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Abstract A new necessary and sufficient condition for the existence of minor left prime factorizations

of multivariate polynomial matrices without full row rank is presented. The key idea is to establish

a relationship between a matrix and any of its full row rank submatrices. Based on the new result,

the authors propose an algorithm for factorizing matrices and have implemented it on the computer

algebra system Maple. Two examples are given to illustrate the effectiveness of the algorithm, and

experimental data shows that the algorithm is efficient.

Keywords Free modules, Gröbner bases, minor left prime (MLP), multivariate polynomial matrices,

polynomial matrix factorizations.

1 Introduction

Multivariate polynomial matrix factorization is one of the most important operations in
multidimensional systems, signal processing, and other related areas[1, 2]. The factorization
problems of multivariate polynomial matrices have been extensively investigated and numerous
algorithms have been developed to compute factorizations of multivariate polynomial matri-
ces. Since the factorization problems have been solved for univariate and bivariate polynomial
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matrices[3–5], we only consider the case where the number of variables is greater than or equal
to three.

Using three important concepts proposed by Youla and Gnavi[6], there have been many
publications studying matrix factorizations. Lin[7] first proposed the existence problem for zero
prime factorizations of multivariate polynomial matrices. Charoenlarpnopparut and Bose[8]

first used Gröbner bases of modules to compute zero prime matrix factorizations of multivariate
polynomial matrices. After that, Lin, et al.[9] introduced some applications of Gröbner bases
in the broad field of signals and systems. Lin and Bose[10] put forward the famous Lin-Bose
conjecture which was solved in [11, 12]. Wang and Kwong[13] focused on the existence problem
for minor prime factorizations of multivariate polynomial matrices, and gave a necessary and
sufficient condition. Wang[14] designed an algorithm to compute factor prime factorizations of
a class of multivariate polynomial matrices.

In linear algebra as well as multidimensional systems, the factorization problems of multivari-
ate polynomial matrices without full row rank are important and deserve some attention[6, 7].
Up to now, few results have been achieved on factorizations of multivariate polynomial matri-
ces without full row rank[10, 15, 16]. Therefore, this paper focuses on factorization problems of
multivariate polynomial matrices without full row rank. We try to use local properties (i.e.,
the full rank submatrix of a matrix) to study the existence for minor prime factorizations of
multivariate polynomial matrices without full row rank.

The rest of the paper is organized as follows. In Section 2, we introduce some basic concepts
and present the problem that we are considering. In Section 3, we present a new necessary
and sufficient condition for the existence of minor left prime factorizations of multivariate
polynomial matrices without full row rank. In Section 4, we construct an algorithm based
on the new result, and use two examples to illustrate the effectiveness of the algorithm. The
comparative performance of our algorithm and Guan’s algorithm are provided by experimental
data in Section 5. We end with some concluding remarks in Section 6.

2 Preliminaries and Problem

Let n be the number of variables, and z be the n variables z1, · · · , zn. Let k[z] be the
polynomial ring in z over k, where k is a field. Let k[z]l×m denote the set of l × m matrices
with entries in k[z]. Throughout this paper, we assume that l ≤ m. Let F ∈ k[z]l×m with rank
r, we use dr(F ) to denote the greatest common divisor of all the r × r minors of F , and Ir(F )
to represent the ideal generated by all the r × r minors of F , where 1 ≤ r ≤ l. In addition,
we use ρ(F ) and Syz(F ) to denote the submodule (of k[z]1×m) generated by the rows and the
syzygy module of F , respectively. Superscript T denotes transposition.

We first recall the most important concept in the paper.

Definition 2.1 ([6]) Let F ∈ k[z]l×m be of full row rank. Then F is said to be a minor
left prime (MLP) matrix if all the l × l minors of F are relatively prime, that is, dl(F ) is a
nonzero constant.

Let F ∈ k[z]m×l be of full column rank with m ≥ l, an MRP matrix can be similarly
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defined. We refer to [6] for more details about the concepts of zero left prime (ZLP) matrices
and factor left prime (FLP) matrices.

An MLP factorization of a multivariate polynomial matrix is formulated as follows.

Definition 2.2 Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. F is said to admit an
MLP factorization if F can be factorized as

F = G0F0 (1)

such that G0 ∈ k[z]l×r, and F0 ∈ k[z]r×m is an MLP matrix.

When Youla and Gnavi[6] studied the structure of n-dimensional linear systems, they ob-
tained the following MLP factorization lemma by using matrix theory.

Lemma 2.3 ([6]) Let

A =

⎡
⎣A11 A12

A21 A22

⎤
⎦ ∈ k[z]l×m

with rank r, where A11 ∈ k[z]r×r with det(A11) �= 0, A12 ∈ k[z]r×(m−r), A21 ∈ k[z](l−r)×r,
A22 ∈ k[z](l−r)×(m−r), and 1 ≤ r ≤ l. If [A11 A12] is an MLP matrix, then A21A

−1
11 is a

multivariate polynomial matrix and A has an MLP factorization

A =

⎡
⎣ Ir×r

A21A
−1
11

⎤
⎦

[
A11 A12

]
. (2)

In order to state conveniently the problem and the main result of this paper, we introduce
the following concepts and conclusions.

Definition 2.4 ([7]) Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. Let a1, · · · , aβ

denote all the r × r minors of F , where β =
(

l
r

) · (m
r

)
. Extracting dr(F ) from a1, · · · , aβ yields

aj = dr(F ) · bj , j = 1, · · · , β. (3)

Then, b1, · · · , bβ are called all the reduced minors of F .

Definition 2.5 ([17]) Let F ∈ k[z]l×m with rank r, and F ∈ k[z]l×r be an arbitrary full
column rank submatrix of F , where 1 ≤ r ≤ l. Let c1, · · · , cξ be all the reduced minors of F ,
where ξ =

(
l
r

)
. Then c1, · · · , cξ are called all the column reduced minors of F .

Definition 2.6 ([18]) Let K be a submodule of k[z]1×m, and J be a nonzero ideal of k[z].
We define

K : J = {�u ∈ k[z]1×m | J�u ⊆ K}, (4)

where J�u is the set {f�u | f ∈ J}.
Obviously, K ⊆ K : J . Let {f1, · · · , fs} ⊂ k[z] be a Gröbner basis of J , then

K : J = K : 〈f1, · · · , fs〉 = (K : f1) ∩ · · · ∩ (K : fs). (5)

Here, we write K : 〈f〉 as K : f for any f ∈ k[z].
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Let F ∈ k[z]l×m with rank r, and f ∈ k[z] be a nonzero polynomial, where 1 ≤ r ≤ l.
Wang and Kwong[13] proved that there is a one-to-one correspondence between the two modules:
ρ(F ) : f and Syz([F T,−f ·Im×m]T). That is, we compute a Gröbner basis {[�g1, �f1], · · · , [�gs, �fs]}
of Syz([F T,−f · Im×m]T), then {�f1, · · · , �fs} is a system of generators of ρ(F ) : f , where
[�gi, �fi] ∈ k[z]1×(l+m) and i = 1, · · · , s. Suppose F ′ ∈ k[z]s×m is composed of {�f1, · · · , �fs}. Lu
et al.[17] proved that ρ(F ) : f is a free module of rank r if and only if all the column reduced
minors of F ′ generate the unit ideal k[z].

Wang and Kwong[13] proposed a necessary and sufficient condition for MLP factorizations
of multivariate polynomial matrices with full row rank.

Lemma 2.7 ([13]) Let F ∈ k[z]l×m be of full row rank. Then the following are equivalent:
1) F has an MLP factorization;
2) ρ(F ) : dl(F ) is a free module of rank l.

Guan, et al.[16] generalized Lemma 2.7 to the case of multivariate polynomial matrices
without full row rank.

Lemma 2.8 ([16]) Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. Then the following are
equivalent:

1) F has an MLP factorization;
2) ρ(F ) : Ir(F ) is a free module of rank r.

Remark 2.9 Although Lemma 2.8 is different from Lemma 2.7 for the case of r = l,
Guan, et al.[16] have proven that ρ(F ) : Il(F ) = ρ(F ) : dl(F ).

Let a1, · · · , aβ ∈ k[z] be all the r × r minors of F , then Ir(F ) = 〈a1, · · · , aβ〉, where
β =

(
l
r

) · (m
r

)
. From Equation (5) we have

ρ(F ) : Ir(F ) = (ρ(F ) : a1) ∩ · · · ∩ (ρ(F ) : aβ). (6)

When we verify whether ρ(F ) : Ir(F ) is a free module of rank r, we need to do the following
calculation. First, we compute a Gröbner basis {a1, · · · , aγ} of Ir(F ), where γ ≤ β. Then,

ρ(F ) : Ir(F ) = (ρ(F ) : a1) ∩ · · · ∩ (ρ(F ) : aγ). (7)

Second, we obtain a system Gi of generators of ρ(F ) : ai by computing a Gröbner basis of
Syz([F T,−ai·Im×m]T), where i = 1, · · · , γ. Third, we compute a Gröbner basis G of G1∩· · ·∩Gγ .
Finally, we compute a Gröbner basis G of the ideal generated by all the column reduced minors
of the matrix that is composed of the elements in G. If G = {1}, then ρ(F ) : Ir(F ) is a free
module of rank r; otherwise not.

The classical method to compute a Gröbner basis of the intersection of modules is to in-
troduce new variables. Given that the complexity of Gröbner basis computations is heavily
influenced by the number of variables and the total degrees of polynomials[19, 20], it can be seen
that the calculation amount of ρ(F ) : Ir(F ) is very large. Therefore, we consider the following
problem.

Problem 2.10 Is there a simpler condition that can replace ρ(F ) : Ir(F ) in Lemma 2.8?
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3 Necessary and Sufficient Condition

Let F ∈ k[z]l×m with rank r, where 1 ≤ r ≤ l. We use Lemma 2.3 to establish a relationship
between F and an arbitrary full row rank submatrix of F , and then solve Problem 2.10.

Theorem 3.1 Let F ∈ k[z]l×m with rank r, and F1 ∈ k[z]r×m be an arbitrary full row
rank submatrix of F , where 1 ≤ r ≤ l. Then the following are equivalent:

1) F has an MLP factorization;
2) ρ(F1) : dr(F1) is a free module of rank r.

Proof 1) → 2). Suppose F has an MLP factorization. Then there exist G0 ∈ k[z]l×r and
F0 ∈ k[z]r×m such that F = G0F0 with F0 being an MLP matrix. Without loss of generality,
we assume that the first r rows of F are k[z]-linearly independent. Let F1 ∈ k[z]r×m be
composed of the first r rows of F , then

F =

⎡
⎣F1

C

⎤
⎦ =

⎡
⎣G01

G02

⎤
⎦F0, (8)

where G01 ∈ k[z]r×r is the first r rows of G0. From Equation (8) we have

F1 = G01F0. (9)

According to Lemma 2.7, ρ(F1) : dr(F1) is a free module of rank r.
2) → 1). Assume that ρ(F1) : dr(F1) is a free module of rank r. Using Lemma 2.7, there

exist G11 ∈ k[z]r×r and F11 ∈ k[z]r×m such that F1 = G11F11 with F11 being an MLP matrix.
Since F1 is an arbitrary r×m submatrix of F , there exists an elementary transformation matrix
U ∈ kl×l such that F1 is the first r rows of F , where F = UF . Let F = [F T

1 CT]T, where
C ∈ k[z](l−r)×m is the last (l − r) rows of F . Then,

F = UF =

⎡
⎣F1

C

⎤
⎦ =

⎡
⎣G11F11

C

⎤
⎦ =

⎡
⎣ G11 0r×(l−r)

0(l−r)×r I(l−r)×(l−r)

⎤
⎦

⎡
⎣F11

C

⎤
⎦ . (10)

Because F11 ∈ k[z]r×m is a full row rank matrix, there exists another elementary transformation
matrix V ∈ km×m such that the first r columns of F 11 are k[z]-linearly independent, where
F 11 = F11V . It follows from det(V ) = ±1 that F 11V

−1 = F11. According to the Binet-
Cauchy formula, we obtain dr(F 11) | dr(F11). This implies that dr(F 11) is a nonzero constant.
Therefore, F 11 is an MLP matrix. Suppose that

⎡
⎣F11

C

⎤
⎦V =

⎡
⎣A11 A12

A21 A22

⎤
⎦ , (11)

where A11 ∈ k[z]r×r, A12 ∈ k[z]r×(m−r), A21 ∈ k[z](l−r)×r, and A22 ∈ k[z](l−r)×(m−r). Then,
det(A11) �= 0 and [A11 A12] is an MLP matrix. By Lemma 2.3, we get

⎡
⎣F11

C

⎤
⎦V =

⎡
⎣ Ir×r

A21A
−1
11

⎤
⎦

[
A11 A12

]
=

⎡
⎣ Ir×r

A21A
−1
11

⎤
⎦F 11. (12)
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Combining Equation (10) and Equation (12), we have

UFV =

⎡
⎣ G11 0r×(l−r)

0(l−r)×r I(l−r)×(l−r)

⎤
⎦

⎡
⎣ Ir×r

A21A
−1
11

⎤
⎦F 11 =

⎡
⎣ G11

A21A
−1
11

⎤
⎦F 11. (13)

As U and V are two elementary transformation matrices, from Equation (13) we can derive

F = U−1

⎡
⎣ G11

A21A
−1
11

⎤
⎦F 11V

−1 = U−1

⎡
⎣ G11

A21A
−1
11

⎤
⎦ F11. (14)

Let

G0 = U−1

⎡
⎣ G11

A21A
−1
11

⎤
⎦

and F0 = F11, then F = G0F0. Thus, F has an MLP factorization, and the proof is completed.

Remark 3.2 Theorem 3.1 is the same as Lemma 2.7 for the case of r = l.

4 Algorithm and Examples

Let F ∈ k[z]l×m with rank r, and F1 ∈ k[z]r×m be an arbitrary full row rank submatrix of
F , where 1 ≤ r ≤ l. Suppose ρ(F1) : dr(F1) is a free module of rank r, then F has an MLP
factorization. Now, we need to design an algorithm to compute F0 ∈ k[z]r×m and G0 ∈ k[z]l×r

such that F = G0F0 with F0 being an MLP matrix.
Computing free bases of free modules is a crucial step in the process of matrix factorizations.

Fabiańska and Quadrat[21] first designed a Maple package, which is called QUILLENSUSLIN,
to compute free bases of free modules. Thus, we can use the QUILLENSUSLIN to compute
a free basis of ρ(F1) : dr(F1) and then form F0 by this free basis. As F0 is a full row rank
matrix, we compute the generalized right inverse F−1

0 ∈ k(z)m×r of F0 over k(z) such that
F0F

−1
0 = Ir×r. Since we ensure that there is a unique solution to the equation F = G0F0, we

get G0 = FF−1
0 .

Now, we can propose the following constructive algorithm to compute MLP factorizations
of polynomial matrices without full row rank.

From Algorithm 1 we have ρ(F ′
1) = ρ(F1) : dr(F1) in Step 5. Moreover, G �= {1} in Step 6

implies that ρ(F1) : dr(F1) is not a free module of rank r. If s = r in Step 5, then F ′
1 is a full

row rank matrix. It follows that ρ(F1) : dr(F1) is a free module of rank r and the rows of F ′
1

constitute a free basis of ρ(F1) : dr(F1). In this case, we do not need to compute the Gröbner
basis G and perform the calculation from Step 10.

We use the two examples in [16] to illustrate the calculation process of Algorithm 1.
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Algorithm 1: MLP factorization

Input: F ∈ k[z]l×m.
Output: An MLP factorization of F .
compute the rank r of F ;1

perform elementary row transformations on F , such that the first r rows of F are2

k[z]-linearly independent, where F = UF and U ∈ kl×l is an elementary transformation
matrix;
compute dr(F1), where F1 is composed of the first r rows of F ;3

compute a Gröbner basis {[�g1, �f1], · · · , [�gs, �fs]} of Syz([F T
1 ,−dr(F1) · Im×m]T);4

compute a Gröbner basis G of the ideal generated by all the column reduced minors of5

F ′
1 ∈ k[z]s×m, where F ′

1 is composed of {�f1, · · · , �fs};
if G �= {1} then6

return F has no MLP factorizations.7

end8

use the QUILLENSUSLIN to compute a free basis of ρ(F ′
1) and use it to make up9

F0 ∈ k[z]r×m;
compute the right inverse F−1

0 of F0, and let G0 := U−1FF−1
0 ;10

return F0 and G0.11

Example 4.1 Let

F =

⎡
⎢⎢⎣

z2
1z2 + z2

1 z1 0

z1z
2
3 − z1z3 0 z2z3 − z2 + z3 − 1

2z2
1z2z3 − z2

1z2 + z2
1z3 − z2

1 z1z3 − z1 z1z
2
2 + z1z2

⎤
⎥⎥⎦

be a multivariate polynomial matrix in C[z1, z2, z3]3×3, where z1 > z2 > z3 and C is the complex
field.

It is easy to see that the rank of F is 2, and the first 2 rows of F are C[z1, z2, z3]-linearly
independent. Let F1 ∈ C[z1, z2, z3]2×3 be composed of the first 2 rows of F , then d2(F1) =
z1z3 − z1. We compute a Gröbner basis of Syz([F T

1 ,−d2(F1) · I3×3]T) and obtain

{[0, z1, z1z3, 0, z2 + 1], [z3 − 1, 0, z1z2 + z1, 1, 0]}.

Now, we get a system of generators of ρ(F1) : d2(F1) as follows

{[z1z3, 0, z2 + 1], [z1z2 + z1, 1, 0]}.

Let

F ′
1 =

⎡
⎣ z1z3 0 z2 + 1

z1z2 + z1 1 0

⎤
⎦ .

Since rank(F ′
1) = 2, F ′

1 is a full row rank matrix. Then, ρ(F1) : d2(F1) is a free module of
rank 2, and the rows of F ′

1 constitute a free basis of ρ(F1) : d2(F1). Let F0 = F ′
1, we compute
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the generalized right inverse F−1
0 of F0 and get

G0 = FF−1
0 =

⎡
⎢⎢⎣

0 z1

z3 − 1 0

z1z2 z1z3 − z1

⎤
⎥⎥⎦ .

Therefore, F has an MLP factorization:

F = G0F0 =

⎡
⎢⎢⎣

0 z1

z3 − 1 0

z1z2 z1z3 − z1

⎤
⎥⎥⎦

⎡
⎣ z1z3 0 z2 + 1

z1z2 + z1 1 0

⎤
⎦ .

Example 4.2 Let

F =

⎡
⎢⎢⎣
z1z2 + z1 − z2 − 1 0 z3

z2 + 1 z2 + 1 z1 − 1

z1z2 + z1 z2 + 1 z1 + z3 − 1

⎤
⎥⎥⎦

be a multivariate polynomial matrix in C[z1, z2, z3]3×3, where z1 > z2 > z3 and C is the complex
field.

It is easy to see that the rank of F is 2, and the first 2 rows of F are C[z1, z2, z3]-linearly
independent. Let F1 ∈ C[z1, z2, z3]2×3 be composed of the first 2 rows of F , then d2(F1) = z2+1.
We compute a Gröbner basis of Syz([F T

1 ,−d2(F1) · I3×3]T) and obtain a system of generators
of ρ(F1) : d2(F1) as follows

{[z2 + 1, z2 + 1, z1 − 1], [z1z2 + z1 − z2 − 1, 0, z3], [z2
1 − 2z1 − z3 + 1, − z3, 0]}.

Let

F ′
1 =

⎡
⎢⎢⎣

z2 + 1 z2 + 1 z1 − 1

z1z2 + z1 − z2 − 1 0 z3

z2
1 − 2z1 − z3 + 1 −z3 0

⎤
⎥⎥⎦ ,

then all the column reduced minors of F ′
1 are z2 + 1, z1 − 1, z3. It is easy to compute that the

Gröbner basis of 〈z1 − 1, z2 + 1, z3〉 is {z1 − 1, z2 + 1, z3}. This implies that ρ(F1) : d2(F1) is
not a free module of rank 2. Then, F has no MLP factorizations.

5 Comparative Performance

The above two examples show that the calculation by Algorithm 1 is simpler than that by
the algorithm, which is called Guan’s algorithm, proposed in [16]. To illustrate the advantages
of our algorithm, we first compare the main differences between the two algorithms.

The symbols in Table 1 are the same as those in Lemma 2.8 and Theorem 3.1. From Table 1,
we can get the following preliminary conclusions: First, the calculation of the quotient module
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of Algorithm 1 is faster than that of Guan’s algorithm in almost all cases (Please see Section
2 for specific reasons); second, Guan, et al.[16] used the traditional method to verify whether a
module is a free module, that is, they need to compute the r-th Fitting ideal (Please refer to
[22, 23] for the specific calculation method) of a system of generators of ρ(F ) : Ir(F ) which is
more time-consuming than the method by calculating the column reduced minors of a system
of generators of ρ(F1) : dr(F1) to judge whether a module is a free module.

Table 1 The comparison of two MLP factorization algorithms

Main step Guan’s algorithm Algorithm 1

Quotient module ρ(F ) : Ir(F ) ρ(F1) : dr(F1)

Verification method of free modules Fitting ideals Column reduced minors

Next, we will show from some specific experimental data that Algorithm 1 is more efficient
than Guan’s algorithm. The two algorithms have been implemented by us on the computer
algebra system Maple. The implementations of the two algorithms have been tried on a number
of examples including the two examples in Section 4. Please see the Appendix for all examples.
For interested readers, more comparative examples can be generated by the codes at: http:

//www.mmrc.iss.ac.cn/~dwang/software.html.
In Table 2, timings were obtained on an Intel(R) Xeon(R) CPU E7-4809 v2 @ 1.90GHz and

756GB of RAM, and each time is an average of 100 repetitions of the corresponding algorithm.
As is evident from Table 2, our algorithm performs better than Guan’s algorithm, especially
when the size of entries in matrices becomes larger and larger.

Table 2 Comparative performance of MLP factorization algorithms

Example
Guan’s algorithm

t1 (sec)

Algorithm 1

t2 (sec)

Time comparison

t1/t2

F1 0.257 0.037 6.95

F2 0.263 0.044 5.98

F3 0.132 0.058 2.28

F4 0.407 0.063 6.46

F5 3.060 0.151 20.26

F6 4.275 0.283 15.11

F7 9.037 0.330 27.38

F8 17.306 0.549 31.52
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6 Concluding Remarks

In this paper, we have given a new necessary and sufficient condition for the existence of
MLP factorizations of multivariate polynomial matrices. All cases with matrices being full row
rank and non-full row rank are considered. Based on the new result, a constructive algorithm
for computing MLP factorizations has been proposed. We have implemented Algorithm 1 and
Guan’s algorithm on Maple, and the experimental data in Table 2 suggests that Algorithm 1 is
superior in practice in comparison with Guan’s algorithm. This is due to the fact that we can
determine whether a multivariate polynomial matrix has an MLP factorization through less
calculations.
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Appendix

For all examples in Table 2, the monomial orders used on k[z] and k[z]1×m are degree
reverse lexicographic order and position over term, respectively. k is the complex field C, and
z1 > z2 > z3.

1) F1 ∈ C[z1, z2, z3]3×3 is as follows, and it has no MLP factorizations.

F1 =

⎡
⎢⎢⎣
z1z2 + z1 − z2 − 1 0 z3

z2 + 1 z2 + 1 z1 − 1

z1z2 + z1 z2 + 1 z1 + z3 − 1

⎤
⎥⎥⎦ .

2) F2 ∈ C[z1, z2, z3]3×3 is as follows, and it has no MLP factorizations.

F2 =

⎡
⎢⎢⎣

z1z2 − z2 0 z3 + 1

0 z1z2 − z2 z2
1 − 2z1 + 1

z2
1z2 − z1z2 z1z

2
2 − z2

2 z2
1z2 − 2z1z2 + z1z3 + z1 + z2

⎤
⎥⎥⎦ .
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3) F3 ∈ C[z1, z2, z3]3×3 is as follows, and it has an MLP factorization.

F3 =

⎡
⎢⎢⎣

z1z
2
2 z1z

2
3 z2

2z3 + z3
3

z1z2 0 z2z3

0 z2
1z3 z1z

2
3

⎤
⎥⎥⎦ .

4) F4 ∈ C[z1, z2, z3]3×3 is as follows, and it has an MLP factorization.

F4 =

⎡
⎢⎢⎣

z2
1z2 + z2

1 z1 0

z1z
2
3 − z1z3 0 z2z3 − z2 + z3 − 1

2z2
1z2z3 − z2

1z2 + z2
1z3 − z2

1 z1z3 − z1 z1z
2
2 + z1z2

⎤
⎥⎥⎦ .

5) F5 ∈ C[z1, z2, z3]3×3 is as follows, and it has an MLP factorization.

F5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F5[1, 1] = z2
1 − z1, F5[1, 2] = −z2z3 + z1 − z3, F5[1, 3] = z1z3 − 2z1 − z3,

F5[2, 1] = z3
1z2z3 − z3

1z3 − z2
1z2z3 − z2

1z2 + 2z2
1z3 + z2

1 + z1z2 − z1z3 − z1,

F5[2, 2] = −z2
1z2

2z3 − z1z
2
2z2

3 − z2
1z2z3 − z1z2z

2
3 + z1z

2
2 − 2z2

1z3

+ z2
2z3 − z2z

2
3 + z1z2 + z1z3 + z2z3 − z2

3 + 2z1,

F5[2, 3] = z2
1z2z

2
3 − 3z2

1z2z3 − z2
1z2

3 − z1z2z
2
3 + z2

1z3 − z1z2z3

+ z1z
2
3 + 3z1z2 − z1z3 + z2z3 − z2

3 − z1,

F5[3, 1] = z2
1z3

2 − z2
1z2

2 − z1z
3
2 + z1z

2
2 + z1z2 − z2,

F5[3, 2] = −z1z
4
2 − z4

2z3 − z1z
3
2 − z3

2z3 − 2z1z
2
2 + z3

2 + 2z2
2 + 2z2,

F5[3, 3] = z1z
3
2z3 − 3z1z

3
2 − z1z

2
2z3 − z3

2z3 + z1z
2
2 + z2

2 + z2z3 − z2.

6) F6 ∈ C[z1, z2, z3]3×3 is as follows, and it has an MLP factorization.

F6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F6[1, 1] = z3
1z2

2 + 2z3
1z2 + z3

1 − z1z
2
2 − z1z2z3 − z1z2 − z1z3

+ z2z3 − z2 + z3 − 1,

F6[1, 2] = −z1z
3
2z3 + z2

1z2
2 − 3z1z

2
2z3 − 2z3

2z3 + 2z2
1z2 + z1z

2
2

+ z3
2 − 3z1z2z3 − 6z2

2z3 + z2
1 + 2z1z2 + 3z2

2 − z1z3

− 7z2z3 + z1 + 4z2 − 3z3 + 2,

F6[1, 3] = z2
1z2

2z3 − 2z2
1z2

2 + 2z2
1z2z3 − 4z2

1z2 − 2z1z
2
2 + z2

1z3 − 2z2
2z3

− z2z
2
3 − 2z2

1 − 4z1z2 + z2
2 − z2z3 − z2

3 − 2z1 + z3 − 1,

F6[2, 1] = z2
1z3 − z2

1 + 2z1z2 − z1z3 − 2z2 + 1,

F6[2, 2] = z1z
2
2 + 2z3

2 − z2z
2
3 + 2z1z2 + 3z2

2 + z1z3 + 2z2z3

− z2
3 + 2z2 + 2z3 − 2,

F6[2, 3] = z1z
2
3 + z1z2 + 2z2

2 − 3z1z3 + 2z2z3 − z2
3 + 3z1 − 3z2 + z3 + 1,

F6[3, 1] = z2
1z2z3 + z2

1z2 + 2z2
1z3 − z1z2z3 + 2z2

1 − z1z2 − 2z1z3 − 2z1,

F6[3, 2] = −z2
2z2

3 + z1z2z3 − z2
2z3 − 3z2z

2
3 + z1z2 + 2z1z3

− 3z2z3 − 2z2
3 + 2z1 − 2z3,

F6[3, 3] = z1z2z
2
3 − z1z2z3 + 2z1z

2
3 − z2z

2
3 − 2z1z2 − 2z1z3

− z2z3 − 2z2
3 − 4z1 − 2z3.
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7) F7 ∈ C[z1, z2, z3]3×4 is as follows, and it has an MLP factorization.

F7

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F7[1, 1] = 2z3
1z3

2z2
3 − z3

1z3
2z3 + 2z4

1z3
3 − z4

1z2
3 + z3

1z2z2
3 + z3

1z3
3

+ 3z1z3
2z3 + 2z3

1z2
3 + z1z2

2z2
3 + 2z1z2

2z3 + 4z2
1z2

3

− z2
1z3 + z1z2z3 + z1z2

3 + 2z1z3 + 2z3,

F7[1, 2] = 2z1z3
2z2

3 − z1z3
2z3 + 2z2

1z3
3 − z2

1z2
3 + 2z2

3 − z3,

F7[1, 3] = z3
1z2

3 + z1z2
2z3 + z1z3,

F7[1, 4] = 2z1z3
2z2

3 + z3
1z3

3 − z1z3
2z3 + z1z2

2z2
3 + 2z2

1z3
3

− z2
1z2

3 + z1z2
3 + 2z2

3 − z3,

F7[2, 1] = −2z2
1z2

3 + z2
1z3 − z1z2z3 − z1z2

3 − 2z1z3 − 2z3,

F7[2, 2] = −2z2
3 + z3, F7[2, 3] = −z1z3,

F7[2, 4] = −z1z2
3 − 2z2

3 + z3,

F7[3, 1] = −2z4
1z3

2z3 + z4
1z3

2 − 2z5
1z2

3 + z5
1z3 − z4

1z2z3 − z4
1z2

3

− 3z2
1z3

2 − 2z4
1z3 − z2

1z2
2z3 − 2z2

1z2
2 − 4z3

1z3 − 2z2
1z2z3

+ z3
1 − z2

1z3 − 2z2
1 − 2z1 − 3z2 − z3 − 2,

F7[3, 2] = −2z2
1z3

2z3 + z2
1z3

2 − 2z3
1z2

3 + z3
1z3

− 2z1z3 − 2z2z3 + z1 + z2,

F7[3, 3] = −z4
1z3 − z2

1z2
2 − z2

1 − 1,

F7[3, 4] = −2z2
1z3

2z3 − z4
1z2

3 + z2
1z3

2 − z2
1z2

2z3 − 2z3
1z2

3 + z3
1z3

− z2
1z3 − 2z1z3 − 2z2z3 + z1 + z2 − z3.

8) F8 ∈ C[z1, z2, z3]3×3 is as follows, and it has an MLP factorization.

F8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F8[1, 1] = z3
1z2

3 − z3
1z3 + z2

1z2z3 − z2
1z2

3 + z2z3
3 + z4

3 − z2
1z2

− z1z2z3 − z2z2
3 − 2z3

3 + z2
1 + z1z2 + z1z3 + z2z3

+ 2z2
3 − z1 − z2 − 2z3 + 1,

F8[1, 2] = z4
1z2z3 + z3

1z2
2 − z3

1z2z3 + z1z2
2z2

3 + z1z2z3
3 − z3

1z2 − z2
1z2

2

+ z3
1z3 − z1z2z2

3 + 2z2
1z2 + z1z2

2 − z2
1z3 + z1z2z3 + z2z2

3

+ z3
3 − z2

1 − 2z1z2 − z2
3 + z1 + z2 + z3 − 1,

F8[1, 3] = 2z3
1z2 − z3

1 − 2z2
1z2 + z2

2z3 + z2z2
3 + z2

1

+ z1z2 + z1z3 − z2z3 − z1,

F8[2, 1] = −z1z2z3
3 + z2

1z2
3 + z1z2z2

3 − z2
2z2

3 − z2
1z3 + z1z2z3 + z2

2z3

− z3
3 − z1z2 + 2z2

3 − 2z3 + 1,

F8[2, 2] = −z2
1z2

2z2
3 + z3

1z2z3 − z1z3
2z3 + z2

1z2
2 − 2z1z2z2

3 + z2
1z3

+ z1z2z3 − z2
2z3 − z2

3 + z3 − 1,

F8[2, 3] = −2z1z2
2z3 + 2z2

1z2 + z1z3 − z2z3 − z1,

F8[3, 1] = z1z2
2z2

3 + z1z4
3 − z1z2

2z3 + z3
2z3 + 2z1z2z2

3 − 3z1z3
3

− z4
3 − z3

2 − 2z1z2z3 + z2
2z3 + 5z1z2

3 + z3
3 − z2

2

− 5z1z3 − z2
3 + 2z1 − z3 + 2,

F8[3, 2] = z2
1z3

2z3 + z2
1z2z3

3 + z1z4
2 + 2z2

1z2
2z3 − 2z2

1z2z2
3 − z1z2z3

3

+ z1z3
2 + 3z2

1z2z3 + z1z2
2z3 + z1z3

3 − z3
2 + z1z2z3 − 2z1z2

3

− 2z2
1z2 + z3

3 − 2z1z2 + z2
2 + 3z1z3 − 2z1 − z3 − 2,

F8[3, 3] = 2z1z3
2 + z1z2z2

3 + 3z1z2
2 + z2

1z3 − 2z1z2z3

− z2z2
3 − 2z2

1 + 2z1z2 − z1z3 − 2z1.


