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Abstract Based on the rational univariate representation of zero-dimensional polynomial systems,

Tan and Zhang proposed the rational representation theory for solving a high-dimensional polynomial

system, which uses so-called rational representation sets to describe all the zeros of a high-dimensional

polynomial system. This paper is devoted to giving an improvement for the rational representation.

The idea of this improvement comes from a minimal Dickson basis used for computing a comprehensive

Gröbner system of a parametric polynomial system to reduce the number of branches. The authors

replace the normal Gröbner basis G satisfying certain conditions in the original algorithm (Tan-Zhang’s

algorithm) with a minimal Dickson basis Gm of a Gröbner basis for the ideal, where Gm is smaller in

size than G. Based on this, the authors give an improved algorithm. Moreover, the proposed algorithm

has been implemented on the computer algebra system Maple. Experimental data and its performance

comparison with the original algorithm show that it generates fewer branches and the improvement is

rewarding.
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1 Introduction

Polynomial system solving is a very classic problem in mathematics, which plays an ex-
tremely important role in scientific research and engineering applications, such as robot design,
geometric modelling, game theory and computational economics. For nonlinear polynomial sys-
tems, there are three main symbolic computation methods, that is, Wu’s method[1], Gröbner ba-
sis method[2] and resultant-based method[3]. With further research, the eigenvalue methods[4, 5]

based on resultant or Gröbner basis have been developed to solve polynomial equation systems.
For more work on the problem of solving polynomial systems, please refer to [6–10].

In order to better describe the solution of the equations, in 1999, Rouillier[11] proposed the
rational univariate representation (RUR) to solve zero-dimensional polynomial systems, which
can represent the solutions as rational functions at the zeros of an univariate polynomial. Since
then, it has been extensively studied. Noro and Yokoyama[12] used modular method to compute
the rational univariate representation of zero-dimensional ideal. Ouchi and Keyser[13] proposed
an approach for computing the rational univariate representation via toric resultants. Zeng and
Xiao[14] used Wu’s method to compute the rational univariate representation. Ma, et al.[15]

presented a method based on properties of Gröbner basis to compute the rational univariate
representation.

In 2009, Tan and Zhang[16, 17] generalized the rational univariate representation theory of
zero-dimensional polynomial systems to high dimensionality and proposed the rational repre-
sentation theory for solving a high-dimensional polynomial system. The rational representation
theory uses a finite number of rational representation sets to describe all the solutions of a high-
dimensional polynomial system. The idea is reducing the ideal to zero dimension by placing the
independent variables in the base field, then by means of the rational univariate representation
of zero-dimensional ideal and Wu’s method all the solutions can be expressed. Along this,
Shang, et al.[18] proposed a simplified rational representation for solving positive-dimensional
ideals, which uses less rational representation sets to represent the variety. They found zeros
represented by some rational representation sets can get from the others by taking limit, then it
avoids the generation of some rational representation sets. Also worth mentioning is that there
is a concept similar to rational representation, namely rational parametrization (also known
as geometric resolution). In 2003, Schost[19] proposed parametric geometric resolution which
gives a description of the generic solutions for parametric polynomial systems. From the point
of view of an end-user, a rational parametrization is certainly the most friendly simplification
for a parametric system. The rational parametrization or geometric resolution can be applied
to real algebraic geometry. Safey El Din, et al.[20] used rational parametrizations to represent
all irreducible components of the real algebraic set.

Inspired by the idea of reducing the number of branches for computing the comprehen-
sive Gröbner system of a parametric polynomial system in [21] which is based on the research
of Kalkbrener[22], Montes[23], Suzuki and Sato[24], Nabeshima[25] on comprehensive Gröbner
systems, we apply a minimal Dickson basis to the rational representation and make an im-
provement of the rational representation. In Tan-Zhang’s algorithm, computing the rational
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representation set of a high-dimensional ideal I needs to compute a Gröbner basis G for ideal
Ie which is a zero-dimensional ideal obtained by placing the independent variables of ideal I in
the base field, and G is required to be a basis of I. The improvement we make is to replace the
basis G with a minimal Dickson basis Gm of a Gröbner basis for the ideal I. Precisely, Gm is a
minimal Gröbner basis of ideal Ie, but not a basis of I. We prove the improvement is correct
and give the improved algorithm for computing the rational representation. What’s more, we
have implemented the improved algorithm on Maple.

This paper is organized as follows. In Section 2, some notations and concepts for polynomial
systems are introduced, and the related knowledge of the rational univariate representation is
reviewed. In Section 3, we introduce the rational representation theory for high-dimensional
ideals proposed by Tan and Zhang, and give an improvement for the rational representation
to reduce the number of rational representation sets. The improved algorithm is described in
Section 4, and we give an example to illustrate this algorithm in Section 5. The implementa-
tion of the algorithm and the performance comparison with the original algorithm in [17] are
presented in Section 6. Finally, we conclude this paper.

2 Preliminaries

In this section, we will introduce some notations and concepts for polynomial systems,
and also briefly review main contents of the rational univariate representation theory for zero-
dimensional ideals.

Let k be a field of characteristic 0, and L its algebraic closure. k[X ] is the polynomial ring
over k in the variables X = {x1, x2, · · · , xn}, I is an ideal of k[X ] and VL(I) is the variety of
I in Ln. We denote by Ak(I) = k[X ]/I the k-algebra.

2.1 Basis Knowledge

Now we introduce the multiplication map of quotient rings Ak(I), the characteristic polyno-
mial and the Hermite’s quadratic form which are related to computing the rational univariate
representation of a zero-dimensional ideal I. The details can refer to [3] and [11].

Definition 2.1 Let I ⊂ k[X ] be a zero-dimensional ideal. For all h ∈ k[X ], we denote by
m

Ak(I)
h the k-linear map:

m
Ak(I)
h : Ak(I) −→ Ak(I)

f �−→ hf,

where f denotes the residue class in Ak(I) of any polynomial f ∈ k[X ].

We denote by Mh the matrix representation of m
Ak(I)
h w.r.t. a basis in quotient rings Ak(I).

And we call m
Ak(I)
h the multiplication map and Mh the multiplication matrix w.r.t. h.

Theorem 2.2 (see [3]) Let I ⊂ k[X ] be a zero-dimensional ideal, m
Ak(I)
h be the mul-

tiplication map. Then the eigenvalues of m
Ak(I)
h are exactly the scalars h(α) with respective

multiplicities
∑

β∈VL(I),h(β)=h(α) μ(β), where α ∈ VL(I), μ(β) denotes the multiplicity of β.
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This theorem shows that for any h ∈ k[X ], the set of eigenvalues of m
Ak(I)
h coincides with

the set of values of the h at the points in VL(I).

The main consequences following from above theorem are as follows.

Proposition 2.3 (see [11]) Let I ⊂ k[X ] be a zero-dimensional ideal, m
Ak(I)
h be the

multiplication map. Then

• Det(mAk(I)
h ) =

∏
α∈VL(I) h(α)μ(α), where μ(α) is the multiplicity of α.

• Trace(mAk(I)
h ) =

∑
α∈VL(I) μ(α)h(α).

• The characteristic polynomial of m
Ak(I)
h is (if it is supposed to be monic):

Xh =
∏

α∈VL(I)

(T − h(α))μ(α).

• For any h ∈ k[X ], Xh(h) ∈ I.

We below introduce a method to compute the number of distinct complex roots of a poly-
nomial system.

Definition 2.4 Let I ⊂ k[X ] be a zero-dimensional ideal and h ∈ k[X ]. The Hermite’s
quadratic form associated to h is defined by

q
Ak(I)
h : Ak(I) −→ k

f �−→ Trace(mAk(I)

hf2 ).

Theorem 2.5 (see [11]) For any h ∈ k[X ], the Hermite’s quadratic form q
Ak(I)
h associated

to h satisfies:
ρ(qAk(I)

h ) = �{α ∈ VL(I) : h(α) �= 0},
where ρ(qAk(I)

h ) denotes the rank of q
Ak(I)
h .

2.2 RUR for Zero-Dimensional Ideals

First, we review the definition of separating elements which plays an important role in
rational univariate representation theory, the study of the roots of polynomial systems and the
study of the k-algebra Ak(I).

Definition 2.6 Let I ⊂ k[X ] be a zero-dimensional ideal. A polynomial t ∈ k[X ] sepa-
rates VL(I), if

α, β ∈ VL(I), α �= β ⇒ t(α) �= t(β).

We also call t a separating element of I.

Obviously, such polynomials exist. The following lemma was proved in [11].
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Lemma 2.7 Let V ⊂ Ln be a finite set, �V = D, where D is a non-negative integer.
Then the finite set of linear form L = {x1 + cx2 + · · · + cn−1xn | 0 ≤ c ≤ (n − 1)D(D − 1)/2}
contains at least one separating element.

By Theorem 2.2 and the definition of separating elements, we get the following corollary
used for the determination of separating elements.

Corollary 2.8 An element t in k[X ] is a separating element of zero-dimensional ideal
I ⊂ k[X ] if and only if degree(Xt)=�VL(I), where Xt is the squarefree part of the characteristic
polynomial Xt of m

Ak(I)
t .

According to Theorem 2.5, �VL(I) = ρ(qAk(I)
1 ). In practice, we express q

Ak(I)
1 with its matrix

Q1 w.r.t the standard basis B = {Xα(1), Xα(2), · · · , Xα(D)} of Ak(I): Q1[i, j] = Trace(mAk(I)

Xα(i)Xα(j)),
i, j = 1, 2, · · · , D. We can compute the rank of matrix Q1, and choose a polynomial t from the
set L = {x1 + cx2 + · · · + cn−1xn | 0 ≤ c ≤ (n − 1)D(D − 1)/2}. If the degree of Xt is equal
to the rank of matrix Q1, then t is a separating element. Otherwise, re-select one from L. So
that we can pick out a separating element.

Next, let’s look at the rational univariate representation theory for zero-dimensional ideals
proposed by Rouillier[11].

Definition 2.9 Let I ⊂ k[X ] be a zero-dimensional ideal, and t ∈ k[X ]. Xt is the
characteristic polynomial of multiplication map m

Ak(I)
t . For any v ∈ k[X ], we define:

gt(v, T ) =
∑

α∈VL(I)

μ(α)v(α)
∏

y �=t(α),y∈VL(Xt)

(T − y).

For any t ∈ k[X ], the t-representation of I is the (n + 2)-tuple:

{Xt(T ), gt(1, T ), gt(x1, T ), · · · , gt(xn, T )}.
If t separates VL(I), the t-representation of I is called the Rational Univariate Representa-

tion (RUR) of I associated to t.

Theorem 2.10 (see [11]) Let I ⊂ k[X ] be a zero-dimensional ideal, an RUR of I associ-
ated to a separating element t has the following properties:

• Xt(T ), gt(1, T ), gt(x1, T ), · · · , gt(xn, T ) are polynomials in k[T ].

• The variety of I can be represented as

VL(I) =
{(

gt(x1, t(α))
gt(1, t(α))

,
gt(x2, t(α))
gt(1, t(α))

, · · · ,
gt(xn, t(α))
gt(1, t(α))

) ∣
∣
∣
∣ t(α) ∈ VL(Xt(T ))

}

, α ∈ VL(I).

Since the elements in the representation matrix Mt of m
Ak(I)
t are in k, Xt(T ) ∈ k[T ].

Suppose Xt =
∏

y∈VL(Xt)
(T − y), then

gt(v, T )
Xt

=
∑

α∈VL(I)

μ(α)v(α)
T − t(α)

=
∑

i≥0

∑
α∈VL(I) μ(α)v(α)t(α)i

T i+1

=
∑

i≥0

Trace(mAk(I)
vti )

T i+1
.
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Let Xt =
∑d

j=0 ajT
d−j. Multiplying both sides of the above formula by Xt, according to

gt(v, T ) ∈ L[T ] we have: gt(v, T ) =
∑d−1

i=0

∑d−i−1
j=0 Trace(mAk(I)

vti )ajT
d−i−j−1. We denote by

Hj(T ) =
∑j

i=0 aiT
j−i the j-th Horner’s polynomial associated to Xt, then

gt(v, T ) =
d−1∑

i=0

Trace(mAk(I)
vti )Hd−i−1(T ) ∈ k[T ].

In addition,

gt(v, t(α)) =
∑

β∈VL(I),t(β)=t(α)

μ(β)v(β)
∏

y∈t(VL(I))\{t(α)}
(t(α) − y).

If t separates VL(I), then v(α) = gt(v,t(α))
gt(1,t(α)) .

Remark 2.11 From Corollary 2.8 and Theorem 2.10, we know only when t is a sepa-
rating element can a bijection between the roots of a univariate polynomial (the characteristic
polynomial Xt(T )) and those of the considered ideal be constructed. In the RUR of I, gt(1, T ) is
the denominator of each coordinate expression, so it must not be zero (for zero-dimensional sit-
uation, gt(1, T ) and Xt(T ) are coprime according to the definition of gt(1, T )). In other words,
there are two key points to note: The choice of a separating element and the denominator
gt(1, T ) cannot be zero.

3 RR for High-Dimensional Ideals and Improvement

In this section, we first review the rational representation theory for solving high-dimensional
ideals proposed by Tan and Zhang in [17]. And then we will give an improvement for the
rational representation by applying the idea of reducing the number of branches for computing
a comprehensive Gröbner system (CGS) of a parametric polynomial system in [21].

All notations are as before, we will introduce some related new notations below.
Now let U = {xi1 , xi2 , · · · , xid

} ⊂ X be a maximally independent set modulo I, V = X\U =
{xid+1 , xid+2 , · · · , xin}. T (V ) and T (X) denote the sets of all monomials in V and X . Let ≺U,V

be an admissible block monomial order on T (X) such that U � V , and ≺V be the restriction
of ≺U,V to T (V ). For f ∈ k[X ], we denote by LC≺V (f), LM≺V (f) the leading coefficient and
the leading monomial of f w.r.t. ≺V .

3.1 Rational Representation Theory

Let Ie be the extension of I to k(U)[V ], and for point p ∈ Ld, Ip be the ideal generated by
{f |U=p ∈ L[V ] | f ∈ I} in L[V ]. Suppose the finite polynomial set G = {g1, g2, · · · , gm} ⊂ I

such that G is a Gröbner basis of Ie w.r.t. ≺V and a basis of ideal I, then Gp is a generator
set of ideal Ip. Set F = LCM{LC≺V (gi)|1 ≤ i ≤ m} ∈ k[U ], where LC≺V (gi) ∈ k[U ] and LCM
denotes the least common multiple.

Since U is a maximally independent set modulo I, Ie is a zero-dimensional ideal. According
to the RUR of zero-dimensional ideals, we choose a separating element t ∈ k[V ] of Ie and obtain
the RUR of Ie.
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Definition 3.1 Let I ⊂ k[X ] be an ideal, U = {xi1 , xi2 , · · · , xid
} ⊂ X be a maximally

independent set modulo I, V = X \U = {xid+1 , xid+2 , · · · , xin} and Ie be the extension of I to
k(U)[V ]. Suppose that t ∈ k[V ] and {XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )} are a
separating element of Ie and the RUR of Ie associated to t, respectively. Then the set

RU
t = {F(U)�t(U),XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )}

is called a rational representation set (RRS) of I associated to U and t, where �t(U) ∈ k[U ] is
the numerator of the resultant of XU,t(T ) and its derivative XU,t(T )

′
w.r.t. the variable T .

Particularly, if dimI=0, then the RUR of zero-dimensional ideal I associated to separating
element t is called a rational representation set.

Theorem 3.2 (see [17]) Let I ⊂ k[X ] be an ideal, VL(I) is the variety of I in Ln. Then
there is

VL(I) =
s⋃

j=1

Wj

such that Wj can be represented by a rational representation set Rj. Moreover, ∪s
j=1Rj is

called a rational representation (RR) of VL(I). For convenience, we also call ∪s
j=1Rj an RR

of I. A rational representation set Rj is seen as a branch.

The main idea of the rational representation theory proposed by Tan and Zhang for describ-
ing all the solutions of a high-dimensional ideal is reducing ideal I to zero dimension by placing
the independent variables U in the base field. Then combining the RUR for zero-dimension
ideals and Wu’s method, the solutions of I in Ln can be expressed.

It can be seen from Definition 3.1 that we get the expression of n − d coordinates through
U and Ie. However, I ⊂ Ie ∈ k(U)[V ] and the roots of Ie is in L(U)n−d. Therefore, we take
p ∈ Ld as the value of U , and consider ideal Ip and two key points of Remark 2.11. Tan and
Zhang[17] proved that when p /∈ VL(F�t), Ip is a zero-dimensional ideal, t ∈ k[V ] is a separating
element of Ip and GU,t(1, t(α))|U=p is not zero, where t(α) ∈ VL(XU,t(T )|U=p), α ∈ VL(Ip).
Consequently, RU

t can represent the point set

WU
t =

{

(x1, x2, · · · , xn) ∈ Ln | (xi1 , xi2 , · · · , xid
) = p, xij =

GU,t(xij , t(α))
GU,t(1, t(α))

∣
∣
∣
∣
U=p

, d + 1 ≤ j ≤ n,

p ∈ Ld, p /∈ VL(F�t) ⊂ Ld, t(α) ∈ VL(XU,t(T )|U=p), α ∈ VL(Ip)
}

.

Obviously, WU
t = VL(I) \ VL(F�t) forms a branch of VL(I). Then considering other

branches: VL(〈I,F〉) and VL(〈I,�t〉), the computations just repeat the above steps. Finally,
VL(I) can be represented by a finite number of RRS.

3.2 Improvement

In order to present the improvement for rational representations, let us introduce some
necessary knowledge points. The details can refer to [21].

A specialization of k[U ] is a homomorphism σ : k[U ] → L. In this paper, we consider the
specializations induced by the elements in Ld. That is, for p ∈ Ld, the induced specialization
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σp is defined as
σp : f → f(p),

where f ∈ k[U ]. Every specialization σ: k[U ] → L extends canonically to a specialization σ:
k[U ][V ] → L[V ] by applying σ coefficient-wise.

Definition 3.3 Given a polynomial set Ĝ ⊂ k[Y, Z] and an admissible block order ≺Y,Z

with Y � Z, we say F ⊂ k[Y, Z], denoted as MDBasis(Ĝ), is a Minimal Dickson Basis of Ĝ, if
1) F is a subset of Ĝ, and
2) for every polynomial g ∈ Ĝ, there is some polynomial f ∈ F such that LM≺Z (g) is a

multiple of LM≺Z (f), i.e., 〈LM≺Z (F )〉 = 〈LM≺Z (Ĝ)〉, and
3) for any two distinct f1, f2 ∈ F , neither LM≺Z (f1) is a multiple of LM≺Z (f2) nor LM≺Z (f2)

is a multiple of LM≺Z (f1).

Theorem 3.4 (see [21]) Let Ĝ be a Gröbner basis of the ideal 〈F 〉 ⊂ k[Y, Z] w.r.t. an
admissible block order ≺Y,Z with Y � Z. Let Ĝr = Ĝ ∩ k[Y ] and Ĝm = MDBasis(Ĝ \ Ĝr). If
σ is a specialization from k[Y ] to L such that

1) σ(g) = 0 for g ∈ Ĝr, and
2) σ(h) �= 0, where h =

∏
g∈Ĝm

LC≺Z (g) ∈ k[Y ],

then σ(Ĝm) is a (minimal) Gröbner basis of 〈σ(F )〉 in L[Z] w.r.t. ≺Z .

Remark 3.5 When Ĝr = ∅ (i.e., Y is a maximally independent set modulo ideal 〈F 〉),
then Ĝm is actually a Gröbner basis of the ideal 〈F 〉k(Y )[Z] generated by F in k(Y )[Z].

According to Theorem 3.4, we now suppose Ĝ is a Gröbner basis of the ideal I ⊂ k[U, V ]
w.r.t. a block order ≺U,V with U � V , where U is a maximally independent set modulo I.
Set Gm = MDBasis(Ĝ) = {ĝ1, ĝ2, · · · , ĝl} ⊂ I. Then Gm is a Gröbner basis of Ie w.r.t. ≺V ,
but it is not necessarily a basis of ideal I (unlike G being a basis of ideal I in Subsection 3.1).
Let Fm = LCM{LC≺V (ĝi)|1 ≤ i ≤ l} ∈ k[U ]. When p /∈ VL(Fm) ⊂ Ld and the specialization
σp acts on I and Gm, as a consequence, Gmp is a Gröbner basis of Ip, where Gmp = {ĝ|U=p ∈
L[V ] | ĝ ∈ Gm}.

Further, it is noted that Gm and Gmp are the minimal Gröbner basis of Ie and Ip w.r.t.
≺V , respectively.

Remark 3.6 In [17], G ⊂ k[U, V ] is a Gröbner basis of Ie w.r.t. ≺V , and it is also required
to be a basis of ideal I. The purpose is to make Gp a Gröbner basis of ideal Ip (p /∈ VL(F)),
then the standard bases of Ak(U)(Ie) = k(U)[V ]/Ie and AL(Ip) = L[V ]/Ip are the same. So we
can establish a correspondence between the RRS of Ie and the RRS of Ip through specialization
σp. However, we have found a point: There exists a G∗ ⊂ k[U, V ], which is a Gröbner basis of
Ie but not a basis of ideal I, such that G∗

p is a Gröbner basis of ideal Ip, when p /∈ VL(F∗).
Surprisingly, Gm mentioned above is just such a G∗, then it can be used to establish the
connection between Ie and Ip.

As follows, we give a theorem similar to Theorem 3.2 in [17], which is a main theorem of
this paper. The proof of the theorem is basically the same as the proof of Theorem 3.2 in [17],
except that in the process of proving �VL(Ip) ≤ �VL(Ie), “the contraction Iec of Ie to k[X ]
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equals I : F∞” needs to be replaced with “the contraction Iec of Ie to k[X ] equals 〈Gm〉 : F∞
m ,

and 〈Gm〉 ⊂ I” (see [2] for more details of the contraction of an ideal). For the sake of the rigor
of the argument and the ease of understanding, here we still give a proof.

Theorem 3.7 Suppose that Gm and Fm are as above, t ∈ k[V ] is a separating element
of Ie, and {XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )} is the RUR of Ie associated to
t. If p /∈ VL(Fm�t(U)) ⊂ Ld, then t ∈ k[V ] is also a separating element of Ip. Furthermore,

{XU,t(T )|U=p,GU,t(1, T )|U=p,GU,t(xid+1 , T )|U=p, · · · ,GU,t(xin , T )|U=p}

is the RUR of Ip associated to t, where �t(U) ∈ k[U ] is the numerator of the resultant of
XU,t(T ) and its derivative XU,t(T )

′
w.r.t. the variable T .

Proof First we have to prove:

�VL(Ip) ≤ �VL(Ie), p /∈ VL(Fm) ⊂ Ld.

From the above we know that when p /∈ VL(Fm), Gmp is a Gröbner basis of Ip and LC≺V (ĝ)|U=p

�= 0 for ĝ ∈ Gm. This means Ak(U)(Ie) = k(U)[V ]/Ie and AL(Ip) = L[V ]/Ip have the same
standard bases B. Therefore Ip is zero-dimensional since Ie is a zero-dimensional ideal. As-
sume that h ∈ k[V ] is a separating element of Ip and XU,h is the characteristic polynomial of
multiplication map m

Ak(U)(I
e)

h , then XU,h(h) ∈ Ie. It follows that there exists l ∈ N such that
XU,h

l
(h) ∈ Ie. Now let XU,h be multiplied by the least common multiple of all denominators

appearing in its coefficients and the result is written as Ph. We have

P l
h(h) ∈ Ie ∩ k[X ] = Iec.

By the contraction theory of ideals (see [2] for more details),

Iec = 〈Gm〉 : F∞
m ,

where 〈Gm〉 is an ideal generated by Gm in k[X ]. Then there exists k ∈ N such that Fk
mP l

h(h) ∈
〈Gm〉 ⊂ I. This implies FmPh(h) ∈ √

I. Hence (FmPh(h))|U=p ∈ √
Ip. Since

√
Ip ⊂ √

Ip and
0 �= Fm|U=p ∈ L,

Ph(h)|U=p = Ph|U=p(h) ∈ √
Ip.

And LC≺V (Ph)(p) �= 0, so Ph|U=p(h) is not a zero polynomial. Thus,

�VL(Ip) ≤ degree(Ph|U=p) = degree(XU,h|U=p) ≤ degree(XU,h) ≤ �VL(Ie).

Now let us show that t is a separating element of Ip if p /∈ VL(Fm�t(U)). Let Mt and M t be
the multiplication matrices of t w.r.t. B in quotient rings Ak(U)(Ie) and AL(Ip), respectively. By
the definition of multiplication matrices and that Ak(U)(Ie) and AL(Ip) have the same standard
bases B, M t = Mt|U=p. Then XU,t|U=p is the characteristic polynomial of M t. According to
Corollary 2.8, we just need to prove that

degree(XU,t|U=p) = �VL(Ip).
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Suppose the square-free decomposition of XU,t is as follows:

XU,t = P1P
2
2 · · ·P l

l .

Then

XU,t|U=p = (P1|U=p)(P2|U=p) · · · (Pl|U=p),

XU,t|U=p = (P1|U=p)(P2|U=p)2 · · · (Pl|U=p)l.

Obviously, XU,t|U=p

∣
∣
∣
∣XU,t|U=p. Since �t(p) �= 0, XU,t|U=p is square-free, which implies that

XU,t|U=p = XU,t|U=p.

Hence,
�VL(Ip) ≥ degree(XU,t|U=p) = degree(XU,t|U=p) = �VL(Ie).

Together with �VL(Ip) ≤ �VL(Ie), we have degree(XU,t|U=p) = �VL(Ip), So t is a separating
element of Ip.

In addition, if XU,t =
∑d

j=0 ajT
d−j, then

gt(v, T ) =
d−1∑

i=0

d−i−1∑

j=0

Trace(Mvti)ajT
d−i−j−1.

Moreover, XU,t|U=p is the characteristic polynomial of M t. Both XU,t|U=p = XU,t|U=p and
Mvti = Mvti |U=p. It follows that the RUR of Ie associated to t under the specialization σp is
the RUR of Ip associated to t.

Naturally, we have the RRS of I associated to U and t:

R̂U
t = {Fm(U)�t(U),XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )}.

Correspondingly,

ŴU
t =

{

(x1, x2, · · · , xn) ∈ Ln

∣
∣
∣
∣(xi1 , xi2 , · · · , xid

) = p, p ∈ Ld, p /∈ VL(Fm�t) ⊂ Ld, d + 1 ≤ j ≤ n,

xij =
GU,t(xij , t(α))
GU,t(1, t(α))

∣
∣
∣
∣
U=p

, t(α) ∈ VL(XU,t(T )|U=p), α ∈ VL(Ip)
}

.

Similarly, there exists a decomposition:

VL(I) = VL(I) \ VL(Fm�t) ∪ VL(〈I,Fm〉) ∪ VL(〈I,�t〉)
= ŴU

t ∪ VL(〈I,Fm〉) ∪ VL(〈I,�t〉).

It can be clearly seen from the above that we replace the basis G with a minimal Dickson
basis Gm of a Gröbner basis of the ideal I, so F becomes Fm. As should be evident from
the definition of minimal Dickson basis and Theorem 3.4, Gm is much smaller in size than G,
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thus Fm is “smaller” than F . For example, G = {ax, bx2}, Gm = {ax}, U = {a, b}, then
F = ab, Fm = a. Note that although we replace G and F with Gm and Fm respectively,
the standard basis B of Ak(U)(Ie) is still the same. Therefore XU,t, GU,t(1, T ) and GU,t(xij , T )
(d+1 ≤ j ≤ n) are the same. So, in general {Fm�t,XU,t, · · · } can represent more solutions than
{F�t,XU,t, · · · }. More importantly, branching is done based on the least common multiple Fm

instead of F . As a result, the number of branches (i.e the number of rational representational
sets) generated by the following algorithm based on the improvement is smaller than that of
the branches in the algorithm of [17] presented by Tan and Zhang.

4 Algorithm

Based on Theorems 3.4 and 3.7, we are now ready to give the improved algorithm for
computing a rational representation of a high-dimensional ideal, which reduces the number of
branches in the algorithm of [17]. In this paper, we regard the Tan-Zhang algorithm of [17] as the
original algorithm. In order to enable everyone to understand the algorithm more intuitively,
we deliberately avoid tricks and optimizations, such as the selection of separating elements,
choosing a minimal Dickson basis and factoring XU,t(T ) to simplify the output expression. We
remind that the improved algorithm for finding separating elements of a zero-dimensional ideal
proposed by Tan in [16] can also be used in high-dimensional cases.

Of course, the way of iteration or recursion can be changed. In [17], the iteration of the
original algorithm is divided into two lines:

VL(〈I,F〉) = VL(〈I,F〉) \ VL(F1�t1) ∪ VL(〈I,F1〉) ∪ VL(〈I,�t1〉);
VL(〈I,�t〉) = VL(〈I,�t〉) \ VL(F2�t2) ∪ VL(〈I,F2�t2).

Here, we use an iterative approach different from the iteration of the original algorithm.
In this paper, that we compare the performance of the improved algorithm and the original
algorithm is performed under the same iteration or recursion approach. That is to say, we
modify the iteration of the original algorithm to be the same as the iteration of our improved
algorithm.

The following Algorithm RR(F) is the main algorithm for computing rational representa-
tions, where 〈F 〉 denotes the ideal generated by the set F on k[X ].

Algorithm RR(F)
Input F , a finite subset of k[X ].
Output R, a rational representation of VL(〈F 〉).
1. Set I := 〈F 〉;
2. If dim(I)=0, then return R:=the RUR of zero-dimensional ideal I; Else,
3. Compute a rational representation set of I = 〈F 〉:

R := RRS(F ) = {Fm�t(U),XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )};
4. Return R := R∪ RR(F ∪ {Fm}) ∪ RR(F ∪ {�t}).

In the above algorithm, RRS(F) is the a subroutine which is to compute a rational repre-
sentation set and whose details are as follows.
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Algorithm RRS(F)
Input F , a finite subset of k[X ].
Output RU

t , a rational representation set of I = 〈F 〉.
1. Set I := 〈F 〉;
2. If dim(I)=0, then return the RUR RU

t of zero-dimensional ideal I; Else,
3. Compute a maximally independent set U modulo I, and the set V := X \ U ;
4. Compute a Gröbner basis G of I w.r.t. an admissible block order ≺U,V with U � V ;
5. Set Gm:=MDBasis(G) as a Gröbner basis of Ie w.r.t. ≺V ;
6. Compute Fm := LCM{LC≺V (g)|g ∈ Gm};
7. Choose a separating element t ⊂ k[V ] of Ie;
8. Compute an RUR of Ie: {XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )} associated to
t;
9. Compute �t(U) ∈ k[U ]: the numerator of ResT (XU,t(T ),XU,t(T )

′
) ;

10. Return RU
t := {Fm(U)�t(U),XU,t(T ),GU,t(1, T ),GU,t(xid+1 , T ), · · · ,GU,t(xin , T )}.

It can be known from the above algorithm that the this algorithm uses recursion. The
simple schematic diagram of the algorithm is as follows.

Input : I = 〈F 〉

R0

R1 R2

R11 R12 R21 R22

· · · · · · · · · · · ·

��

Fm

��������������
	t

��������������

Fm1

����
��
�� 	t1

���
��

��
�

Fm2

����
��
�� 	t2

���
��

��
�

Herein, we need to explain the termination of the algorithm.

Theorem 4.1 The above Algorithm RR(F ) terminates in a finite number of steps.

Proof When dim(I)=0, R is the RUR of zero-dimensional ideal I and the algorithm termi-
nates. Now we consider that dim(I)> 0. We have the decomposition:

VL(I) = VL(I) \ VL(Fm�t) ∪ VL(〈I,Fm〉) ∪ VL(〈I,�t〉).

Write

I1 = 〈I,Fm〉,
I2 = 〈I,�t〉.
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The constructions of Fm and �t imply that Fm,�t /∈ I. So I � Ii, i = 1, 2. Then

VL(I1) = VL(I1) \ VL(Fm1�t1) ∪ VL(〈I,Fm1〉) ∪ VL(〈I,�t1〉);
VL(I2) = VL(I2) \ VL(Fm2�t2) ∪ VL(〈I,Fm2〉) ∪ VL(〈I,�t2〉).

Write

I11 = 〈I1,Fm1〉, I12 = 〈I1,�t1〉,
I21 = 〈I2,Fm2〉, I22 = 〈I2,�t2〉,

where Ii � Iij , i, j ∈ {1, 2}.
Go on like this, we get strictly ascending ideal chains:

I � Ii � Iij � Iijl � · · ·

According to the ascending chain condition, they must terminate in a zero-dimensional ideal.
From Ii···j to Ii···jl, it only creates finite branches.

In summary, 1) in each step, the algorithm only creates finite branches; 2) each branch
terminates after finite steps. According to König’s Lemma, the algorithm terminates in a finite
number of steps.

5 An Illustrative Example

The proposed improved algorithm to compute a rational representation for a high-dimensional
ideal is illustrated on an example.

Example 5.1 Consider the ideal: I = 〈F 〉 ⊂ C[x, y, z, w], F = {f1, f2}, where

f1 = xyw3 − z,

f2 = xw3 + yw + z,

and X = {x, y, z, w}. We compute the Gröbner basis under a block order ≺U,V with U � V

(U, V ⊂ X); within each block, ≺U and ≺V are graded lexicographic orders.
1) dim(I)�=0, we compute a rational representation set of I: A maximally independent

set U = {z, w}, V = X \ U = {x, y}, the reduced Gröbner basis of I w.r.t.≺U,V is G =
{xw3 + yw+ z, y2w + yz + z, xyzw2 +xzw2 + yz, xyz2w +xz2w+xzw2− y2z + yz, xyz3 +xz3 +
xz2w+2xzw2 +y3z−2y2z+2yz}, then Gm = {xw3 +yw+z, y2w+yz+z},Fm = w3; choosing
a separating element t = x, then XU,t(T ) = T 2 + zT/w3 + z/w5, �t = z(4w− z), GU,t(1, T ) =
2T + z/w3, GU,t(x, T ) = (−zw2T − 2z)/w5, GU,t(y, T ) = (2zw − zw3T − z2)/w4. A rational
representation set of I is R0 = {Fm�t,XU,t,GU,t(1, T ),GU,t(x, T ),GU,t(y, T )}.

2) deg(Fm)�=0 and dim(〈I,Fm〉)�=0, we compute a rational representation set of I1 =
〈I,Fm〉: A maximally independent set U1 = {x, y}, V1 = {z, w}, the reduced Gröbner basis
of I1 w.r.t. ≺U1,V1 is G1 = {yw, z, w3}, then Gm1 = {yw, z},Fm1 = y; choosing a separat-
ing element t1 = z, then XU1,t1(T ) = T, �t1 = 1. A rational representation set of I1 is
R1 = {Fm1�t1 ,XU1,t1 ,GU1,t1(1, T ),GU1,t1(z, T ),GU1,t1(w, T )} = {y, T, 1, 0, 0}.
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3) deg(Fm1)�=0 and dim(〈I1,Fm1〉)�=0, we compute a rational representation set of I11 =
〈I1,Fm1〉: U11 = {x}, V11 = {y, z, w}, the reduced Gröbner basis G11 = {z, y, w3}, then Gm11 =
{z, y, w3},Fm11 = 1; choosing a separating element t11 = w, then XU11,t11(T ) = T 3, �t11 = 1.
A rational representation set of I11 is R11 = {Fm11�t11 ,XU11,t11 ,GU11,t11(1, T ),GU11,t11(y, T ),
GU11,t11(z, T ),GU11,t11(w, T )} = {1, T 3, 3, 0, 0, 0}.

Here, �t1=1, Fm11=1, and �t11=1, so the rational representation set of 〈I1,�t1〉, 〈I2,Fm11〉,
and 〈I2,�t11〉 are ∅. Then no new branches are generated.

4) deg(�t)�=0 and dim(〈I,�t〉)�=0, we compute a rational representation set of I2 = 〈I,�t〉:
U2 = {x, y}, V2 = {z, w}, Fm2 = y3(y + 2)2; choosing a separating element t2 = z, then
XU2,t2(T ) = T, �t2 = 1. A rational representation set of I2 is R2 = {Fm2�t2 ,XU2,t2 ,GU2,t2(1, T ),
GU2,t2(z, T ),GU2,t2(w, T )} = {y3(y + 2)2, T, 1, 0, 0}.

5) deg(Fm2)�=0 and dim(〈I2,Fm2〉)�=0, we compute a rational representation set of I21 =
〈I2,Fm2〉: U21 = {w}, V21 = {x, y, z}, Fm21 = w3; choosing a separating element t21 = y,
then XU21,t21(T ) = T 2(T + 2)2, �t21 = −4. A rational representation set of I21 is R21 =
{Fm21�t21 ,XU21,t21 ,GU21,t21(1, T ),GU21,t21(x, T ),GU21,t21(y, T ),GU21,t21(z, T )} = {−4w3, T 2(T +
2)2, 4T + 4,−4T/w2,−4T, 8wT }.

6) deg(Fm21)�=0 and dim(〈I21,Fm21〉)�=0, we compute a rational representation set of I211 =
〈I21,Fm21〉: U211 = {x}, V211 = {y, z, w}, Fm211 = 1; choosing a separating element t211 = y,
then XU211,t211(T ) = T 5(T + 2)2, �t211 = −4. A rational representation set of I211 is R211 =
{Fm211�t211 ,XU211,t211 ,GU211,t211(1, T ),GU211,t211(y, T ),GU211,t211(z, T ),GU211,t211(w, T )} = {−4,

T 5(T + 2)2, 7T + 10,−4T, 0, 0}.
�t2 = 1, �t21 = −4, Fm211 = 1 and �t211 = −4, so no other branches are created and the

algorithm terminates.
Thus, we obtain a rational representation of VL(I):

5⋃

i=0

Ri = R0 ∪R1 ∪R11 ∪R2 ∪R21 ∪R211,

where R3 = R11,R4 = R21,R5 = R211 as above.
However, if we use the original algorithm to compute, we can get a rational representation

of VL(I) which has nine branches:

R′
0 = {F�t = w3z3(4w − z), XU,t = T 2 + zT/w3 + z/w5, GU,t(1, T ) = 2T + z/w3,

GU,t(x, T ) = (−zw2T − 2z)/w5, GU,t(y, T ) = (2zw − zw3T − Z2)/w4};
R′

1 = {F1�t1 = xy6, XU1,t1 = T, GU1,t1(1, T ) = 1, GU1,t1(z, T ) = 0, GU1,t1(w, T ) = 0};
R′

11 = {F11�t11 = x, XU11,t11 = T 18, GU11,t11(1, T ) = 1, GU11,t11(y, T ) = 0,

GU11,t11(z, T ) = 0, GU11,t11(w, T ) = 0};
R′

111 = {F111�t111 = y, XU111,t111 = T, GU111,t111(1, T ) = 1, GU111,t111(x, T ) = 0,

GU111,t111(z, T ) = 0, GU111,t111(w, T ) = 0};
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R′
1111 = {F1111�t1111 = 1, XU1111,t1111 = T, GU1111,t1111(1, T ) = 1, GU1111,t1111(x, T ) = 0,

GU1111,t1111(y, T ) = 0, GU1111,t1111(z, T ) = 0};
R′

2 = {F2�t2 = xy3(y + 2)2, XU2,t2 = T, GU2,t2(1, T ) = 1, GU2,t2(z, T ) = 0,

GU2,t2(w, T ) = 0};
R′

21 = {F21�t21 = y3(y + 2)2, XU21,t21 = T, GU21,t21(1, T ) = 1, GU21,t21(z, T ) = 0,

GU21,t21(w, T ) = 0};
R′

211 = {F211�t211 = −4w3, XU211,t211 = T 2(T + 2)2, GU211,t211(1, T ) = 4T + 4,

GU211,t211(x, T ) = −4T/w2, GU211,t211(y, T ) = −4T, GU211,t211(z, T ) = 8wT };
R′

2111 = {F2111�t2111 = −4, XU2111,t2111 = T 5(T + 2)2, GU2111,t2111(1, T ) = 7T + 10,

GU2111,t2111(y, T ) = −4T, GU2111,t2111(z, T ) = 0, GU2111,t2111(w, T ) = 0}.

We can see that in the first step Fm = w3, but F = z2w3. And in fact, R′
0 = R0, R′

211 =
R21, R′

2111 = R211, R′
1 ∪ R′

111 = R1, R′
2 ∪ R′

21 = R2. Obviously, our improved algorithm
generates fewer branches than the original algorithm.

6 Implementation and Comparative Performance

The improved algorithm and the original algorithm for computing a rational representation
of the variety of a high-dimensional ideal have been implemented on the computer algebra
system Maple. The codes and examples are available on the web: http://www.mmrc.iss.ac.cn
/dwang/software.html. We randomly generate ten high-dimensional polynomial systems in
C[X ] to compare the performance of our algorithm and the original algorithm.

Ten examples are as follows. For all these examples, we compute the Gröbner basis of ideals
under the block order ≺U,V with U � V , where U is a maximally independent set modulo the
ideal, and V = X \ U ; within each block, ≺U and ≺V are graded reverse lexicographic orders.

• F1 = {−x1x2x
2
5, x1x

2
5x4 − x2

5x
2
4 − 2x3

4};

• F2 = {3x1x2x
2
5, 3x2

1x2x4 + 2x5x2x
2
3 − x1x2x4};

• F3 = {x2
1x3x4 − x5x2 + 2x2x3, x

3
1x5 − 3x5x4x3};

• F4 = {x3
1 + 2,−x1x2x

2
4,−x4x

3
3 + x1x2x

2
3 − x2

2x3};

• F5 = {−3x4x1x
2
3 + x3, 2x5x

3
1 + 2x4x1x

2
3 + 3x5x2x3};

• F6 = {x3x4,−x2
4x

2
1 + 2x2

4x
2
2 − 2x2

4x2, 2x2
4x

2
2 − 2x4x

2
2 + x1x2};

• F7 = {3x1x
3
3 − x2

1x3, 3x2
4x

2
3 + x2

4x3 − x4x1, x
2
4x2x3 − 2x4x1, 3x4

4 − 3x2
1x

2
2};

• F8 = {−2x3
4x2 + x3

4x3,−2x4x1x3 − 3x2x3, 2x2
1x

2
2 + 2x2x − 3,−x2

4x1x3 + 3x4x
3
3 − 3x2

4x2};

• F9 = {(1−x2)x2
3 −x2x

2
4−x6x3 +x2x7x3x4 +1, (1−x1)x2

4 −x1x
2
3 −x5x4 +x1x7x3x4 +1}.
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• F10 = {3x4x1x
2
2−3x4x

3
3+2x4x

2
3,−3x4x1x

2
2+3x3

1, 2x4x
2
2x3−3x2

4x1−2x4x1x−3,−x2
4x2x3−

2x4x2 + x1x2};

The following tables show the comparison of our improved algorithm with the original
algorithm in the number of branches and running time in seconds. In algorithm implementation,
we tried to do some optimization on the recursive process, such as taking the squarefree parts
of Fm and �t, and factoring Fm�t.

In Tables 1 and 2, the entries labeled with “New” and “Original” are our improved algorithm
and the original algorithm (i.e., the Tan-Zhang’s algorithm in [17]), respectively; “(1)” stands
for in each step Fm and �t do not perform any optimization processing; “(2)” stands for taking
the squarefree parts of Fm and �t instead of Fm and �t to perform the recursive process; “(3)”
stands for taking all the factors of the squarefree parts of Fm�t instead of Fm and �t to perform
the recursive process; “>1h ” means that the computation does not terminate whithin one hour.
Timings were obtained on a Core i7-4790 3.60GHz with 8GB Memory running Windows 7.

As is evident from Tables 1 and 2, our algorithms usually generate fewer branches, and
the running times are less. It is because Gm is much smaller in size than G and branching
is done based on Fm instead of F , which lead to reducing the number of branches and then
avoiding expensive Gröbner basis computation along branches. In addition, we can see that
the optimization of taking the squarefree part can further reduce the number of branches and
running times. For the optimization of factoring Fm�t, although the number of branches
may increase, the operation is simpler, which results in less times and simpler expressions.
Exceptionally, New(3) has fewer branches than New(2) on examples F2 and F4, because Fm

and �t have common factors. On the whole, our improved algorithm has the better performance
in contrast to the original algorithm in [17].

Table 1 Branches

Examples New(1) New(2) New(3) Original

F1 10 5 7 14

F2 21 17 14 ∞
F3 ∞ 19 25 ∞
F4 7 6 5 7

F5 3 3 5 13

F6 7 7 8 11

F7 8 8 13 8

F8 13 11 13 13

F9 5 5 7 ∞
F10 8 8 22 ∞
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Table 2 Timings (sec)

Examples New(1) New(2) New(3) Original

F1 0.780 0.062 0.062 2.356

F2 1.404 0.234 0.093 >1h

F3 >1h 0.172 0.343 >1h

F4 23.181 0.764 0.624 23.198

F5 0.031 0.031 0.031 0.250

F6 0.062 0.047 0.078 0.561

F7 2.199 0.344 0.109 8.315

F8 0.359 0.141 0.109 109.076

F9 0.062 0.063 0.062 >1h

F10 8.222 1.685 0.343 >1h

7 Concluding Remarks

In the paper, we have presented an improvement of the rational representation for high-
dimensional polynomial systems, which is based on the replacement of Gröbner basis for ideal
Ie, that is, replacing a normal Gröbner basis G satisfying certain conditions with a minimal
Dickson basis Gm. We proved the improvement is correct and gave the improved algorithm
for computing the rational representation. Moreover, we proposed some optimizations on the
recursive process. The performance comparison on implementation between our improved algo-
rithm and the original algorithm is reported, and preliminary experiments show the efficiency
of our proposed improvement in reducing the number of branches and running times.

What needs to be added is this improvement is also suitable for the simplified rational
representation proposed by Shang, et al. in [18].
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