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This paper is concerned with the factorization and equivalence 
problems of multivariate polynomial matrices. We present some 
new criteria for the existence of matrix factorizations for a class 
of multivariate polynomial matrices, and obtain a necessary and 
sufficient condition for the equivalence of a square polynomial 
matrix and a diagonal matrix. Based on the constructive proof 
of the new criteria, we give a factorization algorithm and prove 
the uniqueness of the factorization. We implement the algorithm 
on Maple, and two illustrative examples are given to show the 
effectiveness of the algorithm.
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1. Introduction

Multidimensional systems have wide applications in image, signal processing, control of networked 
systems, and other areas (see, e.g., Bose, 1982; Bose et al., 2003). A multidimensional system may 
be represented by a multivariate polynomial matrix, and we can obtain some important properties 
of the system by studying the corresponding matrix. Symbolic computation provides many effec-
tive theories and algorithms, such as module theory and Gröbner basis algorithms (Cox et al., 2005; 
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Lin et al., 2008), on multidimensional systems. Therefore, great progress has been made on the factor-
ization and equivalence problems related to multivariate polynomial matrices over the past decades.

Up to now, the factorization problem for univariate and bivariate polynomial matrices has been 
completely solved by Morf et al. (1977); Guiver and Bose (1982); Liu and Wang (2013), but the case 
of more than two variables is still open. Youla and Gnavi (1979) first introduced three important 
concepts according to different properties of multivariate polynomial matrices, namely zero prime 
matrix factorization, minor prime matrix factorization and factor prime matrix factorization. When 
multivariate polynomial matrices satisfy several special properties, there are some results about the 
existence problem of zero prime matrix factorizations for the matrices (see, e.g., Charoenlarpnopparut 
and Bose, 1999; Lin, 1999a, 2001). After that, Lin and Bose (2001) proposed the famous Lin-Bose 
conjecture: a multivariate polynomial matrix admits a zero prime matrix factorization if all its maxi-
mal reduced minors generate a unit ideal. This conjecture was proved by Pommaret (2001); Srinivas 
(2004); Wang and Feng (2004); Liu et al. (2014), respectively. Wang and Kwong (2005) gave a nec-
essary and sufficient condition for a multivariate polynomial matrix with full rank to have a minor 
prime matrix factorization. They extracted an algorithm from Pommaret’s proof of the Lin-Bose con-
jecture, and examples showed the effectiveness of the algorithm. Guan et al. (2019) generalized the 
main results in Wang and Kwong (2005) to the case of multivariate polynomial matrices without full 
rank. For the existence problem of factor prime matrix factorizations for multivariate polynomial ma-
trices with full rank, Wang (2007) and Liu and Wang (2010) introduced the concept of regularity and 
obtained a necessary and sufficient condition. Guan et al. (2018) gave an algorithm to judge whether 
a multivariate polynomial matrix with the greatest common divisor of all its maximal minors being 
square-free has a factor prime matrix factorization. However, the existence problem for factor prime 
matrix factorizations of multivariate polynomial matrices remains a challenging open problem so far.

Comparing to the factorization problem of multivariate polynomial matrices which has been widely 
investigated during the past years, less attention has been paid to the equivalence problem of multi-
variate polynomial matrices. For any given multidimensional system, our goal is to simplify it into a 
simpler equivalent form.

Since a univariate polynomial ring is a principal ideal domain, a univariate polynomial matrix is al-
ways equivalent to its Smith form. This implies that the equivalence problem of univariate polynomial 
matrices has been solved (see, e.g., Rosenbrock, 1970; Kailath, 1993). For any given bivariate poly-
nomial matrix, conditions under which it is equivalent to its Smith form have been investigated by 
Frost and Storey (1978); Lee and Zak (1983); Frost and Boudellioua (1986). Note that the equivalence 
problem of two multivariate polynomial matrices is equivalent to the isomorphism problem of two 
finitely presented modules. Boudellioua and Quadrat (2010) and Cluzeau and Quadrat (2008, 2013, 
2015) obtained some important results by using module theory and homological algebra. According 
to the works of Boudellioua and Quadrat (2010), Boudellioua (2012, 2014) designed some algorithms 
based on Maple to compute Smith forms for some classes of multivariate polynomial matrices. For 
the case of multivariate polynomial matrices with more than one variable, however, the equivalence 
problem is not yet fully solved due to the lack of a mature polynomial matrix theory (see, e.g., Kung 
et al., 1977; Morf et al., 1977; Pugh et al., 1998).

From our personal viewpoint, new ideas need to be injected into these areas to obtain new theo-
retical results and effective algorithms. Therefore, it would be significant to provide some new criteria 
to study the factorization and equivalence problems for some classes of multivariate polynomial ma-
trices.

From the 1990s to the present, there is a class of multivariate polynomial matrices that has always 
attracted attention. That is,

M = {F ∈ k[z]l×m : dl(F) has a divisor z1 − f (z2) for some f (z2) ∈ k[z2]},
where l ≤ m, z = {z1, . . . , zn} with n ≥ 3, z2 = {z2, . . . , zn} and dl(F) is the greatest common divisor of 
all the l × l minors of F. People tried to solve the factorization and equivalence problems of multi-
variate polynomial matrices in M. Let F ∈ M and h = z1 − f (z2). Many factorization criteria on the 
existence of a matrix factorization for F with respect to h have been proposed (see, e.g., Lin, 1993; 
Lin et al., 2001, 2005; Wang, 2008; Liu et al., 2011; Lu et al., 2020a). When l = m and det(F) = h, 
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Lin et al. (2006) proved that F is equivalent to its Smith form. After that, Li et al. (2017) studied the 
equivalence problem of a square matrix F with det(F) = hr and a diagonal matrix, where r ≥ 1.

Through research, there are still many multivariate polynomial matrices in M without satisfy-
ing previous factorization criteria or equivalence conditions, but they can be factorized with respect 
to h or equivalent to simpler forms. As a consequence, we continue to study the factorization and 
equivalence problems of multivariate polynomial matrices in M.

This paper is an extension of Lu et al. (2020b), and the contributions listed following are new. 1) 
Under the assumption that h is not a divisor of the greatest common divisor of all the (l − 1) × (l − 1)

minors of F, we give a necessary and sufficient condition for the existence of a matrix factorization of 
F with respect to h. 2) We summarize all factorization criteria for the existence of a matrix factoriza-
tion of F with respect to h, and study the relationships among them. 3) For the case that h is a divisor 
of the greatest common divisor of all the (l − 1) × (l − 1) minors of F, we obtain a sufficient condition 
for the existence of a matrix factorization of F with respect to hr , where 2 ≤ r ≤ l. 4) Based on the 
new factorization criteria, we construct a new factorization algorithm and implement it on Maple.

The rest of the paper is organized as follows. After a brief introduction to matrix factorization 
and matrix equivalence in Section 2, we use two examples to propose two problems that we shall 
consider. We present in Section 3 two criteria for factorizing F with respect to h, and then study 
the relationships among all existing factorization criteria. A necessary and sufficient condition for 
the equivalence of a square polynomial matrix and a diagonal matrix is described in Section 4. In 
Section 5, we generalize the main result in Section 3 to a more general case. In Section 6, we construct 
a factorization algorithm and study the uniqueness of matrix factorizations by the algorithm, and 
use two examples to illustrate the effectiveness of the algorithm in Section 7. The paper contains a 
summary of contributions and some remarks in Section 8.

2. Preliminaries and problems

In this section we first recall some basic notions which will be used in the following sections, and 
then we use two examples to put forward two problems that we are considering.

2.1. Basic notions

We denote by k an algebraically closed field. Let k[z] and k[z2] be the polynomial ring in variables 
z and z2 with coefficients in k, respectively. Let k[z]l×m be the set of l × m matrices with entries in 
k[z]. Throughout the paper, we assume that l ≤ m, and use uppercase bold letters to denote polyno-
mial matrices. In addition, “w.r.t.” stands for “with respect to”.

Let F ∈ k[z]l×m , we use di(F) to denote the greatest common divisor of all the i × i minors of F with 
the convention that d0(F) = 1, where i = 1, . . . , l. Let f ∈ k[z2], then F( f , z2) denotes a polynomial 
matrix in k[z2]l×m which is formed by transforming z1 in F into f .

Definition 1 (Lin, 1988; Sule, 1994). Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. For any given integer i
with 1 ≤ i ≤ r, let a1, . . . , aβ denote all the i × i minors of F, where β = (l

i

) · (m
i

)
. Extracting di(F) from 

a1, . . . , aβ yields a j = di(F) · b j with j = 1, . . . , β , then b1, . . . , bβ are called the i × i reduced minors 
of F.

Lin (1988) showed that reduced minors are important invariants for polynomial matrices.

Lemma 2. Let F1 ∈ k[z]r×t be of full row rank, b1, . . . , bγ be all the r × r reduced minors of F1 , and F2 ∈
k[z]t×(t−r) be of full column rank, b̄1, . . . , ̄bγ be all the (t − r) × (t − r) reduced minors of F2 , where r < t and 
γ = (t

r

)
. If F1F2 = 0r×(t−r) , then b̄i = ±bi for i = 1, . . . , γ , and signs depend on indices.

Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. Let F̄1, . . . , ̄Fη ∈ k[z]l×r be all the full column rank 
submatrices of F, where 1 ≤ η ≤ (m

r

)
. According to Lemma 2, it is easy to prove that F̄1, . . . , ̄Fη have 

the same r × r reduced minors. Based on this phenomenon, we give the following concept.
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Definition 3. Let F ∈ k[z]l×m with rank r, and F̄ ∈ k[z]l×r be any of full column rank submatrices of F, 
where 1 ≤ r ≤ l. Let c1, . . . , cξ be all the r × r reduced minors of F̄, where ξ = (l

r

)
. Then c1, . . . , cξ are 

called the r × r column reduced minors of F.

We can define the r × r row reduced minors of F in the same way. To state conveniently problems 
and main conclusions of this paper, we introduce the following concepts and results.

Definition 4. Let F ∈ k[z]l×m be of full row rank.

1. If all the l × l minors of F generate k[z], then F is said to be a zero left prime (ZLP) matrix.
2. If all the l × l minors of F are relatively prime, i.e., dl(F) is a nonzero constant in k, then F is said 

to be a minor left prime (MLP) matrix.
3. If for any polynomial matrix factorization F = F1F2 with F1 ∈ k[z]l×l , F1 is necessarily a unimod-

ular matrix, i.e., det(F1) is a nonzero constant in k, then F is said to be a factor left prime (FLP) 
matrix.

We refer to Youla and Gnavi (1979) for more details about the relationships among ZLP, MLP and 
FLP. Quillen (1976) and Suslin (1976) solved the Serre’s conjecture raised by Serre (1955), respectively. 
This result is called Quillen-Suslin theorem, and it is as follows.

Lemma 5. If F ∈ k[z]l×m is a ZLP matrix, then a unimodular matrix U ∈ k[z]m×m can be constructed such that 
F is its first l rows.

There are many algorithms for the Quillen-Suslin theorem, we refer to Youla and Pickel (1984); 
Logar and Sturmfels (1992); Park (1995) for more details. Fabiańska and Quadrat (2007) first designed 
a Maple package, which is called QUILLENSUSLIN, to implement the Quillen-Suslin theorem.

Let W be a k[z]-module generated by �u1, . . . , �ul ∈ k[z]1×m . The set of all (b1, . . . , bl) ∈ k[z]1×l such 
that b1�u1 + · · · + bl �ul = �0 is a k[z]-module of k[z]1×l , is called the (first) syzygy module of W , and 
denoted by Syz(W ). Lin (1999b) proposed several interesting structural properties of syzygy modules. 
Let F = [ �uT

1, . . . , �uT
l

]T
. The rank of W is defined as the rank of F that is denoted by rank(F). Guan 

et al. (2018) proved that the rank of W does not depend on the choice of generators of W .

Lemma 6. With above notations. If rank(W ) = r with 1 ≤ r ≤ l, then the rank of Syz(W ) is l − r.

Proof. Let k(z) be the fraction field of k[z], and Syz∗(W ) = {�v ∈ k(z)1×l : �v · F = �0}. Then, Syz∗(W )

is a k(z)-vector space of dimension l − r. For any given l − r + 1 different vectors �v1, . . ., �vl−r+1 ∈
k[z]1×l in Syz(W ), �vi ∈ Syz∗(W ) for each i, and they are k(z)-linearly dependent. This implies that 
�v1, . . . , �vl−r+1 are k[z]-linearly dependent. Thus rank(Syz(W )) ≤ l − r.

Assume that �p1, . . . , �pl−r ∈ k(z)1×l are l − r vectors in Syz∗(W ), and they are k(z)-linearly inde-
pendent. For each j, we have p j1�u1 + · · · + p jl �ul = �0, where �p j = (p j1, . . . , p jl). Multiplying both 
sides of the equation by the least common multiple of the denominators of p j1, . . . , p jl , we obtain 
p̄ j = (p̄ j1, . . . , p̄ jl) ∈ k[z] such that p̄ j1�u1 + · · · + p̄ jl �ul = �0. Then, p̄ j ∈ Syz(W ), where j = 1, . . . , l − r. 
Moreover, p̄1, . . . , p̄l−r are k[z]-linearly independent. Thus, rank(Syz(W )) ≥ l − r.

As a consequence, the rank of Syz(W ) is l − r and the proof is completed. �
Remark 7. The above lemma implies that the number of vectors in any given generators of Syz(W ) is 
greater than or equal to l − r.

Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. For each 1 ≤ i ≤ r, we use Ii(F) to denote the ideal 
generated by all the i × i minors of F. For convenience, let I0(F) = k[z]. Moreover, we denote the 
submodule of k[z]1×m generated by all the row vectors of F by Im(F).
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Definition 8. Let W be a finitely generated k[z]-module, and k[z]1×l φ−−→ k[z]1×m → W → 0 be a 
presentation of W , where φ acts on the right on row vectors, i.e., φ(�u) = �u · F for �u ∈ k[z]1×l with 
F being a presentation matrix corresponding to the linear mapping φ. Then the ideal F itt j(W ) =
Im− j(F) is called the j-th Fitting ideal of W . Here, we make the convention that F itt j(W ) = k[z] for 
j ≥ m, and that F itt j(W ) = 0 for j < max{m − l, 0}.

We remark that F itt j(W ) only depends on W (see, e.g., Greuel and Pfister, 2002; Eisenbud, 2013). 
In addition, the chain 0 = F itt−1(W ) ⊆ F itt0(W ) ⊆ . . . ⊆ F ittm(W ) = k[z] of Fitting ideals is increas-
ing. Cox et al. (2005) showed that one obtains the presentation matrix F for W by arranging the 
generators of Syz(W ) as rows.

2.2. Matrix factorization problem

A matrix factorization of a multivariate polynomial matrix is formulated as follows.

Definition 9. Let F ∈ k[z]l×m and h0 | dl(F). F is said to admit a matrix factorization w.r.t. h0 if F can 
be factorized as

F = G1F1 (1)

such that G1 ∈ k[z]l×l with det(G1) = h0 and F1 ∈ k[z]l×m . In particular, Equation (1) is said to be a 
ZLP (MLP, FLP) matrix factorization if F1 is a ZLP (MLP, FLP) matrix.

Throughout the paper, let h = z1 − f (z2) with f (z2) ∈ k[z2]. This paper will address the following 
specific matrix factorization problem.

Problem 10. Let F ∈M. Under what conditions does F have a matrix factorization w.r.t. h.

Several results related to Problem 10 have been given, and the latest progress on this problem was 
obtained by Lu et al. (2020a).

Lemma 11. Let F ∈M. If h � dl−1(F) and the ideal generated by h and all the (l − 1) × (l − 1) reduced minors 
of F is k[z], then F admits a matrix factorization w.r.t. h.

Although Lemma 11 gives a criterion to determine whether F has a matrix factorization w.r.t. h, 
we found that there exist some polynomial matrices in M which do not satisfy the conditions of 
Lemma 11, but still admit matrix factorizations w.r.t. h.

Example 12. Let

F =
[−2z1z2

2 + z2
1z3 + z2

2z3 − z1z2
3 + z2z2

3 z3
1 − z3

2 − z2
1z3 + z2z2

3 z1z2 − z2z3 z2
2−z1z2 + z2

3 −z2
2 + z1z3 0 z2

]

be a polynomial matrix in C[z1, z2, z3]2×4, where z1 > z2 > z3 and C is the complex field.
It is easy to compute that d2(F) = z2(z1 − z3) and d1(F) = 1. Let h = z1 − z3, then h | d2(F) implies 

that F ∈ M. Obviously, h � d1(F). Since d1(F) = 1, the entries in F are all the 1 × 1 reduced minors of 
F. Let ≺z be the degree reverse lexicographic order, then the reduced Gröbner basis G of the ideal 
generated by h and all the 1 × 1 reduced minors of F w.r.t. ≺z is {z1 − z3, z2, z2

3}. It follows from 
G 
= {1} that Lemma 11 cannot be applied.

However, F admits a matrix factorization w.r.t. h, i.e., there exist G1 ∈ C[z1, z2, z3]2×2 and F1 ∈
C[z1, z2, z3]2×4 such that

F = G1F1 =
[

h z2
0 1

][
z1z3 − z2

2 z2
1 − z2z3 z2 0

−z z + z2 −z2 + z z 0 z

]
,

1 2 3 2 1 3 2
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where det(G1) = h.

From the above example we see that Problem 10 is far from being resolved. So, in Section 3 we 
make a detailed analysis on this problem.

2.3. Matrix equivalence problem

Now we introduce the concept of the equivalence of two multivariate polynomial matrices.

Definition 13. Two polynomial matrices F1 ∈ k[z]l×m and F2 ∈ k[z]l×m are said to be equivalent if there 
exist two unimodular matrices U ∈ k[z]l×l and V ∈ k[z]m×m such that

F1 = UF2V. (2)

In fact, a univariate polynomial matrix is always equivalent to its Smith form. However, this result 
is not valid for the case of more than one variable, and there are many counter-examples (see, e.g., Lee 
and Zak, 1983; Boudellioua, 2013). Hence, people began to consider under what conditions multivari-
ate polynomial matrices are equivalent to simpler forms. Li et al. (2017) investigated the equivalence 
problem for a class of multivariate polynomial matrices and obtained the following result.

Lemma 14. Let F ∈ k[z]l×l with det(F) = hr , where h = z1 − f (z2) and r is a positive integer. Then F is 
equivalent to diag(hr, 1, . . . , 1) if and only if hr and all the (l − 1) × (l − 1) minors of F generate k[z].

For a given square matrix that does not satisfy the condition of Lemma 14, we use the following 
example to illustrate that it can be equivalent to another diagonal matrix.

Example 15. Let

F =
⎡
⎣ z1z2 − z2

2 + z2z3 + z2 − z3 − 1 z1z2z3 − z2
2z3 + z1z2 − z2

2 + z2z3 − z3 z1z2z3 − z2
2z3

z1z2 − z2
2 + z1 − z2 + z3 + 1 (z1 − z2)(z2z3 + 2z2 + z3 + 1) + z3 F[2, 3]

z1 − z2 z1z3 − z2z3 + 2z1 − 2z2 z1z3 − z2z3 + z1 − z2

⎤
⎦

be a polynomial matrix in C[z1, z2, z3]3×3, where F[2, 3] = z1z2z3 − z2
2z3 + z1z2 − z2

2 + z1z3 − z2z3.
It is easy to compute that det(F) = (z1 − z2)

2. Let h = z1 − z2 and ≺z be the degree reverse 
lexicographic order, then the reduced Gröbner basis G of the ideal generated by h2 and all the 2 × 2
minors of F w.r.t. ≺z is {z1 − z2}. It follows from G 
= {1} that Lemma 14 cannot be applied.

However, F is equivalent to diag(h, h, 1), i.e., there exist two unimodular polynomial matrices U ∈
C[z1, z2, z3]3×3 and V ∈C[z1, z2, z3]3×3 such that

F = U · diag(h,h,1) · V =
⎡
⎣ 0 z2 z2 − 1

z2 z2 + 1 1
1 1 0

⎤
⎦

⎡
⎣h 0 0

0 h 0
0 0 1

⎤
⎦

⎡
⎣ 0 1 1

1 z3 + 1 z3
z3 + 1 z3 0

⎤
⎦ .

Based on the phenomenon of Example 15, we consider the following matrix equivalence problem.

Problem 16. Let F ∈ k[z]l×l with det(F) = hr , where h = z1 − f (z2) and 1 ≤ r ≤ l. What is the necessary 
and sufficient condition for the equivalence of F and diag(h, . . . ,h︸ ︷︷ ︸

r

, 1, . . . ,1︸ ︷︷ ︸
l−r

)?

3. Factorization for polynomial matrices

In this section, we first propose two criteria to judge whether F ∈ M has a matrix factorization 
w.r.t. h, and then study the relationships among all existing factorization criteria.
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3.1. A sufficient condition

We first recall two lemmas.

Lemma 17 (Wang and Feng, 2004). Let F ∈ k[z]l×m with rank r such that all the r × r reduced minors of F
generate k[z]. Then there exist G1 ∈ k[z]l×r and F1 ∈ k[z]r×m such that F = G1F1 with F1 being a ZLP matrix.

Lemma 18 (Lin et al., 2001). Let p ∈ k[z] and f (z2) ∈ k[z2]. Then z1 − f (z2) is a divisor of p if and only if 
p( f , z2) is a zero polynomial in k[z2].

Now, we propose a sufficient condition to factorize F w.r.t. h.

Theorem 19. Let F ∈ M and W = Im(F( f , z2)). If F ittl−2(W ) = 0 and F ittl−1(W ) = 〈d〉 with d ∈ k[z2] \
{0}, then F admits a matrix factorization w.r.t. h.

Proof. Let k[z2]1×s φ−−→ k[z2]1×l → W → 0 be a presentation of W , and H ∈ k[z2]s×l be a matrix 
corresponding to the linear mapping φ. Then Syz(W ) = Im(H).

It follows from F ittl−2(W ) = 0 that all the 2 ×2 minors of H are zero polynomials. Then, rank(H) ≤
1. Moreover, F ittl−1(W ) = 〈d〉 with d ∈ k[z2] \{0} implies that rank(H) ≥ 1. As a consequence, we have 
rank(H) = 1.

Let a1, . . . , aβ ∈ k[z2] and b1, . . . , bβ ∈ k[z2] be all the 1 × 1 minors and 1 × 1 reduced minors of H, 
respectively. Then, ai = d1(H) · bi for i = 1, . . . , β . Since 〈a1, . . . , aβ〉 = 〈d〉, it is obvious that d | d1(H). 
Moreover, we have d = ∑β

i=1 ciai for some ci ∈ k[z2]. Thus d = d1(H) · (
∑β

i=1 cibi). This implies that 
d1(H) | d. Hence d = δ · d1(H), where δ is a nonzero constant. Therefore, 〈b1, . . . , bβ〉 = k[z2].

According to Lemma 17, there exist �u ∈ k[z2]s×1 and �w ∈ k[z2]1×l such that H = �u �w with �w being 
a ZLP vector. It follows from Syz(W ) = Im(H) that �u �wF( f , z2) = 0s×m . Since �u is a column vector, we 
have �wF( f , z2) = 01×m .

Using the Quillen-Suslin theorem, we can construct a unimodular matrix U ∈ k[z2]l×l such that �w
is its first row. Let F0 = UF, then the first row of F0( f , z2) = UF( f , z2) is zero vector. By Lemma 18, h
is a common divisor of the polynomials in the first row of F0, thus

F0 = UF = DF1 = diag(h,1, . . . ,1︸ ︷︷ ︸
l−1

) ·
⎡
⎢⎣

f̄11 f̄12 · · · f̄1m
...

...
...

...

f̄ l1 f̄ l2 · · · f̄ lm

⎤
⎥⎦ .

Consequently, we can now derive the matrix factorization of F w.r.t. h, i.e., F = G1F1, where G1 =
U−1D ∈ k[z]l×l , F1 ∈ k[z]l×m and det(G1) = h. �
Remark 20. In the above theorem, d is actually a nonzero constant. The reason is as follows. Since 
�wF( f , z2) = 01×m , we have �w ∈ Syz(W ). As Syz(W ) = Im(H), this implies that there is a nonzero 
vector �v ∈ k[z2]1×s such that �w = �vH. It follows from H = �u �w that �v�u = 1. Therefore, �u is a ZRP 
vector. Since d1(H) = d1(�u) · d1( �w), d1(H) is a nonzero constant. Noting that d = δ · d1(H), where δ is 
a nonzero constant. Then, d is a nonzero constant.

According to Remark 20, Theorem 19 is equivalent to the following result.

Theorem 21. Let F ∈M and W = Im(F( f , z2)). If F ittl−2(W ) = 0 and F ittl−1(W ) = k[z2], then F admits a 
matrix factorization w.r.t. h.
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3.2. A necessary and sufficient condition for a special case

In Theorem 21, the conditions F ittl−2(W ) = 0 and F ittl−1(W ) 
= 0 imply that the rank of F( f , z2)

is l − 1. In the following, we first give a lemma about the necessary and sufficient condition for 
rank(F( f , z2)) = l − 1.

Lemma 22. Let F ∈M. Then rank(F( f , z2)) = l − 1 if and only if h � dl−1(F).

Proof. Since h | dl(F), we have rank(F( f , z2)) ≤ l − 1. Let a1, . . . , aγ ∈ k[z] be all the (l − 1) × (l − 1)

minors of F, then a1( f , z2), . . . , aγ ( f , z2) are all the (l − 1) × (l − 1) minors of F( f , z2).
If rank(F( f , z2)) = l − 1, then there is at least one integer i such that ai( f , z2) is a nonzero poly-

nomial. According to Lemma 18, h is not a divisor of ai . Obviously, h � dl−1(F).
Assume that h � dl−1(F). If rank(F( f , z2)) < l − 1, then a j( f , z2) = 0 for j = 1, . . . , γ . This implies 

that h is a common divisor of a1, . . . , aγ , which leads to a contradiction. �
Lemma 23 (Lin et al., 2005). Let G ∈ k[z]l×l with det(G) = h, then there is a ZLP vector �w ∈ k[z2]1×l such that 
�wG( f , z2) = 01×l .

Now, we give a partial solution to Problem 10.

Theorem 24. Let F ∈M with h � dl−1(F). Then the following are equivalent:

1. F admits a matrix factorization w.r.t. h;
2. all the (l − 1) × (l − 1) column reduced minors of F( f , z2) generate k[z2].

Proof. 1 → 2. Suppose F admits a matrix factorization w.r.t. h, then there exist G1 ∈ k[z]l×l and F1 ∈
k[z]l×m such that F = G1F1 with det(G1) = h. Obviously, F( f , z2) = G1( f , z2)F1( f , z2). Since det(G1) =
h, by Lemma 23 there is a ZLP vector �w ∈ k[z2]1×l such that �wG1( f , z2) = 01×l . This implies that 
�wF( f , z2) = 01×m . According to Lemma 22, we have rank(F( f , z2)) = l − 1. Using Lemma 2, all the 
(l − 1) × (l − 1) column reduced minors of F( f , z2) are equivalent to all the 1 × 1 reduced minors of 
�w . It follows that all the (l − 1) × (l − 1) column reduced minors of F( f , z2) generate k[z2].

2 → 1. Since rank(F( f , z2)) = l − 1, there is a nonzero vector �w = [w1, . . . , wl] ∈ k[z2]1×l such that 
�wF( f , z2) = 01×m . As all the (l − 1) × (l − 1) column reduced minors of F( f , z2) generate k[z2], all 
the 1 × 1 reduced minors of �w generate k[z2] by Lemma 2. Assume that w0 ∈ k[z2] is the greatest 
common divisor of w1, . . . , wl , then �w/w0 is a ZLP vector. Using the Quillen-Suslin theorem, we 
can construct a unimodular matrix U ∈ k[z2]l×l such that �w/w0 is its first row. This implies that 
there exist D ∈ k[z]l×l and F1 ∈ k[z]l×m such that UF = DF1, where D = diag(h, 1, . . . , 1). Therefore, we 
obtain a matrix factorization of F w.r.t. h, i.e., F = G1F1, where G1 = U−1D and det(G1) = h. �
3.3. Comparison among all existing factorization criteria

Let F ∈ M, and a1, . . . , aβ ∈ k[z] be all the l × l minors of F. Since h | dl(F), there are e1, . . . , eβ ∈
k[z] such that ai = hei , i = 1, . . . , β . Lin et al. (2001) proved that F has a matrix factorization w.r.t. h
if 〈h, e1, . . . , eβ〉 = k[z]. The main idea is as follows. 〈h, e1, . . . , eβ〉 = k[z] implies that rank(F( f , z2)) =
l − 1 for every z2 ∈ kn−1. It follows that h � dl−1(F) and there is a ZLP vector �w ∈ k[z2]1×l such that 
�wF( f , z2) = 01×m . Hence, the condition 〈h, e1, . . . , eβ〉 = k[z] is a special case of Theorem 24.

When dl(F) = h, Lin et al. (2005) proved that F has an MLP matrix factorization w.r.t. h if and 
only if all the (l − 1) × (l − 1) column reduced minors of F( f , z2) generate k[z2]. Moreover, Wang 
(2008) proved that F has an MLP matrix factorization w.r.t. h if and only if there is a ZLP vector 
�w ∈ k[z2]1×l such that �wF( f , z2) = 01×m . It is easy to see that the above two results are equivalent. 
In fact, dl(F) = h implies that h � dl−1(F). Hence, these results are also a special case of Theorem 24.

Let c1, . . . , cη ∈ k[z] be all the (l − 1) × (l − 1) minors of F. Liu et al. (2011) proved that 
rank(F( f , z2)) = l − 1 for every z2 ∈ kn−1 if and only if 〈h, c1, . . . , cη〉 = k[z]. Then, F has a matrix 
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factorization w.r.t. h if 〈h, c1, . . . , cη〉 = k[z]. Although Liu et al. (2011) generalized the main result of 
Lin et al. (2001), 〈h, c1, . . . , cη〉 = k[z] is still a special case of Theorem 24.

Let b1, . . . , bη ∈ k[z] be all the (l − 1) × (l − 1) reduced minors of F. Lu et al. (2020a) proved that 
F has a matrix factorization w.r.t. h if h � dl−1(F) and 〈h, b1, . . . , bη〉 = k[z]. We explain the difference 
between 〈h, c1, . . . , cη〉 = k[z] and 〈h, b1, . . . , bη〉 = k[z]. 〈h, c1, . . . , cη〉 = k[z] implies that all the (l −
1) × (l − 1) minors of F( f , z2) generate k[z2], and 〈h, b1, . . . , bη〉 = k[z] implies that all the (l − 1) ×
(l − 1) reduced minors of F( f , z2) generate k[z2]. Therefore, the main result of Lu et al. (2020a) is 
a generalization of that of Liu et al. (2011). Under the assumption that h � dl−1(F), there is no doubt 
that 〈h, b1, . . . , bη〉 = k[z] is a special case of Theorem 24.

Assume that h � dl−1(F) and 〈h, b1, . . . , bη〉 = k[z]. Suppose the rows of H ∈ k[z2]s×l represent 
generators of Syz(W ), where W = Im(F( f , z2)). As h � dl−1(F), we have rank(H) = 1. Suppose �w ′ ∈
k[z2]1×l is any row vector of H. 〈h, b1, . . . , bη〉 = k[z] implies that the 1 × 1 reduced minors of �w ′
generate k[z2]. It follows that the 1 × 1 row reduced minors of H generate k[z2]. According to Lemma 
10 in Lu et al. (2021), there exist �u ∈ k[z2]s×1 and �w ∈ k[z2]1×l such that H = �u �w with �w being a ZLP 
vector. Based on Remark 20, we can prove that I1(H) = k[z2]. Therefore, we have F ittl−2(W ) = 0 and 
F ittl−1(W ) = k[z2]. In addition, Example 12 shows that Theorem 21 can solve some problems that 
the main result in Lu et al. (2020a) cannot solve. It follows that Theorem 21 is a generalization of the 
main result in Lu et al. (2020a).

On the one hand, F ittl−2(W ) = 0 and F ittl−1(W ) 
= 0 in Theorem 21 imply that rank(F( f , z2))

= l − 1. Hence, h � dl−1(F). Moreover, F ittl−1(W ) = k[z2] implies that the 1 × 1 reduced minors of 
H generate k[z2]. According to Lemma 2, all the (l − 1) × (l − 1) column reduced minors of F( f , z2)

generate k[z2].
On the other hand, If h � dl−1(F) and all the (l − 1) × (l − 1) column reduced minors of F( f , z2)

generate k[z2] in Theorem 24, we can use the method in the above paragraph to prove that 
F ittl−2(W ) = 0 and F ittl−1(W ) = k[z2]. As a consequence, F ittl−1(W ) = k[z2] in Theorem 21 is equiv-
alent to the sufficient condition in Theorem 24 under the premise that F ittl−2(W ) = 0. It is easy to 
see that the conditions of Theorem 24 are easier to verify in the actual calculation process, which can 
help us improve the computational efficiency.

Based on Lemma 17, Liu and Wang (2013) proposed a criterion for the existence of a matrix 
factorization of F w.r.t. h0.

Lemma 25. Let F ∈ k[z]l×m be a full row rank matrix, h0 ∈ k[z] be a divisor of dl(F), a1, . . . , aβ ∈ k[z] and 
c1, . . . , cη ∈ k[z] be all the l × l minors and (l − 1) × (l − 1) minors of F, respectively. There are e1, . . . , eβ ∈
k[z] such that ai = h0ei , where i = 1, . . . , β . If h0, e1, . . . , eβ, c1, . . . , cη generate k[z], then F has a matrix 
factorization w.r.t. h0 .

In Lemma 25, F has no restriction and h0 does not have to be of the form z1 − f (z2). Obviously, 
the main results of Lin et al. (2001) and Liu et al. (2011) are special cases of Lemma 25.

When h0 = z1 − f (z2), however, we find that 〈h0, e1, . . . , eβ, c1, . . . , cη〉 = k[z] is equivalent to 
〈h0, c1, . . . , cη〉 = k[z]. That is, Lemma 25 is the same as the main result of Liu et al. (2011) for 
the case of h0 = z1 − f (z2). Before proving this conclusion, we first introduce a lemma which was 
proposed by Lin et al. (2001).

Lemma 26. Let F ∈ k[z1]l×m be a univariate polynomial matrix with full row rank, and d ∈ k[z1] be the great-
est common divisor of all the l × l minors of F. If z11 ∈ k is a simple zero of d, i.e., z1 − z11 is a divisor of d, but 
(z1 − z11)

2 is not a divisor of d, then rank(F(z11)) = l − 1.

Now, we can assert that the following conclusion is correct.

Proposition 27. Let F ∈ M, a1, . . . , aβ ∈ k[z] and c1, . . . , cη ∈ k[z] be all the l × l minors and (l −
1) × (l − 1) minors of F, respectively. There are e1, . . . , eβ ∈ k[z] such that ai = hei , i = 1, . . . , β . Then, 
〈h, e1, . . . , eβ, c1, . . . , cη〉 = k[z] if and only if 〈h, c1, . . . , cη〉 = k[z].
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Proof. On the one hand, it is easy to see that 〈h, e1, . . . , eβ, c1, . . . , cη〉 = k[z] if 〈h, c1, . . . , cη〉 = k[z].
On the other hand, assume that 〈h, e1, . . . , eβ, c1, . . . , cη〉 = k[z]. If 〈h, c1, . . . , cη〉 
= k[z], then there 

exists a point �ε = (ε1, . . . , εn) ∈ kn such that

ε1 = f (ε2, . . . , εn) and ci(�ε) = 0, i = 1, . . . , η.

It follows that rank(F (�ε)) < l − 1. Let F̃ = F(z1, ε2, . . . , εn) be a univariate polynomial matrix with 
entries in k[z1], and ã1, . . ., ãβ ∈ k[z1] be all the l × l minors of F̃. Obviously, we have

ã j = a j(z1, ε2, . . . , εn) = (z1 − ε1) · e j(z1, ε2, . . . , εn), j = 1, . . . , β.

Assume that q ∈ k[z1] is the greatest common divisor of e1(z1, ε2, . . . , εn), . . . , eβ(z1, ε2, . . . , εn), then 
dl(F̃) = (z1 − ε1) · q. It follows from 〈h, e1, . . . , eβ, c1, . . . , cη〉 = k[z] that �ε is not a common zero of 
the system {e1 = 0, . . . , eβ = 0}. Thus, ε1 is not a zero of p. This implies that ε1 is a simple zero of 
dl(F̃). According to Lemma 26, we have rank(F̃(ε1)) = l − 1, which leads to a contradiction. Therefore, 
〈h, c1, . . . , cη〉 = k[z]. �
4. Equivalence for polynomial matrices

In this section, we first put forward a necessary and sufficient condition to solve Problem 16, and 
then use an example to illustrate the effectiveness of the matrix equivalence theorem.

We introduce a lemma, which is called the Binet-Cauchy formula (Strang, 1980).

Lemma 28. Let F = G1F1 , where G1 ∈ k[z]l×l and F1 ∈ k[z]l×m. Then an i × i minor of F is

det
(

F
(

r1···ri
j1··· ji

))
=

∑
1≤s1<···<si≤l

det
(

G1

(
r1···ri
s1···si

))
· det

(
F1

(
s1···si
j1··· ji

))
.

In Lemma 28, F 
(

r1···ri
j1··· ji

)
denotes an i × i submatrix consisting of the r1, . . . , ri rows and j1, . . . , ji

columns of F. Based on this lemma, we can obtain the following two results.

Lemma 29. Let F ∈ k[z]l×m be of full row rank with F = G1F1 , where G1 ∈ k[z]l×l and F1 ∈ k[z]l×m. Then 
di(F1) | di(F) and di(G1) | di(F) for each i ∈ {1, . . . , l}.

Proof. We only prove di(F1) | di(F), since the proof of di(G1) | di(F) follows in a similar manner. 
For any given i ∈ {1, . . . , l}, let ai,1, . . . , ai,ti and āi,1, . . . , ̄ai,ti be all the i × i minors of F and F1

respectively, where ti = (l
i

)(m
i

)
. For each ai, j , it is a k[z]-linear combination of āi,1, . . . , ̄ai,ti by using 

Lemma 28, where j = 1, . . . , ti . Since di(F1) is the greatest common divisor of āi,1, . . . , ̄ai,ti , for each j
we have di(F1) | ai, j . Then, di(F1) | di(F). �
Lemma 30. Let F1, F2 ∈ k[z]l×m be of full row rank. If F1 and F2 are equivalent, then di(F1) = di(F2) for each 
i ∈ {1, . . . , l}.

Proof. Since F1 and F2 are equivalent, there exist two unimodular matrices U ∈ k[z]l×l and V ∈
k[z]m×m such that F1 = UF2V. For each i ∈ {1, . . . , l}, it follows from Lemma 29 that di(F2) | di(UF2) |
di(F1). Furthermore, we have F2 = U−1F1V−1 since U and V are two unimodular matrices. Similarly, 
we obtain di(F1) | di(U−1F1) | di(F2). Therefore, di(F1) = di(F2) up to multiplication by a nonzero con-
stant. �
Lemma 31 (Lu et al., 2017). Let F ∈ k[z]l×m with rank l − r. If all the (l − r) × (l − r) minors of F generate k[z], 
then there exists a ZLP matrix H ∈ k[z]r×l such that HF = 0r×m.

Combining Lemma 31 and the Quillen-Suslin theorem, we can now solve Problem 16.
275



D. Lu, D. Wang and F. Xiao Journal of Symbolic Computation 115 (2023) 266–284
Theorem 32. Let F ∈ k[z]l×l with det(F) = hr , where h = z1 − f (z2) and 1 ≤ r ≤ l. Then the following are 
equivalent:

1. F is equivalent to diag(h, . . . ,h︸ ︷︷ ︸
r

, 1, . . . ,1︸ ︷︷ ︸
l−r

);

2. h | dl−r+1(F) and the ideal generated by h and all the (l − r) × (l − r) minors of F is k[z].

Proof. For convenience, let D = diag(h, . . . , h, 1, . . . , 1) and F̄ = F( f , z2). Let a1, . . . , aβ be all the (l −
r) × (l − r) minors of F. It is obvious that a1( f , z2), . . . , aβ( f , z2) are all the (l − r) × (l − r) minors of 
F̄.

2 → 1. It follows from h | dl−r+1(F) that rank(F̄) ≤ l − r. Assume that there exists a point 
(ε2, . . . , εn) ∈ k1×(n−1) such that ai( f (ε2, . . . , εn), ε2, . . . , εn) = 0, where i = 1, . . . , β . Let ε1 =
f (ε2, . . . , εn), then (ε1, ε2, . . ., εn) ∈ k1×n is a common zero of the polynomial system {h = 0, a1 =
0, . . . , aβ = 0}. This contradicts the fact that h and all the (l − r) × (l − r) minors of F generate k[z]. 
Then, all the (l − r) × (l − r) minors of F̄ generate k[z2]. According to Lemma 31, there exists a ZLP 
matrix H ∈ k[z2]r×l such that HF̄ = 0r×l . Based on the Quillen-Suslin theorem, we can construct a 
unimodular matrix U ∈ k[z2]l×l such that H is its first r rows. Then, there is V ∈ k[z]l×l such that 
UF = DV. Since det(F) = hr and U is a unimodular matrix, we have F = U−1DV and V is a unimodular 
matrix. Therefore, F and D are equivalent.

1 → 2. If F and D are equivalent, then there exist two unimodular matrices U ∈ k[z]l×l and 
V ∈ k[z]l×l such that F = UDV. It follows from Lemma 30 that dl−r+1(F) = dl−r+1(D) = h. If 
〈h, a1, . . . , aβ〉 
= k[z], then there exists a point �ε ∈ k1×n such that h(�ε) = 0 and rank(F(�ε)) < l − r. 
Obviously, rank(D(�ε)) = l − r and rank(U−1(�ε)) = rank(V−1(�ε)) = l. Since D = U−1FV−1, we have 
rank(D(�ε)) ≤ min{rank(U−1(�ε)), rank(F(�ε)), rank(V−1(�ε))}, which leads to a contradiction. Therefore, 
〈h, a1, . . . , aβ〉 = k[z] and the proof is completed. �
Remark 33. When r = l in Theorem 32, we just need to check whether h is a divisor of d1(F).

Now, we use Example 15 to illustrate a constructive method which follows the proof process of 
2 → 1 of Theorem 32 and we explain how to obtain the two unimodular matrices associated with 
equivalent matrices.

Example 34. Let F be the same polynomial matrix as in Example 15. It is easy to compute that 
det(F) = (z1 − z2)

2 and d2(F) = z1 − z2. Let h = z1 − z2, it is obvious that h | d2(F). The reduced 
Gröbner basis of the ideal generated by h and all the 1 × 1 minors of F w.r.t. ≺z is {1}. Then, F is 
equivalent to diag(h, h, 1). Note that

F(z2, z2, z3) =
⎡
⎣(z3 + 1)(z2 − 1) z3(z2 − 1) 0

z3 + 1 z3 0
0 0 0

⎤
⎦ ,

rank(F(z2, z2, z3)) = 1. Let W = Im(F(z2, z2, z3)). We compute a system of generators of the syzygy 
module of W , and obtain

H =
[

1 −z2 + 1 z2
2 − z2

−1 z2 − 1 −z2
2 + z2 + 1

]

such that H · F(z2, z2, z3) = 02×3. It is easy to check that H is a ZLP matrix. Then, a unimodular 
matrix U ∈ k[z2]3×3 can be constructed such that H is its first 2 rows by using the Maple package 
QUILLENSUSLIN, where

U =
⎡
⎣ 1 −z2 + 1 z2

2 − z2

−1 z2 − 1 −z2
2 + z2 + 1

−1 z −z2

⎤
⎦ .
2 2
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Now we can extract h from the first 2 rows of UF, and get

F = U−1 · diag(h,h,1) · V =
⎡
⎣ 0 z2 z2 − 1

z2 z2 + 1 1
1 1 0

⎤
⎦

⎡
⎣h 0 0

0 h 0
0 0 1

⎤
⎦

⎡
⎣ 0 1 1

1 z3 + 1 z3
z3 + 1 z3 0

⎤
⎦ .

5. Generalizations

We construct the following two sets of polynomial matrices:

M1 = {F ∈ M : h � dl−1(F)} and M2 = {F ∈ M : h | dl−1(F)}.
Let F ∈ M and h = z1 − f (z2) be given, then F ∈ M1 or F ∈ M2. If F ∈ M1, we can use Theorem 24
to judge whether F has a matrix factorization w.r.t. h. If F ∈ M2, we need to propose some criteria to 
factorize F.

Since d0(F) | d1(F) | · · · | dl−1(F) | dl(F), there exists a unique integer r with 1 ≤ r ≤ l such that 
h | dl−r+1(F) but h � dl−r(F). Based on this fact, we subdivide M2 into the following sets:

M2,r = {F ∈ M2 : h | dl−r+1(F) but h � dl−r(F)}, r = 2, . . . , l.

Lemma 35. Let F ∈M2 . Then rank(F( f , z2)) = l − r with 2 ≤ r ≤ l if and only if F ∈M2,r .

The proof of Lemma 35 is basically the same as that of Lemma 22, so it is omitted here. Inspired 
by Theorem 24 and Theorem 32, we propose the following result for the existence of a matrix factor-
ization of F ∈M2,r w.r.t. hr , where 2 ≤ r < l.

Theorem 36. Let F ∈M2,r with 2 ≤ r < l, then the following are equivalent:

1. there exist G1 ∈ k[z]l×l and F1 ∈ k[z]l×m such that F = G1F1 with G1 being equivalent to diag(h, . . . ,h︸ ︷︷ ︸
r

,

1, . . . ,1︸ ︷︷ ︸
l−r

);

2. all the (l − r) × (l − r) column reduced minors of F( f , z2) generate k[z2].

Proof. 1 → 2. Since G1 and diag(h, . . . , h, 1, . . . , 1) are equivalent, we have h | dl−r+1(G1) and 
〈h, g1, . . . , gη〉 = k[z] by Theorem 32, where g1, . . . , gη are all the (l − r) × (l − r) minors of G1. 
This implies that all the (l − r) × (l − r) minors of G1( f , z2) generate k[z2]. According to Lemma 31, 
we can construct a ZLP matrix W ∈ k[z2]r×l such that WG1( f , z2) = 0r×l . It follows from F = G1F1 that 
WF( f , z2) = 0r×m . Since W is a ZLP matrix, all the (l − r) × (l − r) column reduced minors of F( f , z2)

generate k[z2].
2 → 1. From Lemma 35, there exists a full row rank matrix H ∈ k[z2]r×l such that HF( f , z2) = 0r×m . 

Since all the (l − r) × (l − r) column reduced minors of F( f , z2) generate k[z2], all the r × r reduced 
minors of H generate k[z2] by Lemma 2. Using Lemma 17, H has a ZLP matrix factorization H = H1H2, 
where H1 ∈ k[z2]r×r , and H2 ∈ k[z2]r×l is a ZLP matrix. As H1 is a full column rank matrix, it follows 
from HF( f , z2) = 0r×m that H2F( f , z2) = 0r×m . Using the Quillen-Suslin theorem, we can construct a 
unimodular matrix U ∈ k[z2]l×l such that H2 is its first r rows. This implies that there is F1 ∈ k[z]l×m

such that UF = DF1, where D = diag(h, . . . , h, 1, . . . , 1) with det(D) = hr . Therefore, we obtain a matrix 
factorization of F w.r.t. hr , i.e., F = G1F1 with G1 = U−1D. Obviously, G1 is equivalent to D. �
Remark 37. In Theorem 36, the matrix factorization F = G1F1 must satisfy that G1 is equivalent to 
diag(h, . . . , h, 1, . . . , 1). Since there exist many polynomial matrices such that their matrix factoriza-
tions do not satisfy this requirement, the condition “all the (l − r) × (l − r) column reduced minors 
of F( f , z2) generate k[z2]” is only a sufficient condition for the existence of a matrix factorization of 
F ∈M2,r w.r.t. hr , where 2 ≤ r < l.
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Algorithm 1: Factorization algorithm.
Input : F ∈M, h = z1 − f (z2) and a monomial order ≺z2 in k[z2].
Output : a matrix factorization of F w.r.t. hr , where 1 ≤ r ≤ l.

1 begin
2 compute the rank l − r of F( f , z2);
3 if r = l then
4 extract h from each row of F and obtain F1, i.e., F = diag(h, . . . , h) · F1;
5 return diag(h, . . . , h) and F1.

6 compute a reduced Gröbner basis G of all the (l − r) × (l − r) column reduced minors of F( f , z2) w.r.t. ≺z2 ;
7 if G 
= {1} then
8 if r = 1 then
9 return F has no matrix factorization w.r.t. h.

10 else
11 return unable to judge.

12 compute a ZLP matrix H ∈ k[z2]r×l such that HF( f , z2) = 0r×m;

13 construct a unimodular matrix U ∈ k[z2]l×l such that H is its first r rows;

14 compute F1 ∈ k[z]l×m such that UF = diag(h, . . . , h, 1, . . . , 1) · F1;
15 return U−1 · diag(h, . . . , h, 1, . . . , 1) and F1.

Theorem 38. Let F ∈M2,l , then h is a common divisor of all entries in F. We can extract h from each row of F
and obtain a matrix factorization of F w.r.t. hl .

Let k[z̄i] = k[z1, . . . , zi−1, zi+1, . . . , zn] and hi = zi − f (z̄i), where f (z̄i) ∈ k[z̄i] and 1 ≤ i ≤ n. We 
construct the following sets of polynomial matrices:

M(i,r) = {F ∈ k[z]l×m : hi | dl−r+1(F) but hi � dl−r(F)}, r = 1, . . . , l.

Then, we can get the following corollary.

Corollary 39. Let F ∈M(i,r) , where 1 ≤ i ≤ n and 1 ≤ r ≤ l. If all the (l − r) × (l − r) column reduced minors 
of F(z1, . . . , zi−1, f , zi+1, . . . , zn) generate k[z̄i], then F admits a matrix factorization w.r.t. hr

i .

6. Factorization algorithm and uniqueness of factorizations

In this section, we first propose an algorithm to factorize F ∈ M w.r.t. hr , where 1 ≤ r ≤ l. And 
then, we study the uniqueness of matrix factorizations by the algorithm.

6.1. Factorization algorithm

According to Theorem 24, Theorem 36 and Theorem 38, we construct an algorithm to factorize 
polynomial matrices in M.

Theorem 40. Algorithm 1 is correct.

Proof. The proof follows directly from Theorem 24, Theorem 36, Remark 37 and Theorem 38. �
Before proceeding further, let us remark on Algorithm 1.

• It follows from G 
= {1} in Step 7 that all the (l − r) × (l − r) column reduced minors of F( f , z2)

do not generate k[z2].
• Under the assumption that G 
= {1} and r = 1, the algorithm in Step 9 returns that “F has no 

matrix factorization w.r.t. h” by Theorem 24. When G 
= {1} and 1 < r < l, the algorithm in Step 
11 returns that “unable to judge” by Remark 37.
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• We explain how to calculate a ZLP matrix H in Step 12. We first compute a Gröbner basis G∗ of 
the syzygy module of F( f , z2). As rank(F( f , z2)) = l −r, we can select r k[z2]-linearly independent 
vectors from G∗ and form H0 ∈ k[z2]r×l with full row rank. According to Lemma 2, all the r × r
reduced minors of H0 generate k[z2]. Then, H0 has a ZLP matrix factorization by Lemma 17. 
Hence, we second use the Maple package QUILLENSUSLIN to compute a ZLP matrix factorization 
of H0 and obtain a ZLP matrix H.

• In Step 13 we use QUILLENSUSLIN again to construct a unimodular matrix. Since QUILLENSUSLIN 
is a Maple package, we implement the factorization algorithm on Maple. Codes and examples are 
available on the website: http://www.mmrc .iss .ac .cn /~dwang /software .html.

6.2. Uniqueness of matrix factorizations

Liu and Wang (2015) studied the uniqueness problem of polynomial matrix factorizations. They 
pointed out that for a non-regular divisor h0 of F ∈ k[z]l×m , under the condition that there exists a 
matrix factorization F = G1F1 with det(G1) = h0, Im(F1) is not uniquely determined. In other words, 
when F = G1F1 = G2F2 with det(G1) = det(G2) = h0, Im(F1) and Im(F2) might not be the same.

Let F ∈ M. Suppose h = z1 − f (z2) and ≺z2 are given. We use Algorithm 1 to factorize F w.r.t. 
hr , where 1 ≤ r ≤ l. Assume that all the (l − r) × (l − r) column reduced minors of F( f , z2) generate 
k[z2], then we need to compute a ZLP matrix and construct a unimodular matrix. Due to the different 
choices of a ZLP matrix and a unimodular matrix, we will get different matrix factorizations of F w.r.t. 
hr . Hence, in the following we study the uniqueness of matrix factorizations by Algorithm 1.

Theorem 41. Let F ∈M satisfy F = U−1
1 DF1 = U−1

2 DF2 , where U1, U2 ∈ k[z2]l×l are two unimodular matri-
ces, and D = diag(h, . . . ,h︸ ︷︷ ︸

r

, 1, . . . ,1︸ ︷︷ ︸
l−r

). Then, Im(F1) = Im(F2).

Proof. Let F1 = [ �uT
1, . . . , �uT

l

]T
and F2 = [ �vT

1, . . . , �vT
l

]T
, where �u1, . . ., �ul, �v1, . . . , �vl ∈ k[z]1×m . So, 

Im(F1) = 〈�u1, . . . , �ul〉 and Im(F2) = 〈�v1, . . . , �vl〉.
Let F01 = U1F and F02 = U2F. Then F01 = DF1 and F02 = DF2. It follows that F01 = [

h�uT
1, . . . , h�uT

r ,

�uT
r+1, . . . , �uT

l

]T
and F02 = [

h�vT
1, . . . ,h�vT

r , �vT
r+1, . . . , �vT

l

]T
. Since U1 and U2 are two unimodular matrices 

in k[z2]l×l , we have F01 = U1U−1
2 F02. This implies that there exist polynomials ai1, . . . , ail ∈ k[z2] such 

that

h�ui = h · (
r∑

j=1

aij �v j) +
l∑

j=r+1

aij �v j,

where i = 1, . . . , r. Then, for each i setting z1 of the above equation to f (z2), we have

ai(r+1)�vr+1( f , z2) + · · · + ail �vl( f , z2) = �0.

As rank(F( f , z2)) = l − r and rank(F02( f , z2)) = rank(F( f , z2)), we have that �vr+1( f , z2), . . ., �vl( f , z2)

are k[z2]-linearly independent. This implies that ai(r+1) = · · · = ail = 0. Hence,

�ui = ai1�v1 + · · · + air �vr,

where i = 1, . . . , r. Obviously, �u j is a k[z]-linear combination of �v1, . . . , �vl , where j = r + 1, . . . , l. As 
a consequence, 〈�u1, . . . , �ul〉 ⊂ 〈�v1, . . . , �vl〉. We can use the same method to prove that 〈�v1, . . . , �vl〉 ⊂
〈�u1, . . . , �ul〉.

Therefore, we have Im(F1) = Im(F2). �
Based on Theorem 41, we can now derive the conclusion: the output F1 of Algorithm 1 is unique, 

i.e., Im(F1) is uniquely determined.
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7. Examples

We use two examples to illustrate the calculation process of Algorithm 1. We first return to Exam-
ple 12.

Example 42. Let

F =
[−2z1z2

2 + z2
1z3 + z2

2z3 − z1z2
3 + z2z2

3 z3
1 − z3

2 − z2
1z3 + z2z2

3 z1z2 − z2z3 z2
2−z1z2 + z2

3 −z2
2 + z1z3 0 z2

]

be a polynomial matrix in C[z1, z2, z3]2×4.
It is easy to compute that d2(F) = z2(z1 − z3) and d1(F) = 1. Let F, h = z1 − z3 and ≺z2,z3 be the 

input of Algorithm 1, where ≺z2,z3 is the degree reverse lexicographic order.
Note that

F(z3, z2, z3) =
[−z2

2z3 + z2z2
3 −z3

2 + z2z2
3 0 z2

2−z2z3 + z2
3 −z2

2 + z2
3 0 z2

]
,

rank(F(z3, z2, z3)) = 1 and r = 1. All the 1 × 1 column reduced minors of F(z3, z2, z3) are z2, 1. Since 
the reduced Gröbner basis of 〈z2, 1〉 w.r.t. ≺z2,z3 is {1}, F has a matrix factorization w.r.t. h.

Let W = Im(F(z3, z2, z3)). Then we compute a reduced Gröbner basis of the syzygy module of W , 
and obtain

H = [
1 −z2

]
.

It is easy to check that H is a ZLP matrix. H can be extended as the first row of a unimodular matrix

U =
[

1 −z2
0 1

]

by using the package QUILLENSUSLIN. We extract h from the first row of UF, and get

UF = DF1 =
[

z1 − z3 0
0 1

][
z1z3 − z2

2 z2
1 − z2z3 z2 0

−z1z2 + z2
3 −z2

2 + z1z3 0 z2

]
.

Then, F has a matrix factorization w.r.t. h:

F = G1F1 = (U−1D)F1 =
[

z1 − z3 z2
0 1

][
z1z3 − z2

2 z2
1 − z2z3 z2 0

−z1z2 + z2
3 −z2

2 + z1z3 0 z2

]
,

where det(G1) = det(U−1D) = h.
At this moment, d2(F1) = z2. We reuse Algorithm 1 to judge whether F1 has a matrix factorization 

w.r.t. z2. Note that

F1(z1,0, z3) =
[

z1z3 z2
1 0 0

z2
3 z1z3 0 0

]
,

rank(F1(z1, 0, z3)) = 1 and r = 1. All the 1 × 1 column reduced minors of F1(z1, 0, z3) are z1, z3, 
and the reduced Gröbner basis G of 〈z1, z3〉 is {z1, z3}. Since G 
= {1} and r = 1, F1 has no matrix 
factorization w.r.t. z2.

Remark 43. In Example 42, we can first judge whether F has a matrix factorization w.r.t. z2. Note that

F(z1,0, z3) =
[

z1z3(z1 − z3) z2
1(z1 − z3) 0 0

z2
3 z1z3 0 0

]
,

rank(F(z1, 0, z3)) = 1 and r = 1. All the 1 ×1 column reduced minors of F(z1, 0, z3) are z1(z1 − z3), z3, 
and do not generate k[z1, z3]. This implies that F has no matrix factorization w.r.t. z2.

According to the above calculations, we have the following conclusion: F has a matrix factorization 
w.r.t. z1 − z3, but does not have a matrix factorization w.r.t. z2.
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Example 44. Let

F =
⎡
⎣ z2

1 − z1z2 z2z3 + z2
3 + z2 + z3 −z2z3 − z2

z1z2 − z2
2 −z1z3 + z2z3 z3

1 − z2
1z2 + z1z2 − z2

2
0 z2 + z3 −z2

⎤
⎦

be a polynomial matrix in C[z1, z2, z3]3×3.
It is easy to compute that d3(F) = −z1(z1 − z2)

2(z2
1z2 + z2

1z3 + z2
2), d2(F) = z1 − z2 and d1(F) = 1. Let 

F, h = z1 − z2 and ≺z2,z3 be the input of Algorithm 1, where ≺z2,z3 is the degree reverse lexicographic 
order.

Note that

F(z2, z2, z3) =
⎡
⎣0 (z2 + z3)(z3 + 1) −z2(z3 + 1)

0 0 0
0 z2 + z3 −z2

⎤
⎦ ,

rank(F(z2, z2, z3)) = 1 and r = 2. Obviously, all the 1 × 1 column reduced minors of F(z2, z2, z3) are 
z3 + 1, 1. Since the reduced Gröbner basis of 〈z3 + 1, 1〉 w.r.t. ≺z2,z3 is {1}, F has a matrix factorization 
w.r.t. h2.

Let W = Im(F(z2, z2, z3)). Then we compute a reduced Gröbner basis of the syzygy module of W , 
and obtain

H =
[

1 0 −z3 − 1
0 1 0

]
.

It is easy to check that the reduced Gröbner basis of all the 2 × 2 minors of H w.r.t. ≺z2,z3 is G = {1}. 
Then, H is a ZLP matrix. We use the package QUILLENSUSLIN to construct a unimodular matrix

U =
⎡
⎣1 0 −z3 − 1

0 1 0
0 0 1

⎤
⎦

such that H is the first 2 rows of U. We extract h from the first 2 rows of UF, and get

UF = DF1 =
⎡
⎣ z1 − z2 0 0

0 z1 − z2 0
0 0 1

⎤
⎦

⎡
⎣ z1 0 0

z2 −z3 z2
1 + z2

0 z2 + z3 −z2

⎤
⎦ .

Then, we obtain a matrix factorization of F w.r.t. h2:

F = G1F1 = (U−1D)F1 =
⎡
⎣ z1 − z2 0 z3 + 1

0 z1 − z2 0
0 0 1

⎤
⎦

⎡
⎣ z1 0 0

z2 −z3 z2
1 + z2

0 z2 + z3 −z2

⎤
⎦ ,

where det(G1) = det(U−1D) = h2.
At this moment, d3(F1) = −z1(z2

1z2 + z2
1z3 + z2

2). We reuse Algorithm 1 to judge whether F1 has a 
matrix factorization w.r.t. z1. Similarly, we obtain

F1 = G2F2 =
⎡
⎣ z1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

z2 −z3 z2
1 + z2

0 z2 + z3 −z2

⎤
⎦ ,

where det(G2) = z1.
Therefore, we obtain a matrix factorization of F w.r.t. z1(z1 − z2)

2, i.e.,

F = GF2 = (G1G2)F2 =
⎡
⎣ z1(z1 − z2) 0 z3 + 1

0 z1 − z2 0
0 0 1

⎤
⎦

⎡
⎣ 1 0 0

z2 −z3 z2
1 + z2

0 z2 + z3 −z2

⎤
⎦ ,

where det(G) = z1(z1 − z2)
2.
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Remark 45. In Example 44, we can first judge whether F has a matrix factorization w.r.t. z1. Note that

F(0, z2, z3) =
⎡
⎣ 0 (z2 + z3)(z3 + 1) −z2(z3 + 1)

−z2
2 z2z3 −z2

2
0 z2 + z3 −z2

⎤
⎦ ,

rank(F(0, z2, z3)) = 2 and r = 1. All the 2 × 2 column reduced minors of F(0, z2, z3) are z3 + 1, 1, and 
generate k[z2, z3]. This implies that F has a matrix factorization w.r.t. z1.

According to the above calculations, we have the following conclusion: F has a matrix factorization 
w.r.t. z1, z1 − z2, z1(z1 − z2), (z1 − z2)

2 and z1(z1 − z2)
2, respectively.

8. Concluding remarks

In this paper, we point out two directions of research in which multivariate polynomial matrices 
have been explored. The first is concerned with the factorization problem for a class of multivari-
ate polynomial matrices, and the second direction is devoted to the investigation of the equivalence 
problem of a square polynomial matrix and a diagonal matrix.

The main contributions of this paper include: 1) some new factorization criteria are given to factor-
ize F ∈ M w.r.t. hr , and the relationships among all existing factorization criteria have been studied; 
2) a necessary and sufficient condition is proposed to judge whether a square polynomial matrix 
with the determinant being hr is equivalent to the diagonal matrix diag(h, . . . , h, 1, . . . , 1); 3) based 
on new criteria, a factorization algorithm is given and the output of the algorithm is proved to be 
unique; 4) the algorithm is implemented on Maple, and two examples are given to illustrate the 
effectiveness of the algorithm.

A sufficient condition is obtained for the existence of a matrix factorization of F w.r.t. hr (1 < r < l). 
At this moment, how to establish a necessary and sufficient condition for F admitting a matrix fac-
torization w.r.t. hr is the question that remains for further investigation.
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