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Abstract Different from previous viewpoints, multivariate polynomial matrix Diophantine equations

are studied from the perspective of modules in this paper, that is, regarding the columns of matrices as

elements in modules. A necessary and sufficient condition of the existence for the solution of equations is

derived. Using powerful features and theoretical foundation of Gröbner bases for modules, the problem

for determining and computing the solution of matrix Diophantine equations can be solved. Meanwhile,

the authors make use of the extension on modules for the GVW algorithm that is a signature-based

Gröbner basis algorithm as a powerful tool for the computation of Gröbner basis for module and

the representation coefficients problem directly related to the particular solution of equations. As a

consequence, a complete algorithm for solving multivariate polynomial matrix Diophantine equations

by the Gröbner basis method is presented and has been implemented on the computer algebra system

Maple.

Keywords Gröbner basis, matrix Diophantine equation, module, multivariate polynomial.

1 Introduction

With the growing presence of algebra in modern control theory, polynomial equations and
matrices have become a useful tool for describing the dynamical behavior and the structure
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of linear control systems[1–5]. And by the fractional representation of transfer functions[6], the
mathematical synthesis of a control system having a desired property leads to the solution of
a diophantine equation over an appropriate ring. Naturally, the computation of the solution
for polynomial matrix Diophantine equations becomes an important problem in control theory
with many applications that include multivariable stochastic optimal control[7], parametriza-
tion of stabilizing controllers[8, 9], robust stabilization[10, 11], disturbance rejecting[12, 13], pole
placement[14], model matching[15, 16], H2 optimal control[17], and so on.

In the past several decades, a lot of methods have been developed to solve the polynomial
matrix Diophantine equation in one indeterminate (1-D) which is often employed to solving
various control problems for standard systems. For example, Feinstein and Bar-Ness[18], and
Lai[19] transfer the Diophantine equation to a set of linear algebraic equations and then solve
those equations by applying a sequence of complicated operations on matrices. Chang, et al.[20]

used polynomial matrix division method to find a solution of the equation. Wolovich[21] based on
the state-space realization of the transfer matrix obtained the unique minimal degree solutions.
Fang[22] and Yamada and Funahashi[23], based on the state-space concepts, solved the equation
by constructing two constants matrices, which gave the whole class of the solutions and is more
straightforward and simpler. Nevertheless, these methods exist some limitations, such as the
strict properness of the transfer function matrix or other conditions that the equation needs to
be required. Moreover, Karampetakis[24] utilized the generalized inverse of a polynomial matrix
to investigate the solution of the matrix Diophantine equation and some new techniques, like
the geometric method[25], are also established to solve this problem. Recently, Tzekis[26] has
proposed a very interesting method to solve this class of equations.

Although the 1-D polynomial matrix Diophantine equation has been extensively studied
and now well understood, many methods for 1-D cases cannot be naturally extended to mul-
tivariable cases for nonstandard systems. To the best of our knowledge, there are only a few
literatures to study on multivariate (n-D) polynomial matrix equations. Among them, Šebek
in [27] has presented an algorithm which is based on elementary reductions in a greater ring
of polynomials in one indeterminate, having as coefficients polynomial fractions in the other
n − 1 indeterminates, and makes full use of the Euclidean division. Tzekis, et al.[28] gave an
extension of the method as proposed in [26] for the computation of the general solution of
n-D polynomial matrix equations with the presentation of a method to address the division of
multivariate polynomials.

In this paper, we start from the perspective of the module to explore the general polynomial
solution of the matrix equation, that is, regarding the columns of matrices as elements (column
vectors) in modules. First, we transfer the polynomial matrix Diophantine equation in the form
of A1X1 + A2X2 = B to the general matrix equation AX = B. Considering the module M

generated by the columns ai of A, by the submodule membership, a necessary and sufficient
condition of the existence for the solution of the equation is derived, that is, determining if
the columns of B are in M . If each column bj of B can be expressed as a linear combination
of the columns of A, i.e., bj =

∑
i=1 xijai, then the representation coefficients xij make up a

solution of the equation AX = B. By means of the powerful features and theoretical foundation
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of Gröbner bases for modules, not only can the existence and uniqueness for the solution of
the equation be determined, but also the solution or general solution of the equation can be
computed. Meanwhile, we extend the GVW algorithm proposed by Gao, et al. in [29] which
is a signature-based Gröbner basis algorithm[30–32] to the module as a powerful tool for the
computation of Gröbner basis for module and the representation coefficients problem directly
related to the particular solution of the equation. As a consequence, a complete algorithm for
solving multivariate polynomial matrix Diophantine equations by the Gröbner basis method
is presented, which will output one of three results: No solution, unique solution and general
solution when inputting given matrices A and B. What’s more, we have implemented the
proposed algorithm on Maple. This algorithm can be used to multivariate polynomial matrix
factorizations[33–35].

This paper is organized as follows. In Section 2, some notations and concepts for modules
and Gröbner bases are introduced. In Section 3, polynomial matrix Diophantine equations are
considered from the idea of modules, and an attempt to solve the equation with the Gröbner
basis for modules is presented. Section 4 gives a brief introduction of the extended GVW
algorithm on modules and a complete algorithm for solving polynomial matrix equations. An
example to illustrate the algorithm is given in Section 5. Finally, we conclude this paper.

2 Preliminaries

In this section, we will introduce some definitions and notations to prepare for the discussion
of this article.

Let k be a field, R = k[z] be the polynomial ring over k in the variables z = {z1, z2, · · · , zn}.
A monomial over R is a product of the form zα = zα1

1 zα2
2 · · · zαn

n , where α = (α1, α2, · · · , αn)
is any vector of nonnegative integers. Generally, we use the letters f, g for single polynomials
(or elements of the ring R) and boldface letters e, f , g for column vectors (that is, elements of
Rm).

First, we briefly review the concept of modules, and the details can refer to [36]. As is
well known, Rm is an R-module, which is closed under addition and scalar multiplication by
elements of R, where m is a positive integer. In general, we will consider submodules of Rm to
obtain other examples of R-modules. For example, given a finite set of vectors f1, f2, · · · , fs

and consider the set of all column vectors which can be written as an R-linear combination of
these vectors:

M = {u1f1 + u2f2 + · · · + usfs ∈ Rm : ui ∈ R for i = 1, 2, · · · , s}.

M is a submodule of Rm generated by F = {f1, f2, · · · , fs} and we denote it by 〈f1, f2, · · · , fs〉.
In practice, we frequently consider a very important class of modules as follows.

Definition 2.1 Let (f1, f2, · · · , fs) be an ordered s-tuple of elements fi ∈ Rm. The set of
all (u1, u2, · · · , us)T ∈ Rs such that u1f1+u2f2+· · ·+usfs = 0 is an R-submodule of Rs, called
the syzygy module of (f1, f2, · · · , fs), and denoted by Syz(f1, f2, · · · , fs). Where (u1, u2, · · · ,
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us)T indicates the column vector which is the transpose of the row vector (u1, u2, · · · , us), or
briefly, (·)T stands for the transpose.

Next, we introduce the theory of Gröbner bases for submodules in Rm, and readers can
refer to Chapter 5 in [36].

Let � be a monomial order on R and the unit vectors e1, e2, · · · , em be a standard basis of
Rm. Then a monomial in Rm is an element of the form zαei for some i. There are two natural
ways to obtain module orders �m on Rm by extending � to Rm.

Definition 2.2 Let � be any monomial order on R, and assume e1 > e2 > · · · > em.
1) (POT) We say zαei �POT zβej if i < j, or i = j and zα � zβ.
2) (TOP) We say zαei �TOP zβej if zα � zβ, or if zα = zβ and i < j.

Where POT and TOP stand for “position-over-term” and “term-over-position”, respectively.
For g ∈ Rm, the leading term, leading coefficient, and leading monomial of g with respect to
�m respectively are denoted by LT(g), LC(g), and LM(g).

The definition of Gröbner bases for submodules is as follows.

Definition 2.3 Given a monomial order �m on Rm, and let M be a submodule of Rm.
1) 〈LT(M)〉 denotes the monomial submodule generated by the leading terms of all g ∈ M

with respect to �m.
2) A finite set G = {g1, g2, · · · , gl} ⊂ M is called a Gröbner basis for M if 〈LT(M)〉 =

〈LT(g1), LT(g2), · · · , LT(gl)〉.

3 The General Solution of Polynomial Matrix Diophantine Equations

Consider the polynomial matrix Diophantine equation

A1X1 + A2X2 = B,

where A1 ∈ Rm×s1 , A2 ∈ Rm×s2 , B ∈ Rm×p are given polynomial matrices, while the matrices
X1, X2 are unknown. This equation can be written as

[
A1 A2

]
⎡

⎣
X1

X2

⎤

⎦ = B =⇒ AX = B,

where A ∈ Rm×s (s = s1 + s2).
Different from previous viewpoints, we start from the perspective of the module to explore

the general solution of polynomial matrix equations.

Let A = (aij)m×s, B = (buv)m×p. Write aj = (a1j , a2j , · · · , amj)T for j = 1, 2, · · · , s and
bv = (b1v, b2v, · · · , bmv)T for v = 1, 2, · · · , p.

Consider the R-module M generated by the columns of A, that is,

M = 〈a1, a2, · · · , as〉.

There is such a result below.
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Theorem 3.1 Equation AX = B has a polynomial solution iff each column bv of B is in
the R-module M generated by all the columns of A.

Proof Suppose that the equation AX = B has a solution X ∈ Rs×p. Now assume
X = (xlv)s×p and xv = (x1v, x2v, · · · , xsv)T, then we have

Axv = bv, v = 1, 2, · · · , p.

Let’s change the above expression to anther form to find the connection between the equation
and the module. It follows that

x1va1 + x2va2 + · · · + xsvas = bv,

where v = 1, 2, · · · , p.
We can see that each column bv of B can be expressed as an R-linear combination of the

columns of A. Here we call x1v, x2v, · · · , xsv the corresponding representation coefficients.
Thus, bv ∈ M = 〈a1, a2, · · · , as〉 for v = 1, 2, · · · , p.

Conversely, if bv ∈ M for v = 1, 2, · · · , p, then there exist polynomials x̃1v, x̃2v, · · · , x̃sv in
R such that

x̃1va1 + x̃2va2 + · · · + x̃svas = bv.

Obviously, this implies that the equation AX = B has a solution X = (x̃lv)s×p in R.
In particular, when B = 0m×p,

x1va1 + x2va2 + · · · + xsvas = 0,

which corresponds to the syzygy module Syz(a1, a2, · · · , as). It is easy to see that xv =
(x1v , x2v, · · · , xsv)T as the solution of AX = 0 is exactly the element in Syz(a1, a2, · · · , as).

Now we give the general solution of the equation, if the matrix equation has a solution.

Proposition 3.2 The general solution of the equation AX = B is as follows:

X = X̂ + ST,

where X̂ is a particular solution of the equation AX = B, S ∈ Rs×q is a matrix consisting of
q generators of Syz(a1, a2, · · · , as), and T ∈ Rq×p is an arbitrary polynomial matrix.

Proof According to the above analysis and the hypothesis, we have

AX̂ = B, AS = 0m×q.

Thus,
AX = A(X̂ + ST ) = AX̂ + AST = B + 0 = B.

Based on Theorem 3.1 and Proposition 3.2, there are two things to do. The first is to
examine if there is a solution for the equation AX = B. That is, we need to determine whether
bv is in M . This is actually the problem for submodule membership. Second, if the equation
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has a solution, we should give the general solution. Then, we need to obtain the representation
coefficients x1v, x2v, · · · , xsv such that x1va1+x2va2+· · ·+xsvas = bv and a set of generators for
the module Syz(a1, a2, · · · , as). Thanks to the followings from [36], the submodule membership
and generators for syzygy modules can be solved by Gröbner bases for submodules.

Lemma 3.3 Fix any monomial order �m on Rm and let G = (g1, g2, · · · , gl) be an
ordered s-tuple of elements of Rm. Then every g ∈ Rm can be written as

g = u1g1 + u2g2 + · · · + ulgl + r,

where ui ∈ R, r ∈ Rm, LM(uigi) 	 LM(g) for all i, and either r = 0 or r is a k-linear
combination of monomials none of which is divisible by any of LM(g1), LM(g2), · · · , LM(gl).
We call r the remainder on division by G and denote r by gG.

Lemma 3.4 Let G be a Gröbner basis for the submodule M ⊂ Rm and b ∈ Rm.
1) b ∈ M iff the remainder on division by G is zero.
2) A Gröbner basis for M generates M as a module: M = 〈G〉.
It is clear that if we get a Gröbner basis, we can judge whether bv is in M by the division al-

gorithm in Rm. Moreover, the above lemma implies that a Gröbner basis of Syz(a1, a2, · · · , as)
is also a set of generators.

What remains urgently to solve now is the problem of representation coefficients which is
directly related to the particular solution of the equation. In the next section, we will introduce
a practical measure for solving this problem in detail.

Remark 3.5 Since matrix multiplication is not commutative, for linear matrix equations
in the ring of polynomials the following three basic types have been distinguished (see [37, 38]):
The right-sided equations A1X1 + A2X2 = B, the left-sided equations X1A1 + X2A2 = B

and the two-sided equations A1X1 + X2A2 = B. In general, a different structure of equations
calls for different algorithms. However, the three types of equations can be solved by the same
method presented in the paper.

In the paper, we consider the right-sided equations and transform it into AX = B. Obvi-
ously, the left-sided equations can also be transformed into ATXT = BT. As for the two-sided
equations, some operations are required to make it a similar form. The details are as follows:
Treat each element of the unknown matrix X1, X2 as an unknown element xij and expand
the matrix equation into a system of linear equations according to xij , then make all unknown
elements and all elements of the matrix B into a column vector x and b, respectively, so the
equations can be transformed into a new matrix equation Ax = b. For example:

⎡

⎣
a11 a12

a21 a22

⎤

⎦

⎡

⎣
x11

x21

⎤

⎦ +

⎡

⎣
x11 x12 x13

x21 x22 x23

⎤

⎦

⎡

⎢
⎢
⎣

a11

a21

a31

⎤

⎥
⎥
⎦ =

⎡

⎣
b11

b21

⎤

⎦ .
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Expand the matrix equation:

a11x11 + a12x21 + a11x11 + a21x12 + a31x13 + 0 · x21 + 0 · x22 + 0 · x23 = b11;

a21x11 + a22x21 + 0 · x11 + 0 · x12 + 0 · x13 + a11x21 + a21x22 + a31x23 = b12.

Then

⎡

⎣
a11 a12 a11 a21 a31 0 0 0

a21 a22 0 0 0 a11 a21 a31

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11

x21

x11

x12

x13

x21

x22

x23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
b11

b21

⎤

⎦ .

That is, Ax = b. Thus, the left-sided equations and the two-sided equations can also be solved
with the Gröbner basis method.

4 Measure and Algorithm

In this section, we first introduce the GVW algorithm[29], a signature-based algorithm for
computing the Gröbner basis, and extend this algorithm to the module Rm, which will be a
powerful tool to solve the problem mentioned in the previous section. Then we will give an
algorithm for computing the general solution of polynomial matrix Diophantine equations.

4.1 GVW Algorithm on Modules

Gao, et al.[29] have presented a new framework for computing Gröbner bases over polynomial
ring R, that is, the well-know GVW algorithm. The algorithm acts on a larger module involving
both the ideal and the syzygy module for given polynomials, and computes the strong Gröbner
basis for this big module which contains Gröbner bases for both the ideal and the syzygy
module. Most importantly, the constructed module expressing the element in the ideal as an
R-linear combination of the input polynomials can encode the representation coefficients. Based
on these facts and the efficiency of the GVW algorithm, it’s wise to extend the GVW algorithm
to the module. This important measure helps to simultaneously solve the problem of whether
there is a solution and the expression of the general solution.

Now we extend the GVW algorithm for polynomial rings to modules.
All notations are the same as before. Let Λ = (a1, a2, · · · , as), we construct a larger module

in Rs × Rm:
M̃ = {(u, f) ∈ Rs × Rm : u ∈ Rs and uTΛT = fT}.

It is obvious that M̃ is generated by (ẽ1, a1), (ẽ2, a2), · · · , (ẽs, as), where ẽi is the i-th unit
vector of Rs, and f is expressed as an R-linear combination of a1, a2, · · · , as. Here we call
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u the representation coefficient vector for f with respect to a1, a2, · · · , as. When f = 0, the
corresponding u is an element in Syz(a1, a2, · · · , as). We say zαẽi divides zβẽj if zα divides
zβ and i = j.

Fix a module order �m in Rm, and a module order �s in Rs. For convenience, we denote
the leading monomials LM�m(u) and LM�s(f) by LM(u) and LM(f) for any element u ∈ Rm,
f ∈ Rs. Similarly for the leading term and leading coefficient. For any p = (u, f) in M̃ , the
LM(u) is called the signature of p, denoted by S(p).

We below define two types of top-reductions: Regular top-reduction and super top-reduction.
In the actual algorithm process, we only need to perform the regular top-reduction.

Suppose p1 = (u1, f1), p2 = (u2, f2) ∈ M̃ . When f1, f2 
= 0, LM(f2) divides LM(f1)
and tLM(u2) 	 LM(u1), where t = LM(f1)/LM(f2). If LM(u1 − ctu2) = LM(u1) where
c = LC(f1)/LC(f2), we say p1 is regular top-reducible by p2, and the corresponding top-
reduction is

Red(p1, p2) = p1 − ctp2 = (u1 − ctu2, f1 − ctf2),

and super top-reducible otherwise.
In addition, when f2 = 0 and LM(u2) divides LM(u1), p1 is super top-reducible by p2.
Like the GVW algorithm, we define the strong Gröbner basis for M̃ .

Definition 4.1 For a finite subset G̃ = {(u1, f1), (u2, f2), · · · , (ul, fl)} ∈ M̃ , if any
nonzero element (u, f) in M̃ is top-reducible by some pair (ui, fi) in G̃, then G̃ is called a
strong Gröbner basis for M̃ .

Further, Proposition 2.2 in [29] still holds and the proof is same.

Proposition 4.2 Given the orders �m in Rm and �s in Rs. Suppose that G̃ = {(u1, f1),
(u2, f2), · · · , (ul, fl)} is a strong Gröbner basis for M̃ , then

1) L = {ui : fi = 0, 1 ≤ i ≤ l} is a Gröbner basis for the syzygy module of {a1, a2, · · · , as},
and

2) G = {fi : 1 ≤ i ≤ l} is a Gröbner basis for M = 〈a1, a2, · · · , as〉 in Rm.

From the above proposition, we know that by computing a strong Gröbner basis for the
constructed special module M̃ , one can obtain a Gröbner basis G of module M and a Gröbner
basis L of Syz(a1, a2, · · · , as). At the same time, the set U of the representation coefficient
vectors u for elements fi in the Gröbner bases of module M with respect to a1, a2, · · · , as can
be gotten.

Next, let’s talk about how to compute the strong Gröbner basis for M̃ , i.e., the theoretical
foundation of the GVW algorithm.

Suppose p1 = (u1, f1), p2 = (u2, f2) ∈ M̃ , where f1, f2 
= 0, and LM(f1) and LM(f2)
are monomials containing the same standard basis vector ei. Let c = LC(f1)/LC(f2), t =
LCM(LM(f1), LM(f2)), t1 = t/LM(f1), t2 = t/LM(f2). Assume T = max{t1LM(u1), t2LM(u2)}
= t1LM(u1). If

LM(t1u1 − ct2u2) = T ,

then t1p1 is called the J-pair of p1 and p2.
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Definition 4.3 We say that a pair (u, f) ∈ M̃ is covered by G ⊂ M̃ , if there is a
pair (ui, fi) ∈ G such that LM(ui) divides LM(u) and LM(f) �m tLM(fi), where t =
LM(u)/LM(ui).

The main theorem of the GVW algorithm on modules is as follows.

Theorem 4.4 Given the orders �m in Rm and �s in Rs. Let G be a finite subset of M̃

satisfies for any monomial T ∈ Rs, there is a pair (u, f) ∈ G and a monomial t ∈ R such that
T = tLM(u). Then the following are equivalent:

1) G is a strong Gröbner basis for M̃ ;
2) Every J-pair of G is covered by G.

Proof The proof process is same as that of Theorem 2.4 in [29] except that the polynomial
v is replaced by the vector f .

It follows from the above theorem that any J-pair that is covered by G can be discarded
without performing any reductions. As a consequence, the priori criteria in [29] still hold on
the module.

Corollary 4.5 (Syzygy criterion) For any J-pair (u, f) of G, it can be discarded if it is
top-reducible by a syzygy.

Corollary 4.6 (Signature criterion) Among all J-pairs with a same signature, only one
(with the f-part minimal) needs to be stored.

Corollary 4.7 (Rewrite criterion) For any J-pair (u, f) of G, it can be discarded if it is
covered by G.

Based on Theorem 4.4 and the above three criteria, we can give the extended version of
the GVW algorithm on modules, that is, input a generator set F = {a1, a2, · · · , as} ⊂ Rm of
module M then output a strong Gröbner basis which contains a Gröbner basis G for module
M = 〈a1, a2, · · · , aS〉, a set U of the corresponding representation coefficient vectors for G,
and a set L of a Gröbner basis for Syz(a1, a2, · · · , as).

Since the whole algorithm process is consistent with the GVW algorithm on polynomial
rings, we will not repeat the whole algorithm process. Note that for the case of modules, we
can’t directly construct the trivial principle syzygy, so the syzygy criterion is not well utilized.

Remark 4.8 In fact, for the implementation of the algorithm we have adopted a more
efficient way mentioned in [29] to obtain a strong Gröbner basis. That is storing the signature
T = LM(u) instead of u during the calculation process, then combining with the approach of
recovering the complete u-part or strong Gröbner basis from the signature.

4.2 Algorithm for Polynomial Matrix Diophantine Equations

Suppose that G = {g1, g2, · · · , gl} is a Gröbner basis for M = 〈a1, a2, · · · , as〉, L =
{s1, s2, · · · , sq} is a Gröbner basis for Syz(a1, a2, · · · , as) and U = {u1, u2, · · · , ul} is a set of
the representation coefficient vectors such that Aui = gi, where a1, a2, · · · , as are the columns
of A. According to Theorem 3.1 and Lemma 3.4, if each bj

G
= 0, where b1, b2, · · · , bp are the
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columns of B, the equation AX = B has a solution. Write

bj =
l∑

k=1

cjkgk and gi =
s∑

t=1

uitat.

Then

bj =
l∑

k=1

s∑

t=1

cjkuitat =
s∑

t=1

l∑

k=1

cjkuitat.

By Proposition 3.2, if L is empty (or in a sense, Syz(a1, a2, · · · , as) = {0}), then the solution
is unique. Otherwise, the general solution is of the form: X = X̂ + ST where X̂ is a particular
solution of AX = B, the matrix S = (s1, s2, · · · , sq) ∈ Rs×q and T ∈ Rq×p is an arbitrary
polynomial matrix.

Now we are ready to formally give the algorithm for solving multivariate polynomial matrix
Diophantine equations by the Gröbner basis method.

Algorithm PMDE(A, B)
Input A ∈ Rm×s; B ∈ Rm×p.
Output X̂ , a particular solution of AX = B;

S, a matrix in Rs×q consisting of q generators for Syz(a1, a2, · · · , as).
1. Set F = {a1, a2, · · · , as} ⊂ Rm, where a1, a2, · · · , as are the column vectors of A;
2. By the extended GVW algorithm on modules, compute a Gröbner basis G = {g1, g2, · · · , gl}

for M = 〈F 〉, a Gröbner basis L for Syz(a1, a2, · · · , as), and a set U = {u1, u2, · · · , ul} of
the representation coefficients such that Aui = gi for each 1 ≤ i ≤ l;

3. Compute the remainder rj and the representation coefficients cjk of bj on division by G:
bj = cj1g1 +cj2g2 + · · ·+cjlgl +rj for 1 ≤ j ≤ p, where b1, b2, · · · , bp are the column vectors
of B;

4. If there is a rj is not zero, then return “The equation has no solution”;
5. Else, X̂ = ŨC, where the matrix Ũ = (u1, u2, · · · , ul) and C = (cjk)l×p; if L is empty, then

return “The equation has a unique solution: X̂”;
6. Else, return “The equation has the general solution: X = X̂ + ST ”, where S ∈ Rs×q

consisting of elements in L and T ∈ Rq×p is an arbitrary polynomial matrix.
Obviously, Algorithm PMDE(A, B) is correct and terminated. The most noteworthy thing

is that this algorithm is a complete algorithm. In addition, The proposed algorithm has been
implemented on the computer algebra system Maple, and the codes and examples are available
on the web: http://www.mmrc.iss.ac.cn/ dwang/software.html.

5 Example

We use the following simple example appeared in [28] to illustrate the main steps in Algo-
rithm PMDE(A, B).

Example 5.1 Consider the matrix Diophantine equation:

A1X1 + A2X2 = B,
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where

A1 =

⎡

⎣
z1 + 1 z2

z2 + 1 z2

⎤

⎦ , A2 =

⎡

⎣
0

−1

⎤

⎦ , B =

⎡

⎣
z1 − z2 + 1 z1 + 1

0 z2 + 1

⎤

⎦ .

This equation can be written as

[
A1 A2

]
⎡

⎣
X1

X2

⎤

⎦ = AX = B

with

A =

⎡

⎣
z1 + 1 z2 0

z2 + 1 z2 −1

⎤

⎦ .

Step 1 Let M = 〈a1, a2, a3〉 generated by the column vectors a1 = (z1 + 1, z2 + 1)T,
a2 = (z2, z2)T, a3 = (0,−1)T of A. By the extended GVW algorithm in Subsection 4.1, we
obtain a Gröbner basis G for M w.r.t �2, where

G ={g1, g2, g3, g4}
={(z1 + 1, z2 + 1)T, (z2, z2)T, (0,−1)T, (−z2, z1z2 − z2

2 − z2)T};
a Gröbner basis L for Syz(a1, a2, a3) w.r.t �3, where

L = {(−z2, z1 + 1, z1z2 − z2
2)

T};
and a set U of the representation coefficient vectors such that the elements in G can be expressed
as R-linear combination of generators {a1, a2, a3}, i.e., gi = Aui, where

U = {u1, u2, u3, u4} = {(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (−z2, z1, 0)T}.
Where �2 and �3 are the TOP order under the lexicographic order with z1 � z2.

Step 2 Determine whether the equation has the polynomial solution by the submodule
membership. That is to determine if each column bj of B is in M or not. We compute the
remainder rj of bj on division by G = {g1, g2, g3, g4}, as well as the representation coefficients
cjk, where b1 = (z1 − z2 + 1, 0)T, b2 = (z1 + 1, z2 + 1)T. The result is as follows:

b1 = g1 − g2 + g3;

b2 = g1.

Obviously, r1 = 0 and r2 = 0. Thus, the equation has the polynomial solution.
Moreover, by the relations: bj =

∑l
k=1 cjkgk and gk = Auk, i.e., B = CG̃ and G̃ = AŨ

(where G̃ and Ũ are the matrix form of the sets G and U , respectively), we obtain a solution:
X̂ = ŨC, where

Ũ =

⎡

⎢
⎢
⎣

1 0 0 −z2

0 1 0 z1

0 0 1 0

⎤

⎥
⎥
⎦ , C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1

−1 0

0 0

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.



424 XIAO FANGHUI · LU DONG · WANG DINGKANG

Step 3 Determine if the solution is unique. According to L obtained in Step 1 is not
empty (i.e., the syzygy module Syz(a1, a2, a3) is nonzero), the equation has more than one
solution. Then we give the general solution: X = X̂ + ST , where S consists of generators of
Syz{a1, a2, a3}, i.e., the elements in L, and T is an arbitrary polynomial matrix.

S =

⎡

⎢
⎢
⎣

−z2

z1 + 1

z1z2 − z2
2

⎤

⎥
⎥
⎦ , T =

[
d1 d2

]
, d1, d2 ∈ R.

In summary, the matrix Diophantine equations A1X1 +A2X2 = B has the general solution:

X = X̂ + ST =

⎡

⎣
X1

X2

⎤

⎦ =

⎡

⎢
⎢
⎣

1 − d1z2 1 − d2z2

−1 + d1(z1 + 1) d2(z1 + 1)

1 + d1(z1z2 − z2
2) d2(z1z2 − z2

2)

⎤

⎥
⎥
⎦ .

6 Concluding Remarks

In the paper, a complete algorithm for solving multivariate polynomial matrix Diophantine
equations by the Gröbner basis method is presented, which is from the idea of modules to explore
matrix Diophantine equations, then by means of powerful features and theoretical foundation of
Gröbner bases for modules, the problem for determining and computing the solution of matrix
Diophantine equations is successfully solved. Meanwhile, in order to better solve the Gröbner
bases for the module and syzygy module, as well as the representation coefficients problem,
we have utilized the extended version of the GVW algorithm on modules as a powerful tool.
Moreover, as mentioned in Remark 3.5 the two-sided equations A1X1 + X2A2 = B can also be
solved by the Gröbner basis method.
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