
Designs, Codes and Cryptography (2025) 93:2671–2693
https://doi.org/10.1007/s10623-025-01614-y

A new framework for fast homomorphic matrix
multiplication

Xiaopeng Zheng1 · Hongbo Li2,3 · Dingkang Wang2,3

Received: 22 July 2024 / Revised: 7 February 2025 / Accepted: 3 March 2025 /
Published online: 15 March 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Homomorphic encryption (HE) is one of the mainstream cryptographic tools used to enable
secure outsourced computation. A typical task is secure matrix computation, which is a fun-
damental operation used in various outsourced computing applications such as statistical
analysis and machine learning. In this paper, we present a new framework for secure multi-
plication of two matrices with size r × s and s× t respectively, which requires only O(log n)

basic homomorphic operations if rst ≤ n, where n is dimension of the polynomial ring used
in RLWE encryption. Our method was implemented in HElib using the BGV scheme. Exper-
imental results show that the new framework has significant advantage in efficiency when
rst ≤ n. In this case, the new framework is 1.2 to 106.8 times faster than exiting algorithms
in experiments.

Keywords Homomorphic encryption · Outsourced matrix multiplication · Tensor ring ·
Lattice basis and dual basis · Galois automorphism

Mathematics Subject Classification 11T71 · 94A60 · 68P25

1 Introduction

Fully homomorphic encryption (FHE) is a revolutionary cryptographic technique that enables
computations to be performed on encrypted data without the need for decryption. With

Communicated by C. Padro.

B Xiaopeng Zheng
xiaopengzheng@stu.edu.cn

Hongbo Li
hli@mmrc.iss.ac.cn

Dingkang Wang
dwang@mmrc.iss.ac.cn

1 College of Mathematics and Computer Science, Shantou University, Shantou 515821, China

2 State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

3 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-025-01614-y&domain=pdf

2672 X. Zheng et al.

homomorphic encryption, data can be securely outsourced to cloud service providers or
processed by third parties, without compromising confidentiality.

In 2009,Gentry launched a pioneeringwork on fully homomorphic encryption (FHE) [13].
In 2014, Brakerski et al. [2] proposed a more practical homomorphic encryption scheme that
supports finite homomorphic operations without decryption. Since then, extensive research
has been conducted to enhance the efficiency of FHE, such as those in [5, 6, 8, 12, 20, 21].

1.1 Secure non-squarematrix multiplication based on HE

Secure matrix multiplication is a trending research topic due to its importance in secure data
analysis and machine learning (e.g.,[18, 19, 26, 31]).. A naive approach to securely multiply
twomatrices of size r×s and s×t respectively is to use rs+st distinct ciphertexts to represent
these two matrices, which is very inefficient and requires a large amount of communication.
Therefore, more efficient algorithms are proposed later on:

• [17] used a single ciphertext to represent a matrix, and introduced a new approach to
homomorphically compute the multiplication of two matrices A and B with size r × s
and s×s respectively, which requires 3r+5

√
s+log(s/r) homomorphic automorphisms,

r ciphertext-ciphertext multiplications and 3s + 2r plaintext-ciphertext multiplications.
• [15] proposed an algorithm for securematrixmultiplication ofmatrices A and B with size
r × s and s× t . Compared to [17], this algorithm does not require the second matrix to be
square. This new algorithm requires s log(max{s, t})+ s homomorphic automorphisms,
s ciphertext-ciphertext multiplications and s plaintext-ciphertext multiplications.

• Huang et al. [16] proposed amethod of securematrixmultiplication by blockwise extract-
ing the diagonals of one matrix and rotating the other matrix. For large size matrix, this
method is sometimes better than other methods.

• [33] proposed another algorithm similar to that in [15]. Compared to [15], this algorithm
requires less basic homomorphic operations including homomorphic automorphisms,
ciphertext-ciphertext multiplications, and plaintext-ciphertext multiplications.

• Gao et al. [11] presents a novel fully homomorphic encryption scheme called GMS. For
secure outsourced matrix multiplication matrices A and B with size r ×s and s× t , GMS
only requires O(max{m, n, l}) rotations and one homomorphic multiplication.

• Chen et al. [4] introduce a novel matrix encoding method, named bicyclic encoding,
under which they propose two new algorithms BMM-I and BMM-II for encrypted matrix
multiplication.

In Table 1, we summary the time complexity of the existing methods for secure multi-
plication for non-squaure matrices based on Homomorphic Encryption, which is counted by
the number of basic homomorphic operations.

1.2 Our results

The current state-of-the-art HE schemes rely on the hardness of the Learning with Errors
(LWE) problem or it ring variant (RLWE) [24, 27]. In RLWE-based HE schemes, the plain-
text space isRp = Zp[x]/(�m(x)), where �m(x) is the m-th cyclotomic polynomial and p
is prime. Let n = deg(�m(x)). Generally, for security reasons, it is recommended that the
value of n should not be small. However, when n significantly exceeds the size of matrices,
the existing methods for secure matrix multiplication presented in [15, 16, 33] become inef-
ficient. In this paper, we present a new framework for homomorphic matrix multiplication.

123

A new framework for fast homomorphic matrix multiplication 2673

Ta
bl
e
1

N
um

be
r
of

ba
si
c
ho

m
om

or
ph

ic
op

er
at
io
ns

fo
r
m
at
ri
x
m
ul
tip

lic
at
io
n
A

×
B
w
ith

A
∈Z

r×
s

p
an
d
B

∈Z
s×

t
p

M
et
ho

d
C
on

di
tio

ns
C
yc
lo
to
m
ic

#C
M
ul
ta

#A
ut
b

#M
ul
tc

D
ep
th
d

In
de
x
m

[1
7]

r
≤

s
=

t
≤

(n 2
)1 2

2l
3s

+
2r

3r
+

5√ s
+

lo
g(
s/
r)

r
2
C
+
1
M

[1
6]

r
≤

s
=

t
an
d
rs

≤
(n 2

)1 2
2l

5s
3s

+
6s √ r

+
s r

s
2
C
+
1
M

r
=

t
≥

s
an
d
rs

≤
(n 2

)1 2
5r

3r
+

6r √ s
+

r s
r

2
C
+
1
M

[1
5]
g

m
ax

{rs
,
st

,
rt

}≤
n

km
0
m
1

+
1

s
s
lo
g
k 4

+
s

s
1
C
+
1
M

[3
3]
g

m
ax

{rs
,
st

,
rt

}≤
n

km
0
m
1

+
1

2s
4s

+
lo
g

k3 1
k 2
k2 3

k 3
1
C
+
1
M

[4
]h

m
ax

{rs
,
st

,
rt

}≤
n 4

2l
0

2(
s

+
�lo

g
r s
�+

�lo
g

t s
�+

1)
s

1
M

r
·s

·t
≤

n 2
2l

1
�lo

g
r�

+
�lo

g
s�

+
�lo

g
t�

1
1
C
+
1
M

O
ur
si

r
·s

·t
≤

n
m
1
m
2
m
3

0
≤

2
lo
g(

ϕ
(m

2
))

1
1
M

a C
M
ul
t:
pl
ai
nt
ex
t-
ci
ph
er
te
xt

m
ul
tip

lic
at
io
n;

b
A
ut
:h

om
om

or
ph

ic
au
to
m
or
ph

is
m
;

c M
ul
t:
ci
ph
er
te
xt
-c
ip
he
rt
ex
tm

ul
tip

lic
at
io
n;

d
D
ep
th
:m

ul
tip

lic
at
io
n
de
pt
h
re
qu
ir
ed

fo
r
on
e
m
at
ri
x
m
ul
tip

lic
at
on

(s
in
ce

C
M
ul
ta
nd

M
ul
ti
nt
ro
du
ce

th
e
no
is
e
si
gn
ifi
ca
nt
ly

in
H
E
sc
he
m
e,
w
e
on
ly

co
un
tt
he

de
pt
h
of

C
M
ul
ta
nd

M
ul
ts
im

ila
r
to

[1
5–

17
,3

3]
),
w
he
re

C
M
ul
ti
s
de
no

te
d
by

C
,a
nd

M
ul
ti
s
de
no

te
d
by

M
;

e k
1

=
m
ax

{r,
s,
t},

k 2
=

m
ed
ia
n{r

,
s,
t},

k 3
=

m
in

{r,
s,
t};

k 4
=

m
ax

{s,
t};

f n
:d

im
en
si
on

of
po

ly
no

m
ia
lr
in
g
us
ed

in
R
LW

E
en
cr
yp

tio
n

g
k,

m
0
,
m
1
ar
e
pa
ir
w
is
e
co
pr
im

e
an
d
r

≤
m
0
,m

ax
{s,

t}
≤

m
1

h
r,
s,
t
ar
e
pa
ir
w
is
e
co
pr
im

e
i m

1
,
m
2
,
m
3
ar
e
pa
ir
w
is
e
co
pr
im

e
an
d
r

≤
ϕ
(m

1
),
s

≤
ϕ
(m

2
),
t
≤

ϕ
(m

3
),
w
he
re

ϕ
is
th
e
E
ul
er
’s
to
tie

nt
fu
nc
tio

n

123

2674 X. Zheng et al.

It outperforms all other existing methods for secure multiplication of two matrices with size
r × s and s × t respectively when r × s × t ≤ n. Specifically, the main result is as follows:

Theorem 1 Suppose thatRp = Zp[x]/(�m(x)) with m = m1m2m3, where m1,m2,m3 are
pairwise coprime. Then the homomorphic matrix multiplication of matrices A ∈ Z

r×s
p and

B ∈ Z
s×t
p requires only one ciphertext-ciphertext multiplication and at most 2 log(ϕ(m2))

homomorphic automorphisms, where r ≤ ϕ(m1), s ≤ ϕ(m2), t ≤ ϕ(m3), and ϕ is the
Euler’s totient function.

Our implementation is publicly available at https://github.com/XiaopengZheng/HEMat_
nonsquare

It is based on homomorphic encryption library–HElib. Experimental results show that the
new framework has the best performance for secure matrix multiplication when r · s · t ≤ n,
for which case it is 4.0 to 106.8 times faster than existing algorithms (Table 2 in Sect. 5).

1.3 Our techniques

Let R = Z[x]/(�m(x)), where �m(x) is the m-th cyclotomic polynomial with
deg(�m(x)) = n. We choose m = m1m2m3, with factors m1, m2 and m3 pairwise coprime.
Let Ri = Z[x]/(�mi (x)), with i = 1, 2, 3. According to the classical theory of algebraic
number theory [21, 23], we have R ∼= R1 ⊗ R2 ⊗ R3. Let {u1, . . . ,ur }, {v1, . . . , vs} and
{w1, . . . ,wt } beZ-bases ofR1,R2 andR3, respectively, and let {u∨

1 , . . . ,u∨
r }, {v∨

1 , . . . , v∨
s }

and {w∨
1 , . . . ,w∨

t } be the corresponding dual bases in R∨
1 , R∨

2 and R∨
3 respectively, where

each R∨
i is the dual of Ri for i = 1, 2, 3. Then n = r · s · t .

Suppose that A = (ai j) and B = (bi j) are two integer matrices modulus p of size r × s
and s× t , respectively. We find that the matrix multiplication can be achieved by polynomial
multiplication and trace operation. Specifically, let

m1 =
r∑

i=1

s∑

j=1

ai juiv j and m2 =
s∑

i=1

t∑

j=1

bi jv∨
i w j . (1)

Then

Tr(m1 · m2) =
r∑

i=1

t∑

j=1

ci juiw j , (2)

with (ci j) = A · B (see Theorem 2). This discovery allows us to implement matrix multipli-
cation through polynomial operations. We summarize the new framework of homomorphic
matrix multiplication in Fig. 1.

In [4, 11, 15–17, 33], the matrix multiplication result retains the same encoding format,
enabling the algorthms to perform iterative matrix products. However, in our framework, the
encoding format of the multiplication result changes, which is a limitation of our algorithm.
Despite this, our algorithm is slightly better than the methods in [9, 22, 25], which are
restricted to computing only a single multiplication between two matrices. In our algorithm,
if the client wishes to perform repeated matrix multiplications, the matrices must be encoded
in appropriate formats. Specifically, to multiply the matrices A = (ai j) ∈ Z

r×s , B = (bi j) ∈
Z
s×t , and C = (ci j) ∈ Z

t×s , let

mA =
r∑

i=1

s∑

j=1

ai juiv j , mB =
s∑

i=1

t∑

j=1

bi jv∨
i w j , and mC =

t∑

i=1

s∑

j=1

ci jw∨
i v j .

123

https://github.com/XiaopengZheng/HEMat_nonsquare
https://github.com/XiaopengZheng/HEMat_nonsquare

A new framework for fast homomorphic matrix multiplication 2675

Table 2 Comparison with Previous Work

Size of matrices Method m n Qa Time (s) Our advantageb

A5×100 × B100×20 [15] 101 · 125 10000 252 25.4197 106.8×
[33] 101 · 125 10000 252 7.0491 29.6×
[4]-I 32768 16384 165 6.7653 28.4×
[4]-II 65536 32768 176 0.5341 2.2×
Ours 7 · 101 · 23 6 · 100 · 22 144 0.2381 1×

A5×20 × B20×100 [15] 101 · 125 10000 252 5.1911 27.4×
[33] 101 · 125 10000 252 1.4919 7.9×
[4]-I 32768 16384 165 1.4860 7.9×
[4]-II 65536 32768 176 0.5332 2.8×
Ours 7 · 23 · 101 6 · 22 · 100 144 0.1892 1×

A100×5 × B5×20 [15] 101 · 125 10000 252 1.1554 6.8×
[33] 101 · 125 10000 252 1.0109 5.8×
[4]-I 32768 16384 165 0.5763 3.3×
[4]-II 65536 32768 176 0.5390 3.0×
Ours 101 · 7 · 23 100 · 6 · 22 144 0.1769 1×

A50×4 × B4×50 [16] 16384 8192 246 3.7524 26.5×
[15] 101 · 125 10000 252 1.2434 11.7×
[33] 101 · 125 10000 252 1.0208 9.6×
[4]-I 32768 16384 165 0.5080 4.8×
[4]-II 65536 32768 176 0.5008 4.7×
Ours 53 · 5 · 59 52 · 4 · 58 144 0.1065 1×

A4×50 × B50×50 [16] 16384 8192 246 3.7596 16.9×
[15] 101 · 125 10000 252 11.0501 41.8×
[33] 101 · 125 10000 252 2.9371 11.1×
[17] 32768 16384 246 0.9021 4.0×
[4]-I 32768 16384 165 3.4560 15.6×
[4]-II 65536 32768 176 0.4952 2.2×
Ours 5 · 53 · 59 4 · 52 · 58 144 0.2219 1×

A2×50 × B50×50 [16] 16384 8192 246 1.9912 15.8×
[15] 101 · 125 10000 252 10.9887 87.1×
[33] 101 · 125 10000 252 2.7526 21.8×
[17] 16384 8192 246 0.8168 6.5×
[4]-I 32768 16384 165 3.4299 27.2×
[4]-II 32768 16384 176 0.2203 1.7×
Ours 53 · 3 · 59 52 · 2 · 58 144 0.1261 1×

A1×100 × B100×100 [16] 16384 8192 246 2.1305 5.2×
[15] 101 · 125 10000 252 26.0663 64.2×
[33] 101 · 125 10000 252 5.3727 13.4×
[17] 4 · 128 · 128 32768 244 5.6998 14.0×
[4]-I 131072 65536 165 36.5530 90.0×

123

2676 X. Zheng et al.

Table 2 continued

Size of matrices Method m n Qa Time (s) Our advantageb

[4]-II 65536 32768 176 0.4996 1.2×
Ours 2 · 101 · 103 1 · 100 · 102 144 0.4063 1×

aQ: the number of bits of the cyphertext modulus
bratio of time cost by the list method over our method
cThe modulus of plaintext is about 32 bits

Fig. 1 Framework for Secure Matrix Multiplication of matrices A ∈ Z
r×s
p and B ∈ Z

s×t
p

We then have

TrK/K12(TrK/K13(mA · mB) · mC) =
r∑

i=1

s∑

i=1

di juiv j ,

where (di j) = A · B · C (K , K12 and K13 will be defined in Sect. 3.1).

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we provide the necessary background
on algebraic number theory andBGVhomomorphic encryption scheme. In Sect. 3,we present
a new framework for plaintext matrix multiplication via tensor ring. In Sect. 4, we extend the

123

A new framework for fast homomorphic matrix multiplication 2677

framework in Sect. 3 to the homomorphic case. Section5 providesmore detailed comparisons
with existing methods under specific parameters. Section6 provides the conclusion.

2 Preliminaries

2.1 Notations

Let Z denote the set of integers, Q denote the set of rational numbers. Notation log refers to
the base-2 logarithm. For a positive k ∈ Z, let [k] be the set of integers {0, 1, ..., k − 1}.

Form ∈ N, letϕ(m) denote Euler’s totient function.Denote by K = Q[x]/(�m(x)) them-
th cyclotomic field,R = Z[x]/(�m(x)) the ring of integers of K , andRQ = ZQ[x]/(�m(x))
the residue ring ofRmodulo Q. Elements of the ringR orRQ will be denoted in lowercase
bold font, e.g. a ∈ R. The coefficients of an element a ∈ R will be denoted by ai , i.e.
a = ∑d−1

i=0 ai · xi . We use Z ∩ (−Q/2, Q/2] as a representative of ZQ for integer a, and
denote by [a]Q the reduction of an integer a modulo Q.

2.2 Algebraic number theory background

We present some necessary background of algebraic number theory. Further details can be
found in reference [21, 23].

2.2.1 Algebraic number field

An Algebraic number field is an algebraic field extension of Q expressed as K = Q(α)

by adjoining α to Q, where α is a root of an irreducible polynomial f (x) in Z[x]. Let ξm
represent the m-th root of unity. The field Q(ξm) is known as the m-th cyclotomic field,
which is isomorphic to Q[x]/(�m(x)). The Galois group of Q(ξm) over Q is denoted by
Gal(Q(ξm)/Q). It is well-known that this Galois group is isomorphic to the multiplicative
group Z∗

m consisting of invertible residues modulo m.

2.2.2 Ring of integers

An algebraic integer is an algebraic number whose minimal polynomial over the rationals
has integer coefficients. Denote the subset of algebraic integers in the number field K byOK .
It forms a ring known as the ring of integers of K .

2.2.3 Trace

Let K be a Galois extension over another field k. The trace TrK/k(a) of an element a ∈ K is
defined as the sum of its embeddings:

TrK/k(a) =
∑

σ∈Gal(K/k)

σ (a). (3)

123

2678 X. Zheng et al.

2.2.4 Duality

Let K = Q[x]/(�m(x)) and R = Z[x]/(�m(x)). The dual of R is defined as:

R∨ = {a ∈ K : Tr(x) ∈ Z for all x ∈ aR}. (4)

For anyZ-basisB = {b1, . . . ,bn} ofR, its dual basis is denoted asB∨ = {b∨
1 , . . . ,b∨

n } ⊂
R∨, which is characterized by

TrK/Q

(
bi · b∨

j

)
=

{
1, if i = j,
0, if i �= j .

Further details on the dual basis can be found in [23].

Example 1 Let K = Q[x]/(x8 + 1) and R = Z[x]/(x8 + 1). Then B =
{1, x, x2, x3, x4, x5, x6, x7} is a Z-basis for R. And

B∨ =
(
1

8
,− x7

8
,− x6

8
,− x5

8
,− x4

8
,− x3

8
,− x2

8
,− x

8

)

.

is a dual basis of B.

2.2.5 Tensor field and tensor ring

Let K , L be two field extensions of Q. Then the field tensor product K ⊗ L is the set of all
Q-linear combinations of pure tensors a ⊗ b for a ∈ K , b ∈ L , equipped with the following
multiplication: for all a1, a2 ∈ K , b1, b2 ∈ L ,

(a1 ⊗ b1) (a2 ⊗ b2) = (a1a2) ⊗ (b1b2) .

The tensor product of rings is defined in the same way, except that it is made up of only
Z-linear combinations of pure tensors.

An important fact is that them-th cyclotomic number field K = Q(ξm) ∼= Q[x]/ (�m(x))
maybe viewed as (i.e., is isomorphic to) the tensor product of prime-power cyclotomics fields:

K ∼=
�⊗

i=1

Ki = Q(ξm1 , ξm2 , . . . , ξm�
),

where m = ∏�
i=1 mi is the prime-power factorization of m and Ki = Q(ξmi). Equivalently,

K may be viewed as the multivariate polynomial field

K ∼= Q [x1, x2, . . . , x�] /(�m1(x1),�m2(x2), . . . , �m�
(x�)),

where there is one indeterminate xi and modulus polynomial�mi (xi) for every prime-power
divisor mi . Similar decompositions hold for the ring of integersR ∼= Z[x]/(�m(x)) and the
dual R∨.

2.3 Homomorphic encryption

2.3.1 Ring learning with errors

Let χ be a distribution overRQ and σ > 0 be a real. Let n = deg(�m(x)). The ring learning
with errors (RLWE) assumption with respect to the parameters (n, Q, χ, σ) is the following:

123

A new framework for fast homomorphic matrix multiplication 2679

for a fixed s0 ← χ , given polynomially many samples of either (a,b) or (a, as0 + e),
where a,b ← RQ , e ← DG(σ 2), it is computationally hard to distinguish between the two
groups of samples, where DG(σ 2) the discrete Guassian distribution of variance σ 2. The
most popular HE schemes such as FV [10], BGV [2] and CKKS [5] rely on the security
provided by the RLWE assumption. In practical, χ is chosen to be HWT (h) with some
positive integer h, where HWT (h) is the set of signed binary vectors in {0,±1}n whose
Hamming weight is exactly h.

2.3.2 BGV scheme [2]

The plaintext space and ciphertext space are Rp and {RQi : i = 1, . . . , �} respectively.
• BGV.Setup(1λ, p,m, S): For given security parameter λ, the plaintext prime modulus p,

the order of primitive root of unity m, and a set S ⊂ Z
∗
m , choose a series of decreasing

ciphertext moduli {Qi , i = 1, . . . , �}, a modulus P , a key distribution HWT (h), and
an error parameter σ . The public parameters are pp = (m, p, Q1, . . . , Q�, P, χ, σ, S),
i = 1, . . . , �.

• BGV.KeyGen(pp): Given public parameters pp, generate a secret key s = (−s0, 1)
with s0 ← HWT (h), a public key pk, a relinearization key rlk, and automorphism
(key-switching) keys {atki : i ∈ S} of the automorphismsm(x) �→ m(xi) for all i ∈ S.

• BGV.Enc(pk,m): Given a public key pk and a plaintext m ∈ Rp , output a ciphertext c
encrypting plaintext m.

• BGV.Dec(s, c): Given a ciphertext c with secret key s, output the encrypted plaintext
m ∈ Rp .

• BGV.Add(c, c′): Given two ciphertexts c and c′ encrypting plaintexts m1 and m2

respectively, output a ciphertext cadd encrypting plaintext m1 + m2.
• BGV.Mult(rlk, c, c′): Given two ciphertexts c and c′ encrypting plaintexts m1 and m2

respectively and a relinearization key rlk, output a ciphertext cmul encrypting plaintext
m1m2.

• BGV.CMult(c, f): Given a ciphertexts c encrypting plaintext m, and given a plaintext
f ∈ Rp , output a ciphertext ccmul encrypting plaintext f · m.

• BGV.Auto(atki , c): Given a ciphertext c encrypting plaintextm(x) and an automorphism
key atki for some i ∈ S, output a ciphertext caut encrypting plaintext m(xi) with secret
key s.

• BGV.ModulusSwitch(c, Qi , Q j):Given a ciphertext c ∈ R2
Qi

encrypting plaintextm and

two moduli Qi and Q j , with Qi > Q j , output a ciphertext cswitch ∈ R2
Q j

encrypting the
same plaintextm.

For convenience,we use Encs(m) to denote the set of all BGVciphertexts encrypting plaintext
m under secret key s.

2.3.3 Canonical embedding

Let ξ := e2π i/m ∈ C be a primitivem-th root of unity. Consider two polynomials f(x), g(x) ∈
Z[x] such that f(x) ≡ g(x) mod �m(x). For any primitive m-th root of unity ξ j , where
j ∈ Z

∗
m , since ξ j is a root of �m(x), f(ξ j) = g(ξ j). This means that if a ∈ R such that

a ≡ f mod �m(x), then a(ξ j) := f(ξ j) is well defined.
The canonical embedding of a ∈ R is the vector obtained by evaluating a at all primitive

m-th roots of unity:

can(a) := (
a

(
ξ j

))
j∈Z∗

m
∈ C

ϕ(m).

123

2680 X. Zheng et al.

Define ‖a‖can := ‖ can(a)‖∞ = max
j∈Z∗

m

|a(ξ j)|. We say a is bound by B if ‖a‖can ≤ B.

2.3.4 Noise estimate in BGV scheme

For ciphertext c ∈ R2
Q , the noise of c is defined as e = 〈c, s〉 mod Q, where s ∈ R2

Q is the
secret key. We say the noise of c is bounded by E if ‖e‖can ≤ E . We will recall the estimate
of noise in the BGV scheme [7, 14, 28].

Lemma 1 (Error estimation of BGV.ModulusSwitch) Let c ∈ R2
Q be a BGV ciphertext

encrypting m ∈ Rp with noise bounded by E. Let q be another ciphertext modulus. Then
BGV.ModulusSwitch(c, Q, q) outputs a ciphertext in R2

q encrypting m ∈ Rp with noise
bounded by E + Bscale where

Bscale = p
(√

3n + 8
√
nh/3

)
(5)

is the bound of rounding error.

Lemma 2 (Error estimation of BGV.Auto) Let c ∈ R2
Q be a BGV ciphertext encrypting

m ∈ Rp with noise bounded by E. Let i be an integer in Z
∗
m and let the gadget vector �g

used in key-switching be (1, 2, . . . , 2�log Q�). Then BGV.Auto(atki , c) outputs a ciphertext c′
encryptingm(xi) ∈ Rp with secret key s, and the noise of c′ is bounded by E + Bks, where

Bks = 16√
3
pnσ�log Q� (6)

is the bound of key-switching error.

Lemma 3 (Error estimation of BGV.CMult) Let c ∈ R2
Q be a BGV ciphertext encrypting

m ∈ Rp with noise bounded by E. Let f ∈ Rp be a plaintext. Then BGV.CMult(c, f) outputs
a ciphertext in R2

Q encrypting f · m with noise bounded by E · ‖f‖can.
Lemma 4 (Error estimation of BGV.Mult) For l = 1, 2, let cl ∈ R2

Ql
be two BGV ciphertexts

with moduli Ql encrypting ml with noise bounded by El respectively, for l = 1, 2. Let q be
a ciphertext modulus satisfying q | Ql, for l = 1, 2, and

q ≈ min
{
(Bscale · Q1)/E1, (Bscale · Q2)/E2

}
, (7)

where Bscale in given in (5). Then BGV.Mult(rlk, c1, c2) outputs a ciphertext inR2
q encrypting

m1 · m2 with noise bounded by
(
(q/Q1)E1 + Bscale

)(
(q/Q2)E2 + Bscale

)
+ Bks, where

Bks is given in (6).

We emphasize that to choose a proper common ciphertext modulus q , in HElib [28], the
modulus switching is performed before ciphertext multiplication instead of after ciphertext
multiplication, which is different from the original BGV scheme.

3 Plaintext matrix multiplication via tensor ring

3.1 Notations

Recall the cyclotomic field K := Q[x]/(�m(x)). In the new framework, we choose
m = m1m2m3 with m1, m2 and m3 pairwise coprime. In Sect. 2.2, we have men-
tioned that K ∼= Q[x, y, z]/(�m1(x),�m2(y),�m3(z)). Therefore, we can view K as

123

A new framework for fast homomorphic matrix multiplication 2681

Q[x, y, z]/(�m1(x),�m2(y),�m3(z)). Let Ki = Q[x]/(�mi (x)) for i = 1, 2, 3. Then K ∼=
K1 ⊗ K2 ⊗ K3. LetR = Z[x, y, z]/(�m1(x),�m2(y),�m3(z)). LetRi = Z[x]/(�m1(x)),
for i = 1, 2, 3. Then R ∼= R1 ⊗ R2 ⊗ R3. We introduce the following notations similar to
those in [21]:

• K12, K13 and K23 denote K1 ⊗ K2, K1 ⊗ K3 and K2 ⊗ K3, respectively.
• R12, R13 and R23 denote R1 ⊗ R2, R1 ⊗ R3 and R2 ⊗ R3, respectively.
• {u1, . . . ,ur }, {v1, . . . , vs} and {w1, . . . ,wt } denote the Z-bases of R1, R2 and R3,

respectively.
• {u∨

1 , . . . ,u∨
r }, {v∨

1 , . . . , v∨
s } and {w∨

1 , . . . ,w∨
t } denote the corresponding Z-bases of the

dual lattices R∨
1 , R∨

2 and R∨
3 , respectively.

More notations below will be used in this paper:

• n = ϕ(m1) · ϕ(m2) · ϕ(m3) is the dimension of ring R.
• For A = (ai j) ∈ Z

r×s, B = (bi j) ∈ Z
s×t ,C = (ci j) ∈ Z

r×t with r ≤ ϕ(m1),
s ≤ ϕ(m2) and t ≤ ϕ(m3), denote

m(uv)
A =

r∑

i=1

s∑

j=1

ai juiv j , m(v∨w)
B =

s∑

i=1

t∑

j=1

bi jv∨
i w j , m(uw)

C =
r∑

i=1

t∑

j=1

ci juiw j .

• For any polynomial a ∈ R, the saying a ∈ Rp means taking a as the element a mod p.

3.2 Matrix multiplication via polynomial operations

Suppose that r ≤ ϕ(m1), s ≤ ϕ(m2) and t ≤ ϕ(m3). For input matrices A ∈ Z
r×s and

B ∈ Z
s×t , to compute AB, we encode them respectively as:

A = (ai j) ∈ Z
r×s Encode−→ m(uv)

A =
r∑

i=1

s∑

j=1

ai juiv j ,

B = (bi j) ∈ Z
s×t Encode−→ m(v∨w)

B =
s∑

k=1

t∑

l=1

bklv∨
k wl .

(8)

We claim that the matrix product A · B can be computed using polynomial multiplications
in the field K and then a trace operation.

Theorem 2 Let A = (ai j) ∈ Z
r×s and B = (bi j) ∈ Z

s×t be two matrices. Then

TrK/K13(m
(uv)
A · m(v∨w)

B) =
r∑

i=1

t∑

l=1

ciluiwl , (9)

with (ci j)1≤i, j≤d = A · B.

Proof For all i, j = 1, . . . , d , since ui and w j both belong to K13, σ(ui) = ui and σ(w j) =
w j for any σ ∈ Gal(K/K13). So

TrK/K13

(
m(uv)

A · m(v∨w)
B

)
= TrK/K13

⎛

⎝
∑

i, j,k,l

ai j bkluiv jv∨
k wl

⎞

⎠

=
∑

i, j,k,l

ai j bklui

⎛

⎝
∑

σ∈Gal(K/K13)

σ (v jv∨
k)

⎞

⎠wl .

(10)

123

2682 X. Zheng et al.

Notice that Gal(K/K13) is isomorphic to Gal(K2/Q) by the restriction map σ �→ σ |K2 for
all σ ∈ Gal(K/K13). Since v jv∨

k ∈ K2, we have
∑

σ∈Gal(K/K13)

σ (v jv∨
k) =

∑

σ∈Gal(K2/Q)

σ (v jv∨
k)

= TrK2/Q(v jv∨
k) =

{
1, j = k,

0, j �= k.

(11)

Substituting it into (10), we get

TrK/K13

(
m(uv)

A · m(v∨w)
B

)
=

r∑

i=1

t∑

l=1

⎛

⎝
s∑

j=1

ai j b jl

⎞

⎠uiwl =
r∑

i=1

t∑

l=1

ciluiwl ,

where (cil) = A · B. ��
Example 2 Let m1 = 5, m2 = 4 and m3 = 3. Then �5(x) = x4 + x3 + x2 + x + 1,
�4(y) = y2 + 1, �3(z) = z2 + z + 1, and

r = ϕ(m1) = 4, s = ϕ(m2) = 2 and t = ϕ(m3) = 2.

Let K1 = Q[x]/(�5(x)), K2 = Q[y]/(�4(y)), and K3 = Q[z]/(�3(z)). Let K =
Q[x]/(�60(x)), then

K ∼= Q[x, y, z]/(�5(x),�4(y),�3(z)).

All computations in this example are conducted in K , i.e., mod (�5(x),�4(y),�3(z)). Let
R1 = Z[x]/(�5(x)), R2 = Z[y]/(�4(y)) and R3 = Z[z]/(�3(z)). Compute the Z-bases
of R1, R2, R3, and the dual basis in R∨

2 :

{u1,u2,u3,u4} = {1, x, x2, x3}, {v1, v2} = {1, y},
{v∨

1 , v∨
2 } =

{
1

2
,− y

2

}
, {w1,w2} = {1, z}.

Suppose that A =

⎛

⎜⎜
⎝

1 2
3 4
5 6
7 8

⎞

⎟⎟
⎠ and B =

(
5 6
7 8

)
. Then we encode A as

m(uv)
A = u1v1 + 2u1v2 + 3u2v1 + 4u2v2 + 5u3v1 + 6u3v2

+ 7u4v1 + 8u4v2

= 1 + 2y + 3x + 4xy + 5x2 + 6x2y + 7x3 + 8x3y.

Similarly, we encode B as

m(v∨w)
B = 5v∨

1 w1 + 6v∨
1 w2 + 7v∨

2 w1 + 8v∨
2 w2

= 5

2
+ 6

2
z − 7

2
y − 8

2
yz.

Letm(x, y, z) be the notation for m(uv)
A m(v∨w)

B . The trace ofm is computed as follows:

TrK/K12(m) =
∑

σ∈Gal(K/K12)

σ (m)

123

A new framework for fast homomorphic matrix multiplication 2683

= m(x, y, z) + m(x, y2, z)

= 19 + 22z + 43x + 50xz + 67x2 + 78x2z + 91x3 + 106x3z,

which corresponds to the matrix

C =

⎛

⎜⎜
⎝

19 22
43 50
67 78
91 106

⎞

⎟⎟
⎠ = A · B.

3.3 Fast trace computation

Let K/F be a Galois extension with r = |Gal(K/F)|. The direct computation of the trace, by
definition, requires r−1 automorphisms. It is well-known that theGalois group of cyclotomic
extensionQ(ξm) overQ is isomorphic to the multiplicative group Z∗

m . This group is cyclic if
and only if m is 1, 2, 4, pk , or 2pk , where p is an odd prime and k > 0 [29]. We first present
an algorithm for computing the trace function for cyclic Galois groups, which requires only
O(log r) automorphisms.

Proposition 1 Let K/F be a Galois extension, where Gal(K/F) is cyclic. Let σ be a gen-
erator of Gal(K/F). Then for any m ∈ K and any 1 ≤ � ≤ r = |Gal(K/F)|, ∑�−1

i=0 σ i (m)

can be calculated using at most 2 log � additions and 2 log � automorphisms. In particular,
TrK/F can be calculated using at most 2 log r additions and 2 log r automorphisms.

Proof For � = 1, the statement holds trivial. Assume that the statement holds for � ≤ k − 1.
For � = k, if � is even, then

�−1∑

i=0

σ i (m) =
�/2−1∑

i=0

σ i (m) + σ�/2

⎛

⎝
�/2−1∑

i=0

σ i (m)

⎞

⎠ . (12)

According to the induction hypothesis,
∑�/2−1

i=0 σ i (m) can be calculated using at most

2 log(�/2) additions and 2 log(�/2) automorphisms. By (12),
∑�−1

i=0 σ i (m) can be computed
using at most 2 log(�/2)+1 < 2 log � additions and 2 log(�/2)+1 < 2 log � automorphisms.

If � is odd, then

�−1∑

i=0

σ i (m) =
�−1
2 −1∑

i=0

σ i (m) + σ
�−1
2

⎛

⎜
⎝

�−1
2 −1∑

i=0

σ i (m)

⎞

⎟
⎠ + σ�−1(m). (13)

According to the induction hypothesis,
∑(�−1)/2−1

i=0 σ i (m) can be calculated using at most

2 log((� − 1)/2) additions and 2 log((� − 1)/2) automorphisms. By (13),
∑�−1

i=0 σ i (m) can
be computed using at most 2 log((� − 1)/2) + 2 = 2 log(� − 1) < 2 log � additions and
2 log((� − 1)/2) + 2 = 2 log(� − 1) < 2 log � automorphisms. ��

Based on the proof of Proposition 1, we get the following Algorithm 1 for trace
computation.

Remark 1 If m = 2l with l ≥ 3, then r = ϕ(m) = 2l−1, and Gal (Q (ξm) /Q) � 〈σ 〉 ×
〈τ 〉, where σ r/2 = 1 and τ 2 = 1. We can first invoke Algorithm 1 to compute m :=∑r/2−1

i=0 σ i (m), and then compute m := m + τ(m) to obtain the trace of m. The number of
homomorphic automorphisms and additions is both log r .

123

2684 X. Zheng et al.

Algorithm 1 CircTr(m, σ, r)
Input: A polynomial m ∈ R, the automophism σ , and an integer r .
Output: A polynomial

∑r−1
i=0 σ i (m).

1: if r = 1 then
2: return m;
3: end if
4: if r is even then
5: m r

2
= CircTr(m, σ, r

2);

6: return m r
2

+ σ
r
2 (m r

2
);

7: else
8: m r−1

2
= CircTr(m, σ, r−1

2);

9: return m r−1
2

+ σ
r−1
2 (m r−1

2
) + σ r−1(m);

10: end if

Proposition 1 proposes an algorithm for computing trace evaluations when the Galois
group is cyclic, which was first introduced in [32]. Another case arises when the extension
Q (ξm) /Q exhibits a tower structure, which is widely used in [1, 3, 21]. Recently, Xia et al.
[30] combined these two methods, enabling the generalization of the result in Proposition 1
to an arbitrary cyclotomic field extension.

Proposition 2 [30] Let K = Q(ξm), then TrK/Q can be calculated using at most 2 log(ϕ(m))

additions and 2 log(ϕ(m)) automorphisms.

The main idea of Proposition 2 is to construct a tower of fields, and apply Proposition 1
recursively. Suppose that m = 2s0 ps11 · · · psll , where p1, . . . , pl are odd prime numbers and
pairwise coprime. Consider a tower of fields

Q ⊂ Q(ξ2s0) ⊂ Q(ξ2s0 , ξp
s1
1

) ⊂ · · · ⊂ Q(ξ2s0 , ξp
s1
1

, · · · , ξp
sl
l
) = Q(ξm).

Let Fi = Q(ξ2s0 , ξp
s1
1

, · · · , ξp
si
i
), for i = 0, 1, . . . , l. The trace can be decomposed as

TrK/Q = TrF0/Q ◦ TrF1/F0 ◦ · · · ◦ TrFl/Fl−1 .

Since Gal(Fi/Fi−1) � Gal(Q(ξp
si
i
)/Q) is cyclic, by Proposition 1, the computation of each

trace TrFi /Fi−1 requires at most 2 log(ϕ(psii)) automorphisms and 2 log(ϕ(psii)) additions.
If s0 ≤ 2, then Gal(F0/Q) is cyclic as well. Otherwise, by Remark 1, the computation of
TrF0/Q requires log(ϕ(2s0)) automorphisms and log(ϕ(2s0)) additions. Therefore, the trace
TrK/Q can be calculated using at most

log(ϕ(2s0)) + 2 log(ϕ(ps11)) + · · · + 2 log(ϕ(psll)) ≤ 2 log(ϕ(m))

automorphisms and 2 log(ϕ(m)) additions.
Based on the explanation above, we can obtain an algorithm to compute the trace operator

for an arbitrary cyclotomic field extension, which is presented in Algorithm 2.
As Gal(K/K12), Gal(K/K13) and Gal(K/K23) are isomorphic to Gal(K3/Q),

Gal(K2/Q) and Gal(K1/Q) respectively, then by Proposition 2 guarantees that TrKi /Q can
be computed with at most 2 logϕ(mi) additions and 2 logϕ(mi) automorphisms.

123

A new framework for fast homomorphic matrix multiplication 2685

Algorithm 2 Tr(m,m)

Input: A polynomial m ∈ Q(ξm) and integer m.
Output: A polynomial TrQ(ξm)/Q(m).

1: Suppose that m2 = 2s0 ps11 · · · psll , where pi are odd prime numbers and pairwise coprime. Let F0 =
Q(ξ2s0), Fi = Q(ξ2s0 , ξ

p
s1
1

, · · · , ξ
p
sl
l

), for i = 1, . . . , l.

2: if s0 ≥ 3 then
3: Suppose that Gal(F0/Q) = 〈σ 〉 × 〈τ 〉;
4: m = CircTr(m, σ, 2s0−2);
5: m = m + τ(m);
6: end if
7: if s0 = 2 then
8: m = m + σ(m), where 〈σ 〉 = Gal(F0/Q);
9: end if
10: for i = 1 to l do
11: m = CircTr(m, σi , ϕ(p

si
i)), where 〈σi 〉 = Gal(Fi /Fi−1);

12: end for
13: return m;

3.4 Matrix multiplication for plaintexts

Based on Theorem 2, for two polynomials m(uv)
A ,m(v∨w)

B ∈ R encoding two matrices A ∈
Z
r×s and B ∈ Z

s×t with r ≤ ϕ(m1), s ≤ ϕ(m2) and t ≤ ϕ(m3) respectively, we can use one
polynomial multiplication and one trace operation to obtain a new polynomial that encodes
A · B. Based on Proposition 2, the trace operation in lines 2 requires at most 2 logϕ(m2)

automorphisms. Therefore, the algorithm requires at most 2 logϕ(m2) automorphisms and
one polynomial multiplication. There observations yield the following Algorithm 3.

Algorithm 3Matrix multiplication for plaintexts

Input: m(uv)
A ,m(v∨w)

B ∈ R that encode matrices A ∈ Z
r×s and B ∈ Z

s×t .

Output: A polynomial m(uw)
AB ∈ R encoding A · B.

1: m(uw)
AB = TrK/K13 (m

(uv)
A · m(v∨w)

B);

2: return m(uw)
AB ;

Remark 2 In the general setting of r , s, t , let l1 = � r
ϕ(m1)

�, l2 = � s
ϕ(m2)

�, and l3 = � t
ϕ(m3)

�.
Then, the matrices A ∈ Z

r×s and B ∈ Z
s×t are partitioned into l1 × l2 and l2 × l3 submatri-

ces, respectively. Consequently, the block matrix multiplication requires l1l2l3 polynomial
multiplications and at most 2l1l2l3 log(ϕ(m2)) automorphisms. By employing a technique
from [32], the number of required automorphisms can be reduced to 2l1l3 log(ϕ(m2)).

4 Homomorphic matrix multiplication via tensor ring

In this section, we assume that p and m are coprime, where plaintext modulus p is a prime
number.

123

2686 X. Zheng et al.

4.1 Homomorphic trace computation

Let K = Q(ξm) and F = Q(ξm1m3). Firstly, we consider the case when Gal(K/F) is cyclic.
Algorithm 1 can be extended directly to the homomorphic case, see Algorithm 4 below,
where σ is a generator of Gal(K/F), and r = |Gal(K/F)|.
Proposition 3 Let c ∈ R2

Q be a BGV ciphertext encrypting m ∈ Rp with noise e bounded
by E. IfGal(K/F) is cyclic, then by Algorithm 4, HomCircTr(c, σ, r) outputs a ciphertext cr
encrypting TrK/F (m) with noise er bounded by r E + (r − 1)Bks, where Bks is given in (6).

Proof The correctness of Algorithm 4 is based on the correctness of Algorithm 1 and
homomorphic automorphism. The proof of the noise bound is given in Appendix A. ��

Algorithm 4 HomCircTr(c, σ, r)
Input:

1. A ciphertext c ∈ R2
Q encrypting m ∈ Rp .

2. An automorphism σ and an integer r .

Output: A ciphertext cr encrypting
∑r−1

i=0 σ i (m) ∈ Rp .
1: if r = 1 then
2: return c;
3: end if
4: if r is even then
5: cr/2 = HomCircTr(c, σ, r/2);
6: return cr/2 + BGV.Auto(atkσ r/2 , cr/2);
7: else
8: c(r−1)/2 = HomCircTr(c, σ, (r − 1)/2);
9: return c(r−1)/2 + BGV.Auto(atk

σ
r−1
2

, c r−1
2

)+ BGV.Auto(atkσ r , c);

10: end if

For an arbitrary cyclotomic field extension, based on Proposition 2 and Algorithm 2,
we can present an algorithm to compute the trace operator in the homomorphic case. In
Algorithm 5, we use the fact that Gal(K/K13) � Gal(Q(ξm2)/Q).

Proposition 4 Let c ∈ R2
Q be a BGV ciphertext encrypting m ∈ Rp with noise e bounded

by E. Then by Algorithm 5, HomTrK/K13(c) outputs a ciphertext c encrypting TrK/K13(m)

with noise bounded by ϕ(m2)E + (ϕ(m2) − 1)Bks, where Bks is given in (6).

Proof The correctness of Algorithm 5 is based on the correctness of Algorithm 2. The proof
of the noise bound is given in Appendix A. ��

4.2 Homomorphic matrix multiplication

Since polynomial additions, polynomial multiplications and trace functions in Algorithm 3
can be executed homomorphically, the framework proposed in Sect. 3 can be extended to
support homomorphic matrix multiplication.

We present a new framework for homomorphic matrix multiplication below. It mainly
consists of three subprograms: Encoding and Encryption (Algorithm 6), Decryption and
Decoding (Algorithm 8), and Homomorphic Matrix Multiplication (Algorithm 7).

123

A new framework for fast homomorphic matrix multiplication 2687

Algorithm 5 HomTrK/K13(c)

Input: A ciphertext c ∈ R2
Q encrypting m ∈ Rp ;

Output: A ciphertext c encrypting TrK/K13 (m).

1: Suppose that m2 = 2s0 ps11 · · · psll , where pi are odd prime numbers and pairwise coprime. Let F0 =
K13(ξ2s0), Fi = K13(ξ2s0 , ξ

p
s1
1

, · · · , ξ
p
sl
l

), for i = 1, . . . , l.

2: if s0 ≥ 3 then
3: Suppose that Gal(F0/K13) = 〈σ 〉 × 〈τ 〉;
4: c = HomCircTr(c, σ, 2s0−2);
5: c = c + BGV.Auto(atkτ , c);
6: end if
7: if s0 = 2 then
8: c = c + BGV.Auto(atkσ , c), where 〈σ 〉 = Gal(F0/K13);
9: end if
10: for i = 1 to l do
11: c = HomCircTr(c, σi , ϕ(p

si
i)), where 〈σi 〉 = Gal(Fi /Fi−1);

12: end for
13: return c;

Remark 3 For v∨
i ∈ Q[x]/(�m(x)), suppose that a is the lowest common multiple of the

denominators of coefficients of v∨
i . We can choose the plaintext modulus p such that a

is invertible in Zp . Then v∨
i can be regarded as an element in Zp[x]/(�m(x)) by setting

v∨
i := v∨

i · a · b mod p, where b is the inverse of a in Zp .

Algorithm 6 Encoding and encryption

Input: A matrix A = (ai j) ∈ Z
r×s
p or Zs×t

p , the public key pk, and an integer b ∈ {0, 1};
Output: cA , a ciphertext encrypting m(uv)

A orm(v∨w)
A which encodes A.

1: if b = 1 then

2: m =
r∑

i=1

s∑

j=1
ai juiv j ;

3: else

4: m =
s∑

i=1

t∑

j=1
ai jv∨

i w j ;
5: end if
6: cA = BGV.Enc(pk,m);
7: return cA;

Algorithm 7 Homomorphic matrix multiplication
Input:

1. cA, cB are two BGV ciphertexts encrypting m(uv)
A and m(v∨w)

B which encode A ∈ Z
r×s
p and B ∈

Z
s×t
p , respectively;

2. Automorphism keys for homomorphic trace computing;
3. Relinearization key rlk.

Output: c, where c is a ciphertext encrypting m(uw)
AB which encodes AB ∈ Z

r×t
p .

1: c = BGV.Mult(rlk, c1, c2);
2: c = HomTrK/K13 (c);
3: return c;

123

2688 X. Zheng et al.

Algorithm 8 Decryption and decoding
Input:

1. cC , a ciphertext encrypting m(uw)
C which encodes C = (ci j) ∈ Z

r×t
p ;

2. secret key s.

Output: Matrix C ∈ Z
r×t
p .

1: mC = BGV.Dec(s, cC);

2: Rewrite mC as
r∑

i=1

t∑

j=1
ci juiw j .

3: return (ci j mod p);

4.2.1 Noise estimation

Without loss of generality, suppose that the input ciphertexts of Algorithm 7 have the same
modulus Q.

Proposition 5 Let cA, cB ∈ R2
Q be two BGV ciphertexts encrypting m(uv)

A and m(v∨w)
B with

noise e1 and e2, respectively. Suppose that ‖e1‖can ≤ E1 and ‖e2‖can ≤ E2. Then Algorithm
7 outputs a ciphertext c ∈ R2

q encryptingm(uw)
AB with noise bounded by

E = ϕ(m2)

((q

Q
E1 + Bscale

)(q

Q
E2 + Bscale

)
+ Bks

)
+ (ϕ(m2) − 1)Bks

= O(hp2n2),

where q ≈ Bscale · min{Q/E1, Q/E2}, h is the Hamming weight of the secret key, and p is
the plaintext modulus.

The proof of Proposition 5 is given in Appendix A.

4.2.2 Complexity analysis

In Algorithm 7, line 2 requires one ciphertext-ciphertext multiplication and line 3 require
at most 2 log s homomorphic automorphisms. Overall, Algorithm 7 requires one ciphertext-
ciphertext multiplication and at most 2 log s homomorphic automorphisms.

5 Implementation and comparison with previous work

Our implementation of the new framework and its algorithms is publicly available at https://
github.com/XiaopengZheng/HEMat_nonsquare

We provide more detailed comparisons under specific parameters in Table 2.

1. For convenience in implementation, to securely multiply two matrices A ∈ Z
r×s
p and

B ∈ Z
s×t
p , we choose m = p1 p2 p3, where p1, p2, p3 are all prime numbers, such that

ϕ(p1) ≈ r , ϕ(p2) ≈ s and ϕ(p3) ≈ t , and use zero padding if rst < n.
2. The method in [17] only supports the case when A ∈ Z

r×s
p and B ∈ Z

s×t
p with s = t

and the method in [16] only supports the cases when s = t or r = t .

123

https://github.com/XiaopengZheng/HEMat_nonsquare
https://github.com/XiaopengZheng/HEMat_nonsquare

A new framework for fast homomorphic matrix multiplication 2689

3. For the methods in [4], we choose p1, p2, p3 to be as small as possible such that they
are pairwise coprime and satisfy p1 ≥ r , p2 ≥ s, and p3 ≥ t . Furthermore, for the
method BMM-I in [4], we choose the dimension of ring n to be power of two and as
small as possible such that n/4 ≥ max{p1 p2, p1 p3, p2 p3}. For the method BMM-II in
[4], we choose the dimension of ring n to be power of two and as small as possible such
that n/2 ≥ p1 p2 p3.

4. The level of security is λ ≥ 80 bits. The security level is estimated by the program in
HElib [28].

5. The cyphertext modulus Q is chosen such that the scheme supports one matrix
multiplication. Since the the multiplication depth in the new method in only one
ciphertext-ciphertext multiplication, we can choose a smaller Q.

6. The platform is a personal laptopwith AMDRyzen 7 6800H, RadeonGraphics of 64GB
Memory running, Ubuntu 22.04.2 LTS and only one thread is used.

Comparison With Most-Recent Algorithms. In a recent work [4], Chen et al. presented a
bicyclic encoding technique for matrix encoding. For the computation of the multiplication
of two matrices A ∈ Z

r×s and B ∈ Z
s×t , compared with the BMM-II algorithm in [4], our

algorithm performs slightly better than theirs, particularly when s is small. Specifically, the
BMM-II method in [4] requires �log r� + �log s� + �log t� automorphisms for one matrix
multiplication, while our method requires approximately log s automorphisms. For exam-
ple, their algorithm costs 1 multiplication and 14 automorphisms for a (50, 4, 50) matrix
multiplication, while our method requires only 1 multiplication and 2 automorphisms.

In a recent work [11], Gao et al. presented a homomorphic encryption scheme called
GMS for encrypted matrix multiplication. The source code for this work does not appear to
be publicly available. Therefore, we have used the reported execution times from their papers.
For an encrypted matrix multiplication of size (16, 128, 4), the algorithm in [11] takes about
25 s on a 2.6 GHz CPU, while our algorithm requires only 0.1606s. Similar observations
hold for other rectangular cases as well. However, the algorithm in [11] based on a new
homomorphic encryption scheme called GMS, so such significant performance differences
may be attributed to the use of different optimization techniques, implementation details,
or parameter settings. Therefore, it seems difficult to make a fair comparison between their
algorithm and ours.

6 Conclusion

The paper presents a new framework for homomorphic matrix multiplication. It is shown
to be more efficient compared with all existing methods, in that it requires fewer basic
homomorphic operations. Experimental results show that the new framework has the best
performance for matrix multiplication when r · s · t ≤ n. It is 1.2 to 106.8 times faster than
other existing algorithms.

A Appendix: noise estimates

Proposition 3. Let c ∈ R2
Q be a BGV ciphertext encrypting m ∈ Rp with noise e bounded

by E . If Gal(K/F) is cyclic, then by Algorithm 4, HomCircTrK/F (c, r) outputs a ciphertext
cr encrypting TrK/F (m) with noise er bounded by r E + (r − 1)Bks, where Bks is given in
(6).

123

2690 X. Zheng et al.

Proof When � = 1, then Algorithm 4 outputs c directly, the conclusion holds trivially.
Assume that the conclusion holds for � < k. For � = k, if � is even, then

c� = c�/2 + BGV.Auto(atkσ�/2 , c�/2). (14)

By induction hypothesis, the noise e�/2 of c�/2 is bounded by �
2 (E + Bks) − Bks. Then by

(14), the noise e� of cl satisfies

‖e�‖can ≤ ‖e�/2‖can + ‖e�/2 + eks‖can ≤ l(E + Bks) − Bks,

where eks is the noise introduced by key-switching, which is bounded by Eks .
If � is odd, then

c� = c(�−1)/2 + BGV.Auto(atkσ (�−1)/2 , c�/2)

+ BGV.Auto(atkσ� , c)
(15)

By induction hypothesis, the noise e(�−1)/2 of c(�−1)/2 is bounded by �−1
2 (E + Bks) − Bks.

Then by (15), the noise e� of c� satisfies

‖e�‖can ≤ ‖e �−1
2

‖can + ‖e �−1
2

+ eks‖can + ‖e + eks‖can
≤ �(E + Bks) − Bks.

��
Proposition 4. Let c ∈ R2

Q be a BGV ciphertext encryptingm ∈ Rp with noise e bounded by
E . Then by Algorithm 5, HomTrK/K13(c,m) outputs a ciphertext c encrypting TrK/K13(m)

with noise bounded by ϕ(m)E + (ϕ(m) − 1)Bks, where Bks is given in (6).

Proof Suppose that m2 = 2s0 ps11 · · · pml
l , where pi are odd prime numbers and pairwise

coprime. Denote ϕ(2s0) by r0 and ϕ(psii) by ri , for i = 1, . . . , l. By a same proof as Propo-
sition 3, in Line 5 or Line 8 of Algorithm 5, the noise of c is bounded by r0E + (r0 − 1)Bks.
In Line 11, when i = 1, we have c := HomCircTrF1/F0(c, r1). Then by Proposition 3, the
noise of c is bounded by

r1(r0E + (r0 − 1)Bks) + (r1 − 1)Bks ≤ r0r1E + (r0r1 − 1)Bks.

By induction, we obtain that the noise of the final ciphertext c is bounded by

r0r1 · · · rl E + (r0r1 · · · rl − 1)Bks ≤ ϕ(m2)E + (ϕ(m2) − 1)Bks.

��
Proposition 5. Let cA, cB ∈ R2

Q be two BGV ciphertexts encryptingm(uv)
A andm(v∨w)

B with
noise e1 and e2, respectively. Suppose that ‖e1‖can ≤ E1 and ‖e2‖can ≤ E2. Then Algorithm
7 outputs a ciphertext c ∈ R2

q encrypting m(uw)
AB with noise bounded by

E = s

((q

Q
E1 + Bscale

)(q

Q
E2 + Bscale

)
+ Bks

)
+ (s − 1)Bks

= O(hp2n2),

where q ≈ Bscale · min{Q/E1, Q/E2}, h is the Hamming weight of the secret key, and p is
the plaintext modulus.

123

A new framework for fast homomorphic matrix multiplication 2691

Proof By Theorem 2,

TrK/K13

(
m(uv)

A · m(v∨w)
B

)
= m(uw)

C . (16)

Then c ∈ R2
q in line 3 of Algorithm 7 encryptsm(uw)

C by the correctness of Algorithm 5. By
Lemma 4, the noise after ciphertext multiplication is bounded by

(q

Q
E1 + Bscale

)(q

Q
E2 + Bscale

)
+ Bsk.

where (q/Q�)E� is approximately equal to or less than Bscale, for � = 1, 2. Then by Propo-
sition 4, after homomorphic trace operation, the noise of the ciphertext c ∈ R2

q is bounded
by

ϕ(m2)

((q

Q
E1 + Bscale

)(q

Q
E2 + Bscale

)
+ Bks

)
+ (ϕ(m2) − 1)Bks.

According to the choice of q , Bscale = p
(√

3n + 8
√
nh/3

)
and ϕ(m2) = O(n), we have

E = O(sB2
scale) = O(hp2n2).

��

Acknowledgements This research was supported by the National Key R&D Program of China under Grant
No. 2020YFA0712300, the National Natural Science Foundation of China under Grant No. 12171469, and
STU Scientific Research Initiation Grant No. NTF24023T.

Author contributions Xiaopeng Zheng: conceptualization, methodology, writing original draft, software.
Hongbo Li: methodology, writing review and editing, funding acquisition. DingkangWang: writing review
and editing, funding acquisition, validation.

Data availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

References

1. Alperin-Sheriff J., Peikert C.: Practical bootstrapping in quasilinear time. In: Annual Cryptology
Conference. Springer, New York, pp. 1–20 (2013).

2. Brakerski Z., Gentry C., Vaikuntanathan V.: (Leveled) fully homomorphic encryption without bootstrap-
ping. ACM Trans. Comput. Theory 6(3), 1–36 (2014).

3. Chen H., Dai W., Kim M., Song Y.: Efficient homomorphic conversion between (ring) LWE ciphertexts.
In: International Conference on Applied Cryptography and Network Security, Springer, pp. 460–479
(2021).

4. Chen J., Yang L., Wu W., Liu Y., Feng Y.: Homomorphic matrix operations under bicyclic encoding.
IEEE Trans. Inf. Forensics Secur. 20, 1390–1404 (2025). https://doi.org/10.1109/TIFS.2024.3490862.

5. Cheon J.H., Kim A., KimM., Song Y.: Homomorphic encryption for arithmetic of approximate numbers.
In: Advances in Cryptology—ASIACRYPT 2017, Springer, Cham, pp. 409–437 (2017).

6. Chillotti I., Gama N., GeorgievaM., IzabachèneM.: Faster fully homomorphic encryption: bootstrapping
in less than 0.1 seconds. In: Advances in Cryptology—ASIACRYPT 2016, Springer, Cham, pp. 3–33
(2016).

7. Costache A., Smart N.P.: Which ring based somewhat homomorphic encryption scheme is best? In:
Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the RSA Conference 2016, Springer,
pp. 325–340 (2016).

123

https://doi.org/10.1109/TIFS.2024.3490862

2692 X. Zheng et al.

8. Ducas L., Micciancio D.: FHEW: bootstrapping homomorphic encryption in less than a second. In:
Advances in Cryptology—EUROCRYPT 2015, Springer, Cham, pp. 617–640 (2015).

9. DuongD.H.,Mishra P.K., YasudaM.: Efficient securematrixmultiplication over lwe-based homomorphic
encryption. Tatra Mt. Math. Publ. 67(1), 69–83 (2016).

10. Fan J., Vercauteren F.: Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive,
Paper 2012/144 (2012).

11. Gao J., Gao Y.: Gms: an efficient fully homomorphic encryption scheme for secure outsourced matrix
multiplication. J. Supercomput. 80(18), 26435–26461 (2024).

12. GentryC., SahaiA.,WatersB.:Homomorphic encryption from learningwith errors: conceptually-simpler,
asymptotically-faster, attribute-based. In: Advances in Cryptology–CRYPTO 2013, Springer, Cham, pp.
75–92 (2013).

13. Gentry C.: Fully homomorphic encryption using ideal lattices. In: STOC’09—Proceedings of the 2009
ACM International Symposium on Theory of Computing, pp. 169–178. ACM, New York (2009).

14. Halevi S., Shoup V.: Design and implementation of a homomorphic-encryption library. IBM Res. 6(12–
15), 8–36 (2013).

15. Huang H., Zong H.: Secure matrix multiplication based on fully homomorphic encryption. J. Supercom-
put. 79(5), 5064–5085 (2023).

16. Huang Z., Hong C., Weng C., Lu W., Qu H.: More efficient secure matrix multiplication for unbalanced
recommender systems. IEEE Trans. Depend. Secure Comput. 20(01), 551–562 (2023).

17. Jiang X., Kim M., Lauter K., Song Y.: Secure outsourced matrix computation and application to neural
networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1209–1222 (2018).

18. Juvekar C., VaikuntanathanV., ChandrakasanA.: {GAZELLE}: a low latency framework for secure neural
network inference. In: 27thUSENIXSecurity Symposium (USENIXSecurity 18), pp. 1651–1669 (2018).

19. Lee E., Lee J.-W., Lee J., KimY.-S., KimY., No J.-S., ChoiW.: Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multiplexed parallel convolutions. In: International
Conference on Machine Learning, PMLR, pp. 12403–12422 (2022).

20. Lee Y., Micciancio D., Kim A., Choi R., Deryabin M., Eom J., Yoo D.: Efficient FHEW bootstrapping
with small evaluation keys, and applications to threshold homomorphic encryption. In: Advances in
Cryptology—EUROCRYPT 2023, Springer, Cham, pp. 227–256 (2023).

21. Liu F.-H., Wang H.: Batch bootstrapping I: a new framework for SIMD bootstrapping in polynomial
modulus. In: Advances in Cryptology—EUROCRYPT 2023, Springer, Cham, pp. 321–352 (2023).

22. Lu W.-J., Sakuma J.: More practical privacy-preserving machine learning as a service via efficient
secure matrix multiplication. In: Proceedings of the 6th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 25–36 (2018).

23. LyubashevskyV., PeikertC., RegevO.:A toolkit for ring-LWEcryptography. In:Advances inCryptology–
EUROCRYPT 2013, Springer, New York, pp. 35–54 (2013).

24. Lyubashevsky V., Peikert C., Regev O.: On ideal lattices and learning with errors over rings. In: Advances
in Cryptology–EUROCRYPT 2010, Springer, Cham, pp. 1–23 (2010).

25. Mishra P.K., Duong D.H., Yasuda M.: Enhancement for secure multiple matrix multiplications over
ring-lwe homomorphic encryption. In: Information Security Practice and Experience: 13th International
Conference, ISPEC 2017, Melbourne, VIC, Australia, December 13–15, 2017, Proceedings 13, Springer,
pp. 320–330 (2017).

26. Pang Q., Zhu J., Möllering H., Zheng W., Schneider T.: Bolt: Privacy-preserving, accurate and efficient
inference for transformers. In: 2024 IEEESymposiumon Security and Privacy (SP), IEEE, pp. 4753–4771
(2024).

27. Regev O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40
(2009).

28. Shai H., Victor S.: Design and implementation of HElib: a homomorphic encryption library. Cryptology
ePrint Archive, Paper 2020/1481 (2020).

29. Vinogradov I.M.: Elements of Number Theory. Courier Dover Publications, New York (2003).
30. Xia H., Liu F.-H., Wang H.: More efficient functional bootstrapping for general functions in polynomial

modulus. In: Theory of Cryptography Conference, Springer, pp. 130–163 (2025).
31. Zhang J., YangX.,HeL., ChenK., LuW.-J.,WangY.,HouX., Liu J., RenK.,YangX.: Secure Transformer

Inference Made Non-interactive. Cryptology ePrint Archive, Paper 2024/136 (2024). https://eprint.iacr.
org/2024/136.

32. Zheng X., Li H., Wang D.: A New Framework for Fast Homomorphic Matrix Multiplication. Cryptology
ePrint Archive, Paper 2023/1649 (2023). https://eprint.iacr.org/2023/1649.

123

https://eprint.iacr.org/2024/136
https://eprint.iacr.org/2024/136
https://eprint.iacr.org/2023/1649

A new framework for fast homomorphic matrix multiplication 2693

33. Zhu L., Hua Q., Chen Y., Jin H.: Secure outsourced matrix multiplication with fully homomorphic
encryption. In: European Symposium on Research in Computer Security, Springer, Cham, pp. 249–269
(2023).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A new framework for fast homomorphic matrix multiplication
	Abstract
	1 Introduction
	1.1 Secure non-square matrix multiplication based on HE
	1.2 Our results
	1.3 Our techniques
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Algebraic number theory background
	2.2.1 Algebraic number field
	2.2.2 Ring of integers
	2.2.3 Trace
	2.2.4 Duality
	2.2.5 Tensor field and tensor ring

	2.3 Homomorphic encryption
	2.3.1 Ring learning with errors
	2.3.2 BGV scheme brakerski2014leveled
	2.3.3 Canonical embedding
	2.3.4 Noise estimate in BGV scheme

	3 Plaintext matrix multiplication via tensor ring
	3.1 Notations
	3.2 Matrix multiplication via polynomial operations
	3.3 Fast trace computation
	3.4 Matrix multiplication for plaintexts

	4 Homomorphic matrix multiplication via tensor ring
	4.1 Homomorphic trace computation
	4.2 Homomorphic matrix multiplication
	4.2.1 Noise estimation
	4.2.2 Complexity analysis

	5 Implementation and comparison with previous work
	6 Conclusion
	A Appendix: noise estimates
	Acknowledgements
	References

