δH(k) and δG(k), then we

deal with the problem of degree constraint w.r.t. x, and finally we remove the denominators of

rational functions by multiplying the resultant of two initial factors w.r.t. x. We also propose

an enhancement to improve our new algorithm.

3.1 EHC Based on Resultant

Assume that FN (x,u) = G0(x,u)H0(x,u), where G0, H0 ∈ K[x,u] have positive degree

w.r.t. x. Let G0 = alx
l + al−1x

l−1 + · · ·+ a0, al 6= 0,

H0 = bnx
n + bn−1x

n−1 + · · ·+ a0, bn 6= 0,
(8)

where ai, bj ∈ K[u]. Then the Sylvester matrix of G0 and H0 w.r.t. x, denoted Syl(G0, H0, x)

is a coefficient matrix of the system of equations given in (8). Thus, Syl(G0, H0, x) is the

following (n+ l)× (n+ l) matrix:

al al−1 ··· a0
al al−1 ··· a0

. . .
. . .

. . .
al al−1 ··· a0

bn bn−1 ··· ··· b0
bn bn−1 ··· ··· b0

. . .
. . .

. . .
bn bn−1 ··· ··· b0


,

where the empty spaces are filled by zeros. The resultant of G0 and H0 w.r.t. x is the

determinant of the Sylvester matrix. Thus,

resx(G0, H0) = det(Syl(G0, H0, x)).

We generalize the proposition 9 in [1] to obtain the following proposition.

Proposition 3.1 Assume that G0 and H0 are defined as above, there are polynomials

Ai, Bi ∈ K[x,u] such that

xi · resx(G0, H0) = AiG0 +BiH0, (9)

where degx(Ai) < n, degx(Bi) < l and 0 ≤ i ≤ n+ l − 1.



A New Algorithm for Computing the EHC of Multivariate Polynomials 7

Proof Note that

Syl(G0, H0, x) ·



xl+n−1

xl+n−2

...

xl

xl−1

xl−2

...

1



=



xn−1G0

xn−2G0

...

G0

xl−1H0

xl−2H0

...

H0



. (10)

Let yi = xi, then Equation (10) can be solved as a linear system of equations. Assume that

~w = [xn−1G0, x
n−2G0, · · · , G0, xl−1H0, x

l−2H0, · · · , H0]T is an (n + l)-dimensional column

vector, where superscript T denotes transposition. By Syli(G0, H0, x), we denote the matrix

where the i-th column of the Syl(G0, H0, x) has been replaced by ~w. According to Cramer’s

Rule, it follows that

yi · resx(G0, H0) = det(Syln+l−i(G0, H0, x)).

Expanding the (n + l − i)-th column of Syli(G0, H0, x), we have Ai, Bi ∈ K[x,u] such that

Equation (9) holds, and degx(Ai) < n, degx(Bi) < l.

Remark 3.2 The result of Proposition 3.1 has been used frequently in the literature. For

example, our idea is similar to that in [12]. Sasaki T and Sasaki M compute the expression of

xi by using the extended Euclidean algorithm, and do many polynomial reduction in K(u)[x].

Nevertheless, we utilize the resultant of two initial coprime factors w.r.t. x to calculate the

expressions for xi and do some polynomial multiplication in K[x,u].

Since degx(δH(k)) < degx(H0) and degx(δG(k)) < degx(G0), we obtain 0 ≤ degx(δF (k)) ≤
n+ l − 1. We write δF (k) in the form

δF (k) = c
(k)
n+l−1x

n+l−1 + c
(k)
n+l−2x

n+l−2 + · · ·+ c
(k)
0 ,

where c
(k)
i ∈ K(u). From Proposition 3.1 we have

δF (k) =
(
∑n+l−1
i=0 c

(k)
i Ai)G0 + (

∑n+l−1
i=0 c

(k)
i Bi)H0

resx(G0, H0)
. (11)

We introduce an auxiliary variable M to avoid dealing with fractional functions. Substitute

M for 1
resx(G0,H0)

in δF (k), and we getδH(k) = M (
∑n+l−1
i=0 c

(k)
i Ai),

δG(k) = M (
∑n+l−1
i=0 c

(k)
i Bi).

(12)

According to the equation (6), the Hensel factors G(k) and H(k) of F (x,u) for every k areG(k) = G(k−1) + M (
∑n+l−1
i=0 c

(k)
i Ai),

H(k) = H(k−1) + M (
∑n+l−1
i=0 c

(k)
i Bi).

(13)



8 LU DONG · SUN YAO · WANG DINGKANG

3.2 A New Algorithm

Proceeding as in the idea of Subsection 3.1, we have a new algorithm to compute the Hensel

factors G(k) and H(k) of F (x,u).

Input: A square-free polynomial F (x,u).

Output: The Hensel factors G(k) and H(k) of F (x,u).

Step 1: Compute the Newton polynomial FN of F .

Step 2: Factorize FN in K[x,u]: FN = G0H0, where G0 and H0 are prime.

Step 3: Calculate the set {(Ai, Bi)}n+l−1i=0 .

Step 4: Introduce an auxiliary variable M , and for k = 1→ 2→ 3→ · · · ,

Step 4.1: Compute δH(k) and δG(k) in K[M , x,u] by using the Equation (12);

Step 4.2: Compute G(k), H(k) by using the Equation (13);

We use an example to illustrate the specific calculation process of our algorithm.

Example 3.3 Let F (x, u1, u2) = u21u2x
4 + (u31u

2
2 + u1u

2
2 + u1u2)x3 + (u41u2 + u21u

3
2 +

2u21u
2
2 + u1 − u2)x2 + (u31u

2
2 + u31u2 + u21u2 + u1u

3
2 + 3u1u2)x+ u31 − u21u2 + u1u2 − u22.

F has two Newton lines of slopes: λ1 = 1 and λ2 = − 1
2 . We only calculate the Hensel

factors of F on N1. The Newton Polynomial FN1 is (x2u21u2 + xu1u2 + u1 − u2)x2. Let

G0 = x2u21u2 + xu1u2 + u1 − u2 and H0 = x2. Then the matrix Syl4(G0, H0, x) is as follows.

Syl4(G0, H0, x) =


u21u2 u1u2 u1 − u2 0

0 u21u2 u1u2 u1 − u2
1 0 0 0

0 1 0 0

 .

The resultant of G0 and H0 w.r.t. x is u21 − 2u1u2 + u22, and the set {(Ai, Bi)}3i=0 are shown in

the following table.

Table 1: The set {(Ai, Bi)}3i=0 of F (x, u1, u2) on Example 3.3

i Ai Bi

0 −xu1u2 + u1 − u2 xu3
1u

2
2 − u3

1u2 + 2u2
1u

2
2

1 xu1 − xu2 −xu3
1u2 + xu2

1u
2
2 − u2

1u2 + u1u
2
2

2 0 u2
1 − 2u1u2 + u2

2

3 0 xu2
1 − 2xu1u2 + xu2

2

k = 1: δF (1) = x3u1u
2
2. Since H0 | δF (1), we have δH(1) = 0 and δG(1) = xu1u

2
2. The

Hensel factors of F are: G(1) = x2u21u2 + xu1u2 + u1 − u2 + xu1u
2
2, H(1) = x2.

k = 2: δF (2) = 3xu1u2. We introduce the auxiliary variable M to replace 1
u2
1−2u1u2+u2

2
.

Let c
(2)
0 = 0 and c

(2)
1 = 3u1u2, then δH(2) = M (

∑1
i=0 c

(2)
i Ai) = 3Mxu1u2(u1 − u2) and



A New Algorithm for Computing the EHC of Multivariate Polynomials 9

δG(2) = M (
∑1
i=0 c

(2)
i Bi) = 3Mu1u2(−xu31u2 + xu21u

2
2− u21u2 + u1u

2
2). The Hensel factors of F

are: G(2) = G(1) +
3u1u2(−xu3

1u2+xu
2
1u

2
2−u

2
1u2+u1u

2
2)

u2
1−2u1u2+u2

2
,

H(2) = H(1)+ 3xu1u2(u1−u2)
u2
1−2u1u2+u2

2
.

For k = 3→ 4→ · · · , repeat Step 4.1 and Step 4.2.

3.3 A Criterion to Improve the New Algorithm

Under the assumption that the set {(Ai, Bi)}n+l−1i=0 has been calculated, G(k) andH(k) can be

quickly solved by a number of multiplication and addition as described in section 3.1. Therefore,

the most critical part of our algorithm is the computation of Ai and Bi in an efficient manner.

In the following, we list a criterion to quickly calculate the set {(Ai, Bi)}n+l−1i=0 .

Criterion: Calculate (Ai+1, Bi+1) by using the results of (Ai, Bi), where 0 ≤ i ≤ n+ l − 2.

Suppose that (Ai, Bi) has been calculated. Multiplying both sides of Equation (9) by x, we

get

xi+1 · resx(G0, H0) = (x ·Ai)G0 + (x ·Bi)H0. (14)

If degx(x ·Ai) < degx(H0) and degx(x ·Bi) < degx(G0), then (Ai+1, Bi+1) = (x ·Ai, x ·Bi). If

these degree constraints are not satisfied, we must reduce the degrees of x ·Ai and x ·Bi w.r.t.

x. For the degree reduction, the next proposition is very useful.

Proposition 3.4 If degx(x · Ai) ≥ degx(H0) and degx(x · Bi) ≥ degx(G0), then Ai+1 =

rem(x ·Ai, H0) and Bi+1 = rem(x ·Bi, G0).

Proof Since xi+1 ·resx(G0, H0) can be expressed in two ways, we obtain (Ai+1−x ·Ai)G0 =

−(Bi+1−x ·Bi)H0. Because G0 and H0 are relatively prime, it follows that G0 | (Bi+1−x ·Bi)
and H0 | (Ai+1 − x · Ai). These relations and degree inequalities tell us that Ai+1 = rem(x ·
Ai, H0) and Bi+1 = rem(x ·Bi, G0).

Remark 3.5 The Criterion implies that if we know the values of (A0, B0), then (Ai, Bi)

(1 ≤ i ≤ n + l − 1) can be quickly calculated. It follows from Proposition 3.1 that we can

get resx(G0, H0), A0 and B0. There are many ways such as sparse interpolation [5] to com-

pute its resultant. In the process of calculation, there is a critical step. If resx(G0, H0),

A0 and B0 have been obtained, we will first compute their greatest common divisor d =

gcd(resx(G0, H0), A0, B0), then resx(G0, H0) , resx(G0,H0)
d , A0 , A0

d and B0 , B0

d . This

step can help us improve computational efficiency when we compute δG(k) and δH(k).

4 Comparison of Three Algorithms

In this section, we first informally sketch the main idea underlying MY and SI algorithms,

followed by a comparison between them and our algorithm with the help of three examples.

4.1 MY Algorithm and SI Algorithm

The MY algorithm is based on interpolation functions, and all of the computational opera-

tions are performed in K(u)[x]. However, the computation of the interpolation functions with



10 LU DONG · SUN YAO · WANG DINGKANG

the extended Euclidean algorithm requires a significant amount of processing time. The first

important step of the SI algorithm is to compute the syzygies of elements in the Gröbner basis.

Second, their method requires the introduction of many different auxiliary variables in order

to avoid dealing with fractional functions when polynomials are reduced to nonzero by using

Gröbner basis. We refer [6] and [9, 10] for more details of the MY and SI algorithms.

4.2 Implementation and Discussion

Three algorithms are implemented on a computational algebra system named Magma, and

the computation was done on a computer with Intel(R) Core(TM) i7-4790 CPU(3.60GHz),

operated by Windows 7. Next, we use three examples to compare the computational efficiency

of the three algorithms. Each datum in the following figure and Tables is an average of 1000

repetitions of corresponding unit operation.

Example 4.1 Let F1 = u21u2x
4 + (u31u

2
2 + u1u

2
2 + u1u2)x3 + (u41u2 + u21u

3
2 + 2u21u

2
2 + u1 −

u2)x2 + (u31u
2
2 + u31u2 + u21u2 + u1u

3
2 + 3u1u2)x+ u31 − u21u2 + u1u2 − u22.

We use three algorithms to calculate the Hensel factors of F1, and get the following figure.

0 2 4 6 8 10

the number of iterations k

0

1

2

3

4

5

6

7

8

9

10

ti
m

e
(m

s
e
c
)

MY algorithm

SI algorithm

New algorithm

Figure 2 Runtime (msec) of three algorithms on Example 4.1

Example 4.2 Let F2 = GH + 3x10u51u
5
2, where G and H are as follows.G = (x5u31 + 2u2)(x5u32 − 2u1) + x3u42,

H = (x5u31 − 3u2)(x5u32 + 3u1) + x7u61.
(15)

F2 has only one Newton line, and the corresponding Newton polynomial F2N (x, u1, u2) is

(x5u31+2u2)(x5u32−2u1)(x5u31−3u2)(x5u32+3u1). Without loss of generality, let degx(G0) = 10



A New Algorithm for Computing the EHC of Multivariate Polynomials 11

and degx(H0) = 10, then we have three choices for the initial Hensel factors G0 and H0:

C1 :

G0 = (x5u31 + 2u2)(x5u32 − 2u1),

H0 = (x5u31 − 3u2)(x5u32 + 3u1);

C2 :

G0 = (x5u31 − 3u2)(x5u32 − 2u1),

H0 = (x5u31 + 2u2)(x5u32 + 3u1);

C3 :

G0 = (x5u31 − 3u2)(x5u31 + 2u2),

H0 = (x5u32 + 3u1)(x5u32 − 2u1).

(16)

For the three choices mentioned above, we get the following three tables by calculation.

Table 2: timing data (msec) about computing the Hensel factors of F2 by using New algorithm

Comp.step C1 C2 C3

{(Ai, Bi)}19i=0 0.532 0.212 0.472

G(14),H(14) 0.110 0.090 0.440

G(16),H(16) 0.120 0.130 1.260

G(18),H(18) 0.200 0.140 1.640

G(20),H(20) 0.450 0.140 2.350

Table 3: timing data (msec) about computing the Hensel factors of F2 by using MY algorithm

Comp.step C1 C2 C3

MY-functions 10.660 4.750 9.560

G(14),H(14) 1.690 7.660 21.490

G(16),H(16) 4.380 10.800 22.470

G(18),H(18) 6.720 17.060 44.840

G(20),H(20) 14.340 18.340 60.810

Table 4: timing data (msec) about computing the Hensel factors of F2 by using SI algorithm

Comp.step C1 C2 C3

Syzygy 0.090 0.070 0.100

G(14),H(14) 0.110 0.350 2.860

G(16),H(16) 0.200 0.680 6.230

G(18),H(18) 0.240 1.090 12.860

G(20),H(20) 0.440 1.820 23.400

Example 4.3 Let F3 = −x40u121 u122 + 2x37u231 u
4
2 − x36u51u222 + 2x35u101 u

17
2 + 6x34u281 −

4x34u151 u
12
2 + 5x33u161 u

12
2 + 3x33u111 u

16
2 −2x32u121 u

16
2 +x31u181 u

10
2 −x30u302 −4x25u301 −6x25u302 +

x20u201 u
12
2 + x20u121 u

20
2 − 24x10u181 u

18
2 + 4x5u381 + 6x5u382 − u201 u202 .



12 LU DONG · SUN YAO · WANG DINGKANG

F3 has only one Newton line of slope: λ1 = − 2
5 , and the corresponding Newton polynomial

F3N (x, u1, u2) is (x20u122 + 4x5u181 − u202 )(x20u121 + 6x5u182 − u201 ). Without loss of generality,

we assume that the initial factors are:G0 = x20u122 + 4x5u181 − u202 ,

H0 = x20u121 + 6x5u182 − u201 .
(17)

We use three algorithms to calculate the Hensel factors of F3, and get the following table.

Table 5: timing data (sec) about computing the Hensel factors of F3 by using three algorithms

Comp.step New algorithm MY algorithm SI algorithm

{(Ai, Bi)}39i=0 2.760

MY-functions 1.650

Syzygy 0.080

G(1),H(1) 0.001 0.020 0.030

G(2),H(2) 0.010 0.670 0.170

G(3),H(3) 0.060 3.670 0.720

G(4),H(4) 0.580 18.800 2.960

G(5),H(5) 4.180 93.190 9.620

G(6),H(6) 20.620 218.440 30.150

We can obtain the following conclusions from the timing data in Example 4.1, Example 4.2

and Example 4.3:

(1). The computational efficiency of our new algorithm is better than that of the MY algorithm

and SI algorithm.

(2). There exists a major fault in the MY algorithm: handling polynomials with coefficients

in K(u) is time-consuming.

(3). In order to make δH(k) and δG(k) satisfy the constraint conditions, the SI algorithm

requires a degree reduction w.r.t. x during each iterative process. Moreover, the number

of auxiliary variables may increase a lot, which leads to the calculation of Hensel factors

being particularly troublesome.

(4). In Example 4.2, different initial factors have great influence on the calculation of EHC.

(5). In Example 4.3, our new algorithm takes a lot of time to compute the coefficients of δF (k)

w.r.t. x.



A New Algorithm for Computing the EHC of Multivariate Polynomials 13

5 Conclusions

We have studied the EHC of multivariate polynomials. The first conclusion to be drawn from

the experimental data presented earlier is that our algorithm, which is based on the resultant,

is more efficient for computing the EHC of multivariate polynomials.

A point that needs to be stressed is that an important step in the SI algorithm is based

on the calculation of a polynomial ĝ ∈ K[u] such that it is a factor of resx(G0, H0). Sasaki

and Inaba compute ĝ by using the Gröbner basis [9], and also propose some enhancements

to improve their algorithm in [10]. Next we compare and analyze the New algorithm and the

SI algorithm to calculate resx(G0, H0) and ĝ respectively, when we increase the number of

sub-variables.

We assume that G0 and H0 are high order sparse polynomials. We randomly generate three

groups of polynomials, each group having 10 polynomials that are relatively prime. In addition,

the number of sub-variables of the three groups is between 2 and 4. Each polynomial satisfies

the following conditions: (1). the degree w.r.t. x is at least 15; (2). the number of total terms

is at most 4. Each datum in Table 6 is an average of the total time of each group.

Table 6: timing data (sec) about computing resx(G0, H0) and ĝ respectively

sub-variables New algorithm SI algorithm

2 0.800 0.976

3 2.265 18.030

4 7.135 69.440

From Table 6 we can draw the following conclusion: As the number of sub-variables increases,

the computation of the Gröbner basis becomes more and more complex, but it has little effect

on the calculation of resultant. Consequently, our algorithm is faster than the SI algorithm.

Finally, we think that more work needs to be done in regard to the efficient calculation of

the resultant of G0 and H0 w.r.t. x. Experiments show that the computational efficiency of

resultant is becoming slower and slower as the degree of G0 and H0 w.r.t. x increases. In the

case where G0 and H0 are all sparse polynomials, new ideas are needed to utilize the sparseness

of polynomials.

Acknowledgements The authors would like to thank anonymous referees for detailed

suggestions on the paper which have made it more readable.

References

[1] Cox D, Little J and O’Shea D, Ideals, Varieties, and Algorithms, Springer-Verlag, New York,

2007.

[2] Geddes K, Czapor S and Labahn G, Algorithms for Computer Algebra, Springer US, 1992.



14 LU DONG · SUN YAO · WANG DINGKANG

[3] Inaba D, Factorization of multivariate polynomials by extended Hensel construction, ACM

SIGSAM Bulletin, 2005, 39(1):2–14.

[4] Kleine J, Monagan M and Wittkopf A, Algorithms for the non-monic case of the sparse mod-

ular GCD algorithm, Proceedings of the International Symposium on Symbolic and Algebraic

Computation, Beijing, 2005.

[5] Monagan M and Tuncer B, Using sparse interpolation in Hensel lifting, Proceedings of the 18th

International Workshop on Computer Algebra in Scientific Computing, Romania, 2016.

[6] Moses J and Yun D, The EZ GCD algorithm, Proceedings of the ACM Annual Conference,

Atlanta, Georgia, USA, 1973.

[7] Musser D, Algorithms for polynomial factorization, Doctoral Dissertation, the University of Wis-

consin, Madison, 1971.

[8] Sanuki M, Inaba D and Sasaki T, Computation of GCD of sparse multivariate polynomials by

extended Hensel construction, Proceedings of the 17th Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), Romania, 2015.

[9] Sasaki T and Inaba D, Enhancing the extended Hensel construction by using Gröbner bases,

Proceedings of the 18th International Workshop on Computer Algebra in Scientific Computing,

Romania, 2016.

[10] Sasaki T and Inaba D, Various enhancements for extended Hensel construction of sparse mul-

tivariate polynomials, Proceedings of the 18th Symbolic and Numeric Algorithms for Scientific

Computing (SYNASC), Romania, 2016.

[11] Sasaki T and Kako F, Solving multivariate algebraic equation by Hensel construction, Japan

Journal of Industrial and Applied Mathematics, 1999, 16(2):257–285.

[12] Sasaki T and Sasaki M, A unifled method for multivariate polynomial factorizations, Japan

Journal of Industrial and Applied Mathematics, 1993, 10:21–39.

[13] Wang P and Rothschild L, Factoring multivariate polynomials over the integers, ACM SIGSAM

Bulletin, 1973, 28:21–29.

[14] Zippel R, Probabilistic algorithms for sparse polynomials, Proceedings of the International Sym-

posiumon Symbolic and Algebraic Computation, France, 1979.


