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Abstract Weispfenning in 1992 introduced the concepts of comprehensive Gröbner system/basis of

a parametric polynomial system, and he also presented an algorithm to compute them. Since then,

this research field has attracted much attention over the past several decades, and many efficient

algorithms have been proposed. Moreover, these algorithms have been applied to many different fields,

such as parametric polynomial equations solving, geometric theorem proving and discovering, quantifier

elimination, and so on. This survey brings together the works published between 1992 and 2018, and

we hope that this survey is valuable for this research area.

Keywords Comprehensive Gröbner basis, comprehensive Gröbner system, discovering geometric the-

orems mechanically, parametric polynomial system, quantifier elimination.

1 Introduction

In the past, the problems related to parametric polynomial system have been extensively
studied. For instance, people often need to find solutions of a parametric polynomial system
in many engineering fields[1–7]; geometry theorem proving and discovering[8–13] need to find
some conditions such that a geometric statement becomes true or true on components; the
Perspective-n-Point (PnP) problem[14, 15] wants to determine the position of the camera with
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respect to a scene object from n corresponding points; the goal of quantifier elimination[16–21] is
to eliminate quantifiers “∃” and “∀” in a given algebraic first order formula over R or C. Because
of these wide range of applications, the theory related to parametric polynomial systems has
been widely developed.

In 1992, Weispfenning[22] introduced the concept of comprehensive Gröbner basis, as a
special basis of a parametric polynomial system. That is, for any given parametric ideal I ⊂
k[U ][X ], a comprehensive Gröbner basis G of I is a subset in k[U ][X ] such that for every
specialization of parameters σα : k[U ] → L extending to k[U ][X ] → L[X ], the set σα(G)
is a Gröbner basis of the specialized ideal 〈σα(I)〉 in L[X ], where L is an algebraic closed
filed containing k, U = {u1, · · · , um} are parameters, X = {x1, · · · , xn} are variables, and
α = (α1, · · · , αm) ∈ Lm. Weispfenning also introduced the concept of comprehensive Gröbner
system. In addition, he proposed algorithms for computing comprehensive Gröbner systems and
comprehensive Gröbner bases. In 1994, Pesh[23] implemented these algorithms on the computer
algebra system MAS.

In 1995, Kapur[24] proposed the parametric Gröbner basis independently. In this paper,
he introduced the concept of constrained polynomials. A constrained polynomial is defined as
a pair 〈H, f〉, where f ∈ k[U ][X ] and H is a finite set of constraints over parameters. For
any given α ∈ Lm, constraints return an explicit true or false value. Kapur proposed two
methods: Comprehensive Gröbner basis method and parametric characteristic sets method, to
solve parametric polynomial systems based on constrained polynomials. In his methods, he
need to assume that the leading coefficient of a constrained polynomial is nonzero. When the
leading coefficient of a constrained polynomial cannot be judged to be nonzero, this constrained
polynomial is called ambiguous; otherwise, non-ambiguous. In the process of calculation, we can
change ambiguous polynomials into non-ambiguous polynomials by adding some constraints.
Chen, et al.[8] gave an algorithm to compute parametric Gröbner bases according to Kapur’s
idea.

In 2002, Montes[25] proposed an algorithm to compute comprehensive Gröbner systems.
The main purpose of this paper is to get all different Gröbner bases corresponding to all pos-
sible parameter values, and obtained an algorithm which is called the DISPGB algorithm.
The DISPGB algorithm produces disjoint segments for the whole parameter space, defined by
some polynomial equations and inequations, and the corresponding Gröbner bases. For every
specialization in the same segment, the leading monomials remain unchanged.

Inspired by Montes’s approach, Weispfenning rethinked a question that had plagued him
for ten years: For a parameter ideal I in k[U ][X ], is there a purely structural sense of the
canonical comprehensive Gröbner basis? That is, does this canonical comprehensive Gröbner
basis always exist and is it uniquely determined by the ideal I and the term order ≺? In [26, 27],
Weispfenning tried to solve these problems constructively. He defined two types of regular
(canonical) Gröbner systems: A faithful Gröbner system based on [22], which can induce a
canonical comprehensive Gröbner basis; and a non-faithful Gröbner system based on [25]. In
the classical case, Weispfenning constructed a faithful Gröbner system, and he tried to give a
canonical comprehensive Gröbner basis determined by the associated ideal I and term order ≺.
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On the other hand, under the influence of Weispfenning’s new idea[26, 27], Manubens and
Montes[28] made important improvements to the DISPGB algorithm. They redesigned the flow
of DISPGB algorithm, and obtained a new algorithm which is called the DPGB algorithm.
By discussing a compact tree, the DPGB algorithm can avoid many unnecessary branches and
make the output partitions easier. The new algorithm is very efficient and nearly 20 times
faster than the original algorithm.

Since then, there are many papers such as Suzuki and Sato[29, 30], Wibmer[31], Manubens
and Montes[32], Montes and Wibmer[33], that made some improvements to improve the algo-
rithms for computing a comprehensive Gröbner basis and system of a parametric polynomial
ideal. In 2006, Suzuki and Sato[34] made a major breakthrough. Based on Kalkbrener’s work[35],
they proposed a new algorithm (called the SS algorithm in our paper) to compute a comprehen-
sive Gröbner system. Moreover, they modified the SS algorithm to compute a comprehensive
Gröbner basis of a parametric polynomial ideal. The two most important properties of their
algorithms are: 1) The segments of parameter space may not be disjoint; 2) It is to compute
a Gröbner basis of a parametric ideal in the polynomial ring k[U ][X ] rather than in the poly-
nomial ring k(U)[X ]. The two properties can help them do not need to deal with inequations
(“not equal to zero”) and make the algorithms faster than previous algorithms. However, the
first property causes the algorithms to generate many redundant segments. It will take a lot of
time to check whether a segment is redundant. Therefore, the computation may be heavy.

In 2007, Nabeshima[36] improved the SS algorithm and presented a speed-up algorithm for
computing comprehensive Gröbner systems, which generates fewer cells of parameter space than
the SS algorithm by using inequations (“not equal zero”). Moreover, he used the Rabinovitch’s
trick to check redundant segments. These two steps make the speed-up algorithm superior to
the SS algorithm in practice.

Kapur, et al.[37, 38] in 2010 made the most important improvements to the SS algorithm by
using minimal Dickson basis to remove redundant segments. For any given set G ⊂ k[U ][X ],
the minimal Dickson basis Gm of G satisfies that the ideal generated by the leading monomials
of Gm is equal to the ideal generated by the leading monomials of G, and neither lmX(f1) |
lmX(f2) nor lmX(f2) | lmX(f1) for any two distinct f1, f2 ∈ Gm. Compared with the Suzuki
and Sato’s method, the minimal Dickson basis is used to avoid unnecessary branches, and
hence, to reduce the computations of Gröbner basis. The other important improvement in
references [37, 38] is to propose many tricks and heuristics for checking whether a parametric
constraint is empty. For a parametric constraint (E, N), where E, N are ideals in k[U ], the
algebraically constructible set V (E) \ V (N) is empty if and only if for every f ∈ N , we have
that f ∈ √

E. Nabeshima[36] used the Rabinovitch’s trick to check whether f ∈ √
E. However,

this trick needs to introduce an auxiliary variable and this step can be very expensive, since
the complexity of Gröbner basis computations is heavily influenced by the number of variables.
The tricks and heuristics, proposed by Kapur, et al. such as checking whether f ∈ E, are
more efficient than Nabeshima’s method. According to the two improvements, Kapur, et al.
proposed a more efficient algorithm (called the KSW algorithm in our paper) that generates
fewer segments than existing algorithms.
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In 2011, Kapur, et al.[39, 40] modified the KSW algorithm to compute a faithful comprehen-
sive Gröbner basis of a parametric polynomial system. The main idea of their method is to
keep track of the nonzero part and zero part of a parametric polynomial for the specialization
by using the two components of a tuple in (k[U ][X ])2. The first component can form a compre-
hensive Gröbner system. At the same time, the nonzero part plus the zero part of all the tuples
generate a comprehensive Gröbner basis. This algorithm has been found to be more efficient
in practice.

Based on the results in [41, 42], Kapur[43] in 2017 gave a completion algorithm for com-
puting a minimal faithful comprehensive Gröbner basis directly. This algorithm is similar to
the Buchberger’s algorithm. Computing the S-polynomial of two distinct parametric polyno-
mials and parameterized rewriting are two important steps in the algorithm. There are some
shortcomings in the algorithm, such as the computations of rewriting and redundancy check
which could be expensive. This requires further work. In the same year, Hashemi, et al.[44]

considered the problem of converting parametric Gröbner bases. Based on the generic Gröbner
walk algorithm proposed by Fukuda, et al.[45], they presented an efficient algorithm to convert
a comprehensive Gröbner system w.r.t. a given monomial ordering into a Gröbner system w.r.t.
another monomial ordering. In 2018, Hashemi, et al.[46] introduced the concept of universal
Gröbner basis for a parametric ideal. Combining the Gröbner basis conversion[44] and the com-
prehensive Gröbner bases algorithm in [39, 40], they could compute a universal Gröbner basis
of a parametric ideal.

This paper is structured as follows: In Section 2, we introduce some notations and the
definition of comprehensive Gröbner basis and system. Section 3 contains some major theorems
and efficient algorithms for computing comprehensive Gröbner bases and systems. In Section 4,
we introduce some applications of comprehensive Gröbner systems. Finally, Section 5 includes
some conclusions.

2 Preliminaries

This section contains some basic notations and definitions for parametric polynomial, spe-
cialization, comprehensive Gröbner system, comprehensive Gröbner basis, and so on.

Let k be a field, L be an algebraic closed field containing k, k[U ] be the parameter ring
in the parameters U = {u1, · · · , um}, and k[U ][X ] be the polynomial ring in the variables
X = {x1, · · · , xn} with coefficients in k[U ]. It is assumed that U and X are disjoint sets.

We first introduce some notations for parametric multivariate polynomials. For a poly-
nomial f ∈ k[U ][X ], the leading term, leading coefficient, and leading monomial of f w.r.t.
a monomial order ≺X are denoted by ltX(f), lcX(f), and lmX(f) respectively. We have
ltX(f) = lcX(f) · lmX(f). For example, let f = 2u1u2x

3
1 + u1x

2
1x2 − u2

2x2 be a paramet-
ric polynomial in k[u1, u2][x1, x2], where ≺X is the lexicographic order with x2 < x1, then
ltX(f) = 2u1u2x

3
1, lcX(f) = 2u1u2, and lmX(f) = x3

1.
A specialization of k[U ] is a homomorphism σ : k[U ] → L. In this paper, we only consider

the specializations induced by elements in Lm. That is, for α = (α1, · · · , αm) ∈ Lm, the induced
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specialization σα is defined as
σα : f → f(α),

where f ∈ k[U ]. Every specialization σ: k[U ] → L extends canonically to a specialization σ:
k[U ][X ] → L[X ] by applying σ coefficient-wise.

For a set E ⊂ k[U ], the variety defined by E in Lm is denoted by V (E) = {α ∈ Lm | f(α) = 0
for all f ∈ E}. In this paper, an algebraically constructible set A is defined as follows:
A = V (E) \ V (N), where E, N are subsets of k[U ]. It is easy to see that the algebraically
constructible set A is not empty by ensuring that at least one f ∈ N is not in the radical of
〈E〉.

For a parametric polynomial system, the definition of comprehensive Gröbner system is
given below.

Definition 2.1 (CGS) Let F be a set of k[U ][X ], A1, · · · , Al be algebraically constructible
subsets of Lm, G1, · · · , Gl be subsets of k[U ][X ], and S be a subset of Lm such that S ⊂
A1 ∪ · · · ∪ Al. A finite set G = {(A1, G1), · · · , (Al, Gl)} is called a comprehensive Gröbner
system (CGS) on S for F if σα(Gi) is a Gröbner basis for the ideal 〈σα(F )〉 ⊂ L[X ] for α ∈ Ai

and i = 1, 2, · · · , l. Each (Ai, Gi) is called a branch of G. In particular, if S = Lm, then G is
called a comprehensive Gröbner system for F .

Example 2.2 Let F be an ideal in C[a, b][x] generated by f1 = (1 − a)x + b, where C is
the complex field. x is the variable and a, b are the parameters. ≺a,b is the lexicographic order
with a > b. Let S = C

2, then a CGS G on C
2 for F is: {(C2 \V (1− a), {(1− a)x + b}), (V (1−

a) \ V (b), {1}), (V (1 − a, b), {0})}.
In most cases, we need to compute a minimal CGS of a parametric polynomial system.

Hence, a minimal CGS is defined as follows.

Definition 2.3 A CGS G = {(A1, G1), · · · , (Al, Gl)} on S for F is said to be minimal,
if for every i = 1, 2, · · · , l,

1) Ai = ∅, furthermore, ∪l
i=1Ai = S and Ai ∩ Aj = ∅ whenever i = j;

2) σα(Gi) is a minimal Gröbner basis for 〈σα(F )〉 ⊂ L[X ] for α ∈ Ai;

3) for each g ∈ Gi, σα(lcX(g)) = 0 for any α ∈ Ai.

In Example 2.2, G is a minimal CGS on C
2 for F .

Definition 2.4 (CGB) Let F be a subset of k[U ][X ], and S be a subset of Lm. A finite
subset G in k[U ][X ] is called a comprehensive Gröbner basis (CGB) on S for F , if σα(G)
is a Gröbner basis of the ideal 〈σα(F )〉 ⊂ L[X ] for each α ∈ S. If S = Lm, then G is called a
comprehensive Gröbner basis for F . A comprehensive Gröbner basis G of F is called faithful
if in addition, every element of G is also in 〈F 〉.

Example 2.5 (see [40]) Let F = {ax1 − b, bx2 − a, cx2
1 − x2, cx

2
2 − x1} ⊂ C[a, b, c][x1, x2],

where x1, x2 are variables and a, b, c are parameters. For block order ≺X,U , {a, b, c} � {x1, x2};
within each block, ≺X and ≺U are graded reverse lexicographic orders with x2 < x1 and
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c < b < a, respectively. The CGB on C
3 for F is {a6 − b6, a3c − b3, b3c − a3, ac2 − a, bc2 −

b, bx1 − acx2, bx2 − a, cx2
1 − x2, cx

2
2 − x1}.

Remark 2.6 For any given parametric polynomial system F ⊂ k[U ][X ], and {(A1, G1),
· · · , (Al, Gl)} be a CGS on S for F . The set

⋃l
i=1 Gi may not be a CGB of F . For example,

F = {ax + 1} ⊂ C[a][x] where x is the variable and a is the parameter. The CGS G of F on C

is: {(C \ V (a), {ax + 1}), (V (a), {1})}. Then G1 ∪ G2 = {ax + 1, 1} and clearly it is not the
CGB of F . In general, it is more difficult to compute a CGB of F than to compute a CGS of
F .

3 Algorithms for Computing CGS and CGB

In this section, we will mainly introduce the algorithms proposed by Suzuki and Sato[34], and
Kapur, et al.[37–40] for computing CGS and CGB. This is because they are not only one of the
most efficient algorithms so far, but also implemented in many computer algebra systems such
as Risa/Asir, Maple, Singular, and so on. Moreover, Suzuki and Sato used the SS algorithm to
solve quantifier elimination, Kapur, et al. proved and discovered reducible geometric theorems
by using the KSW algorithm.

First, we study the stability of Gröbner bases under specializations. Let I be an ideal in
k[U ][X ], and σ be a ring homomorphism from k[U ] to L. When does a Gröbner basis G of I map
to a Gröbner basis G̃ of the ideal 〈σ(I)〉 in L[X ]? That is, G̃ = σ(G). In 1997, Kalkbrener[35]

considered the above problem, and obtained the following theorem.

Theorem 3.1 (see [35]) Let σ be a ring homomorphism from k[U ] to L, I be an ideal
in k[U ][X ] and G = {g1, · · · , gs} a Gröbner basis of I with respect to an admissible order ≺X .
We assume that the gis are ordered in such a way that there exists an r ∈ {0, · · · , s} with
σ(lcX(gi)) = 0 for i ∈ {1, · · · , r} and σ(lcX(gi)) = 0 for i ∈ {r + 1, · · · , s}. Then the following
two conditions are equivalent.

(a) {σ(g1), · · · , σ(gr)} is a Gröbner basis of 〈σ(I)〉 w.r.t. ≺X;

(b) For every i ∈ {r+1, · · · , s} the polynomial σ(gi) is reducible to 0 modulo {σ(g1), · · · , σ(gr)}.

According to Theorem 3.1, Suzuki and Sato[34] proposed a lemma which plays an important
role in the SS algorithm.

Lemma 3.2 (see [34]) Let G be a Gröbner basis of the ideal 〈F 〉 ⊂ k[U ][X ] w.r.t. an order
≺X,U . For any α ∈ Lm, let G1 = {g ∈ G | σα(lcX(g)) = 0}. Then σα(G1) = {σα(g) | g ∈ G1}
is a Gröbner basis of 〈σα(F )〉 in L[X ] w.r.t. ≺X if and only if σα(g) reduces to 0 modulo
σα(G1) for every g ∈ G.

The following lemma is the direct consequence of Lemma 3.2.

Lemma 3.3 (see [34]) Let G be a Gröbner basis of the ideal 〈F 〉 ⊂ k[U, X ](= k[U ][X ])
w.r.t. a block order U � X. If σα(lcX(g)) = 0 for each g ∈ G \ (G ∩ k[U ]), then σα(G) is a
Gröbner basis of 〈σα(F )〉 in L[X ] w.r.t. ≺X for any α ∈ V (G ∩ k[U ]).
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With the help of Lemma 3.3, the main idea of Suzuki and Sato’s algorithm is as follows:
We first compute a reduced Gröbner basis G of 〈F 〉 in k[U ][X ] w.r.t. an order ≺X,U . Let
{h1, · · · , hl} = {lcX(g) | g ∈ (G \ k[U ])}, then (V (G ∩ k[U ]) \ (V (h1) ∪ · · · ∪ V (hl)), G) forms
a segment of a CGS for F . Second, we need to get Gröbner bases from the parametric space
V (h1) ∪ · · · ∪ V (hl). For each V (hi), we use Lemma 3.3 to compute a reduced Gröbner basis
of 〈F ∪ {hi}〉 in k[U ][X ] w.r.t. an order ≺X,U . Similarly, we can get a new segment of the
CGS for F . Repeat the above process and we can obtain a CGS for F . Since, hi /∈ 〈F 〉, the
algorithm terminates in finitely many steps.

According to the above idea, Suzuki and Sato designed an efficient algorithm, SS algorithm
for short, to compute CGS.

Algorithm SS-CGS(F )
Input F , a finite subset of k[U ][X ].
Output G, a finite set of triples which forms a CGS for F .
begin
H := CGSMain(F );
G0 := ReducedGröbnerBasis(F,≺X,U );
if G0 ∩ k[U ] = ∅ then G := ∅;

else G := {(∅, G0 ∩ k[U ], {1})};
end if;
for each (h, G) ∈ H do
G := G ∪ {(G ∩ k[U ], {h}, G \ k[U ])};

end for;
return G;
end.

In the above algorithm, CGSMain(F ) is a subroutine whose details are as follows, and the
subroutine ReducedGröbnerBasis(F,≺X,U ) outputs a reduced Gröbner basis of F w.r.t. ≺X,U .

Algorithm CGSMain(F )
Input F , a finite subset of k[U ][X ].
Output a finite set H of pairs (h, G) of a polynomial and a Gröbner basis in k[U ][X ].
1) G := ReducedGröbnerBasis(F,≺X,U ).
2) If 1 ∈ G, then H := {(1, F )};

else {h1, · · · , hl} := {lcX(g) | g ∈ (G \ k[U ])}, h := lcm{h1, · · · , hl},
H := {(h, G)} ∪ CGSMain(G ∪ {h1}) ∪ · · · ∪ CGSMain(G ∪ {hl});

3) Return H.
Compared with the previous algorithms, the SS algorithm only requires the computations of

Gröbner bases in k[U, X ] (not in k(U)[X ]), which improves the computational efficiency. Since
the segments of the parameter space may not be disjoint, there are many ways to optimize the
SS algorithm (see [34] for more details).

In order to get a Gröbner basis for an ideal I in k[U ][X ] w.r.t. an order ≺X , Suzuki and
Sato compute a Gröbner basis G of I in k[U, X ] with a block order U � X , which is compatible
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with ≺X , and then G should be a Gröbner basis for I in k[U ][X ] w.r.t. ≺X . Kurata[47] pointed
out a subset of G can be still a Gröbner basis for the ideal I w.r.t. ≺X , this fact can be used
to improve Suzuki and Sato’s algorithm.

Definition 3.4 Let F be a set of k[U ][X ], and S be a subset of Lm. A CGS G =
{(A1, G1), · · · , (Al, Gl)} on S for F is called a faithful CGS, if Gi ⊆ 〈F 〉 for each i = 1, 2, · · · , l.

The key step of getting a faithful CGS is to introduce a new variable y, where y � X � U .
In order to introduce the following two important lemmas, we first give some new notations and
definitions. For any given polynomial g ∈ k[y, X, U ], lcy,X(g) denotes the leading coefficient
of g w.r.t. ≺y,X as a polynomial of k[U ][y, X ]; lmy,X,U (g) denotes the leading monomial of g

w.r.t. ≺y,X,U as a polynomial of k[y, X, U ]; lcy(g) denotes the leading coefficient of g w.r.t. ≺y

as a polynomial of k[X, U ][y]. Moreover, let M(U, X) be the set of monomials of U ∪ X . We
define homomorphisms σ0 and σ1 from k[y, X, U ] to k[X, U ] as a specialization of y with 0 and
1 respectively. That is, for any polynomial g ∈ k[y, X, U ], we have that σ0(g) = g(0, X, U) and
σ1(g) = g(1, X, U). For a set H ⊂ k[y, X, U ], g · H denotes the set {g · h | h ∈ H}.

Lemma 3.5 (see [34]) Let F and E be sets of k[X, U ]. For any g ∈ 〈(y · F ) ∪ ((y − 1) ·
E)〉k[y,X,U ], σ0(g) ∈ 〈E〉k[X,U ] and σ1(g) ∈ 〈F 〉k[X,U ].

Lemma 3.6 (see [34]) Let F be a finite subset of k[X, U ], E be a finite subset of k[U ] such
that V (E) ⊆ V (〈F 〉∩k[U ]), and G be the reduced Gröbner basis of the ideal 〈(y ·F )∪((y−1)·E)〉
in k[y, X, U ] with respect to ≺y,X,U . If {h1, · · · , hl} = {lcy,X(g) | g ∈ G′} ⊆ k[U ], then
σα(σ1(G)) is a Gröbner basis of 〈σα(F )〉 in L[X ] for each α ∈ V (E) such that h1(α) =
0, · · · , hl(α) = 0, where G′ = {g ∈ G | lmy,X,U (g) /∈ M(U, X), lcy(g) /∈ k[U ]}.

In Lemma 3.6, lmy,X,U (g) /∈ M(U, X) implies that lmy,X,U (g) includes the variable y and
lcy(g) /∈ k[U ] is equivalent to that lcy(g) includes at least one variable of X . Therefore, if the
set G′ is not empty, then the set {lcy,X(g) | g ∈ G′} is not empty. According to Lemmas 3.5
and 3.6, Suzuki and Sato obtained an algorithm called the algorithm CGBMain(F, E) in [34]
which outputs a faithful CGS on V (E) for F .

Algorithm CGBMain(F , E)
Input F , a finite subset of k[U ][X ]; E, a finite subset of k[U ] such that V (E) ⊆ V (〈F 〉∩k[U ]).
Output G, a finite set of triples of polynomials which forms a faithful CGS on V (E) for F .
begin
if 1 ∈ 〈E〉 then G := ∅;

else
G := ReducedGröbnerBasis(y · F ∪ (y − 1) · E,≺y,X,U);
{h1, · · · , hl} := {lcy,X(g) | g ∈ G, lmy,X,U (g) /∈ M(U, X), lcy(g) /∈ k[U ]};
h := lcm{h1, · · · , hl},
G := {(E, {h}, σ1(G))} ∪ CGBMain(F, E ∪ {h1}) ∪ · · · ∪ CGBMain(F, E ∪ {hl});

end if;
return G;
end.

Combining with the above algorithm, Suzuki and Sato obtained an algorithm for computing
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a CGB of F . In the following algorithm, the subroutine Elim(F ) computes a Gröbner basis of
the elimination ideal 〈F 〉 ∩ k[U ]. Assume that the set G0 is a Gröbner basis of the elimination
ideal 〈F 〉 ∩ k[U ] and {(A1, G1), · · · , (Al, Gl)} is a faithful CGS on V (G0) for F , then

⋃l
i=0 Gi

form a CGB for F .

Algorithm SS-CGB(F )
Input F , a finite subset of k[U ][X ].
Output G, a CGB for F .
begin
E := Elim(F ); G := E; G := CGBMain(F, E);
for each (E′, T ′, G′) ∈ G do

G := G ∪ G′;
end for;
return G;
end.

The results Suzuki and Sato achieved were a major breakthrough in the computation of
CGS and CGB. However, the two algorithms suffers from some weaknesses. For example, the
two algorithms allow the segments of parameter space not to be pairwise disjoint, which leads
to produce redundant segments. In this case, the computation cost for checking redundant
segments and consistency of parametric constrains may be very high. In 2010, Kapur, et al.[37]

presented a new algorithm for computing a CGS of a parametric polynomial system which can
avoid unnecessary branches in the SS algorithm. The algorithm proposed by Kapur, et al. is
based on the following definition and theorem.

Definition 3.7 (Minimal Dickson Basis, see [37]) Given a set G of polynomials which is
a subset of k[U ][X ] and an admissible block order with U � X , we say F ⊂ k[U ][X ], denoted
as MDBasis(G), is a Minimal Dickson Basis of G, if

1) F is a subset of G,

2) for every polynomial g ∈ G, there is some polynomial f ∈ F such that lmX(g) is a multiple
of lmX(f), i.e., 〈lmX(F )〉 = 〈lmX(G)〉, and

3) for any two distinct f1, f2 ∈ F , neither lmX(f1) is a multiple of lmX(f2) nor lmX(f2) is a
multiple of lmX(f1).

Example 3.8 (see [37]) For any given set G ⊂ k[U ][X ], we show that MDBasis(G) may
not be unique. Let G = {ax2

1 −x2, ax2
2 − 1, ax1− 1, (a+1)x1−x2, (a+1)x2− a} ⊂ C[a][x1, x2],

and ≺X be the lexicographic order with a � x2 < x1. Then F = {ax1 − 1, (a + 1)x2 − a} and
F ′ = {(a + 1)x1 − x2, (a + 1)x2 − a} are both MDBasis(G). It is easy to verify 〈lmX(F )〉 =
〈lmX(F ′)〉 = 〈lmX(G)〉 = 〈x1, x2〉.

Theorem 3.9 (see [37]) Let G be a Gröbner basis of the ideal 〈F 〉 ⊂ k[U ][X ] w.r.t. an
admissible block order with U � X. Let Gr = G ∩ k[U ] and Gm = MDBasis(G \ Gr). If σ is a
specialization from k[U ] to L such that
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1) σ(g) = 0 for g ∈ Gr, and

2) σ(h) = 0, where h = Πg∈Gm lcX(g) ∈ k[U ],

then σ(Gm) is a (minimal) Gröbner basis of 〈σ(F )〉 in L[X ] w.r.t. ≺X .

According to Theorem 3.9, Kapur, et al. proposed a more efficient algorithm which is called
KSW algorithm in [37] to compute a CGS for a parametric polynomial system F .

Algorithm KSW-CGS(E, N , F )
Input (E, N, F ): E and F are subsets of k[U ]; F is a finite subset of k[U ][X ].
Output a finite set of 3-tuples (Ei, Ni, Gi) such that {(V (Ei) \ V (Ni), Gi)} constitutes a

minimal CGS of F on V (E) \ V (N).
1) If inconsistent(E, N), then return ∅.
2) Otherwise, G := ReducedGröbnerBasis(F ∪ E).
3) If 1 ∈ G, then return {(E, N, {1})}.
4) Let Gr := G ∩ k[U ].
5) If inconsistent(E, Gr × N), then CGS := ∅, else CGS := {(E, Gr × N, {1})}.
6) If inconsistent(Gr, N), then return CGS.
7) Otherwise, let Gm := MDBasis(G \ Gr).
8) If consistent(Gr, N × {h}), then CGS := CGS ∪ {(Gr, N × {h}, Gm)}, where

h = lcm{h1, · · · , hk}, hi = lcX(gi) and gi ∈ Gm.
9) return CGS ∪ ⋃

hi∈{h1,··· ,hk} KSW-CGS(Gr ∪ {hi}, N × {h1h2 · · ·hi−1}, G \ Gr).

In the above algorithm, A×B := {fg | f ∈ A, g ∈ B}. Inconsistent(E, N) and consistent(Gr,

N×{h}) are subroutines used to check whether the algebraically constructible set V (E)\V (N)
is empty.

From Theorem 3.9, it is easy to see that Gm has less polynomial than Gr since Gm is a
subset of G \ Gr. This fact makes KSW-CGS will produce less branches or segments, and
hence, have better performance than SS-CGS. In [37], Kapur, et al. also used many tricks
and optimizations to check the consistency of parametric constraints. Please see [37] for more
details.

In [39], Kapur, et al. proposed a new algorithm to compute comprehensive Gröbner systems
and comprehensive Gröbner bases simultaneously. The key idea is that all the terms for every
polynomial produced in KSW-CGS will be stored, no matter whether they are zero or not
under specialization. All the polynomials are divided into two parts: Nonzero part and zero
part for the specialization, and a module structure in (k[U ][X ])2 is used to store these two
parts separately. They collected all the two parts during the calculation process and eventually
got a CGS and a faithful CGB. We first make a simple modification of the Algorithm KSW-
CGS(E, N, F ) to satisfy the computation of CGB.

Algorithm CGSMainMod(E, N , F )
Input (E, N, F ): E, N , finite subsets of k[U ]; F , a finite subset of k[U ][X ].
Output CGS: A finite set of 3-tuples (Ei, Ni, Gi) such that {(V (Ei) \ V (Ni), G1st

i )}, where
G1st

i = {g | (g, g) ∈ Gi}, constitutes a comprehensive Gröbner system on V (E) \ V (N) for F ,
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and for each (g, g) ∈ Gi, g + g ∈ 〈F 〉 and σ(g) is 0 for every parameter specialization σ from
V (Ei) \ V (Ni).

1) If inconsistent(E, N), then return ∅.

2) Otherwise, G0 := ReducedGröbnerBasis({(f, 0) | f ∈ F} ∪ {(e,−e) | e ∈ E}).

3) G := G0 \ {(g, g) ∈ G0 | g = 0} and G1st := {g | (g, g) ∈ G}.

4) If there exists (g, g) ∈ G such that g = 1, then return {(E, N, {(g, g)})}.

5) Let Gr := {(g, g) ∈ G | g ∈ k[U ]} and Gr := {g | (g, g) ∈ Gr}.

6) If inconsistent(E, Gr × N), then CGS := ∅, else CGS := {(E, Gr × N, Gr)}.

7) If inconsistent(Gr , N), then return CGS.

8) Otherwise, let Gm := MDBasis(G1st \ Gr) and Gm := {(g, g) ∈ G \ Gr | g ∈ Gm}.

9) If consistent(Gr, N×{h}), then CGS := CGS ∪{(Gr, N×{h}, Gm)}, where h = lcm{h1, · · · , hk}
and {h1, · · · , hk} = {lcX(g) | g ∈ Gm}.

10) Return CGS ∪ ⋃
h∈[h1,··· ,hk] CGSMainMod(Gr ∪ {hi}, N × {h1h2 · · ·hi−1}, {g + g | (g, g) ∈

G \ Gr}).

Now we can use Algorithm CGSMainMod(E, N, F ) to compute a CGB of F on the alge-
braically constructible set V (E) \ V (N).

Algorithm KSW-CGB(E, N , F )
Input (E, N, F ): E, N , finite subsets of k[U ]; F , a finite subset of k[U, X ].
Output A CGB of the set F on V (E) \ V (N).

1) CGS := CGSMainMod(E, N, F ), where CGS is a finite set of 3-tuples (Ei, Ni, Gi) such that
{(V (Ei)\V (Ni), G1st

i )}, where G1st
i = {g | (g, g) ∈ Gi}, constitutes a CGS on V (E)\V (N)

for F , and for each (g, g) ∈ Gi, g + g ∈ 〈F 〉 and σ(g) is 0 for every parameter specialization
σ from V (Ei) \ V (Ni).

2) Return {g + g | (g, g) ∈ Gi for all i}.

The following theorem guarantees the correctness of the Algorithm KSW-CGB(E, N, F ) for
computing a CGB.

Theorem 3.10 Let F be a set of polynomials in k[U ][X ], E be a subset of k[U ], and M

be a k[U ][X ]-module generated by {(f, 0)|f ∈ F} ∪ {(g,−g)|g ∈ E}. Suppose G is a Gröbner
basis of the module M w.r.t. an order extended from ≺X,U in a position over term fashion with
(0, 1) ≺ (1, 0), where ≺X,U is an admissible block order with U � X.

Denote G1st = {g | (g, g) ∈ G}, Gr = G1st ∩ k[U ] and Gm = MDBasis(G1st \ Gr). Gm is a
subset of G such that {(g, g) ∈ Gm | g ∈ Gm}. If σ is a specialization from k[U ] to L such that
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1) σ(g) = 0 for g ∈ Gr, and

2) σ(h) = 0, where h = Πg∈Gm lcX(g) ∈ k[U ],

then

1) for each (g, g) ∈ Gm, g + g ∈ 〈F 〉 and σ(g) = 0, and

2) {σ(g, g) | (g, g) ∈ Gm} is a minimal Gröbner basis of 〈σ(F )〉 in L[X ] w.r.t. ≺X .

As we see, the second component of every tuple is 0 under specialization, and the sum of
the first component and the second component in the tuple is in the ideal generated by 〈F 〉.
This property can help us obtain a CGB for F .

The above KSW algorithm has been implemented in computer algebra systems such as
Maple, Singular, and Magma. You can download the source codes from the following website:

http://www.mmrc.iss.ac.cn/~dwang/software.html.
This algorithm also has been included in Montes’s “Gröbner cover” in Singular, please see:

https://mat.upc.edu/en/people/antonio.montes/.

4 Some Applications of CGS

With the improvement of the computational efficiency of CGS, many algorithms on CGS
are applied to various fields. In the following, we will introduce the applications of CGS: Solv-
ing systems of parametric polynomial equations, automated discovering of geometric theorem,
quantifier elimination, and computing parametric polynomial GCD.

4.1 Solving Systems of Parametric Polynomial Equations

We know that Gröbner bases can be used for solving systems of polynomial equations. It is
natural that CGS can be used to solve systems of parametric polynomial equations.

For a given parametric polynomial equations F = 0, The following problem is of interest.
That is: For what values of the parameters, F = 0 have solutions or have no solution. If it has
infinitely many solutions, what is the dimension? If it has finitely many solutions, what is the
number of solutions. This problem can be solved by CGS easily.

Assume that G = {(A1, G1), · · · , (Al, Gl)} is a CGS for F . Then for every α ∈ Ai, it is
easy to give the structure of the solution space for F according to the Gröbner basis Gi, where
i = 1, · · · , l. For example, considering the following parametric polynomial equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 = x4 + b − d = 0,

f2 = x1 + x2 + x3 + x4 − a − c − d = 0,

f3 = x1x4 + x2x3 + x3x4 − ac − ad − cd = 0,

f4 = x1x3x4 − acd = 0,

where f1, f2, f3, f4 ∈ C[a, b, c, d][x1, x2, x3, x4], ≺X and ≺U are all degree lexicographic orders
with x1 < x2 < x3 < x4 and d < c < b < a, respectively. The CGS of this parametric
polynomial system on C

4 is:
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Table 1 The CGS of 〈f1, f2, f3, f4〉

No. Ai Gi

1 V (b − d) \ V (acd) {1}

2 V (b − d, acd)
{x4, x3 + x2 + x1 − a − c − d,

x2
2 + x2(x1 − a − c − d) + a(c + d) + cd}

3 C
4 \ V (b − d)

{x4 + b − d, x3 + x2 + x1 − a − b − c,

x2
2 + x2x1 − x2(a − 2b − c + d) + a(b + c) + b(b + c − d),

x1x2(b − d) + x2
1(b − d) + −x1(ab + ad − b2 − bc + bd + cd) − acd,

x2
1(b − d)2 + x2acd + x1(abc + abd − acd

−ad2 + bcd − cd2) − acd(b − acd)}

The first branch tells us that if b = d and acd = 0, then the parametric polynomial system
has no solution. The second branch implies that the parametric polynomial system has an
infinite number of solutions, and the dimension of the solution space is 1. The parametric
polynomial system has three solutions in the third branch.

4.2 Automatic Geometric Theorem Discovering

A geometric statement contains some hypotheses and a conclusion, the hypotheses can
be expressed by parametric polynomial equations {h1 = 0, · · · , hs = 0} and the conclusion
is expressed by h = 0, where h1, · · · , hs, h ∈ k[U ][X ]. For any given geometric statement,
we want to solve a problem: How can the fact that h follows from h1, · · · , hs be deduced
algebraically? Two algebraic methods, Wu’s method and Gröbner basis method, are often
used to prove or discover geometric theorems mechanically. Wu Wen-Tsün[48, 49] successfully
proposed the characteristic sets method and proved many geometric theorems automatically.
In the following, we will show how to discover geometric theorems mechanically by using CGS.

It is well-known that the radical ideal membership problem can be solved by the following
theorem.

Theorem 4.1 (see [50]) Let I be a polynomial ideal in k[X ], h is in the radical of I if
and only if {1} is the Gröbner basis of ideal 〈I, yh − 1〉, where y is a new variable.

Let I be the ideal generated by the hypotheses polynomials h1, · · · , hs of a geometric state-
ment, and h be the conclusion polynomial. If {1} is the Gröbner basis of ideal 〈I, yh− 1〉, then
h = 0 can be deduced from I = 0.

Extending this theorem to the parametric case, Chen, et al.[8] first proposed a method for
proving geometric theorems mechanically by using CGS. Moreover, this method can be directly
used to discover geometric theorems. Wang and Lin[10] used this method for discovering geo-
metric theorems mechanically. The method was further investigated by Montes and Recio[11].

Let I be the ideal generated by parametric polynomials h1, · · · , hs of a geometric statement,
and h be the conclusion polynomial, where h1, · · · , hs, h ∈ k[U ][X ]. Assume that

{(A1, G1), · · · , (Ar, Gr), (Ar+1, Gr+1), · · · , (As, Gs)}

is a CGS of 〈I, yh−1〉 w.r.t. some term order on y � X � U , where Gi = {1} for i = 1, 2, · · · , r
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and Gi = {1} for i = r + 1, · · · , s, then the geometric statement is true under the constraint
A1, · · · , Ar and false under Ar+1, · · · , As. Now, let’s look at the following example.

Example 4.2 Let ΔABC be a triangle in the plane, M1, M2, M3 be the midpoints of the
edges AB, BC, AC respectively. The questions is: For what kind of triangles, three midpoint
M1, M2, M3 and point A are on a same circle.

Figure 1

Let O be the center of the circle which passes the three midpoints M1, M2 and M3. From
the above picture, it is easy to see that point A is not on the circle O generally. Without loss
of generality, we take the coordinates of the points A(0, 0), B(u1, 0), C(u2, u3) and M1(x1, 0),
M2(x2, x3), M3(x4, x5), and O(x6, x7). The coordinates of A, B, C are in terms of u1, u2, u3,
where u1, u2, u3 are parameters, which can take any value. This means that points A, B, C can
move on the plane freely. The coordinates of the M1, M2, M3, O are in terms of the variables
x1, · · · , x7. This implies that the midpoints and the center of the circle are not free, they depend
on the given triangle.

The hypotheses of the above problem can be expressed as following.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = 2x1 − u1 = 0, (M1 is the midpoint of AB)

h2 = 2x2 − (u1 + u2) = 0, (M2 is the midpoint of BC)

h3 = 2x3 − u3 = 0, (M2 is the midpoint of BC)

h4 = 2x4 − u2 = 0, (M3 is the midpoint of AC)

h5 = 2x5 − u3 = 0, (M3 is the midpoint of AC)

h6 = (x6 − x4)2 + (x7 − x5)2 − ((x6 − x1)2 + x2
7) = 0, (|M3O| = |M1O|)

h7 = (x6 − x2)2 + (x7 − x3)2 − ((x6 − x1)2 + x2
7) = 0. (|M2O| = |M1O|)

The conclusion |AO| = |M1O| is expressed as

h = x2
6 + x2

7 − ((x6 − x1)2 + x2
7) = 0.

For the term order with y > x7 > x6 > x5 > x4 > x4 > x3 > x2 > x1, the CGS of
〈h1, · · · , h7, yh − 1〉 is {(Ai, Gi)6i=1}, where (Ai, Gi) is as follows.

For segment A1 = V (u2) \ V (u1u3), u2 is the x-coordinate of C, u2 = 0 means that ∠A is
a right angle. G1 = {1} implies the conclusion is true, that is point A is also on the circle O.
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For segments A2, A3, A4, although the corresponding Gröbner bases G2, G3, G4 are {1},
they are degenerated cases. For segments A5 and A6, since the Gröbner bases are not {1},
the conclusion is false under the conditions A5 and A6. Please notice that segment A6 is the
generic case because there is no equations constraints over the parameters u1, u2, u3 in A6.

Table 2 The CGS of 〈h1, · · · , h7, yh − 1〉 in Example 4.2

No. Ai Gi

1 V (u2) \ V (u1u3) {1}
2 V (u2, u3) \ V (u1) {1}
3 V (u3) \ V (u1u2(u1 − u2)) {1}
4 V (u1) {1}

5 V (u1 − u2, u3) \ V (u1)
{2x1 − u2, x2 − u2, x3, 2x4 − u2,

x5,−3u2 + 4x6, u
2
2y − 2}

6 C
3 \ V (u1u2u3)

{2x1 − u2, 2x2 − u1 − u2, 2x3 − u3,

2x4 − u2, 2x5 − u3, 4x6 − u1 − 2u2,

4u3x7 − u2
3 + u2

2 − u1u2, u1u2y − 2}

Figure 2

4.3 Quantifier Elimination by CGS

Quantifier elimination (QE) is one of the basic problems in mathematics research, and it
has a wide range of applications in scientific research and practical engineering, such as poly-
nomial optimization, surface intersection, robot motion planning, and so on. Thereby, QE has
attracted much attention over the past several decades, and great progress has been made on
the algorithms of QE. There are two major methods to solve QE: The cylindrical algebraic
decomposition (CAD) algorithm[51, 52] and CGS. In the past three decades, several very impor-
tant improvements have been made to CAD, and it has been one of the most efficient methods
for real QE up to present. Unfortunately, there are some demerits of CAD. For example, CAD
often executes useless computations on unnecessary cells, which leads to huge computation and
time consuming. An alternative real QE algorithm was proposed by Weispfenning[16] in 1998.
Using the real root counting theorem and CGS, he can eliminate all quantifies in the given
quantified formula. As the computational efficiency of CGS algorithms improves, we can use
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them to solve QE. In 2015, Fukasaku, et al.[18] further improved the Weispfenning’s QE algo-
rithm. They modified the Suzuki-Sato’s CGS algorithm[34] into an optimal form for applying to
QE, and obtained an efficient QE algorithm. The implementation in [18] shows that for many
examples the proposed algorithm is superior to other existing algorithms.

Next, we introduce QE and apply CGS to solve QE. For an arbitrary given algebraic first
order formula over the real number field R containing quantifiers “∃” and “∀”, we can always
produce an equivalent quantifier free formula. As a simple example, for a formula ∃x ∈ R(x2 +
Ax + B = 0), we can produce an equivalent quantifier free formula A2 − 4B >= 0. This
procedure is called QE. Using a prenex normal form of a given formula, we can reduce any QE
problem to a QE problem of the following basic formula with polynomials f1, · · · , fs, g1, · · · , gt

of k[U ][X ]:

∃U(f1(U, X) = 0 ∧ · · · ∧ fs(U, X) = 0 ∧ g1(U, X) = 0 ∧ · · · ∧ gt(U, X) = 0).

The above formula is equivalent to the following formula without inequalities:

∃y, U(f1(U, X) = 0 ∧ · · · ∧ fs(U, X) = 0 ∧ 1 − yg1(U, X) · · · gt(U, X) = 0),

where y is a new variable with y � X � U . (There is no doubt that we can introduce t

new variables y1, · · · , yt to remove inequalities: 1 − y1g1(U, X) = 0, · · · , 1 − ytgt(U, X) = 0.)
Combining real root counting theorem, we can eliminate quantifiers by the computation of a
suitable CGS. See [18–21] for more details.

This following example shows that it is possible to use a plane to cut a pyramid to get a
regular pentagon, and it is an illustration example of using CGS to solve QE problem. This
problem was first solved by Wang in his master degree thesis[53, 54] in 1990, and it was called
as “Beijing Theorem” by Deakin in [55]. In [53, 54], the problem was solved by Wu’s method.
In the following, we will solve it by CGS method.

Example 4.3 (see [53, 54]). Let P − ABCD be a pyramid whose base surface ABCD

is a square, and O be the center of the square. We further assume P is just on the top of
O, i.e., PO ⊥ the base surface ABCD. Let E, F, G, H, I be the intersection of a plane ϕ and
AB, BC, PC, PD, PA respectively. Can EFGHI be a regular pentagon?

Figure 3
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Setting a coordinate system, the coordinates of points O, A, B, C, D are set to O(0, 0, 0),
A(−1, 0, 0), B(0,−1, 0), C(1, 0, 0), D(0, 1, 0). If EFGHI is a regular pentagon, we have
GH ‖ EF ‖ AC. It is reasonable to set E(−x1, x2, 0), F (x1, x2, 0), G(x3, 0, x4), I(−x3, 0, x4),
H(0, x5, x6), P (0, 0, a). Note that x1, · · · , x6 are variables and a is a parameter. Suppose J and
K are the midpoints of GI and EF respectively. Since EFGHI is a regular pentagon, then we
have

H :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = x2 − x1 + 1 = 0 (F is on line BC)

h2 = a(x3 − 1) + x4 = 0 (G is on line PC)

h3 = a(x5 − 1) + x6 = 0 (H is on line PD)

h4 = x6x2 + x4(x5 − x2) = 0 (J is on line HK)

h5 = x2
3 + x2

5 + (x6 − x4)2 − 4x2
1 = 0 (|HI| = |EF |)

h6 = (x3 − x1)2 + x2
2 + x2

4 − 4x2
1 = 0 (|IE| = |EF |)

h7 = (x3 + x1)2 + x2
2 + x2

4 − x2
1 − (x5 − x2)2 − x2

6 = 0 (|EG| = |EG|)
h8 = x2

3 − x1x3 − x2
1 = 0 (|GI|2 − |GI||EF | − |EF |2 = 0)

.

EFGHI is a regular pentagon, that is,

∃x1, x2, x3, x4, x5, x6, x7(H = 0).

We can solve this problem by using CGS, and the CGS {(Ai, Gi)5i=1} of 〈H〉 is as follows.

Table 3 the CGS of 〈H〉 in Example 4.3

No. Ai Gi

1 C \ V (a(a − 1)(a + 1)(a2 + 1)) {1}

2 V (a)

{x4
1 + 6x3

1 + x2
1 − 4x1 + 1, x2 − x1 + 1, x4,

2x3 + 5x4
1 + 32x3

1 + 17x2
1 − 16x1 + 1, 5x5−

7x3x
2
1 − 23x3x1 − 2x3

1 − 2x2
1 − 14x1 + 8, x6}

3 V (a − 1)
{x2

1 − 3x1 + 1, x2 − x1 + 1, x3 + x1 − 1,

x4 − x1, x5 − x1, x6 + x1 − 1}

4 V (a + 1)
{x2

1 − 3x1 + 1, x2 − x1 + 1, x3 + x1 − 1,

x4 + x1, x5 − x1, x6 − x1 + 1}

5 V (a2 + 1)
{x2 − x1 + 1, x3 − x1, x4 + ax1 − a,

x2
1, 2x5 − x1, 2x6 + ax1 − 2a}

According to the above CGS, since Gi = {1} for i=2, 3, 4, 5, then H = 0 has solutions
for under the condition Ai for i = 2, 3, 4, 5. We get the equivalent quantifier free formula for
∃x1, x2, x3, x4, x5, x6, x7(H = 0):

a = 0 ∨ a − 1 = 0 ∨ a + 1 = 0 ∨ a2 + 1 = 0.

For this problem, we can get a quantifier free formula over the real number field R.
∃x1, x2, x3, x4, x5, x6, x7 ∈ R(H = 0) is equivalent to the following formula:

a = 0 ∨ a − 1 = 0 ∨ a + 1 = 0.
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It is easy to see that a = 0 is a degenerated case. i.e., P is on the base plane ABCD and
P becomes to the point O. If a = 1 or a = −1, then there is a plane to cut the pyramid
P −ABCD to get a regular pentagon EFGHI. For a = 1, there are two solutions for G3 = 0.
They are {x1 = 3−√

5
2 , x2 = 1−√

5
2 , x3 = − 1−√

5
2 , x4 = 3−√

5
2 , x5 = 3−√

5
2 , x6 = − 1−√

5
2 } and

{x1 = 3+
√

5
2 , x2 = 1+

√
5

2 , x3 = − 1+
√

5
2 , x4 = 3+

√
5

2 , x5 = 3+
√

5
2 , x6 = − 1+

√
5

2 }. The first solution
shows that EFGHI is a regular pentagon, and the second solution means that EFGHI is a
regular five-pointed star.

4.4 Computing Parametric Polynomial GCD

As we know, polynomial GCD (greatest common divisor) computation plays an important
role in computer algebra. Many efficient algorithms have been proposed to compute the poly-
nomial GCD. For an ideal in univariate polynomial ring with coefficient in a field, the reduced
Gröbner basis contains only one polynomial, which is just the GCD of all the polynomials in the
ideal. This conclusion still remains true for univariate polynomial ideals with parameters, and
hence, CGS can give the GCD directly. For multivariate case, little progress has been made. In
2017, Nagasaka[56] presented two algorithms to compute the GCD for the first time. In 2018,
Kapur, et al.[57] proposed a new efficient algorithm which is based on a CGS of a quotient ideal
to compute parametric polynomial GCD. Experimental data suggests that their algorithm is
superior in practice in comparison with the pervious algorithms. The following theorem and
example which come from [57] will tell us how to use CGS to compute parametric polynomial
GCD.

Theorem 4.4 (see [57]) Given f1, f2 ∈ k[U ][X ] and an algebraically constructible set
A = V (E) \ V (N) ⊂ k

m
, let G = {(Ai, Gi)}l

i=1 be a minimal comprehensive Gröbner system
of the module W = 〈f1 · e1, f2 · e1 − e2〉 on A w.r.t. an order extended from ≺X in a position
over term fashion with e2 < e1, where e1 = (1, 0) and e2 = (0, 1). For each branch (Ai, Gi) let
Hi = {h ∈ k[U ][X ] | h · e2 ∈ Gi}. Then we have the following results.

1) If Hi is empty, then gcd(σα(f1), σα(f2)) = σα(f2) for any α ∈ Ai.

2) If Hi is not empty, then Hi = {gi} and gcd(σα(f1), σα(f2)) = σα(f1)
σα(gi)

for any α ∈ Ai.

Example 4.5 (see [57]) Let f1, f2, f3 ∈ C[U ][X ] be as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f1 = ax2
1 + bx1x2 + a2x1x3 + abx1 + abx2x3 + b2x2,

f2 = ax2
1 + bx1x2 + (ab − a)x1x3 − a2x1 + (b2 − b)x2x3 − abx2,

f3 = ax2
1 + bx1x2 + a2x1x3 + (a2 − ab)x1 + abx2x3 + (ab − b2)x2,

where U = {a, b}, X = {x1, x2, x3}, ≺X and ≺U are all lexicographic orders with x3 < x2 < x1

and b < a, respectively.

We first compute a minimal CGS G12 of 〈f1 · e1, f2 · e1 − e2〉, and obtain six branches in
G12. The first branch of G12 is (A1, G1) = (C2 \ V (a(a − b + 1)), {(x1 + ax3 + b) · e2, ((a2 −
ab + a)x1x3 + (a2 + ab)x1 + (ab − b2 + b)x2x3 + (ab + b2)x2) · e1 + e2, f2 · e1 − e2}). Then,
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H1 = {x1 + ax3 + b ∈ C[U ][X ] | (x1 + ax3 + b) · e2 ∈ G1} and the GCD of f1 and f2 on A1 is
h1 = f1/(x1 + ax3 + b) = ax1 + bx2.

Next, we compute the GCD of h1 and f3 on A1. A minimal CGS of 〈h1 · e1, f3 · e1 − e2〉 on
A1 has one branch: (A2, G2) = (C2 \ V (a(a − b + 1)), {e2, h1 · e1}). Then H2 = {1} and the
GCD of h1 and f3 on A1 is h = h1/1 = ax1 + bx2. This implies that the GCD of f1, f2, f3 on
A1 is h = ax1 + bx2.

Similarly, we can compute the GCDs of f1, f2, f3 on other five branches and get the following
results.

Table 4 The GCDs of f1, f2, f3 in Example 4.5

No. Ai h (GCD)

1 C
2 \ V (a(a − b + 1)) ax1 + bx2

2 V (a − b + 1) \ V ((2b − 1)(b − 1)) (b − 1)x1 + bx2

3 V (2a + 1, 2b − 1) x1 − x2

4 V (a) \ V (b(b − 1)) x2

5 V (a, b − 1) x2

6 V (a, b) 0

5 Conclusions

In this paper, we studied the algorithms for computing CGS and CGB, as well as some of
their applications. This area was initiated by Weispfenning in 1992[22], then many researchers
have contributed to the development of this field. Suzuki and Sato made a major breakthrough
in 2006. Different from the previous algorithms, they designed an algorithm to compute a
Gröbner basis of a parametric ideal in k[U ][X ]. This method makes the algorithms for comput-
ing CGS and CGB can be easily implemented in the computer algebra systems which support
an efficient implementation of a Gröbner basis algorithm. In 2010, Kapur, et al.[37,38] improved
the Suzuki and Sato’s work by using minimal Dickson basis to remove redundant branches,
many tricks and heuristics are also used to improve the efficiency. In 2011, Kapur, et al.[39]

proposed an algorithm to compute CGS and CGB simultaneously by computing a CGS for a
module. These algorithms proposed by Kapur, et al.[40−43] are the most efficient algorithms
for computing CGS and CGB so far. CGS and CGB have been widely applied in the fields of
automatic geometric theorem proving and discovering, quantifier elimination, and so on.

We believe that some of the work in this area, such as canonical forms of CGS and CGB
which can be further studied. We hope this survey will contribute to the further development
of this research area.
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