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Abstract The GVW algorithm is an efficient signature-based algorithm for computing Gröbner bases.

In this paper, the authors consider the implementation of the GVW algorithm by using linear algebra,

and speed up GVW via a substituting method. As it is well known that, most of the computing time of

a Gröbner basis is spent on reductions of polynomials. Thus, linear algebraic techniques, such as matrix

operations, have been used extensively to speed up the implementations. Particularly, one-direction

(also called signature-safe) reduction is used in signature-based algorithms, because polynomials (or

rows in matrices) with larger signatures can only be reduced by polynomials (rows) with smaller

signatures. The authors propose a new method to construct sparser matrices for signature-based

algorithms via a substituting method. Specifically, instead of only storing the original polynomials

in GVW, the authors also record many equivalent but sparser polynomials at the same time. In

matrix construction, denser polynomials are substituted by sparser equivalent ones. As the matrices

get sparser, they can be eliminated more efficiently. Two specifical algorithms, Block-GVW and LM-

GVW, are presented, and their combination is the Sub-GVW algorithm. The correctness of the new

proposed method is proved, and the experimental results demonstrate the efficiency of this new method.
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1 Introduction

Gröbner bases have become important tools in many aspects of applications. Since Gröbner

basis is proposed in 1965[1], many efforts have been made to improve its computing efficiency.

There are two main kinds of improvements. The first one is to speed up the basic operations

during computing Gröbner bases. One landmark improvement is that Lazard pointed out

the strong relation between Gröbner bases and linear bases in vector spaces[2]. This idea has

been implemented in F4 by Faugère[3], and also in XL type algorithms by Courtois, et al.[4]

and Ding, et al.[5]. The second kind improvement tries to detect redundant computations as

many as possible. One important event is that Faugère introduced the first signature-based

algorithm F5[6]. F5 uses signature-based criteria and is available to reject almost all redundant

computations if the input system is semi-regular. After F5 is proposed, many variants have been

presented, including F5C[7], extended F5[8], F5 with revised criterion (the AP algorithm)[9], and

RB[10]. Gao, et al.[11] proposed another signature-based algorithm G2V in a different way from

F5, and GVW[12] which is an extended version of G2V. The generalized criteria and signature-

based algorithms in solvable polynomial algebra is studied in [13, 14] as well. For an overview

of all signature-based algorithms, please refer to[15].

In the field of implementing signature-based algorithms, Faugère presented his implemen-

tation of F5 in[6], and improved it via parallel techniques in [16]. Albrecht and Perry provided

an F5 algorithm in F4 style[17]. Matrix-F5 was described in [18, 19]. Roune and Stillman

give an efficient implementation of GVW and AP without using linear algebra[20]. Boyer, et

al.[21] implemented and improved the idea of Faugère and gave a new GPLv2 open source C

library GBLA. The authors implemented GVW in F4 style over Boolean polynomial rings[22]

using routines modified from M4RI[23] and also presented a fast method of implementing the

Symbolic Preprocessing function[24].

In this paper, we present a new method for speeding up the implementation of the GVW

algorithm via a substituting technique. Besides storing polynomials with signatures like in gen-

eral signature-based algorithms, we also maintain a set of equivalent and sparser polynomials

for each general polynomial. For instance, let (xαe, f) be a pair generated in the GVW algo-

rithm, where xαe is the signature of this pair. Besides storing xαe and f in our algorithm, we

also generate and record a set of polynomials A = {a1, · · · , ak} such that lm(ai) = lm(f), ai

is equivalent to f in some senses and ai is much sparser than f where i = 1, 2, · · · , k. Before

eliminating matrices, we substitute the polynomial tf with some tai in a particular way to get

sparser matrices, where t is a monomial. Since the matrices get sparser after substitutions, they

can be eliminated more efficiently. Hence, the GVW algorithm can be speeded up. We give

detailed proofs for this substituting method.

We present two specific algorithms, named as Block-GVW and LM-GVW. These two al-

gorithms use the substituting method in different ways, and the combination of them is the

Sub-GVW algorithm.

We have implemented the Sub-GVW algorithm over Boolean polynomial rings. The routine

gvw ple()[22] modified from mzd ple()[23] is used for eliminating dense matrices. The sparse
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elimination routines are implemented on our own. We test many Boolean polynomial systems

with the Sub-GVW algorithm, and compare the sparsity and eliminating time of the matrices

before and after the substitutions. Experimental results show our new substitution method

does help generate sparser matrices and hence improve the efficiency of the algorithm.

This paper is organized as follows. We illustrate our main ideas in Section 2. Next, we

present the Sub-GVW algorithm in Section 3. Experimental results are provided in Section 4.

Concluding remarks follow in Section 5.

2 Main Ideas

As is known, almost all the computing time of a Gröbner basis is spent on polynomial

reductions. Linear algebraic techniques have been proven very effective on speeding up the

implementations of Gröbner basis algorithms. Thus, we only consider the implementation of

GVW using linear algebra.

Problem description Generally, in order to use sophistical linear algebraic techniques,

we convert polynomials to rows of matrices, and hence, reductions of polynomials are done

by eliminating corresponding matrices. In signature-based Gröbner basis algorithms, each row

is designated with a signature which is comparable. Since the correctness of criteria used in

signature-based algorithms should be ensured, polynomials or rows with larger signatures can

only be reduced by polynomials or rows with smaller signatures. This leads to a one-direction

reduction of the matrices. Specifically, we can sort the rows in a matrix by an ascending order

on their signatures, with the top row having the smallest signature. Then the matrix can be

only eliminated in a top-down manner, i.e., bottom rows can only be eliminated by top rows

and the reverse elimination is forbidden. Thus, rows of the matrices cannot be freely swapped

during the elimination. In this paper, we are going to present an efficient method for doing

one-direction reductions.

In [16], Faugère and Lachartre presented an efficient method for eliminating matrices during

Gröbner basis computations. For simplification, we call this method as Faugère’s method

in the rest of this paper. This method is illustrated in Figure 1. Specifically, since matrices

appearing in Gröbner basis are always in a quasi-triangular form, by doing appropriate row and

column swaps, one can transform the matrix to the form (a), where A is an upper triangular

matrix, and B, C, D are rectangular matrices. To eliminate the matrix to echelon form, we

can compute A−1 · B, C · (A−1B), and D + CA−1B, and these procedures are shown in (b),

(c), (d) respectively. At last, the matrix D + CA−1B is eliminated to D′ in (e). Generally,

the matrix A and C are quite sparse, so the computation A−1 ·B and C · (A−1B) can be done

very efficiently using sparse linear algebraic techniques. The matrix D+CA−1B usually has a

density of 50%, so this elimination is usually done by dense matrix operations. In many of our

experiments, the number of rows in D + CA−1B is only 1/10 of the rows of A, so most of the

computing time is spent on sparse eliminations.
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Figure 1 Faugère’s method

A prerequisite of using the above method is that the rows of matrices can be freely swapped.

This can be easily done in the F4 algorithm. To exploit this technique in signature-based

algorithms, a natural way is to split the matrix into blocks. Precisely, the rows of the matrix

are divided into several blocks, and the signatures of the rows in the upper blocks are all smaller

than the signatures of those in the bottom blocks. For a simple example, we consider two blocks

as shown in Figure 2. To eliminate the matrix, we first reduce the top block by one-direction

elimination and get (b), which is not a reduced echelon form. Useful polynomials should be

collected from this non-reduced form of Block I at this time. Before eliminating the bottom

block, we rearrange the rows and columns of the reduced polynomials obtained in the top block,

and then convert the matrix to the form in (c). Note that this rearrangement of rows does not

affect the eliminations that will be done in Block II, because all rows in Block I have smaller

signatures than those in Block II. Next, Faugère’s method is used to eliminate the bottom block.

Note that the last dense matrix in Faugère’s method should be eliminated in one-direction, so

the technique in [22] can be used.

Figure 2 Tradition method of elimination by blocks

There is one flaw about the above method. That is, the upper block usually becomes denser

after the one-direction elimination, then in Faugère’s method (Figure 1) converting the matrix

from the form (b) to the form (c) will cost more time. The problem becomes severe when the

number of rows grows larger, which usually happens when the matrix is divided into several

blocks.

To resolve this flaw, we propose our first method.

Method I The basic idea is to substitute rows in Block I of Figure 2 (c) to sparser

ones, and the method is illustrated in Figure 3. There are two kinds of polynomials/rows in

the echelon form of Block I in Figure 2 (c). The first kind of polynomials do not have new

leading monomials compared with polynomials in Block I of Figure 2 (a), and the other kind
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has new leading monomials. For simplicity, we assume the polynomials/rows with new leading

monomials are at the bottom part of Block I, e.g., the polynomial denoted as g in Figure 3 (a).

In Method I, we leave the second kind of polynomials (e.g., g) unsubstituted. We only

consider the polynomials without new leading monomials. Take the polynomial f in Figure 3

(a) for example, we record a polynomial p in previous computations. This polynomial p is

obtained from previous matrices and is sparser than f . Besides, we also need lm(p) = lm(f)

and the difference p − f lies in the linear space generated by the rows/polynomials in Block

I, by which we mean p is equivalent to f . After doing substitutions like f −→ p, we get the

matrix (b). The substituted polynomials are then converted to the upper matrices in (c), and

the polynomials with new leading monomials are generally very dense and are included in the

right bottom matrix. At last, Faugère’s method is used to eliminate the bottom matrices in

Figure 3 (c). The algorithm using Method I is named as the Block-GVW algorithm, which is

detailed in Subsection 3.3.

Figure 3 The Block-GVW algorithm

Remark The polynomial p, which is used to substitute others, often comes from previous

lower degree matrices. The exact signature of p is usually unknown, because p is often generated

by using a double-direction elimination.

Method II Since substituting polynomials leads to sparser matrices and better elimination

efficiencies, it is natural to substitute as more polynomials as possible. This natural idea

results in our second method illustrated in Figure 4. Firstly, we construct all polynomials with

signatures in (a). Next, we swap rows without considerations of signature orderings and put all

J-pairs to be reduced at the bottom of the matrix, and the polynomials used to reduced others

are at the top in (b). By doing substitutions for the polynomials in the upper part, we get the

matrix (c). At last, the whole matrix is split into four sub-matrices, and Faugère method is

used for elimination.
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*  *  *  *  *  *  *  *  *  * 

Faugère
method

…
swap rows 
and colums

0

J-pairs pairs to reduce ohters
(a)                                                                      (b)                                                 (c)

Figure 4 The LM-GVW algorithm

The above elimination is very efficient, because the matrix after substitution is sparser

and the whole elimination is not done in one-direction. Since we rearrange the polynomials

in (b) without considerations of signatures, we cannot find the correct signatures for the final

eliminating results. But it is easy to prove that the new leading monomials of the results

are contained in those obtained by using one-direction elimination to the matrix in (a). This

implies, before doing one-direction elimination to the whole matrix, we can obtain the new

leading monomial information efficiently by Method II. So Method II is very useful for quickly

finding linear or mutant polynomials, which can help speed up the algorithm significantly.

Method II is introduced as the LM-GVW algorithm in Subsection 3.4, where “LM” shorts for

leading monomial.

3 Speeding up the GVW Algorithm via a Substituting Method

This section is organized as follows. We revisit the GVW algorithm and rewrite it as a

matrix style in the first two subsections. We present the Block-GVW algorithm and LM-GVW

algorithm in Subsections 3.3 and 3.4, in which we show how our substituting methods are used.

By combining Block-GVW and LM-GVW, we obtain the Sub-GVW algorithm. We give a toy

example to illustrate the Sub-GVW algorithm in the last subsection.

3.1 The GVW Algorithm Revisited

In this part, some necessary notations are given and then the GVW algorithm is introduced

briefly. For more details, please refer to [12].

LetR := K[x1, · · · , xn] be a polynomial ring over a fieldK with n variables, and {f1, · · · , fm}
is a finite subset of R. Consider an ideal I:

I = 〈f1, · · · , fm〉 = {p1f1 + · · ·+ pmfm | p1, · · · , pm ∈ R}.
Given some monomial ordering on R, we want to compute a Gröbner basis for I.

Let F2 := (f1, · · · , fm) ∈ Rm, and consider the following R-module of Rm ×R:

M = {(u, f) ∈ Rm ×R | u · F2 = f}.
Then the R-module M is generated by {(e1, f1), · · · , (em, fm)}, where ei is the i-th unit vector

of Rm.
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A monomial in R has the form xα = Πn
i=1x

ai

i , where α = (a1, · · · , an) ∈ N
n and N is the

set of all non-negative integers. A monomial in Rm is of the form xαei, where 1 ≤ i ≤ m and

α ∈ N
n. For monomials in Rm, if ei = ej and xα divides xβ , we say that xαei divides x

βej (or

xαei | xβej for short). Furthermore, we define the quotient (xβei)/(x
αei) = xβ−α ∈ R.

Fix any monomial ordering ≺p on R and any monomial ordering ≺s on Rm (subscripts p

and s stand for polynomial and signature respectively). Please note that ≺s may or may not

be related to ≺p in theory, although we always assume ≺s is compatible with ≺p practically,

i.e., xα ≺p xβ if and only if xαei ≺s x
βei for 1 ≤ i ≤ m. For the sake of simpleness, we use the

following notations for leading monomials:

lm(f) = lm≺p(f) and lm(u) = lm≺s(u),

for any f ∈ R and any u ∈ Rm. Leading monomials of f ∈ R and u ∈ Rm are monomials

without coefficients in R and Rm respectively. We define lm(f) = 0 if f = 0, and 0 ≺p xα for

any non-zero monomial xα in R; similarly for monomials in Rm. In the rest of this paper, we

use ≺ instead of ≺p and ≺s if no confusion occurs.

We should emphasize that we always assume ≺p is a graded monomial ordering and ≺s is

compatible with ≺p in this paper.

The signature of (u, f) is defined as lm(u). If lm(u) = xαei is the signature of (u, f), we

call i as the index of (u, f). This definition of signature is the same as used in GVW, but not

in [6, 9]. The differences are discussed in [12].

Let (u, f) ∈ M and B ⊂ M . We give the concept of top-reducible. We say (u, f) is

top-reducible by B, if there exists (v, g) ∈ B with g 
= 0, such that lm(g) divides lm(f) and

lm(u) � lm(tv) where t = lm(f)/lm(g). The corresponding top-reduction is then

(u, f)− ct(v, g) = (u− ctv, f − ctg),

where c = lc(f)/lc(g), and lc(f), lc(g) are the leading coefficients of f and g. We call the top-

reduction regular, if lm(u) � lm(tv); and super if lm(u) = lm(tv).† Clearly, (u−ctv, f−ctg)

is also an element in M .

A subset G of M is called a strong Gröbner basis for M if every nonzero pair (pairs


= (0, 0)) in M is top-reducible by G. According to Proposition 2.2 of [12], let G := {(vi, gi) |
1 ≤ i ≤ s} be a strong Gröbner basis for M . Then {gi | 1 ≤ i ≤ s} is a Gröbner basis for

I = 〈f1, · · · , fm〉.
Joint pairs/J-pairs are used to compute strong Gröbner bases. Suppose (u, f), (v, g) ∈

M are two pairs with f and g both nonzero. Let t = lcm(lm(f), lm(g)), tf = t/lm(f) and

tg = t/lm(g). Then the J-pair of (u, f) and (v, g) is defined as: tf (u, f) (or tg(v, g)), if

lm(tfu) � lm(tgv) (or lm(tfu) ≺ lm(tgv)). For the case lm(tfu) = lm(tgv), the J-pair is not

defined. We note that the J-pair of (u, f), (v, g) ∈M is also a pair in M . Let tf (u, f) be the

J-pair of (u, f) and (v, g), the degree of tf (u, f) is defined as deg(tff), i.e., the degree of the

polynomial part. We call a J-pair is of G ⊂M for short, if it is the J-pair of two pairs in G.

†Regular top-reduction defined here is slightly different from its original version in[12], but this will not affect

proofs of related propositions and theorems.
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For a pair (u, f) ∈ M and a set G ⊂ M , we call (u, f) is covered by G, if there is a

pair (v, g) ∈ G, such that lm(v) divides lm(u) and tlm(g) ≺ lm(f) (strictly smaller) where

t = lm(u)/lm(v). For convenience, we say a pair (w, h) ∈M is a syzygy pair if h = 0.

Gao, et al. provided a simple characterization of strong Gröbner bases.

Theorem 3.1 (see [12]) Suppose G ⊂ M contains pairs with signatures {e1, · · · , em}.
Then G is a strong Gröbner basis for M if and only if every J-pair of G is covered by G.

It should be noted that checking whether a pair is covered by G does not need any reduction

of polynomials. This deduces the various rewriting rules used in the literature. The following

two criteria are rephrased from the rewriting rules.

[Syzygy Criterion] For a J-pair tf (u, f) of a set G ∈ M , if there exists a syzygy pair

(v, 0) ∈ G such that lm(v) divides tf lm(u), then this J-pair can be discarded.

[Second Criterion] For a J-pair of a set G ∈M , if this J-pair is covered by G, then this

J-pair can be discarded.

In this paper, we call the second criterion Rewriting Criterion. In [9], Arri and Perry

proposed a quite similar criterion to Rewriting Criterion. For more comments on Arri-Perry’s

criterion and Rewriting Criterion, please see [12, 20].

We modify the original GVW slightly and get the following algorithm. The output of a

Gröbner basis for the syzygy module of input polynomials is deleted, because we only care

about the Gröbner basis of input polynomials in this paper.

Algorithm 1: The GVW algorithm

Input : f1, · · · , fm ∈ R = K[x1, · · · , xn]; ≺p and ≺s monomial orderings for R and Rm.

Output: A Gröbner basis of I = 〈f1, · · · , fm〉.
1 begin

2 G←−{(ei, fi) | 1 ≤ i ≤ m}
3 H←−{(fjei − fiej , 0) | 1 ≤ i < j ≤ m}
4 JP←−all J-pairs of G
5 while JP 
= ∅ do
6 Let t(u, f) ∈ JP and remove t(u, f) from JP.

7 if t(u, f) is rejected by either Syzygy or Rewriting Criterion then

8 GotoLine 5

9 (w, h)←−Regular top-reduce t(u, f) by G.

10 if h = 0 then

11 H←−H ∪ {(w, 0)}
12 else

13 JP←−JP ∪ {J-pair of (w, h) and (v, g) | (v, g) ∈ G}
14 G←−G ∪ {(w, h)}

15 return {g | (v, g) ∈ G}

Some remarks on the GVW algorithm are listed in the following.
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1) At Step 6, a J-pair can be selected from the set JP in any order. We always select the J-pairs

with the minimal degree in the algorithms of this paper.

2) In [12], Proposition 2.2 guarantees the correctness of GVW when J-pairs are computed in

any order, and the finite termination of GVW is proved by Theorem 3.1 when monomial

orderings of R and Rm are compatible.

3) The GVW algorithm in [12] retains only one J-pair (the one with the minimal polynomial

part) when there are several J-pairs having the same signature. This process can be implied

by the “cover check” at Step 7.

4) It is emphasized that for a pair (u, f) ∈M , only (lm(u), f) is stored during the implemen-

tation of the GVW algorithm. Other related conceptions, such as top-reduction, J-pairs and

cover, are defined similarly. More details could be found in [12].

3.2 The Matrix-GVW Algorithm

In this section, we rewrite the GVW algorithm in a matrix style and give the Matrix-GVW

algorithm. Instead of reducing J-pairs one by one, Matrix-GVW uses batch processing to reduce

J-pairs. This batch processing can be implemented through eliminating matrices, which could

significantly speed up the implementation of GVW.

The Matrix-GVW algorithm is given below.

Algorithm 2: The Matrix-GVW algorithm

Input : f1, · · · , fm ∈ R = K[x1, · · · , xn]; ≺p and ≺s, monomial orderings on R and Rm.

Output: A Gröbner basis of I = 〈f1, · · · , fm〉 .
1 begin

2 G←−{(ei, fi) | 1 ≤ i ≤ m}
3 H←−{(fjei − fiej , 0) | 1 ≤ i < j ≤ m}
4 JP←− all the J-pairs of G

5 while JP 
= ∅ do
6 d←−min{deg(lm(tf)) | t(u, f) ∈ JP}
7 minJP←−{t(u, f) | t(u, f) ∈ JP, deg(lm(tf)) = d}
8 JP←−JP \minJP

9 minJP←−minJP \ {J-pairs rejected by Syzygy and Rewriting Criterion}
10 M←−SymbolicProcess(minJP, G,≺p,≺s)

11 ˜M←−OneDirectionElimination(M,≺s)

12 G, JP, H←−Update(˜M,G, JP, H,≺s)

13 return {g | (v, g) ∈ G}

The input of Matrix-GVW is a set of polynomials and the output is a Gröbner basis of the

input system. Firstly, let G be the set of initial pairs, and all the J-pairs of G are generated

in Step 4. In every loop, Matrix-GVW chooses the J-pairs from the set JP with the minimal

degree and rejects some J-pairs by Syzygy and Rewriting Criterion in Steps 6–9. Then the
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algorithm builds the set M ⊂M in Step 10, and M consists of J-pairs to be reduced and pairs

that are used to reduce others. Reductions are done by batch processing in Step 11, which are

usually processed via eliminations of matrices. At last, in Step 12 the set of G, JP and H are

updated by ˜M .

The function SymbolicProcess(·) returns a set M ⊂ M which contains all pairs needed

for reductions, including J-pairs to be reduced and pairs that are used to reduce others. Given

the J-pairs to be reduced, the set Todo contains all the monomials not bigger than the greatest

monomial in JP. The steps from Step 6 to Step 7 find out the polynomials whose leading

monomials are in Todo. Please note that, when there are more than one polynomials having

the same leading monomial, we always choose the one with the minimal signature in Steps 8–9.

We emphasize this step is very important, since it ensures all J-pairs in M can be fully reduced.

Function SymbolicProcess

Input : JP, a set of J-pairs; G, a set of pairs in M ; ≺p, ≺s, monomial orderings on R,

Rm.

Output: M , a set of pairs in M .

1 begin

2 D←−∅
3 Todo←− all monomials not bigger than max{lm(tf) | t(u, f) ∈ JP}
4 while Todo 
= ∅ do
5 Pick up a monomial m ∈ Todo, and remove m from Todo

6 if ∃(v, g) ∈ G s.t. lm(g) | m then

7 G0←−{t(v, g) | lm(g) dividesm, t = m/lm(g), (v, g) ∈ G}
8 find t0(v0, g0) ∈ G0 with the minimal signature w.r.t. ≺s

9 D = D ∪ {t0(v0, g0)}

10 M←−JP ∪D

11 return M

Function OneDirectionElimination(·) reduces pairs in M . It is a one-direction reduction,

because it only allows pairs with smaller signatures to reduce pairs with bigger ones. In each

loop, the function always chooses the pair (u, f) with the smallest signature in Todo to reduce

in Step 5. For candidates to reduce (u, f), we only consider pairs in ˜M whose signatures are

strictly smaller than (u, f). Whenever (u, f) is not reducible, it is appended to ˜M . This

function terminates when all pairs in Todo are reduced. Please remark that, due to Steps 6–9

in Function SymbolicProcess(·), every pair in ˜M cannot be further regular-top reduced by G.
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Function OneDirectionElimination
Input : M , a set of pairs in M ; ≺s, a monomial ordering on Rm.

Output: ˜M , a set of pairs in M .

1 begin

2 Todo←−M
3 ˜M←−∅
4 while Todo 
= ∅ do
5 Pick up (u, f) having the smallest signature in Todo and remove it from Todo

6 if ∃(v, g) ∈ ˜M s.t. lm(g) = lm(f) 
= 0 and lm(v) ≺s lm(u) then

7 Todo←−Todo ∪ {(u, f)− (v, g)}
8 else

9 ˜M←−˜M ∪ {(u, f)}

10 return ˜M

In Matrix-GVW, Function OneDirectionElimination(·) is implemented in a matrix style.

First, all polynomials in M are converted into rows of a matrix, i.e., for any (u, f) ∈ M , we

write the coefficients of f as entries of a row and we say lm(u) is the signature of this row.

Second, we sort the rows of the matrix by an ascending order on their signatures. Specifically,

the row with the smallest signature is on the top of the matrix. Next, the matrix is eliminated

in one direction. That is, a row can only be eliminated by rows above it with smaller signatures.

Finally, when the matrix is eliminated, all rows are transformed back to pairs and stored in
˜M . Please note that, during the practical implementation only (lm(u), f) is stored instead of

(u, f), which is the same as done in [12].

The function Update(·) collects new pairs in ˜M and generates new J-pairs. We define two

kinds of new pairs in ˜M according to their signatures and leading monomials. By saying the

leading monomial of a pair (u, f), we mean lm(f) in the rest of this section.

1) For (u, f) ∈ ˜M , if lm(f) cannot be generated by the leading monomials of pairs in G,

i.e., there is no leading monomials of pairs in G dividing lm(f), then (u, f) is new.

2) For (u, f) such that lm(f) can be generated by the leading monomials of pairs in G, we

check whether (u, f) has a relative smaller signature. That is, if there exists (v, g) ∈ G such

that lm(g) divides lm(f) and lm(tv) �s lm(u) where t = lm(f)/lm(g), then we say (u, f) is

not a new pair; otherwise, (u, f) is new.

In Function Update(·), the above two kinds of new pairs are collected in M+
1 and M+

2

respectively. Next, all the new pairs in M+
1 and M+

2 are appended to G and the J-pairs are

updated correspondingly in Steps 8–10. The updated sets of G and JP are returned at last.
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Function Update

Input : ˜M , a set of pairs in M returned by Function OneDirectionElimination(·);
G, a set of pairs in M ; JP, a set of J-pairs; H , a set of syzygy pairs in M , i.e.,

∀(w, h) ∈ H we have h = 0; ≺s, a monomial ordering on Rm.

Output: The updated sets of G, JP and H .

1 begin

2 (M+
1 ,M+

2 )←−(∅, ∅)
3 for every (u, f) ∈ ˜M with f 
= 0 do

4 if �(v, g) ∈ Gs.t. lm(g) divides lm(f) then

5 M+
1 ←−M+

1 ∪ {(u, f)}
6 else if lm(f)

lm(g) lm(v) �s lm(u) for∀(v, g) ∈ G s.t. lm(g)|lm(f) then

7 M+
2 ←−M+

2 ∪ {(u, f)}

8 for every (u, f) ∈M+
1 ∪M+

2 do

9 JP←−JP ∪ {J-pairs of (u, f) and (v, g) | (v, g) ∈ G}
10 G←−G ∪ {(u, f)}
11 H←−H ∪ {(w, 0) | (w, 0) ∈ ˜M}
12 return G, JP, H

We prove the termination and correctness of the Matrix-GVW algorithm below.

Theorem 3.2 The Matrix-GVW algorithm terminates in finite steps.

Proof To prove the theorem, we consider a map σ : Rm × R → k[Y, Z,W ], where Y =

{y1, · · · , yn}, Z = {z1, · · · , zm}, and W = {w1, . . . , wn} are new variables. For any (u, f) ∈M

with lm(u) = xa1
1 · · ·xan

n ei 
= 0 and lm(f) = xb1
1 · · ·xbn

n 
= 0, we define

σ(u, f) = ya1
1 · · · yan

n ziw
b1
1 · · ·wbn

n ∈ k[Y, Z,W ].

For a set F = {(u, f) | f 
= 0, (u, f) ∈M}, we define σ(F ) = {σ(u, f) | (u, f) ∈ F}.
Let Gn−1 and Hn−1 denote the sets G and H respectively before the n-th “while” loop

starts and Gn, Hn be the sets G, H after the n-th loop finishes. In each “while” loop, one of

the following three cases must happen.

(a) Assume all the J-pairs are rejected by the criteria, then no new pairs are added to G.

So the number of J-pairs in JP decreases strictly.

(b) Assume Case (a) does not hold and there are some J-pairs reduced to 0. Then they

are appended to the set Hn. Since all the J-pairs covered by syzygies have been discarded, the

signatures of new syzygies are not divisible by the signatures of pairs in Hn−1. Thus, we must

have 〈Hn−1〉 � 〈Hn〉.
(c) Assume Cases (a) and (b) do not hold and all J-pairs are reduced to non-syzygy pairs.

Then we claim 〈σ(Gn−1)〉 � 〈σ(Gn)〉. On one hand, if the first kind of new pairs are generated,

then the claims hold directly by the definition of σ. On the other hand, we assume only the

second kind of new pairs are generated. Let (w, h) be a new pair of the second kind. If there
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exists (v, g) ∈ Gn−1 such that σ(v, g) divides σ(w, h), then we must have lm(v) divides lm(u)

and lm(g) divides lm(f) by definition of σ. Denote s = lm(u)/lm(v) and t = lm(f)/lm(g).

If s � t, then (w, h) has not been fully reduced, and this is a contradiction due to Steps 8–9

in Function SymbolicProcess(·); otherwise, (w, h) is covered by (v, g) and should have been

discarded by criteria. In all, we have that none of pairs in Gn−1 can divide (w, h), and the

claim is proved.

Since the polynomial ring over a field is Noetherian. None of the above cases can happen

infinite times. Therefore, Matrix-GVW algorithm terminates in finite steps.

Theorem 3.3 The Matrix-GVW algorithm computes a Gröbner basis for the input sys-

tem.

Proof We want to prove this proposition via Theorem 3.1. That is, if all the J-pairs of G

are covered by G, then G is a strong Gröbner basis. Note that the set G in Theorem 3.1 is

splited into sets G and H in Matrix-GVW.

The J-pairs rejected by the criteria are obviously covered by G ∪ H . Then we consider

each J-pair (u, f) which is not rejected. Then (u, f) is reduced to either (u, 0) or (u, g) where

lm(g) ≺p lm(f), and (u, 0) or (u, g) will be appended to H or G, respectively. Hence, (u, f)

will be covered by this new H or G.

So the Matrix-GVW algorithm terminates only when all J-pairs of G are covered by G∪H .

Matrix-GVW computes a Gröbner basis according to Theorem 3.1.

Matrix-GVW could accelerate GVW significantly, since it takes advantage of the batch

processing for J-pairs reductions. However, compared with batch processing used in F4, Matrix-

GVW still has two restrictions. First, the elimination of matrices must be done from one

direction. Matrix-GVW only allows rows with lower signatures to reduce those with higher

signatures. Thus, we cannot swap rows as our wishes during the elimination. And hence, the

technique introduced in [16] cannot be used directly. Second, polynomials in Matrix-GVW are

generally denser than those in F4, because we can only obtain the echelon form of matrix but

not reduced echelon form as done in F4. This may lead to denser matrices and slow down the

eliminations.

On seeing these restrictions, we propose the Substituting GVW algorithm, or Sub-GVW

for short. The Sub-GVW algorithm is an integration of the Block-GVW algorithm and the

LM-GVW algorithm. We introduce these two algorithms in the following subsections.

3.3 The Block-GVW Algorithm

The Block-GVW algorithm improves the Matrix-GVW algorithm by dividing the whole

matrix into several blocks. When eliminating each block, sparser equivalent polynomials are

used to substitute denser polynomials, which decreases the density of the matrix and obtains a

better eliminating efficiency. Faugère’s method[16] is also used. The main idea is illustrated in

Figure 3 of Section 2.

Generally, we can divide the matrix into k blocks. For sake of simplicity, we only discuss

the Block-GVW algorithm for k = 2, named as 2-Block-GVW algorithm. The algorithm can
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be extended to k = 3, 4, · · · naturally.
We introduce some necessary notations in the followings.

Let {f1, · · · , fm} ⊂ R = K[x1, · · · , xn] bem polynomials, ≺p be a graded monomial ordering

and ≺s be an position over term extension of ≺p such that e1 ≺s e2 ≺s · · · ≺s em.

To do substitutions, we need to store more polynomials inside the pairs. We consider the

3-tuple (u, f, p), where (u, f) ∈ M and p ∈ R. The polynomial p is used to substitute f ,

and it is only an auxiliary polynomial. Initially, we set p := f , and update p in Function

UpdateBlock(·). Concepts defined for (u, f) can be extended to (u, f, p) by ignoring p. These

concepts include Syzygy Criterion, Rewriting Criterion, and J-pairs. But we do not consider

the operations of the 3-tuples, such as additions or multiplications by monomials.

Please remark that, we only append one polynomial p to the pair (u, f) when the block

number k is 2. For k > 2, we need to append k − 1 polynomials correspondingly.

Given a matrix M corresponding to the set {(u, f, p)} in the 2-Block-GVW algorithm, we

divide M to MI and MII by a fixed el ∈ Rm where 1 < l ≤ m. That is, MI = {t(u, f, p) ∈
M | lm(u) ≺s el} and MII = M \MI .

The 2-Block-GVW algorithm is described below.

Algorithm 3: The 2-Block-GVW algorithm

Input : f1, · · · , fm ∈ R; ≺p and ≺s, monomial orderings on R and Rm.

Output: A Gröbner basis of I = 〈f1, · · · , fm〉.
1 begin

2 G←−{(ei, fi, fi) | 1 ≤ i ≤ m}
3 H←−{(eifj − ejfi, 0) | 1 ≤ i < j ≤ m}
4 JP←− all the J-pairs of G

5 while JP 
= ∅ do
6 d←−min{deg(tlm(f)) | (t(u, f, p) ∈ JP}
7 minJP←−{t(u, f, p) | t(u, f, p) ∈ JP, deg(tlm(f)) = d}
8 JP←−JP \minJP

9 minJP←−minJP \ {J-pairs rejected by Syzygy or Rewriting Criterion}
10 M←−SymbolicProcess(minJP, G,≺p,≺s)

11 MI = {t(u, f, p) ∈M | lm(u) ≺s el}
12 MII = M \MI

13 # Eliminate Block I

14 ˜MI←−OneDirectionElimination({t(u, f) | t(u, f, p) ∈MI},≺s)

15 # Eliminate Block II

16 MAB,MCD←−SubstituteBlock(˜MI ,MI ,MII)

17 ˜MII←−FaugèreMethod(MAB,MCD)

18 G, JP, H←−UpdateBlockI(˜MI , G, JP, H,≺s)

19 G, JP, H←−UpdateBlockII(˜MII , G, JP, H,≺s)

20 return {g | (v, g, q) ∈ G}



SPEEDING UP THE GVW ALGORITHM 219

Most of the 2-Block-GVW algorithm is similar to the Matrix-GVW except the one-direction

elimination part. In 2-Block-GVW, the matrix M is divided into two blocks MI and MII .

The block MI is eliminated by general one-direction elimination at Step 14. We substitute

polynomials in ˜MI , put polynomials without new leading monomials to MAB and those with

new leading monomials into MCD. Pairs in MII are also appended to MCD. This step is

done by Function SubstituteBlock(·). Faugère’s method is used at Step 17, which is not

detailed in current paper, and for more details please see [16]. Here, the result ˜MII refers to

the polynomials (including 0) in the echelon form of the matrix CA−1B +D as well as their

corresponding signatures, while the echelon form is obtained by using a dense one-direction

elimination described in [22]. We update polynomials at Steps 18–19.

Function SubstituteBlock

Input : ˜MI , a set of reduced pairs in M ; MI , MII , subsets of M ×R.

Output: MAB,MCD, sets of pairs in M .

1 begin

2 MAB,Mnew←−∅, ∅
3 for each (w, h) ∈ ˜MI with h 
= 0 do

4 if ∃ t(u, f, p) ∈MI s.t. lm(tf) = lm(h) then

5 MAB←−MAB ∪ {tp}
6 else

7 Mnew←−Mnew ∪ {(w, h)}

8 MCD←−Mnew ∪ {t(u, f) | t(u, f, p) ∈MII}
9 return MAB,MCD

In the function SubstituteBlock() pairs in ˜MI are divided into two kinds at Step 4. The

first kind of pairs do not have new leading monomials, i.e., for (w, h) ∈ ˜MI , there exists

t(u, f, p) ∈ MI s.t. lm(tf) = lm(h). In this case, the polynomial h is substituted by tp, which

is considered to be sparser. The second kind of pairs having new leading monomials, are not

substituted.

The function UpdateBlockI(·) updates the set G, JP, andH for Block I. A bit different from

Function Update(·), the above function needs to update 3-tuples in G. After the new pairs are

collected in M+
1 and M+

2 , we compute the reduced form of ˜M by general Gaussian eliminations

without consideration of signatures. We assume the polynomials in reduced echelon form is

returned to the set E at Step 8. For sake of efficiency, we only compute the reduced forms for

pairs in M+
1 ∪M+

2 in practical implementation at Step 8. Next, for each (u, f) ∈M+
1 ∪M+

2 , we

find out the polynomial p ∈ E such that lm(f) = lm(p), and regard (u, f, p) as a new 3-tuple.

The other steps are the same as those in Function Update(·).
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Function UpdateBlockI

Input : ˜M , a set of reduced pairs in M ; G, a set of M ×R; JP, a set of J-pairs; H , a

set of syzygy pairs in M ; ≺s, a monomial ordering on Rm.

Output: The updated sets of G, JP and H .

1 begin

2 M+
1 ,M+

2 ←−∅, ∅
3 for every (u, f) ∈ ˜M with f 
= 0 do

4 if �(v, g) ∈ G s.t. lm(g) divides lm(f) then

5 M+
1 ←−M+

1 ∪ {(u, f)}
6 else if lm(f)

lm(g) lm(v) �s lm(u) for ∀(v, g) ∈ G s.t. lm(g)|lm(f) then

7 M+
2 ←−M+

2 ∪ {(u, f)}

8 E←−ReducedEchelonForm(˜M) # E is a set of polynomials without signatures.

9 for every (u, f) ∈M+
1 ∪M+

2 do

10 Find p in E and lm(f) = lm(p)

11 JP←−JP ∪ {J-pairs of (u, f, p) and (v, g, q) | (v, g, q) ∈ G}
12 G←−G ∪ {(u, f, p)}
13 H←−H ∪ {(w, 0) | (w, 0) ∈ ˜M}
14 return G, JP, H

Function UpdateBlockII

Input : ˜M , a set of reduced pairs in M ; G, a set of M ×R; JP, a set of J-pairs; H , a

set of syzygy pairs in M ; ≺s, a monomial ordering on Rm.

Output: The updated sets of G, JP and H .

1 begin

2 M+
1 ,M+

2 ←−∅, ∅
3 for every (u, f) ∈ ˜M with f 
= 0 do

4 if �(v, g) ∈ G s.t. lm(g) divides lm(f) then

5 M+
1 ←−M+

1 ∪ {(u, f)}
6 else if lm(f)

lm(g) lm(v) �s lm(u) for ∀(v, g) ∈ G s.t. lm(g)|lm(f) then

7 M+
2 ←−M+

2 ∪ {(u, f)}

8 for every (u, f) ∈M+
1 ∪M+

2 do

9 JP←−JP ∪ {J-pairs of (u, f, f) and (v, g, q) | (v, g, q) ∈ G}
10 G←−G ∪ {(u, f, f)}
11 H←−H ∪ {(w, 0) | (w, 0) ∈ ˜M}
12 return G, JP, H
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The function UpdateBlockII(·) updates the set G, JP, and H for Block II. This function is

more similar to Function Update(·), and the only difference is it uses (u, f, f) instead of (u, f)

in Steps 9–10.

Theorem 3.4 The 2-Block-GVW algorithm computes a Gröbner basis for the input sys-

tem.

Proof For 2-Block-GVW algorithm, polynomials that are substituted all lie in Block I and

they are used to reduce polynomials in Block II. So for each (u, f, p) of these polynomials,

according to Steps 8–12 of Function UpdateBlockI(·), we have that f − p belongs to the linear

span of {g | (v, g, q) ∈ MI}. So when tf is substituted by tp in later loops, we also have

t(f − p) belongs to the linear span of {g | (v, g, q) ∈M ′
I} where t is a monomial and M ′

I is the

corresponding matrix in the later loops. This is because all monomials that can be generated

have been considered in Step 4 of Function SymbolicProcess(·).
For the k-Block-GVW algorithm Note that, we use 3-tuple (u, f, p) when the block

number k is 2. In this case, we divide the ideal I = 〈f1, f2, · · · , fm〉 into I1 = 〈f1, · · · , fl−1〉
and I2 = 〈fl, · · · , fm〉. We always have f − p ∈ I1 for all pairs. So we substitute f −→ p when

eliminating Block II, and this does not affect the correctness of the algorithm.

Next, we consider more blocks, i.e., k > 2, and we need to use k+1-tuple (u, f, p1, · · · , pk−1).

For example, let k = 4, then the tuple is (u, f, p1, p2, p3). Assume the ideal I is divided into

I1 = 〈f1, · · · , fl−1〉, I2 = 〈fl, · · · , fs−1〉, I3 = 〈fs, · · · , ft−1〉, and I4 = 〈ft, · · · , fm〉. Now we

will always have f − p1 ∈ I1, f − p2 ∈ I1 ∪ I2, and f − p3 ∈ I1 ∪ I2 ∪ I3. When eliminating

Block i+1, we substitute f −→ pi. In this case, the update of pi becomes complex, but still in

a similar way to the 2-Block-GVW algorithm.

3.4 The LM-GVW Algorithm

We present the LM-GVW algorithm in this subsection. The basic idea is similar to Block-

GVW, but we substitute all polynomials in LM-GVW not only polynomials in some blocks.

The goal of LM-GVW algorithm is trying to find the mutants before one-direction eliminating

the whole matrix. The main idea is illustrated in Figure 4 of Section 2.

First, we give the definition of mutants.

Definition 3.5 Let (u, f) be a pair in M which is generated by {(ei, fi) | 1 ≤ i ≤ m}.
Then we say (u, f) is a mutant if deg(f) < max{deg(pifi) | 1 ≤ i ≤ m} where u = (p1, · · · , pm).

Clearly, if f is a linear polynomial, (u, f) is a mutant.

In LM-GVW algorithm, the 3-tuple (u, f, q) is also used instead of (u, f). To make a

difference from the notation used in the last subsection, we use q instead of p. The polynomial

q is used to substitute f , and it is an only auxiliary polynomial. Initially, we set q := f , and

update q in Function UpdateLM(·). Concepts defined for (u, f) can also be extended to (u, f, q)

by ignoring q.

The LM-GVW algorithm is described below.



222 LI TING, et al.

Algorithm 4: The LM-GVW algorithm

Input : f1, · · · , fm ∈ R; ≺p and ≺s, monomial orderings for R and Rm.

Output: A Gröbner basis of I = 〈f1, · · · , fm〉.
1 begin

2 G←−{(ei, fi, fi) | 1 ≤ i ≤ m}
3 H←−{(fiei − fiej , 0) | 1 ≤ i < j ≤ m}
4 JP←− all J-pairs of G

5 while JP 
= ∅ do
6 d←−min{deg(tlm(f)) | (t(u, f, q) ∈ JP}
7 minJP←−{t(u, f, q) | t(u, f, q) ∈ JP, deg(tlm(f)) = d}
8 JP←−JP \minJP

9 minJP←−minJP \ {J-pairs rejected by Syzygy or Rewriting Criterion}
10 M←−SymbolicProcess(minJP, G,≺p,≺s)

11 # Elimination for new leading monomials

12 MAB←−{tq | t(u, f, q) ∈M \minJP}
13 MCD←−{tf | t(u, f, q) ∈ minJP}
14 ˜L←−FaugèreMethod(MAB,MCD)

15 if a set P of mutants are discovered in ˜L then

16 F←− inner-reduce {f1, · · · , fm} ∪ P

17 return LM-GVW(F,≺p,≺s)

18 # One direction elimination

19 ˜M←−OneDirectionElimination({t(u, f) | t(u, f, q) ∈M},≺s)

20 G, JP, H←−UpdateLM(˜M,G, JP, H,≺s)

21 return {g | (v, g, p) ∈ G}

We skip the steps that are similar to Matrix-GVW and focus on Steps 11–20. After symbolic

process, we substitute polynomials in M . Specifically, we substitute f −→ q for polynomials

in M\minJP and stored in MAB. Polynomials in minJP are not substituted and kept in MCD

without signatures. Next, Faugère’s method is used at Step 14. Again, the result ˜L refers to

the set of polynomials in the echelon form of the matrix CA−1B +D. If mutants appear, we

recursive call LM-GVW. Otherwise, we do general one-direction elimination, and update the

intermediate sets at Step 20. Here, we reuse the function UpdateBlockI(·) as UpdateLM(·).
The LM-GVW algorithm tries to find mutants, including linear polynomials, before one-

direction eliminating the whole matrix. Clearly, all polynomials in ˜L belong to the ideal

I = 〈f1, · · · , fm〉. Besides, the polynomial q in 3-tuple (u, f, q) never affect the one-direction

elimination of (u, f). So the correctness of LM-GVW is straightforward.

According to our experimental results, we have the following conjuncture, but we are unable

to prove it in theory.

Conjuncture The linear span 〈MAB ∪ MCD〉k is exactly the same as the linear span

〈{tf | t(u, f, q) ∈ M}〉k = 〈{h | (w, h) ∈ ˜M}〉k in each loop, where 〈F 〉k is the linear space
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spanned by F over the field k.

3.5 The Sub-GVW Algorithm

Combining the Block-GVW algorithm and the LM-GVW algorithm, we get the Sub-GVW

algorithm. Specifically, in each main loop, the Sub-GVW algorithm first performs Steps 11–17

in the LM-GVW algorithm. If mutants, say P , are discovered from the eliminating results, then

the Sub-GVW algorithm is recursive called for the set {f1, · · · , fm} ∪ P after inter-reduction.

Otherwise, when no mutants are found, the Sub-GVW algorithm performs one direction elimi-

nations by dividing the matrix into blocks, e.g., Steps 11–17 in the 2-Block-GVW algorithm are

done. After the set G, JP , and auxiliary polynomials are updated respectively, the Sub-GVW

algorithm starts the next main loop.

3.6 A Toy Example

To illustrate the Sub-GVW algorithms, we give a toy example. We consider the system used

by Faugère[6].

Example 3.6 Let {f1, f2, f3} ∪ R = F23[x1, x2, x3] be a set of polynomials, and f1 =

x2
1 + 18x1x2 + 19x2

2 + 8x1x3 + 5x2x3 + 7x2
3, f2 = 3x2

1 + 7x1x2 + 8x2
2 + 22x1x3 + 11x2x3 + 22x2

3,

f3 = 6x2
1+12x1x2 +4x2

2+14x1x3 +9x2x3 +7x2
3. Monomial ordering ≺p is the Graded Reverse

Lexicographic ordering with x3 < x2 < x1, and ≺s in R3 is a position over term extension of

≺p, i.e.

xαei ≺s x
βej iff i < j, or i = j and xα ≺p xβ .

Thus, we have e1 ≺s e2 ≺s e3 .

We compute the Gröbner basis of 〈f1, f2, f3〉 using the Sub-GVW algorithm. We only

construct the matrice of degrees 2 and 3 to show our algorithm. The complete procedure is

complicated and omitted here. For simplicity, we usually do not show all four sub-matrices

used in Faugère’s method.

Initially, we have G = {(e1, f1), (e2, f2), (e3, f3)} and JP = {(e2, f2), (e3, f3)}. We divide

the matrices in each loop into two blocks and use 2-Block-GVW. That is, let M be the module

generated by G. Then denote MI be the module generated by {(e1, f1), (e2, f2)}, and MII :=

M \MI .

Since we divide the matrices into two blocks, we need an auxiliary polynomial, say p, to

do substitutions in Block I. We also need an auxiliary polynomial q to substitute polynomials

in the LM-GVW algorithm. So for each pair (u, f) in this Sub-GVW, it has two auxiliary

polynomials. At the beginning, we have fi = pi = qi for i = 1, 2, 3.

Degree 2 As all the auxiliary polynomials are the same as fi, there are no substitutions

in both Block-GVW and LM-GVW. The matrix of degree 2 is

M (2) =

⎛

⎜

⎝

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

(e1, f1) 1 18 19 8 5 7

(e2, f2) 3 7 8 22 11 22

(e3, f3) 6 12 4 14 9 7

⎞

⎟

⎠
.
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LM-GVW. By doing Steps 11–17 in LM-GVW, no mutants are found. Next, we need to

do one-direction elimination to M (2) using Steps 11–17 in 2-Block-GVW.

Eliminating Block I. In this example, the matrix M
(2)
I is constructed by the first two rows

in the M (2). After doing one-direction elimination, we get the matrix ˜M
(2)
I :

˜M
(2)
I =

(

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

(e1, f1) 1 18 19 8 5 7

(e2, f4) 0 1 3 2 4 22

)

.

From the echelon form, we find a polynomial with new leading monomial denoted as f4, whose

signature is e2.

Eliminating Block II. To obtain the eliminating result ˜M
(2)
II , we substitute the polynomials

in ˜M
(2)
I . The polynomial f1 does not have new leading monomial so it is substituted and put

into M
(2)
AB:

M
(2)
AB =

(

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

f1 1 | 18 19 8 5 7
)

.

The polynomial f4 has a new leading monomial. Together with (e3, f3), we get the matrix

M
(2)
CD:

M
(2)
CD =

(

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

(e2, f4) 0 | 1 3 2 4 22

(e3, f3) 6 | 12 4 14 9 7

)

.

We eliminate the M
(2)
II using Faugère method. The matrix of ˜M

(2)
II is

˜M
(2)
II =

(

x1x2 x2
2 x1x3 x2x3 x2

3

1 3 2 4 22

(e3, f5) 0 1 12 20 18

)

.

In matrix ˜M
(2)
II , the polynomial f5 has the new leading monomial and its signature is e3.

Updating. So far, the one-direction elimination of M (2) has been done, and we need to do

some updates for further computations.

We compute the reduced form of ˜M
(2)
I and obtain the matrix E(2).

E(2) =

(

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

p′1 1 0 11 18 2 2

p4 0 1 3 2 4 22

)

.

We compute the reduced form for the whole matrix, and get

⎛

⎜

⎝

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

q′1 1 0 0 1 12 11

q4 0 1 0 12 13 14

q5 0 0 1 12 20 18

⎞

⎟

⎠
.
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Now the set G is updated to {(e1, f1, p′1, q′1), (e2, f2, p2, q2), (e3, f3, p3, q3), (e2, f4, p4, q4),
(e3, f5, p5 = f5, q5)}. Note that the auxiliary polynomials of f2 and f3 are not updated.

Degree 3 The matrix of degree 3 is

M (3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x2(e1, f1) 1 18 19 0 8 5 0 7 0

x3(e1, f1) 0 0 0 1 18 19 8 5 7

x1(e2, f4) 1 3 0 2 4 0 22 0 0

x2(e2, f4) 0 1 3 0 2 4 0 22 0

x3(e2, f4) 0 0 0 0 1 3 2 4 22

x1(e3, f5) 0 1 0 12 20 0 18 0 0

x2(e3, f5) 0 0 1 0 12 20 0 18 0

x3(e3, f5) 0 0 0 0 0 1 12 20 18

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

LM-GVW. We construct the matrix of degree 3 in LM-GVW, where all the polynomials

are substituted with corresponding auxiliary polynomial except for those in J-pairs (x1(e2, f4)

and x1(e3, f5)). Thus, we have the matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x2q
′
1 1 0 0 0 1 12 0 11 0

x3q
′
1 0 0 0 1 0 0 1 12 11

x1(e2, f4) 1 3 0 2 4 0 22 0 0

x2q4 0 1 0 0 12 13 0 14 0

x3q4 0 0 0 0 1 0 12 13 14

x1(e3, f5) 0 1 0 12 20 0 18 0 0

x2q5 0 0 1 0 12 20 0 18 0

x3q5 0 0 0 0 0 1 12 20 18

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that we do not know the exact signatures of the substituted polynomials, so we omit them

in the above matrix. The above matrix is sparser than M (3), and leads to a more efficient

elimination. The result of Faugère’s method is as follows:

˜L(3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

1 0 0 0 0 0 0 0 14

0 1 0 0 0 0 0 0 2

0 0 1 0 0 0 0 0 9

0 0 0 1 0 0 0 0 3

0 0 0 0 1 0 0 0 22

0 0 0 0 0 1 0 0 15

0 0 0 0 0 0 1 0 22

0 0 0 0 0 0 0 1 18

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

As no mutant polynomials appear, the block-GVW is executed.
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Eliminating Block I. We construct the matrix M
(3)
I :

M
(3)
I =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x2(e1, f1) 1 18 19 0 8 5 0 7 0

x3(e1, f1) 0 0 0 1 18 19 8 5 7

x1(e2, f4) 1 3 0 2 4 0 22 0 0

x2(e2, f4) 0 1 3 0 2 4 0 22 0

x3(e2, f4) 0 0 0 0 1 3 2 4 22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

After the one-direction elimination, we obtain the matrix ˜M
(3)
I :

˜M
(3)
I =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x2(e1, f1) 1 18 19 0 8 5 0 7 0

(x1e2, f6) 0 8 4 2 19 18 22 16 0

(x2e2, f7) 0 0 14 17 14 19 3 20 0

x3(e1, f1) 0 0 0 1 18 19 8 5 7

x3(e2, f4) 0 0 0 0 1 3 2 4 22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where f6 and f7 are new polynomials.

Eliminating Block II. The polynomials without new leading monomials are at row 1, 2, 3, 5,

and these polynomials are substituted by auxiliary polynomials. The polynomial f7 has a new

leading monomial is unsubstituted, and put into M
(3)
CD. Then to eliminate the matrix M

(3)
II , we

get M
(3)
AB:

M
(3)
AB =

⎛

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x2

1x3 x1x2x3 x3
2 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x2p1 1 0 0 0 | 0 21 22 8 14

x2p4 0 1 0 2 | 3 4 0 22 0

x3p1 0 0 1 0 | 0 21 22 8 14

x3p4 0 0 0 1 | 0 3 2 4 22

⎞

⎟

⎟

⎟

⎠

and the matrix M
(3)
CD:

M
(3)
CD =

⎛

⎜

⎜

⎜

⎝

x2
1x2 x1x

2
2 x2

1x3 x1x2x3 x3
2 x2

2x3 x1x
2
3 x2x

2
3 x3

3

(x2e2, f7) 0 0 17 14 | 14 19 3 20 0

x1(e3, f5) 0 1 12 20 | 0 0 18 0 0

x2(e3, f5) 0 0 0 12 | 1 20 0 18 0

x3(e3, f5) 0 0 0 0 | 0 1 12 20 18

⎞

⎟

⎟

⎟

⎠

.

Please note that the matrix M
(3)
AB is reduced to echelon form and it is much sparser than

˜M
(3)
I .
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At last, we eliminate the M
(3)
CD via Faugère’s method and get the matrix

˜M
(3)
II =

⎛

⎜

⎜

⎜

⎝

x3
2 x2

2x3 x1x
2
3 x2x

2
3 x3

3

1 8 1 11 15

(x1e3, f8) 0 1 14 22 6

(x2e3, f9) 0 0 1 17 6

(x3e3, f10) 0 0 0 1 18

⎞

⎟

⎟

⎟

⎠

.

Now we have 3 more new polynomials: f8, f9, f10.

Updating. Totally, five new polynomials, f6,··· ,10, are generated. We can compute p6 and p7

through computing the reduced echelon form of ˜M
(3)
I , and pi = fi for i = 8, 9, 10. For qi’s where

i = 6, · · · , 10, we can find them from the matrix ˜L(3), because Conjuncture in Subsection 3.4

implies ˜L(3) always be a linear basis of the linear span generated by rows M (3).

4 Experimental Results

We implemented the Sub-GVW alogrithm over Boolean polynomial rings in C++. The

complied codes will be available online sooner.

To show the performance of our substituting methods, we compare the densities of the

matrices before and after substitutions, and we also present the eliminating time for those

matrices. For the systems to be tested with, we use the “MQn” System[25], where each MQn

System consists of n quadratic polynomials in n variables. The MQ systems are more similar

to randomly generated systems as well as most cipher systems, so they will reflect more generic

features. We also consider detailed matrices with different degrees in each MQn System. For

instance, “MQ24 6” means the degree-6 matrix generated during the computation of the MQ24

System. In these experiments, the 2-Block-GVW algorithm is used, i.e., each matrix in the

main loop is divided into 2 blocks. The experimental platform is MacBook Pro with 2.6 GHz

Intel Core i7, 16 GB memory.

In Table 1, we compare the densities of Block I in three cases: Before one-direction elimi-

nation, after one-direction elimination, and after one-direction elimination and substitutions.

From Table 1, we can see that the matrices become much sparser after substitutions. The

matrices of Block I become even sparser than the matrices before the one-direction elimination.

The differences of density directly results in the differences of eliminating time of Block II.

In Table 2, we present the time of eliminating Block II for two cases: Using polynomials

in the echelon form of the one-direction elimination of Block I, and using polynomials after

substitutions. Faugère’s method is used for eliminating Block II. The time in the table is given

in seconds. The last column is the times of speeding up.
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Table 1 Density of Block I

Matrix
Density of Block I

before reduction after reduction after substitution

MQ24 5 2.70% 10.80% 2.30%

MQ25 5 2.65% 10.55% 2.22%

MQ26 5 2.46% 9.70% 2.07%

MQ27 5 2.32% 9.37% 1.97%

MQ24 6 2.03% 8.96% 1.53%

MQ25 6 2.04% 8.77% 1.50%

MQ26 6 2.01% 8.41% 1.47%

MQ27 6 1.88% 8.27% 1.41%

Table 2 Time for eliminating Block II

Matrix
Time for eliminating block II

speedup
no substitution with substitution

MQ24 5 11.67 s 4.94 s 2.36

MQ25 5 14.94 s 7.45 s 2.00

MQ26 5 20.43 s 12.75 s 1.60

MQ27 5 31.81 s 19.51 s 1.63

MQ24 6 98.35 s 51.76 s 1.90

MQ25 6 249.84 s 108.43 s 2.30

MQ26 6 544.92 s 248.92 s 2.19

MQ27 6 1193.07 s 477.73 s 2.50

Table 2 shows that the lower density does speed up the eliminating time of Block II.

In Table 3, we compare the density of the whole matrices before and after substitutions

in the LM-GVW algorithm. The matrices in consider are all before eliminations. Again, the

matrices become much sparser after substitutions. The eliminating timings are given in Table 4.

In Table 4, we list the time for three methods of eliminating matrices: Pure dense one-

direction elimination[22], one-direction elimination by using blocks and substituting techniques,

and elimination done in LM-GVW after substitutions. These three methods are denoted as

Dense method, Block method, and LM method in Table 4 respectively. The timings are given

in seconds.
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Table 3 Density of matrix

Matrix before substitution after substitution

MQ24 5 3.90% 2.96%

MQ25 5 3.73% 2.87%

MQ26 5 3.53% 2.74%

MQ27 5 3.33% 2.66%

MQ24 6 3.35% 1.20%

MQ25 6 3.29% 1.33%

MQ26 6 3.25% 1.41%

MQ27 6 3.08% 1.50%

Table 4 Times for reducing matrix

Matrix Dense method Block method LM method

MQ24 5 41.79 s 16.14 s 1.94 s

MQ25 5 71.29 s 26.18 s 3.34 s

MQ26 5 112.71 s 38.57 s 5.65 s

MQ27 5 181.91 s 55.85 s 9.58 s

MQ24 6 1633.33 s 317.89 s 17.27 s

MQ25 6 3595.68 s 639.33 s 43.57 s

MQ26 6 >1 h 1295.80 s 115.71 s

MQ27 6 >1 h 2044.39 s 299.83 s

Results in Table 4 show that the block method is much more efficient than the dense one-

direction method, because sparse linear algebra and Faugère’s method are used. Besides, we

can find that eliminations done in LM-GVW are much efficient than those done by the Block

method. This is because LM-GVW eliminates the substituted matrices in a two-direction way.

So LM-GVW is efficient for finding linear or mutants polynomials before the one-direction

elimination is done.

At last, we compare our implementation of Sub-GVW with some public softwares. We

consider the Gröbner basis routines on Magma (ver. 2.20-3), PolyBori (ver. 6.4.1), and Maple

(ver. 18). Specially, there have been many improvements for Boolean Rings since Magma ver.

2.19. Besides the MQ systems, we also consider some systems from cryptanalysis problems.

• Present 5r: A polynomial system originated from the key recovery problem of the block

cipher Present with one pair of known plaintext and ciphertext[26]. Here a reduced version

of Present which has only 5 rounds is considered. By setting the 80-bit key as variables and

adding some internal variables used to simplify the structure of the systems, we generate

a system with degree 2. Then we randomly guess the value of the first 48 variables, and
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after substitution, we obtain the input polynomial system of our experiments. This is a

quadratic system with 123 variables and 875 polynomials.

• Maya: A polynomial system originated from the problem of recovering a secret 4-bit

Sbox, S : GF (2)4 → GF (2)4, of the block cipher Maya from its input and output

differences[27, 28]. The variables of this system are corresponding to the different bit-

s of 16 bytes output S(0000), S(0001), · · · , S(1111), hence the system has 16 × 4 = 64

variables. In this system, there are 64 quadratic polynomials which represent the input

and output differences of the Sbox, and other polynomials which represent the bijection

property of the Sbox have degree not bigger than 4.

• Trivium: A polynomial system originated from the problem of recovering the internal

states of the stream cipher Trivium[29, 30]. By setting the 288-bit internal states as vari-

ables, and guess the value of 113 variables, we can generate the input system after sub-

stitution. This system has 31 variables and 56 polynomials with degree 2.

• Bivium: A polynomial system originated from the problem of recovering the internal

states of the stream cipher Bivium[30, 31], which is a reduced version of the stream cipher

Trivium. We set the 177-bit internal states of Bivium as variables, and guess the value

of 32 variables. After substitution, we generate the input system which has 33 variables

and 48 polynomials with degree 2.

• Serpent: A polynomial system originated from the problem of recovering the initial key

from the 2-round key schedule of the block cipher Serpent. This problem is the basic

solving problem of the Cold Boot key recovery problem of Serpent[32]. The input system

has 128 variables which corresponding to the 128-bit initial key, and 256 polynomials with

degree 3.

• Canfil10: A polynomial system originated from the problem of recovering the internal

states of a stream cipher based on a linear feedback shift register (LFSR) and a filter

function[33, 34], and has the form

{f(x1, x2, · · · , xn), f(L(x1, x2, · · · , xn)), · · · , f(Lm−1(x1, x2, · · · , xn))}.

For this problem, n = 100, m = 141, L(x1, x2, · · · , x100) = (x2, x3, · · · , x100, x38 + x1),

f(x1, x2, · · · , x100) = x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x1 + x2 + x3.

The Sub-GVW algorithm in these experiments is implemented by integrating 3-Block-GVW

and LM-GVW. The experimental platform is MacBook Pro with 2.6 GHz Intel Core i7, 16 GB

memory. The timings are given in Table 5 in seconds.
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Table 5 Comparisons with public softwares

System Magma (ver. 2.20-3) PolyBori (ver. 6.4.1) Maple (ver18 FGb) Sub-GVW

MQ24 100.60 s 610.74s >1 h 46.68 s

MQ26 306.57 s – >1 h 156.01 s

MQ28 1169.15 s – >1 h 404.97 s

Present 5r 527.72 s – >1 h 82.80 s

Maya 19.36 s – 162.39 s 12.54 s

Trivium 141.87 s – 1971.29 s 7.23 s

Bivium 63.73 s >1 h 3569.79 s 14.55 s

Serpent 168.66 s 192.25 s 108.85 s 4.05 s

Canfil10 11.69 s 23.37 s 3250.29 s 11.45 s

Results from the above table show that our implementation of the Sub-GVW algorithm is

comparable with most of public Gröbner basis routines.

5 Conclusions

In this paper, we improve the GVW algorithm by using a substituting method. Two sub-

stituting ways are presented and integrated in the Sub-GVW algorithm. Different from the

original GVW, the improved algorithm stores more auxiliary polynomials. These auxiliary

polynomials are used for substitutions, which make the matrices sparser hence accelerate the

speed of eliminating. Experimental results show this substituting method does improve the

efficiency of eliminating matrices. Besides, our implementation is also shown comparable to

most of public Gröbner basis routines.

We find the conjuncture in Subsection 3.4 always holds in our experiments. But we are not

able to prove the correctness of this conjuncture at present. We will try to prove it in our future

work.
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