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ABSTRACT
This paper is concerned with the factorization and equivalence
problems of multivariate polynomial matrices. We present a new
criterion for the existence of matrix factorizations for a class of
multivariate polynomial matrices, and prove that these matrix fac-
torizations are unique. Based on this new criterion and the con-
structive proof process, we give an algorithm to compute a matrix
factorization of a multivariate polynomial matrix. After that, we
put forward a sufficient and necessary condition for the equiva-
lence of square polynomial matrices: a square polynomial matrix
is equivalent to a diagonal triangle if it satisfies the condition. An
illustrative example is given to show the effectiveness of thematrix
equivalence theorem.
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• Computing methodologies→ Symbolic and algebraic algo-
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1 INTRODUCTION
Multidimensional systems have wide applications in image, signal
processing, and other areas (see, e.g., [1, 2]). A multidimensional
system may be represented by a multivariate polynomial matrix,
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and we can obtain some important properties of the system by
studying the matrix. Therefore, the factorization problem and the
equivalence problem related to multivariate polynomial matrices
have attracted much attention over the past decades.

Up to now, the factorization problem for univariate and bivari-
ate polynomial matrices has been completely solved by [23, 41, 46],
but the case of more than two variables is still open. In [60], Youla
and Gnavi first introduced three important concepts according to
different properties of polynomial matrices, namely zero prime
matrix factorization, minor prime matrix factorization and factor
prime matrix factorization. Based on the work of [60] on basic
structures of multivariate polynomial matrices, the factorization
problem formultivariate (more than two variables) polynomial ma-
trices has made great progress.

When multivariate polynomial matrices satisfy several special
properties, there are some results about the existence problem of
zero prime matrix factorizations for the polynomial matrices (see,
e.g., [8, 31, 33]). After that, Lin and Bose in [34] proposed the fa-
mous Lin-Bose conjecture: a multivariate polynomial matrix ad-
mits a zero prime matrix factorization if all its maximal reduced
minors generate a unit ideal. This conjecture was proved by Liu et
al. [39], Pommaret [48], Wang and Feng [58], respectively. Wang
and Kwong in [59] gave a sufficient and necessary condition for
a multivariate polynomial with full row (column) rank to have
a minor prime matrix factorization. They extracted an algorithm
from Pommaret’s proof of the Lin-Bose conjecture, and examples
showed the effectiveness of the algorithm. Guan et al. in [22] gen-
eralized the main results in [59] to the case of polynomial matrices
without full row (column) rank. For the existence problem of factor
prime matrix factorizations for multivariate polynomial matrices
with full row (column) rank,Wang and Liu have achieved some im-
portant results (see, e.g., [40, 56]). Then Guan et al. in [21] gave an
algorithm to decide whether a class of polynomial matrices has a
factor prime matrix factorization. However, the existence problem
of factor prime matrix factorizations for multivariate polynomial
matrices remains a challenging open problem so far.

Comparing to the factorization problem of multivariate polyno-
mial matrices which has been widely investigated during the past
years, less attention has been paid to the equivalence problem of
multivariate polynomial matrices. For any given multidimensional
system, our goal is to simplify it into a simpler equivalent form.

328

https://doi.org/10.1145/3373207.3404020
https://doi.org/10.1145/3373207.3404020


ISSAC ’20, July 20–23, 2020, Kalamata, Greece D. Lu, D. Wang and F. Xiao

Since a univariate polynomial ring is a principal ideal domain,
a univariate polynomial matrix is always equivalent to its Smith
form. This implies that the equivalence problem has been solved
[24, 51]. For any given bivariate polynomial matrix, conditions un-
der which it is equivalent to its Smith form have been investigated
in [18, 19, 26]. Note that the equivalence problem of two multivari-
ate polynomial matrices is equivalent to the isomorphism problem
for two finitely presented modules, Boudellioua and Quadrat [6]
and Cluzeau andQuadrat [9–11] obtained some important results
by usingmodule theory and homological algebra. According to the
previous works in [6], Boudellioua in [3, 5] designed some algo-
rithms based on Maple to compute Smith forms for some classes
of multivariate polynomial matrices. For the case of multivariate
polynomial matrices with more than one variable, however, the
equivalence problem is not yet fully solved due to the lack of a
mature polynomial matrix theory (see, e.g., [25, 46, 49]).

From our personal viewpoint, new ideas need to be injected into
these areas to obtain new theoretical results and effective algo-
rithms. Therefore, it would be significant to provide some new cri-
teria to study the factorization problem and the equivalence prob-
lem for some classes of multivariate polynomial matrices.

From the 1990s to the present, there is a class of multivariate
polynomial matrices that has always attracted attention. That is,

M = {F ∈ k[z]l×m : (z1 − f (z2)) | dl (F) with f (z2) ∈ k[z2]},

where z2 = {z2, . . . , zn } anddl (F) is the GCD of all the l×l minors
of F. Many people tried to solve the factorization problem and the
equivalence problem of multivariate polynomial matrices in M.

Let F ∈ M and h = z1 − f (z2). Lin and coauthors presented
some criteria on the existence problem of a matrix factorization
for F w.r.t. h (see, e.g., [29, 30, 36, 37]). Moreover, Lin et al. in [37]
proposed a constructive algorithm to factorize F w.r.t. h. When
dl (F) = h, Wang [57] gave a new result for F to have a minor
prime matrix factorization using methods from computer algebra.
Based on the pioneering work of Lin et al., Liu et al. [38] and Lu
et al. [44, 45] obtained some new criteria for factorizing F w.r.t. h.
When l =m and det(F) = h, Lin et al. [35] proved that F is equiv-
alent to the diagonal triangle diag(1, . . . , 1,h). After that, Li et al.
[27] generalized the main results in [35] to the case of det(F) = hq .

Through research, we find that there are still many multivariate
polynomial matrices in M which do not satisfy previous results
and can be factorized or are equivalent to some diagonal triangles.
As a consequence, we continue to study the factorization problem
and the equivalence problem of multivariate polynomial matrices
in M in this paper.

The rest of the paper is organized as follows. After a brief intro-
duction to matrix factorization and matrix equivalence in Section
2, we use two examples to propose two problems that we shall
consider. We present in Section 3 a new criterion for factorizing F
w.r.t. h, then we study the uniqueness of the matrix factorization
and construct an algorithm to factorize F. A sufficient and neces-
sary condition for a square multivariate polynomial matrix being
equivalent to a diagonal triangle is described in Section 4, and we
use an example to illustrate the effectiveness of the new matrix
equivalence theorem. The paper contains a summary of contribu-
tions and some remarks in Section 5.

2 PRELIMINARIES AND PROBLEMS
In this section we first recall some basic notions which will be used
in the following sections. For those notions which are not formally
introduced in the paper, the reader may consult the references [27,
37, 38, 45]. And then, we use two examples to put forward two
problems that we are considering.

2.1 Basic Notions
Wedenote byk an algebraically closed field, z then variables z1, z2,
. . . , zn , z2 the (n − 1) variables z2, . . . , zn , where n ≥ 3. Let k[z]
and k[z2] be the ring of polynomials in variables z and z2 with
coefficients in k , respectively. Let k[z]l×m be the set of l ×m ma-
trices with entries in k[z]. Without loss of generality, we assume
that l ≤ m, and for convenience we use uppercase bold letters to
denote polynomial matrices. In addition, “w.r.t.” and “GCD” stand
for “with respect to” and “greatest common divisor”, respectively.

Let F ∈ k[z]l×m and f ∈ k[z2], then F(f , z2) denotes a poly-
nomial matrix in k[z2]l×m which is formed by transforming z1
in F into f . Moreover, FT represents the transposed matrix of F.
Throughout the paper, we use di (F) to denote the GCD of all the
i × i minors of F with the convention that d0(F) = 1, where
i = 1, . . . , l . Assume that f1, . . . , fs ∈ k[z], we use ⟨f1, . . . , fs ⟩

to denote the ideal generated by f1, . . . , fs in k[z]. Let д,h ∈ k[z],
then д | h means that д is a divisor of h.

The following concepts are from multidimensional systems the-
ory.

Definition 2.1 ([28, 54]). Let F ∈ k[z]l×m be of full row rank. For
any given integer i with 1 ≤ i ≤ l , let a1, . . . ,aβ denote all the i×i
minors of F, where β =

(l
i

)
·
(m
i

)
. Extracting di (F) from a1, . . . ,aβ

yields
aj = di (F) · bj , j = 1, . . . , β ,

where b1, . . . ,bβ are called all the i × i reduced minors of F.

Definition 2.2 ([60]). Let F ∈ k[z]l×m be of full row rank.
(1) If all the l × l minors of F generate k[z], then F is said to be

a zero left prime (ZLP) matrix.
(2) If all the l × l minors of F are relatively prime, i.e., dl (F) is a

nonzero constant in k , then F is said to be a minor left prime
(MLP) matrix.

(3) If for any polynomial matrix factorization F = F1F2 with
F1 ∈ k[z]l×l , F1 is necessarily a unimodular matrix, i.e.,
det(F1) is a nonzero constant in k , then F is said to be a
factor left prime (FLP) matrix.

Zero right prime (ZRP)matrices, minor right prime (MRP)matri-
ces and factor right prime (FRP) matrices can be similarly defined
for matrices F ∈ k[z]m×l with m ≥ l . We refer to [60] for more
details about the relationship among ZLP matrices, MLP matrices
and FLP matrices.

For any given ZLP matrix F ∈ k[z]l×m , Quillen [50] and Suslin
[55] proved that anm ×m unimodular matrix can be constructed
such that F is its first l rows, respectively. This result is called
Quillen-Suslin theorem, and it solved the question raised by Serre
in [52].
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Lemma 2.3 ([50, 55]). If F ∈ k[z]l×m is a ZLP matrix, then a
unimodular matrix U ∈ k[z]m×m can be constructed such that F is
its first l rows.

There are many algorithms for the Quillen-Suslin theorem, we
refer to [43, 47, 61] for more details. In [16], Fabiańska andQuadrat
first designed a Maple package, which is called QUILLENSUSLIN
[17], to implement theQuillen-Suslin theorem.

LetW be a k[z]-module generated by ®u1, . . . , ®ul ∈ k[z]1×m . The
set of all (b1, . . . ,bl ) ∈ k[z]1×l such that b1®u1 + · · ·+ bl ®ul = ®0 is
a k[z]-module of k[z]1×l , is called the (first) syzygy module ofW ,
and denoted by Syz(W ). Lin in [32] proposed several interesting
structural properties of syzygy modules. Let F =

[
®uT1 , . . . , ®u

T
l

]T.
The rank ofW is defined as the rank of F that is denoted by rank(F).
Guan et al. in [21] proved that the rank ofW does not depend on
the choice of generators ofW .

Lemma 2.4. With above notations. If rank(W ) = r with 1 ≤ r ≤

l , then the rank of Syz(W ) is l − r .

Proof. Let k(z) be the fraction field of k[z], and Syz∗(W ) =

{ ®v ∈ k(z)1×l : ®v · F = ®0}. Then, Syz∗(W ) is a k(z)-vector space of
dimension l − r . For any given l − r + 1 different vectors ®v1, . . . ,

®vl−r+1 ∈ k[z]1×l in Syz(W ), it is obvious that ®vi ∈ Syz∗(W )
for each i , and they are k(z)-linearly dependent. This implies that
®v1, . . . , ®vl−r+1 are k[z]-linearly dependent. Thus rank(Syz(W )) ≤
l − r .

Assume that ®p1, . . . , ®pl−r ∈ k(z)1×l are l−r vectors in Syz∗(W ),
and they are k(z)-linearly independent. For each j, we have

pj1®u1 + · · ·+ pjl ®ul = ®0, (1)

where ®pj = (pj1, . . . ,pjl ). Multiplying both sides of Equation (1)
by the least common multiple of the denominators of pj1, . . . ,pjl ,
we obtain p̄j = (p̄j1, . . . , p̄jl ) ∈ k[z] such that p̄j1®u1 + · · · +

p̄jl ®ul = ®0. Then, p̄j ∈ Syz(W ), where j = 1, . . . , l − r . Moreover,
p̄1, . . . , p̄l−r are k[z]-linearly independent. Thus, rank(Syz(W )) ≥
l − r .

As a consequence, the rank of Syz(W ) is l − r and the proof is
completed. □

Remark 1. Assume that Syz(W ) is generated by ®v1, . . . , ®vt ∈

k[z]1×l , and H =
[
®vT1 , . . . , ®v

T
t

]T. It follows from rank(H) = l − r

that t ≥ l − r . That is, the number of vectors in any given generators
of Syz(W ) is greater than or equal to l − r .

Definition 2.5 ([7]). Let F ∈ k[z]l×m . For each 1 ≤ i ≤ l , the ideal
generated by all the i×i minors of F is called the i-th determinantal
ideal of F, and denoted by Ii (F). For convenience, let I0(F) = k[z].

Definition 2.6 ([15]). LetW be a finitely generated k[z]-module,

and k[z]1×l
ϕ
−−→ k[z]1×m →W → 0 be a presentation ofW , where

φ acts on the right on row vectors, i.e., φ(®u) = ®u · F for ®u ∈ k[z]1×l
with F being a presentation matrix corresponding to the linear
mapping φ. Then the ideal Fittj (W ) = Im−j (F) is called the j-th
Fitting ideal ofW . Here, we make the convention that Fittj (W ) =
k[z] for j ≥ m, and that Fittj (W ) = 0 for j < max{m − l , 0}.

We remark that Fittj (W ) only depend onW (see, e.g., [15, 20]).
In addition, the chain

0 = Fitt−1(W ) ⊆ Fitt0(W ) ⊆ . . . ⊆ Fittm(W ) = k[z]
of Fitting ideals is increasing. We can use SINGULAR procedures
to compute Fitting ideals of modules [13, 14]. Cox et al. in [12]
showed that one obtains the presentation matrix F for W by ar-
ranging the generators of Syz(W ) as rows. We denote the submod-
ule of k[z]1×m generated by all the row vectors of F by Im(F), then
Im(F) = Syz(W ).

2.2 Matrix Factorization Problem
A matrix factorization of a multivariate polynomial matrix is for-
mulated as follows.

Definition 2.7. Let F ∈ k[z]l×m and h0 | dl (F). F is said to admit
a matrix factorization w.r.t. h0 if F can be factorized as

F = G1F1 (2)
such that G1 ∈ k[z]l×l , F1 ∈ k[z]l×m , and det(G1) = h0. In partic-
ular, Equation (2) is said to be a ZLP (MLP, FLP) matrix factoriza-
tion if F1 is a ZLP (MLP, FLP) matrix.

Throughout the paper, let h = z1 − f (z2) with f (z2) ∈ k[z2].
Combining Definition 2.7 and the type of polynomial matrices we
mentioned in Section 1, this paper will address the following spe-
cific matrix factorization problem.

Problem 1. Let F ∈ M. Under what condition does F have a
matrix factorization w.r.t. h.

So far, some results have been made on Problem 1, and the latest
progress on this problem was obtained by Lu et al. [45].

Lemma 2.8 ([45]). Let F ∈ M. If h ∤ dl−1(F) and the ideal gen-
erated by h and all the (l − 1) × (l − 1) reduced minors of F is k[z],
then F admits a matrix factorization w.r.t. h.

Although Lemma 2.8 gives a criterion to determine whether F
has a matrix factorization w.r.t. h, we found that there exist some
polynomial matrices in M which do not satisfy the conditions of
Lemma 2.8, but still admit matrix factorizations w.r.t. h. Now, we
use an example to illustrate this situation.

Example 2.9. Let

F =

[
F[1, 1] z31 − z32 − z21z3 + z2z

2
3 z1z2 − z2z3 z22

−z1z2 + z23 −z22 + z1z3 0 z2

]

be a polynomial matrix inC[z1, z2, z3]2×4, where F[1, 1] = −2z1z
2
2

+z21z3 + z22z3 − z1z
2
3 + z2z

2
3 and C is the complex field.

It is easy to compute that d2(F) = z2(z1 − z3) and d1(F) = 1.
Let h = z1 − z3, then h | d2(F) implies that F ∈ M. Obviously,
h ∤ d1(F). Sinced1(F) = 1, the entries in F are all the 1×1 reduced
minors of F. Let ≺z be the degree reverse lexicographic order, then
the reduced Gröbner basisG of the ideal generated by h and all the
1 × 1 reduced minors of F w.r.t. ≺z is {z1 − z3, z2, z

2
3}. It follows

from G , {1} that Lemma 2.8 cannot be applied. However, F has
a matrix factorization w.r.t. h, i.e., there exist polynomial matrices
G1 ∈ C[z1, z2, z3]

2×2 and F1 ∈ C[z1, z2, z3]
2×4 such that

F = G1F1 =

[
h z2
0 1

] [
z1z3 − z22 z21 − z2z3 z2 0
−z1z2 + z23 −z22 + z1z3 0 z2

]
,
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where det(G1) = h.

From the above example we see that Problem 1 is far from being
resolved. So, in the next section wemake a detailed analysis on this
problem.

2.3 Matrix Equivalence Problem
Nowwe introduce the concept of the equivalence of two multivari-
ate polynomial matrices.

Definition 2.10. Two polynomial matrices F1 ∈ k[z]l×m and
F2 ∈ k[z]l×m are said to be equivalent if there exist two unimodu-
lar matrices U ∈ k[z]l×l and V ∈ k[z]m×m such that

F1 = UF2V. (3)

In fact, a univariate polynomial matrix is equivalent to its Smith
form. However, this result is not valid for the case of more than one
variable, and there are many counter-examples (see, e.g., [4, 26]).
Hence, people began to consider under what conditions multivari-
ate polynomial matrices in k[z] with n ≥ 2 are equivalent to sim-
pler forms. In [27], Li et al. investigated the equivalence problem
of a class of multivariate polynomial matrices and obtained the fol-
lowing result.

Lemma 2.11 ([27]). Let F ∈ k[z]l×l with det(F) = hq , where
h = z1 − f (z2) and q is a positive integer. Then F is equivalent to
diag(1, . . . , 1,hq) if and only if hq and all the (l−1)×(l−1)minors
of F generate k[z].

For a given matrix that does not satisfy the condition of Lemma
2.11, we use the following example to illustrate that it can be equiv-
alent to another diagonal triangle.

Example 2.12. Let F ∈ C[z1, z2, z3]
3×3 withC being the complex

field, where



F[1, 1] = z1z2 − z22 + z2z3 + z2 − z3 − 1,
F[1, 2] = z1z2z3 − z22z3 + z1z2 − z22 + z2z3 − z3,

F[1, 3] = z1z2z3 − z22z3,

F[2, 1] = z1z2 − z22 + z1 − z2 + z3 + 1,
F[2, 2] = (z1 − z2)(z2z3 + 2z2 + z3 + 1) + z3,

F[2, 3] = z1z2z3 − z22z3 + z1z2 − z22 + z1z3 − z2z3,

F[3, 1] = z1 − z2,

F[3, 2] = z1z3 − z2z3 + 2z1 − 2z2,
F[3, 3] = z1z3 − z2z3 + z1 − z2.

It is easy to compute that det(F) = (z1 − z2)
2. Let h = z1 −

z2 and ≺z be the degree reverse lexicographic order, then the re-
duced Gröbner basis G of the ideal generated by h2 and all the
2 × 2 minors of F w.r.t. ≺z is {z1 − z2}. It follows from G , {1}
that Lemma 2.11 cannot be applied. However, F is equivalent to
diag(1,h,h), i.e., there exist two unimodular polynomial matrices
U ∈ C[z1, z2, z3]

3×3 and V ∈ C[z1, z2, z3]
3×3 such that F = U ·

diag(1,h,h) · V =



z2 − 1 z2 0
1 z2 + 1 z2
0 1 1





1 0 0
0 h 0
0 0 h





z3 + 1 z3 0
1 z3 + 1 z3
0 1 1


.

Based on the phenomenon of Example 2.12, we consider the fol-
lowing matrix equivalence problem in this paper.

Problem 2. Let F ∈ k[z]l×l with det(F) = hr , where h = z1 −

f (z2) and 1 ≤ r ≤ l . What is the sufficient and necessary condition
for the equivalence of F and diag(1, . . . , 1

︸   ︷︷   ︸
l−r

,h, . . . ,h
︸   ︷︷   ︸

r

)?

3 FACTORIZATION FOR POLYNOMIAL
MATRICES

In this section, we first propose a new criterion to judge whether
F ∈ M has a matrix factorization w.r.t. h, and then we study the
uniqueness of this matrix factorization. Based on the constructive
algorithm proposed by Lin et al. [37] and the new criterion, we fi-
nally present a polynomial matrix factorization algorithm and use
a non-trivial example to demonstrate the detailed process of the
algorithm.

3.1 Matrix FactorizationTheorem
We first introduce an important result, which is an answer to the
generalized Serre problem proposed by Lin and Bose [31, 34].

Lemma 3.1 ([58]). Let F ∈ k[z]l×m with rank(F) = r , and all the
r ×r reduced minors of F generate k[z]. Then there existG1 ∈ k[z]l×r
and F1 ∈ k[z]r×m such that F = G1F1 with F1 being a ZLP matrix.

Remark 2. Since rank(F) ≤ min{rank(G1), rank(F1)}, we have
rank(G1) = r in Lemma 3.1. This implies that G1 is a polynomial
matrix with full column rank.

Lemma 3.2 ([37]). Let p ∈ k[z] and f (z2) ∈ k[z2]. If p(f , z2) is a
zero polynomial in k[z2], then (z1 − f (z2)) is a divisor of p.

Now, we propose a new criterion to solve Problem 1.

Theorem 3.3. Let F ∈ M andW = Im(F(f , z2)). If Fittl−2(W )
= 0 and Fittl−1(W ) = ⟨d⟩ with d ∈ k[z2] \ {0}, then F admits a
matrix factorization w.r.t. h.

Proof. Let k[z2]1×s
ϕ
−−→ k[z2]1×l →W → 0 be a presentation

ofW , and H ∈ k[z2]s×l be a matrix corresponding to the linear
mapping φ. Then Syz(W ) = Im(H).

It follows from Fittl−2(W ) = 0 that all the 2×2minors ofH are
zero polynomials. Then, rank(H) ≤ 1. Moreover, Fittl−1(W ) =
⟨d⟩ with d ∈ k[z2] \ {0} implies that rank(H) ≥ 1. As a conse-
quence, we have rank(H) = 1.

Let a1, . . . ,aβ ∈ k[z2] and b1, . . . ,bβ ∈ k[z2] be all the 1 × 1

minors and reduced minors ofH, respectively. Then, ai = d1(H) ·
bi for i = 1, . . . , β . Since ⟨a1, . . . ,aβ ⟩ = ⟨d⟩, it is obvious that d |

d1(H). Moreover, we haved =
∑β
i=1 ciai for some ci ∈ k[z2].Thus

d = d1(H) · (
∑β
i=1 cibi ). This implies that d1(H) | d . Hence d =

δ ·d1(H), where δ is a nonzero constant.Therefore, ⟨b1, . . . ,bβ ⟩ =
k[z2].

According to Lemma 3.1, there exist G ∈ k[z2]s×1 and H1 ∈

k[z2]1×l such that H = GH1 with H1 being a ZLP matrix. It fol-
lows from Syz(W ) = Im(H) that GH1F(f , z2) = 0s×m . Since G
is a matrix with full column rank, we have H1F(f , z2) = 01×m .

Using theQuillen-Suslin theorem, we can construct a unimodu-
lar matrix U ∈ k[z2]l×l such that H1 is its first row. Let F0 = UF,
then the first row of F0(f , z2) = UF(f , z2) is zero vector. By

331



Further Results on the Factorization and Equivalence for Multivariate Polynomial Matrices ISSAC ’20, July 20–23, 2020, Kalamata, Greece

Lemma 3.2, h is a common divisor of the polynomials in the first
row of F0, thus

F0 = UF = DF1 = diag(h, 1, . . . , 1
︸   ︷︷   ︸

l−1

) ·



f̄11 f̄12 · · · f̄1m
.
.
.

.

.

.

.

.

.

.

.

.

f̄l1 f̄l2 · · · f̄lm



.

Consequently, we can nowderive thematrix factorization of Fw.r.t.
h:

F = G1F1,
where G1 = U−1D ∈ k[z]l×l , F1 ∈ k[z]l×m and det(G1) = h. □

According to the proof of Theorem 3.3, it is easy to get a more
general result below.

Theorem 3.4. Let F ∈ M andW = Im(F(f , z2)). If Fittr−1(W )
= 0 and Fittr (W ) = ⟨d⟩ with d ∈ k[z2] \ {0} and 0 ≤ r ≤ l − 1,
then F admits a matrix factorization w.r.t. hl−r .

Remark 3. In Theorem 3.4, it follows from Fittr−1(W ) = 0 and
Fittr (W ) = ⟨d⟩ that rank(H) = l − r , where Syz(W ) = Im(H).
Based on Lemma 2.4, we have rank(F(f , z2)) = rank(W ) = r . F ∈

M implies that h = z1 − f (z2) is a divisor of dl (F), and it is easy
to show that rank(F(f , z2)) ≤ l − 1. Thus, we have r ≤ l − 1. When
r = 0, rank(F(f , z2)) = 0 implies that h | d1(F). Then, we can
extract h from each row of F and obtain a matrix factorization of F
w.r.t. hl .

Let k[z̄j ] = k[z1, . . . , zj−1, zj+1, . . . , zn ], where 1 ≤ j ≤ n. We
construct a new set of polynomial matrices: Mj = {F ∈ k[z]l×m :
hj | dl (F)}, where hj = zj − f (z̄j ) with f (z̄j ) being a polynomial
in k[z̄j ]. Then, we can get the following corollary.

Corollary 3.5. Let F ∈ Mj and W = Im(F(z1, . . . , zj−1, f ,
zj+1, . . . , zn)). If Fittr−1(W ) = 0 and Fittr (W ) = ⟨d⟩ with d ∈

k[z̄j ] \ {0} and 0 ≤ r ≤ l − 1, then F admits a matrix factorization
w.r.t. hl−rj .

3.2 Uniqueness of Polynomial Matrix
Factorizations

In [42], Liu and Wang studied the uniqueness problem of polyno-
mial matrix factorizations. They pointed out that for a non-regular
factor h0 of F ∈ k[z]l×m , under the condition that there exists a
matrix factorization F = G1F1 with det(G1) = h0, Im(F1) is not
uniquely determined. In other words, when F = G1F1 = G2F2
with det(G1) = det(G2) = h0, Im(F1) and Im(F2) might not be
the same.

Let F ∈ M satisfy the conditions of Theorem 3.4. According
to the proof of Theorem 3.3, we can select different generators of
Syz(W ) and obtain different presentation matrices ofW . Then, we
can construct different unimodular matrices and get different ma-
trix factorizations of Fw.r.t.hl−r . Hence, in the following we study
the uniqueness of matrix factorizations of F w.r.t. hl−r .

Theorem 3.6. Let F ∈ M satisfy F = U−1
1 DF1 = U−1

2 DF2,
where U1, U2 are two unimodular matrices in k[z2]l×l , and D =
diag(h, . . . ,h

︸   ︷︷   ︸
l−r

, 1, . . . , 1
︸   ︷︷   ︸

r

). Then, Im(F1) = Im(F2).

Proof. Let F1 =
[
®uT1 , . . . , ®u

T
l

]T and F2 =
[
®vT1 , . . . , ®v

T
l

]T, where
®u1, . . . , ®ul , ®v1, . . . , ®vl ∈ k[z]1×m . So, Im(F1) = ⟨®u1, . . . , ®ul ⟩ and
Im(F2) = ⟨®v1, . . . , ®vl ⟩.

Let F01 = U1F and F02 = U2F. Then F01 = DF1 and F02 =

DF2. It follows that F01 =
[
h®uT1 , . . . ,h®u

T
l−r
, ®uT

l−r+1
, . . . , ®uT

l

]T
and

F02 =
[
h ®vT1 , . . . ,h ®v

T
l−r
, ®vT

l−r+1
, . . . , ®vT

l

]T
. Since U1 and U2 are

two unimodular matrices in k[z2]l×l , we have F01 = U1U−1
2 F02.

This implies that there exist polynomials ai1, . . . ,ail ∈ k[z2] such
that

h®ui = h · (
l−r∑

j=1

ai j ®vj ) +
l∑

j=l−r+1

ai j ®vj ,

where i = 1, . . . , l − r . Then, for each i setting z1 of the above
equation to f (z2), we have

ai(l−r+1) ®vl−r+1(f , z2) + · · ·+ ail ®vl (f , z2) = ®0.

As rank(F(f , z2)) = r and rank(F02(f , z2)) = rank(F(f , z2)), we
have that ®vl−r+1(f , z2), . . . , ®vl (f , z2) are k[z2]-linearly indepen-
dent. This implies that ai(l−r+1) = · · · = ail = 0. Hence,

®ui = ai1 ®v1 + · · ·+ ai(l−r ) ®vl−r ,

where i = 1, . . . , l − r . Obviously, ®uj is a k[z]-linear combina-
tion of ®v1, . . . , ®vl , where j = l − r + 1, . . . , l . As a consequence,
⟨®u1, . . . , ®ul ⟩ ⊂ ⟨®v1, . . . , ®vl ⟩. We can use the same method to prove
that ⟨®v1, . . . , ®vl ⟩ ⊂ ⟨®u1, . . . , ®ul ⟩.

Therefore, we have Im(F1) = Im(F2). □

Based on Theorem 3.4 and Theorem 3.6, we can now derive the
conclusion: if F ∈ M satisfies the conditions of Theorem 3.4, then
we have F = G1F1 with det(G1) = hl−r and Im(F1) uniquely
determined, where G1 = U−1D with U ∈ k[z2]l×l a unimodular
matrix and D = diag(h, . . . ,h, 1, . . . , 1).

3.3 Algorithm
Combining the algorithm proposed in [37] and the matrix factor-
ization conditions of Theorem 3.4, we get the following algorithm
for factoring matrices inM.

Before proceeding further, let us remark on Algorithm 1.
• Step 2 implies that rank(W ) = r .
• In Step 7,H is a presentationmatrix ofW . By Lemma 2.4, we
have rank(H) = l − r . Thus, Fittr−1(W ) = Il−r+1(H) = 0.

• In Step 9, #(G) stands for the number of generators in G,
#(G) = 1 implies that Fittr (W ) is a principal ideal in k[z2].

• From Step 10 to Step 12, we refer to [44, 45] for more details.
• In Step 15, we need to find another new criterion to judge
whether F has a matrix factorization w.r.t. hl−r .

Now, we use an example to illustrate the calculation process of
Algorithm 1.

Example 3.7. Let

F =



z21 − z1z2 z2z3 + z23 + z2 + z3 −z2z3 − z2
z1z2 − z22 −z1z3 + z2z3 z31 − z21z2 + z1z2 − z22

0 z2 + z3 −z2


be amultivariate polynomialmatrix inC[z1, z2, z3]3×3, where z1 >
z2 > z3 and C is the complex field.
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Algorithm 1: polynomial matrix factorization algorithm
Input :F ∈ M, h = z1 − f (z2) and a monomial order ≺z2

in k[z2].
Output :a matrix factorization of F w.r.t. hl−r , where r is

the rank of F(f , z2).
1 begin
2 compute the rank r of F(f , z2);
3 if r = 0 then
4 extract h from each row of F and obtain F1, i.e.,

F = diag(h, . . . ,h) · F1;
5 return diag(h, . . . ,h) and F1.

6 compute a Gröbner basis {®h1, . . . , ®hs } of the syzygy
module ofW = Im(F(f , z2));

7 let H be a matrix in k[z2]s×l composed of ®h1, . . . , ®hs ;
8 compute a reduced Gröbner basis G of the (l − r)-th

determinantal ideal of H w.r.t. ≺z2 ;
9 if #(G) = 1 then
10 compute a ZLP matrix factorization of H and

obtain a ZLP matrix H1 ∈ k[z2](l−r )×l ;
11 construct a unimodular matrix U ∈ k[z2]l×l such

that H1 is its first l − r rows;
12 extract h from the first l − r rows of UF and obtain

F1, i.e., UF = diag(h, . . . ,h, 1, . . . , 1) · F1;
13 return U−1 · diag(h, . . . ,h, 1, . . . , 1) and F1.
14 else
15 return unable to judge.

It is easy to compute that d3(F) = −z1(z1 −z2)
2(z21z2+z21z3+

z22), d2(F) = z1 − z2 and d1(F) = 1. Let h = z1 − z2 and ≺z2,z3
be the degree reverse lexicographic order. Then, the input of Algo-
rithm 1 are F, h = z1 − z2 and ≺z2,z3 .

Note that

F(z2, z2, z3) =


0 (z2 + z3)(z3 + 1) −z2(z3 + 1)
0 0 0
0 z2 + z3 −z2


,

the rank of F(z2, z2, z3) is r = 1. LetW = Im(F(z2, z2, z3)). Then,
we use Singular command “syz” to compute a Gröbner basis of the
syzygy module ofW , and obtain

H =

[
1 0 −z3 − 1
0 1 0

]
.

It is easy to check that the reduced Gröbner basis of all the 2 × 2
minors of H w.r.t. ≺z2,z3 is G = {1}. Then, Fitt1(W ) = I2(H) =
⟨1⟩ and H is a ZLP matrix. This implies that H1 = H. H1 can be
easily extended as the first 2 rows of a unimodular matrix

U =



1 0 −z3 − 1
0 1 0
0 0 1


.

We can extract h from the first 2 rows of UF, and get

UF = DF1 =



z1 − z2 0 0
0 z1 − z2 0
0 0 1





z1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2


.

Then, we obtain a matrix factorization of F w.r.t. h2: F = G1F1
= (U−1D)F1 =



z1 − z2 0 z3 + 1
0 z1 − z2 0
0 0 1





z1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2


,

where det(G1) = det(U−1D) = h2.
At this moment, d3(F1) = −z1(z

2
1z2 + z21z3 + z22). We reuse

Algorithm 1 to judge whether F1 has a matrix factorization w.r.t.
z1. Similarly, we obtain

F1 = G2F2 =



z1 0 0
0 1 0
0 0 1





1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2


,

where det(G2) = z1.
Therefore, we obtain a matrix factorization of F w.r.t. z1(z1 −

z2)
2, i.e., F = GF2 = (G1G2)F2 =



z1(z1 − z2) 0 z3 + 1
0 z1 − z2 0
0 0 1





1 0 0
z2 −z3 z21 + z2
0 z2 + z3 −z2


,

where det(G) = z1(z1 − z2)
2.

Remark 4. In Example 3.7, we can first judge whether F has a
matrix factorization w.r.t. z1. Note that

F(0, z2, z3) =


0 (z2 + z3)(z3 + 1) −z2(z3 + 1)
−z22 z2z3 −z22
0 z2 + z3 −z2


,

the rank of F(0, z2, z3) is r = 2. We compute a Gröbner basis of
the syzygy module of Im(F(0, z2, z3)) and get H =

[
−1 0 z3 + 1

]
.

Since the reduced Gröbner basis of all the 1 × 1 minors of H w.r.t.
≺z2,z3 is G = {1}. Then, Fitt2(W ) = I1(H) = ⟨1⟩. This implies
that F has a matrix factorization w.r.t. z1. According to the above
calculations, we have the following conclusions: F has matrix factor-
izations w.r.t. z1, z1 − z2, z1(z1 − z2), (z1 − z2)

2 and z1(z1 − z2)
2,

respectively.

4 EQUIVALENCE FOR POLYNOMIAL
MATRICES

In this section, we first put forward a sufficient and necessary con-
dition to solve Problem 2, and then we use an example to illustrate
the effectiveness of the new matrix equivalence theorem.

4.1 Matrix Equivalence Theorem
We first introduce a lemma, which is a generalization of Binet-
Cauchy formula in [53].

Lemma 4.1 ([53]). Let F = G1F1, where G1 ∈ k[z]l×l and F1 ∈

k[z]l×m . Then an i × i (1 ≤ i ≤ l) minor of F is

det
(
F
(
r1 · · ·ri
j1 · · ·ji

))
=

∑

1≤s1< · · ·<si ≤l

det
(
G1

( r1 · · ·ri
s1 · · ·si

) )
·det

(
F1

(
s1 · · ·si
j1 · · ·ji

))
.

In Lemma 4.1, F
(
r1 · · ·ri
j1 · · ·ji

)
denotes an i × i sub-matrix consisting

of the r1, . . . , ri rows and j1, . . . , ji columns of F. Based on this
lemma, we can obtain the following two results.
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Lemma 4.2. Let F ∈ k[z]l×m be of full row rank with F = G1F1,
where G1 ∈ k[z]l×l and F1 ∈ k[z]l×m . Then di (F1) | di (F) and
di (G1) | di (F) for each i ∈ {1, . . . , l}.

Proof. We only provedi (F1) | di (F), since the proof ofdi (G1) |
di (F) follows in a similar manner. For any given i ∈ {1, . . . , l},
let ai,1, . . . ,ai,ti and āi,1, . . . , āi,ti be all the i × i minors of F
and F1 respectively, where ti =

(l
i

) (m
i

)
. For each ai, j , it is a k[z]-

linear combination of āi,1, . . . , āi,ti by using Lemma 4.1, where
j = 1, . . . , ti . Since di (F1) = GCD(āi,1, . . . , āi,ti ), for each j we
have di (F1) | ai, j . Then, di (F1) | di (F). □

Lemma 4.3. Let F1, F2 ∈ k[z]l×m be of full row rank. If F1 and
F2 are equivalent, then di (F1) = di (F2) for each i ∈ {1, . . . , l}.

Proof. Since F1 and F2 are equivalent, then there exist two
unimodular matrices U ∈ k[z]l×l and V ∈ k[z]m×m such that
F1 = UF2V. For each i ∈ {1, . . . , l}, it follows from Lemma 4.2 that
di (F2) | di (UF2) | di (F1). Furthermore, we have F2 = U−1F1V−1

since U and V are two unimodular matrices. Similarly, we obtain
di (F1) | di (U−1F1) | di (F2). Therefore, di (F1) = di (F2). □

Before presenting thematrix equivalence theorem,we introduce
a lemma which plays an important role in our proof.

Lemma 4.4 ([44]). Let F ∈ k[z]l×m with rank(F) = r . If all the
r × r minors of F generate k[z], then there exists a ZLP matrix H ∈

k[z](l−r )×l such that HF = 0(l−r )×m .

Combining Lemma 4.4 and the Quillen-Suslin theorem, we can
now solve Problem 2.

Theorem 4.5. Let F ∈ k[z]l×l with det(F) = hr , where h =
z1 − f (z2) and 1 ≤ r ≤ l . Then F and diag(1, . . . , 1,h, . . . ,h) are
equivalent if and only if h | dl−r+1(F) and the ideal generated by h
and all the (l − r) × (l − r) minors of F is k[z].

Proof. For convenience, let D = diag(1, . . . , 1,h, . . . ,h) and
F̄ = F(f , z2). Let a1, . . . ,aβ be all the (l − r) × (l − r) minors of F.
It is obvious that a1(f , z2), . . . ,aβ (f , z2) are all the (l −r)× (l −r)

minors of F̄.
Sufficiency. It follows from h | dl−r+1(F) that rank(F̄) ≤ l − r .

Assume that there exists a point (ε2, . . . , εn) ∈ k1×(n−1) such that
ai (f (ε2, . . . , εn), ε2, . . . , εn) = 0, i = 1, . . . , β . (4)

Let ε1 = f (ε2, . . . , εn), then Equation (4) implies that (ε1, ε2, . . . ,
εn) ∈ k1×n is a common zero of the polynomial system {h =
0,a1 = 0, . . . ,aβ = 0}. This contradicts the fact that h and all the
(l−r)×(l−r)minors of F generate k[z]. Then, all the (l−r)×(l−r)
minors of F̄ generate k[z2]. According to Lemma 4.4, there exists
a ZLP matrix H ∈ k[z2]r×l such that HF̄ = 0r×l . Based on the
Quillen-Suslin theorem,we can construct a unimodularmatrixU ∈

k[z2]l×l such that H is its last r rows. Then, there is a polynomial
matrixV ∈ k[z]l×l such thatUF = DV. Since det(F) = hr andU is
a unimodular matrix, we have F = U−1DV and V is a unimodular
matrix. Therefore, F and D are equivalent.

Necessity. If F and D are equivalent, then there exist two uni-
modular matrices U ∈ k[z]l×l and V ∈ k[z]l×l such that F = UDV.
It follows from Lemma 4.3 that dl−r+1(F) = dl−r+1(D) = h. If
⟨h,a1, . . . ,aβ ⟩ , k[z], then there exists a point ®ε ∈ k1×n such that

h(®ε) = 0 and rank(F(®ε)) < l − r . Obviously, rank(D(®ε)) = l − r

and rank(U−1(®ε)) = rank(V−1(®ε)) = l . Since D = U−1FV−1, we
have
rank(D(®ε)) ≤ min{rank(U−1(®ε)), rank(F(®ε)), rank(V−1(®ε))},

which leads to a contradiction. Therefore, ⟨h,a1, . . . ,aβ ⟩ = k[z]
and the proof is completed. □

Remark 5. When r = l in Theorem 4.5, we just need to check
whether h is a divisor of d1(F).

4.2 Example
Now,we use Example 2.12 to illustrate a constructivemethodwhich
follows Lin et al. in [35] and explain how to obtain the two unimod-
ular matrices associated with equivalent matrices in Theorem 4.5.

Example 4.6. Let F be the same polynomial matrix as in Example
2.12. It is easy to compute that det(F) = (z1 − z2)

2 and d2(F) =
z1 − z2. Let h = z1 − z2, it is obvious that h | d2(F). The reduced
Gröbner basis of the ideal generated by h and all the 1 × 1 minors
of F w.r.t. ≺z is {1}. Then, F is equivalent to diag(1,h,h).

Note that

F(z2, z2, z3) =


(z3 + 1)(z2 − 1) z3(z2 − 1) 0
z3 + 1 z3 0

0 0 0


,

the rank of F(z2, z2, z3) is r = 1. According to the calculation
process of Example 3.7, we can get a ZLP matrix

H =

[
1 −z2 + 1 z22 − z2
−1 z2 − 1 −z22 + z2 + 1

]

such that H · F(z2, z2, z3) = 02×3. Then, a unimodular matrix
U ∈ k[z2]3×3 can be constructed such that H is its the last 2 rows,
where

U =



−1 z2 −z22
1 −z2 + 1 z22 − z2
−1 z2 − 1 −z22 + z2 + 1


.

Now we can extract h from the last 2 rows of UF, and get F =
U−1 · diag(1,h,h) · V =



z2 − 1 z2 0
1 z2 + 1 z2
0 1 1





1 0 0
0 h 0
0 0 h





z3 + 1 z3 0
1 z3 + 1 z3
0 1 1


.

5 CONCLUDING REMARKS
In this paper, we point out two directions of research in which
multivariate polynomial matrices have been explored. The first is
concerned with the factorization problem of multivariate polyno-
mial matrices in M, and the second direction is devoted to the
investigation of the equivalence problem of square matrices inM.

The main contributions of this paper include: (1) a new criterion
(Theorem 3.4) and an algorithm (Algorithm 1) are given to factor-
ize F ∈ M w.r.t. hl−r , as a consequence, the application range of
the constructive algorithm in [37] has been greatly extended; (2)
Theorem 3.6 shows that the output of Algorithm 1 is unique if F
satisfies the new criterion; (3) a sufficient and necessary condition
(Theorem 4.5) is proposed to judge whether a square polynomial
matrix Fwith det(F) = hr is equivalent to diag(1, . . . , 1,h, . . . ,h);
(4) a generalization about the type of polynomial matrices has been
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presented (Corollary 3.5) and the implementation of two main the-
orems (Theorem 3.4 and Theorem 4.5) has been illustrated by two
non-trivial examples.

If #(G) , 1, then Algorithm 1 returns “unable to judge”. At this
moment, how to establish a necessary and sufficient condition for
F ∈ M admitting a matrix factorization w.r.t. hl−r is the question
that remains for further investigation.
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