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Abstract
Serre’s conjecture, stating that every finitely generated projective

module over a polynomial ring is free, was proven by Quillen and

Suslin independently in 1976. An equivalent form of the Quillen-

Suslin theorem says, “Every unimodular row over a polynomial

ring can be completed to a unimodular matrix.” In this paper, we

generalize the Quillen-Suslin theorem to the parametric case and

present an algorithm to construct the unimodular completion ma-

trix system for any polynomial vector with parameters. Specifically,

we first determine the conditions on the parameters under which

the vector is unimodular using the comprehensive Gröbner system.

Furthermore, we use a constructive method to find a finite partition

of the parameter space such that, for each branch, the vector under

specializations can be completed into a unimodular matrix in the

same form. Since the method is constructive, we present an explicit

algorithm to construct the unimodular completion matrix system

for any polynomial vector with parameters. The correctness and

termination of the algorithm have been proven, and an example is

provided to demonstrate how the algorithm works.
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1 Introduction
Serre, in his influential paper [21] “Faisceaux algébriques cohérents”,

remarked that the corresponding question was not known for alge-

braic vector bundles: “It is not known whether there exist projective

𝐴-modules of finite type which are not free.” Here 𝐴 is a polyno-

mial ring over a field. Serre made some progress towards a solution

in 1957 when he proved that every finitely generated projective

module 𝑃 over a polynomial ring over a field was stably free, i.e.

𝑃 ⊕ 𝐴𝑡 ≃ 𝐴𝑠 . In view of this, Serre’s conjecture becomes the fol-

lowing: does “stably free” imply “free” over 𝑘 [𝑥1, . . . , 𝑥𝑛]? In fact,

in the aspect of polynomial matrix, the question is then equivalent

to whether any unimodular row over a polynomial ring can be

completed to a unimodular matrix (refer to [27, Proposition 20]).

In 1976, Quillen [19] and Suslin [23] proved independently that

Serre’s conjecture is true and gave a positive answer to the above

problem, which means that a polynomial vector (𝑓1, . . . , 𝑓𝑚) can
be completed to a unimodular matrix if 𝑓1, . . . , 𝑓𝑚 generate the

unit ideal. This theorem is commonly referred as Quillen-Suslin

theorem.

Another common equivalent form of Quillen-Suslin theorem

says that if 𝑓1, . . . , 𝑓𝑚 generate the unit ideal, then there exists a

𝑚 ×𝑚 unimodular polynomial matrix𝑈 such that

(𝑓1, . . . , 𝑓𝑚) ·𝑈 = (1, 0, . . . , 0) .

The equivalence between these two statements comes from an easy

observation that 𝑈 −1
is unimodular with (𝑓1, . . . , 𝑓𝑚) as its first

row.

Historically, the original proof on Serre’s conjecture is much

sophisticated. Thanks to Vaserstein and Suslin’s subsequent work
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using the technique of the completion of unimodular rows, we can

now have this much elementary and concise expression. Their work

also established the study of unimodular rows as a new interesting

theme for research in commutative algebra, which have many ap-

plications, such as control theory [28]. More references related to

Serre’s conjecture can be found in Lam’s book [13].

The constructive version of the Quillen-Suslin theorem is pre-

sented by [20] for 𝐴 = 𝑘 [𝑥1, 𝑥2], where 𝑘 is a field, and by [15] for

𝐴 = C[𝑥1, . . . , 𝑥𝑛]. Inspired by the methods proposed by Logar and

Sturmfels [15], the algorithm of the constructive versions of Quillen-

Suslin theorem was presented in [5] and has been implemented in

computer algebra system Maple for 𝐴 = Q[𝑥1, . . . , 𝑥𝑛].
Many engineering problems are parameterized and have to be re-

peatedly solved for different values of parameters [4]. A parametric

system in mathematics typically refers to a set of parameters that

can describe a family of objects or solutions to a given problem. By

adjusting parameters, we can generate and study different instances

of a system. This flexibility is crucial in fields like control theory,

coding theory and machine leaning.

Comprehensive Gröbner system (CGS) is one of the most ef-

ficient methods for solving parametric polynomial systems. The

definition of comprehensive Gröbner systems was introduced by

Weispfenning [26]. Since then, the comprehensive Gröbner system

plays an important role in various parametric computer algebra

problems [8, 9, 25] and has applications including automated geom-

etry theorem proving [3] and discovery [17]. Many algorithms for

computing the comprehensive Gröbner system have been proposed

[7, 16, 18, 24].

In this paper, we will extend the Quillen-Suslin theorem to

the parametric case. Given f (𝑈 ,𝑋 ) = (𝑓1 (𝑈 ,𝑋 ), . . . , 𝑓𝑚 (𝑈 ,𝑋 )) ∈
𝑘 [𝑈 ,𝑋 ]𝑚 with variables 𝑋 and parameters𝑈 , the considered prob-

lem is to find finite sets 𝐸𝑖 , 𝑁𝑖 ⊂ 𝑘 [𝑈 ], 𝑖 ∈ {1, . . . , 𝑙} such that for

all a ∈ V(𝐸𝑖 )\V(𝑁𝑖 ), f (a, 𝑋 ) = (𝑓1 (a, 𝑋 ), . . . , 𝑓𝑚 (a, 𝑋 )) ∈ 𝐿[𝑋 ]𝑚 is

either all unimodular or all non-unimodular, where 𝐿 denotes an al-

gebraically closed field containing 𝑘 andV(𝐸𝑖 ) is the variety of 𝐸𝑖 in
𝐿𝑠 . Furthermore, for the subsetsV(𝐸𝑖 )\V(𝑁𝑖 ) within that the vector
is unimodular for all parameter values, complete this row vector into

a polynomial matrix with parameters, such that for all parameter

values within those subsets, the matrix is a unimodular matrix. That

is, for all a ∈ V(𝐸𝑖 )\V(𝑁𝑖 ), if (𝑓1 (a, 𝑋 ), . . . , 𝑓𝑚 (a, 𝑋 )) ∈ 𝐿[𝑋 ]𝑚 is

unimodular, complete it into a unimodular matrixM𝑖 (a, 𝑋 ).
The main idea is as follows. By means of comprehensive Gröbner

systems, we first partition the entire parameter space into a finite

number of constructible subsets and select the unimodular branches

where the given vector is unimodular under parametric specializa-

tions. In order to complete the unimodular rows into unimodular

matrices under parametric specializations, subsequently, we need

to decompose these constructible subsets into a finite disjoint union

of irreducible ones (i.e., for each of them, the equation-constrained

part generates a prime ideal) so as to construct the fraction fields

induced by the prime ideals. More importantly, at this point, we

can apply the Quillen-Suslin theorem to each constructed field to

compute the completion matrix. Finally, for each branch, by pulling

the matrix back to the original polynomial ring with a further par-

tition of the parameter space, we iteratively obtain the unimodular

completion matrix system. In other words, we find a finite partition

of the parameter space such that, for each branch, the parametric

vector under specialization can be completed into a unimodular

matrix in the same form.

The structure of the paper is as follows. In Section 2 we give some

preliminaries on the constructible set, unimodular property and

parameter system. In Section 3, we state each step of our method

in details and prove some conclusions used in the analysis of our

constructions. We present the algorithm in Section 4 and list an

example in Section 5. A conclusion is given in the final section.

2 Preliminaries
In this section, we will introduce some basic notations and defini-

tions to prepare for the following discussion.

Let 𝑘 be an arbitrary field, and let 𝐿 denote an algebraically

closed field containing 𝑘 . Define 𝑘 [𝑈 ] [𝑋 ] as the polynomial ring

in the parametric variables 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑠 } and the variables

𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where𝑈 and 𝑋 are disjoint sets. We generally

use the letters 𝑑, 𝑓 , 𝑔, ℎ to denote polynomials, boldface letters such

as a, f, x for vectors, and boldface capital letters such as P,H,M for

matrices.

2.1 Constructible set and function field
For a polynomial set 𝐸 , the ideal generated by the elements of 𝐸

is denoted by ⟨𝐸⟩. We will add a corner mark if it is necessary to

emphasize the concrete polynomial ring which the ideal belongs

to. i.e., ⟨𝐸⟩𝑘 [𝑈 ] [𝑋 ] stands for an ideal in 𝑘 [𝑈 ] [𝑋 ] generated by the

entries of 𝐸.

For a set 𝐹 ⊆ 𝑘 [𝑈 ], the affine (algebraic) variety defined by 𝐹 in

𝐿𝑠 is denoted by V(𝐹 ). i.e., V(𝐹 ) = {a ∈ 𝐿𝑠 | 𝑓 (a) = 0, for all 𝑓 ∈
𝐹 }. Conversely, for any variety𝑉 , we use I(𝑉 ) to denote the ideal of
all polynomials that are zero on 𝑉 , i.e., I(𝑉 ) = {𝑓 ∈ 𝑘 [𝑈 ] | 𝑓 (a) =
0, for all a ∈ 𝑉 }.

For an ideal 𝐼 in 𝑘 [𝑈 ], we denote its radical by
√
𝐼 . By the Hilbert

Nullstellensatz, there is a one-to-one correspondence between vari-

eties in 𝐿𝑠 and radical ideals in 𝑘 [𝑈 ]. A variety is irreducible if it
cannot be written as the union of two proper varieties. It is well-

known that a variety is irreducible if and only if the corresponding

radical ideal is prime.

Next, we review the definition of (principle) constructible sets,

which plays an important part in describing the different branches

in a parameter system.

Definition 2.1. A set 𝐶 ⊆ 𝐿𝑠 is called a principal constructible
set if 𝐶 = V(𝐸) \ V(𝑁 ) for subsets 𝐸, 𝑁 in 𝑘 [𝑈 ]. 𝐶 ⊆ 𝐿𝑠 is called a

constructible set if it can be written as finite union of principal

constructible sets.

For simplicity in the paper, we call a principle constructible set

V(𝐸) \ V(𝑁 ) irreducible if V(𝐸) is irreducible. By the above def-

inition, any constructible set can be written as a finite union of

principal constructible sets. Furthermore, according to the follow-

ing lemma [6, Proposition 7.22], with some modifications, we can

ensure that the principal constructible sets in the decomposition

are disjoint.

Lemma 2.2. Every constructible set can be decomposed as a finite
disjoint union of principal constructible sets.
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Remark 2.3. Above Lemma 2.2 ’s proof is constructive, involving
only basic operations on varieties. Thus we can extract an algorithmic
process for splitting a constructible set into disjoint unions.

If 𝑉 is a variety, then the quotient ring 𝑘 [𝑈 ] /I(𝑉 ) is called
the coordinate ring of 𝑉 , denoted by 𝑘 [𝑉 ]. The elements of the

coordinate ring 𝑘 [𝑉 ] are also called the regular functions or the
polynomial functions on the variety. If 𝑉 is irreducible, then

I(𝑉 ) is prime, so the coordinate ring is an integral domain. By

the coordinate ring, we can construct a field corresponding to the

irreducible variety, which is called the function field of 𝑉 .

Definition 2.4. Let 𝑉 be an irreducible variety and 𝑘 [𝑉 ] be the
coordinate ring of 𝑉 . The field of fractions of 𝑘 [𝑉 ] is called the

function field of 𝑉 , denoted by 𝑘 (𝑉 ).

Remark 2.5. Let𝑉 be an irreducible variety. Then by the definition
of function field, we have

𝑘 (𝑉 ) = {[𝑓 ]/[𝑔] : [𝑓 ], [𝑔] ∈ 𝑘 [𝑉 ], 𝑔 ∉ I(𝑉 )}.

Let 𝑉 be an irreducible variety. Let R = 𝑘 [𝑉 ] and K = 𝑘 (𝑉 ).
The canonical map 𝜋 is defined as

𝜋 : 𝑘 [𝑈 ] → R, 𝑎 ↦→ [𝑎] .

For a polynomial 𝑓 ∈ 𝑘 [𝑈 ] [𝑋 ], the canonical map can be extended

as

𝜋 : 𝑘 [𝑈 ] [𝑋 ] → R[𝑋 ],
∑︁
𝛼

𝑐𝛼𝑋
𝛼 ↦→

∑︁
𝛼

[𝑐𝛼 ] 𝑋𝛼 .

For a polynomial vector f ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 , the canonical map can be

further extended as

𝜋 : 𝑘 [𝑈 ] [𝑋 ]𝑚 → R[𝑋 ]𝑚 (𝑓1, . . . , 𝑓𝑚) ↦→ (𝜋 (𝑓1) , . . . , 𝜋 (𝑓𝑚)) .

2.2 Comprehensive Gröbner system
In this section, we introduce the comprehensive Gröbner system,

which generalizes Gröbner bases for an ideal to parametric cases.

In a parametric polynomial systemwith parameters𝑈 = {𝑢1, . . . ,
𝑢𝑠 }, the full parametric space is 𝐿𝑠 . To describe the different prop-

erties of the system under different parameter values, we have to

partition the 𝐿𝑠 into disjoint branches. In this paper we will al-

ways use constructible sets to partition 𝐿𝑠 . That is, by saying a

(parametric) branch, we mean a constructible set in 𝐿𝑠 .

A specialization induced by a = (𝑎1, . . . , 𝑎𝑠 ) ∈ 𝐿𝑠 is a homomor-

phism 𝜎a : 𝑘 [𝑈 ] → 𝐿 which sends ℎ(𝑈 ) to ℎ(a). We can naturally

extend the definition of 𝜎a to 𝑘 [𝑈 ] [𝑋 ] → 𝐿[𝑋 ] by applying 𝜎a
coefficient-wise. For 𝑓 (𝑈 ,𝑋 ) ∈ 𝑘 [𝑈 ] [𝑋 ], we may also write spe-

cialization as 𝑓 (a, 𝑋 ). We can also define specialization for a set

(resp. matrix) in 𝑘 [𝑈 ] [𝑋 ] by taking specialization at every entries

and return a set (resp. matrix) in 𝐿[𝑋 ].
As stated in Introduction, the main purpose of this paper is to

generalize the Quillen-Suslin theorem to parametric case. For the

parametric polynomial system, a very useful tool is the comprehen-

sive Gröbner system. In fact, the first step in our algorithm is to

compute the comprehensive Gröbner system.

We first briefly introduce Gröbner bases. Let ≻ be a monomial

order in 𝑘 [𝑋 ], the leading term, leading coefficient and leading

monomial of a polynomial 𝑓 ∈ 𝑘 [𝑋 ] with respect to ≻ are denoted

by LT(𝑓 ), LC(𝑓 ) and LM(𝑓 ) respectively.

Definition 2.6. Let ≻ be a monomial order in 𝑘 [𝑋 ] and 𝐼 be an
ideal in 𝑘 [𝑋 ].

(1) We denote by LM(𝐼 ) the monomial ideal generated by the

leading terms of 𝑓 ∈ 𝐼 with respect to ≻.
(2) A finite collection𝐺 = {𝑔1, . . . , 𝑔𝑡 } ⊂ 𝐼 is called a Gröbner

basis of 𝐼 if

⟨LM(𝐼 )⟩ = ⟨LM(𝑔1), . . . , LM(𝑔𝑡 )⟩.
We now introduce the definition of the comprehensive Gröbner

system for a parametric polynomial system.

Definition 2.7. Let 𝐹 be a subset of 𝑘 [𝑈 ] [𝑋 ], 𝑆 be a subset of 𝐿𝑠 ,

𝐺1, . . . ,𝐺𝑙 be subsets of 𝑘 [𝑈 ] [𝑋 ], and 𝐴1, . . . , 𝐴𝑙 be algebraically

constructible subsets of 𝐿𝑠 such that 𝑆 =

𝑙⋃
𝑖=1

𝐴𝑖 . A finite set G =

{(𝐴1,𝐺1), ..., (𝐴𝑙 ,𝐺𝑙 )} is called a comprehensive Gröbner sys-
tem (CGS) on 𝑆 for 𝐹 if 𝜎a (𝐺𝑖 ) is a Gröbner basis of the ideal

⟨𝜎a (𝐹 )⟩ ⊆ 𝐿[𝑋 ] for a ∈ 𝐴𝑖 and 𝑖 = 1, . . . , 𝑙 . Each (𝐴𝑖 ,𝐺𝑖 ) is called a

branch of G. In particular, if 𝑆 = 𝐿𝑠 , then G is called a comprehen-

sive Gröbner system for 𝐹 .

Definition 2.8. A comprehensive Gröbner system G = {(𝐴1,𝐺1),
. . . , (𝐴𝑙 ,𝐺𝑙 )} on 𝑆 for 𝐹 is said to be minimal, if for every 𝑖 =

1, . . . , 𝑙 ,

(1) 𝐴𝑖 ≠ ∅, and furthermore, for each 𝑗 = 1, . . . , 𝑙, 𝐴𝑖 ∩ 𝐴 𝑗 = ∅
whenever 𝑖 ≠ 𝑗 ;

(2) 𝜎a (𝐺𝑖 ) is a minimal Gröbner basis of ⟨𝜎a (𝐹 )⟩ ⊂ 𝐿[𝑋 ] for
a ∈ 𝐴𝑖 ;

(3) for each 𝑔 ∈ 𝐺𝑖 , 𝜎a (LC𝑋 (𝑔)) ≠ 0 for any a ∈ 𝐴𝑖 , where

LC𝑋 (𝑔) is the leading term of 𝑔 viewed as a polynomial with

variables 𝑋 .

More details about the comprehensive Gröbner system can be

found in [10, 11, 26]. In [10, 11], an efficient algorithm for computing

the comprehensive Gröbner System is also presented.

2.3 Unimodular row completing and
Quillen-Suslin theorem

In this subsection, we begin with the definition of some special

modules.

Definition 2.9. Let𝐴 be a commutative ring and let𝑀 be amodule

over 𝐴.

(1) 𝑀 is free if𝑀 ≃ 𝐴𝑟 , for some 𝑟 ∈ N;
(2) 𝑀 is stable free if𝑀 ⊕ 𝐴𝑠 ≃ 𝐴𝑟 , for some 𝑟, 𝑠 ∈ N;
(3) 𝑀 is projective if𝑀⊕𝑁 ≃ 𝐴𝑟 , for some 𝑟 ∈ N and𝐴-module

𝑁 .

In [21], Serre conjectured that every finitely generated projective

module over a polynomial ring is free. He made progress toward

a solution in 1957 when he proved that every finitely generated

projective module over a polynomial ring over a field is stably

free. However, the problem of whether a stably free module is free

remained open until 1976. And this problem is closely related to

the unimodular extension property of a unimodular row.

Definition 2.10. Let 𝐴 be a commutative ring.

(1) A vector f = (𝑓1, 𝑓2, . . . , 𝑓𝑚) ∈ 𝐴𝑚 is said to be a unimodu-
lar row over 𝐴 if 𝑓1, 𝑓2, . . . , 𝑓𝑚 generate the unit ideal.
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(2) A matrix M ∈ 𝐴𝑚×𝑚
is said to be a unimodular matrix

over 𝐴 if its determinant is a unit in 𝐴. The set of all𝑚 ×𝑚
unimodular matrices over 𝐴 is denoted by GL𝑚 (𝐴).

(3) A vector f = (𝑓1, 𝑓2, . . . , 𝑓𝑚) ∈ 𝐴𝑚 is said to be unimodular
completable if there exists a matrix in GL𝑚 (𝐴) with first

row f .
(4) A matrixM is said to be a unimodular completion matrix

of f ifM ∈ GL𝑚 (𝐴) with first row f .

In fact, we have the following theorem, which implies that if

any unimodular row is completable over 𝐴, then every stably free

module over 𝐴 is free. This theorem is well-known, and its proof

can be found in standard textbooks such as [14].

Theorem 2.11. Let 𝐴 be a commutative ring. If any unimodular
row in 𝐴 is completable, every stably free module over 𝐴 is free.

In 1976, Quillen and Suslin prove that any unimodular row in the

polynomial ring is completable and solve the Serre’s Conjecture.

Theorem 2.12 (Quillen-Suslin). Let 𝑘 be a field and let f be a
unimodular vector in 𝑘 [𝑋 ]𝑚 . Then f is unimodular completable.

Remark 2.13. Actually, Quillen-Suslin theorem still holds when
the entries of a unimodular row are polynomials over a principal ideal
domain, but we will only use the case when 𝑘 is a field.

Example 2.14. Let

f (𝑥,𝑦) =
(
0, 𝑥2 + 𝑦2 + 𝑥𝑦, 𝑥2 + 𝑥 − 𝑦,𝑦2 − 𝑦 − 2

)
= (𝑓1, 𝑓2, 𝑓3, 𝑓4) ∈ Q[𝑥,𝑦]1×4 .

By computing the Gröbner basis of ⟨𝑓1, 𝑓2, 𝑓3, 𝑓4⟩ under any mono-

mial order, we have

⟨𝑓1, 𝑓2, 𝑓3, 𝑓4⟩ = Q[𝑥,𝑦],
that is, f is unimodular over Q[𝑥,𝑦].

According to Quillen-Suslin theorem (i.e., Theorem 2.12), we can

complete f to a unimodular matrix over Q[𝑥,𝑦]:

©­­«
0 𝑥2+𝑦2+𝑥𝑦 𝑥2+𝑥−𝑦 𝑦2−𝑦−2

0 𝑥2+2𝑥+𝑦 −1 𝑥2+𝑥+𝑦−1
1 0 0 0

0 𝑥2−4𝑥𝑦+𝑦2+𝑥−3𝑦−14 𝑥2+6𝑥−𝑦+3 −5𝑥𝑦+𝑦2−4𝑥−4𝑦−10

ª®®¬
whose determinant is 28 ∈ Q \ {0}.

In the following content of the paper, we will apply the Quillen-

Suslin theorem over function fields of irreducible varieties.

The main idea for the algorithmic version of the Quillen-Suslin

theorem [15] is by induction on 𝑛, i.e. the number of the variables.

Each round we eliminate a variable and maintain the unimodu-

lar relations. Specifically, we compute the unimodular matrices at

finitely many suitable local rings (this process is also known as

Horrocks theorem, see [13, Chapter 4]) and patching together these

local solutions to reach the target. The whole process can be done

using the Gröbner basis and resultant method.

2.4 Unimodular completion matrix system
As mentioned in Section 2.3, the problem of completing unimodular

rows is crucial for Serre’s conjecture, and it has been a central

problem in classical 𝐾-theory. In this paper, we will consider the

completion of parametric vectors. More precisely, we will define

the unimodular completion matrix system of a parametric vector

as follows.

Definition 2.15. Let f (𝑈 ,𝑋 ) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 be a vector with param-

eters𝑈 . A finite collectionM = {(𝐴0, ∅), (𝐴1,M1), . . . , (𝐴𝑙 ,M𝑙 )} is
called a unimodular completionmatrix system of f if it satisfies

(1) 𝐴0, 𝐴1, . . . , 𝐴𝑙 are disjoint constructible subsets of 𝐿
𝑠
such

that

𝑙⋃
𝑖=0

𝐴𝑖 = 𝐿
𝑠
.

(2) for any a ∈ 𝐴0, f (a, 𝑋 ) is not unimodular and cannot be

completed to a unimodular matrix.

(3) for any a ∈ 𝐴𝑖 , the matrix M𝑖 (a, 𝑋 ) is a unimodular comple-

tion matrix of f (a, 𝑋 ) for 𝑖 = 1, . . . , 𝑙 .

The following example is used to explain Definition 2.15.

Example 2.16. Let f (𝑢, 𝑥,𝑦) ∈ Q[𝑢] [𝑥,𝑦]1×4 be a parametric

vector defined as(
−𝑢𝑦 − 𝑦, 𝑥2 + 𝑢𝑥 + 𝑦2 + 𝑥𝑦 + 𝑥, 𝑥2 − 𝑢𝑥 − 𝑦,𝑦2 + 𝑢𝑦 − 𝑢2 + 𝑢

)
.

By the computation, the unimodular completion matrix system of

f is

{(V(𝑢 (𝑢 − 1)), ∅), (C \ V(𝑢 (𝑢 − 1) (𝑢 + 1) (2𝑢 + 1),M1),
(V(𝑢 + 1),M2), (V(2𝑢 + 1),M3)},

which implies that for any 𝑎 ∈ C, we have
(1) if (𝑎 − 1) 𝑎 = 0, then f (𝑎, 𝑥,𝑦) can not be completed to a

unimodular matrix.

(2) if (𝑎 − 1)𝑎 ≠ 0 and (𝑎 + 1) (2𝑎 + 1) ≠ 0, then f (𝑎, 𝑥,𝑦) can be

completed to a unimodular matrixM1 over C[𝑥,𝑦], where

M1 =

(
−𝑎𝑦−𝑦 𝑥2+𝑎𝑥+𝑦2+𝑥𝑦+𝑥 𝑥2−𝑎𝑥−𝑦 𝑦2+𝑎𝑦−𝑎2+𝑎
𝑎+1 −𝑦−𝑥 1 −𝑦−𝑎
0 −𝑥 2𝑎−𝑥+1 0

0 −𝑎−𝑥−1 𝑎−𝑥 0

)
and det(M1) = 𝑎(2𝑎 + 1) (𝑎 − 1) (𝑎 + 1)2.

(3) if 𝑎 + 1 = 0, then f (𝑎, 𝑥,𝑦) can be completed to a unimodular

matrixM2 over C[𝑥,𝑦], where

M2 =
©­­«
0 𝑥2+𝑦2+𝑥𝑦 𝑥2+𝑥−𝑦 𝑦2−𝑦−2

0 𝑥2+2𝑥+𝑦 −1 𝑥2+𝑥+𝑦−1
1 0 0 0

0 𝑥2−4𝑥𝑦+𝑦2+𝑥−3𝑦−14 𝑥2+6𝑥−𝑦+3 −5𝑥𝑦+𝑦2−4𝑥−4𝑦−10

ª®®¬
and det(M2) = 28.

(4) if 2𝑎 + 1 = 0, then then f (𝑎, 𝑥,𝑦) can be completed to a

unimodular matrixM3 over C[𝑥,𝑦], where

M3 =

( − 𝑦

2
𝑥2+𝑥𝑦+𝑦2+ 1

2
𝑥 𝑥2+ 1

2
𝑥−𝑦 𝑦2− 1

2
𝑦− 3

4

−1 2𝑥+2𝑦 −2 −1+2𝑦
0 0 1 0

0 1 1 0

)
and det(M3) = 3

4
.

3 Unimodular completion of parametric vectors
In this section, we will state our main theorem formally, and sketch

the solving steps. The main result is as follows.

Theorem 3.1. For any polynomial vector f (𝑈 ,𝑋 ) = (𝑓1, . . . , 𝑓𝑚) ∈
𝑘 [𝑈 ] [𝑋 ]𝑚 , the unimodular completion matrix system of f is con-
structible.
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In Theorem 3.1, the constructibility of the unimodular comple-

tion matrix system of f means that it can be explicitly computed

using a constructive algorithm. In the following, we sketch the

processes to construct the unimodular completion matrix system

for any polynomial vector with parameters:

Step 1 Find a constructible set 𝐶 ⊂ 𝐿𝑠 such that for any a =

(𝑎1, . . . , 𝑎𝑠 ) ∈ 𝐿𝑠 , f (a, 𝑋 ) is unimodular if and only if a ∈ 𝐶 .
If 𝐶 = ∅, return {(𝐿𝑠 , ∅)} and we are done.

Step 2 Split 𝐶 into finite disjoint union of non-empty principal

constructible sets and each of these subset has the form

V(𝐸) \ V(𝑁 ) where ⟨𝐸⟩ is a prime ideal.

Step 3 For each separated subset𝐶𝑖 = V(𝐸𝑖 ) \V(𝑁𝑖 ) ⊆ 𝐶 computed

in Step 2, construct the function field K = 𝑘 (V(𝐸𝑖 )) of the
irreducible variety V(𝐸𝑖 ). Let 𝜋 (f) = (𝜋 (𝑓1), . . . , 𝜋 (𝑓𝑚)) ∈
K[𝑋 ]𝑚 and 𝜋 (f) is unimodular overK[𝑋 ]. Complete fK to

a unimodular matrixM(0)
𝑖

over K[𝑋 ] using Quillen-Suslin
algorithm.

Step 4 Multiply the denominators and pull back the entries ofM(0)
𝑖

to the original ring 𝑘 [𝑈 ] [𝑋 ]. We get a new matrix M𝑖 ∈
𝑘 [𝑈 ] [𝑋 ]𝑚×𝑚

and a polynomial 𝑑𝑖 ∈ 𝑘 [𝑈 ], such that for

any a ∈ V(𝐸𝑖 ) \ V(𝑁 × {𝑑𝑖 }), M𝑖 (a, 𝑋 ) is a unimodular

completion matrix of f (a, 𝑋 ) (Theorem 3.5).

Step 5 Consider𝐶′
𝑖
= V(𝐸𝑖 ∪ {𝑑𝑖 }) \V(𝑁 ) and repeat Steps 2-4 for

𝐶′
𝑖
if 𝐶′

𝑖
is not empty. This process will terminate within a

finite number of steps thanks to the Noetherian property.

Through iterations, we can get the desired unimodular com-

pletion matrix system of f . In the following subsections, we will

explain each step in details. We state the algorithm for computing

the unimodular completion matrix system for a parametric vector

and prove its termination in the next section.

3.1 Compute unimodular branches
For𝑚-tuples f (𝑈 ,𝑋 ) = (𝑓1, . . . , 𝑓𝑚) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 , it may happen

that for different choices a, b ∈ 𝐿𝑠 , f (a, 𝑋 ) is unimodular over

𝐿[𝑋 ] and f (b, 𝑋 ) is not. Therefore, determining the unimodular

parametric branches is prerequisite and necessary, which translates

into determining when 𝑓1 (𝑈 ,𝑋 ), . . . , 𝑓𝑚 (𝑈 ,𝑋 ) can generate the

unit ideal in 𝐿[𝑋 ] after specialization. This can be solved easily

by computing the comprehensive Gröbner system. Specifically, we

have the following:

Lemma 3.2. Let f (𝑈 ,𝑋 ) = (𝑓1, . . . , 𝑓𝑚) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 be a polyno-
mial vector. There exists a constructible set𝐶 such that for any a ∈ 𝐿𝑠 ,
f (a, 𝑋 ) is unimodular if and only if a ∈ 𝐶 .

Proof. We only need to compute the minimal comprehensive

Gröbner system G for {𝑓1, . . . , 𝑓𝑚} . Choose the branch (𝐴𝑖 ,𝐺𝑖 ) of
G for which 𝐺𝑖 = {1} and label them as (𝐴1,𝐺1), . . . , (𝐴𝑙 ,𝐺𝑙 ). If
no such branch exists, let 𝐶 = ∅. Otherwise, let

𝐶 =

𝑙⋃
𝑖=1

V(𝐸𝑖 ) \ V(𝑁𝑖 ),

where 𝐴𝑖 = V(𝐸𝑖 ) \ V(𝑁𝑖 ) for 𝑖 = 1, . . . 𝑙 . By definition of minimal

comprehensive Gröbner systems, for any a ∈ 𝐿𝑠 , the minimal

Gröbner basis of 𝑓1 (a, 𝑋 ), . . . , 𝑓𝑚 (a, 𝑋 ) is {1} if and only if a ∈ 𝐶 .
Since 𝑓1 (a, 𝑋 ), . . . , 𝑓𝑚 (a, 𝑋 ) generate the unit ideal if and only if

the minimal Gröbner basis of them is {1}, we conclude that f (a, 𝑋 )
is unimodular if and only if a ∈ 𝐶 . □

3.2 Decompose into irreducible branches
By Lemma 3.2, we can construct a constructible set 𝐶 which is a fi-

nite disjoint union of principal constructible sets. For each principal

constructible set V(𝐸) \ V(𝑁 ), we need to construct the function

field of V(𝐸) in Step 3. However, in order to construct the func-

tion field, the variety V(𝐸) must be irreducible. Therefore, we need

to further decompose every separated principal constructible sets

appearing in 𝐶 into a finite union of disjoint irreducible parts, en-

suring that the equation - constrained part of each part define an

irreducible variety.

Lemma 3.3. Let𝐶 be a constructible set. Then𝐶 can be decomposed
into a finite union of disjoint principal constructible sets (i.e. 𝐶 =
𝑙⋃

𝑖=1

V(𝐸𝑖 ) \ V(𝑁𝑖 )), where each V(𝐸𝑖 ) is irreducible.

Proof. According to Lemma 2.2, we can decompose 𝐶 into a

finite union of disjoint principal constructible sets. If we can prove

that any principal constructible set can be decomposed into the

irreducible forms as stated, then we can finish the proof.

Wemay assume that𝐶 = V(𝐸)\V(𝑁 ) is a principal constructible
set and V(𝐸) = ⋃𝑙

𝑖=1 V(𝐸𝑖 ) is the irreducible decomposition with

each V(𝐸𝑖 ) irreducible.
Therefore, we have the disjoint decomposition of V(𝐸):
V(𝐸) =V(𝐸1) ∪ (V(𝐸2) \ V(𝐸1)) ∪ (V(𝐸3) \ V(𝐸1 × 𝐸2))

∪ · · · ∪ (V(𝐸𝑙 ) \ V(
𝑙−1∏
𝑖=1

𝐸𝑖 )),

where 𝐴 × 𝐵 = {𝑓 𝑔 | 𝑓 ∈ 𝐴,𝑔 ∈ 𝐵}. Removing V(𝑁 ) from both

sides of the equation , we have the disjoint decomposition of 𝐶:

𝐶 =(V(𝐸1) \ V(𝑁 )) ∪ (V(𝐸2) \ V(𝑁 × 𝐸1))

∪ (V(𝐸3) \ V(𝑁 × 𝐸1 × 𝐸2)) ∪ · · · ∪ (V(𝐸𝑙 ) \ V(𝑁 ×
𝑙−1∏
𝑖=1

𝐸𝑖 ))

which is exactly the decomposition form we want. □

Next we give an algorithm for computing above irreducible de-

composition of a principal constructible set. It comes straightfor-

wardly from the above proof.

Algorithm 1 Compute irreducible decomposition of a principal

constructible set 𝐶

Input: Two subsets 𝐸, 𝑁 ⊂ 𝑘 [𝑈 ] such that 𝐶 = V(𝐸) \ V(𝑁 ) ≠ ∅.
Output: {(𝐸1, 𝑁1), . . . , (𝐸𝑙 , 𝑁𝑙 )} such that each V(𝐸𝑖 ) is irre-

ducible, V(𝐸𝑖 ) \ V(𝑁𝑖 ) for 𝑖 = 1, . . . , 𝑙 are pairwise disjoint

and 𝐶 =
⋃𝑙

𝑖=1 V(𝐸𝑖 ) \ V(𝑁𝑖 ).
1: Compute the prime decomposition of

√︁
⟨𝐸⟩, i.e.,

√︁
⟨𝐸⟩ =⋂𝑙

𝑖=1⟨𝐸𝑖 ⟩ where each subset 𝐸𝑖 ⊂ 𝑘 [𝑈 ] generates the prime

ideal ⟨𝐸𝑖 ⟩ for 𝑖 = 1, . . . , 𝑙 .

2: Let 𝑁1 = 𝑁, 𝑁2 = 𝑁 × 𝐸1, . . . , and 𝑁𝑙 = 𝑁 × ∏𝑙−1
𝑖=1 𝐸𝑖 for

𝑖 = 1, . . . , 𝑙 .

3: return {(𝐸1, 𝑁1), . . . , (𝐸𝑙 , 𝑁𝑙 )}.
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Remark 3.4. Computing radical ideal and prime decomposition
can be implemented by the classical algorithm in [2, Chapter 8]. For
other newer and more efficient methods, see [1, 12, 22].

3.3 Complete in irreducible branches
For each principal constructible set V(𝐸) \ V(𝑁 ) with V(𝐸) ir-
reducible, in Step 3 and Step 4, our goal is to construct a matrix

M ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚×𝑚
such that for almost every a ∈ V(𝐸) \ V(𝑁 ),

the matrix M(a, 𝑋 ) is a unimodular completion matrix of f (a, 𝑋 ).
The result is formalized in the following theorem.

Theorem 3.5. Let f (𝑈 ,𝑋 ) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 be a polynomial vector,
and let 𝐶 = V(𝐸) \ V(𝑁 ) be a nonempty principle constructible
set with V(𝐸) irreducible. Suppose that f (a, 𝑋 ) is unimodular for
any a ∈ 𝐶 . Then there exists a matrix M ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚×𝑚 and a
polynomial 𝑑 ∈ 𝑘 [𝑈 ] such that:

(1) 𝑑 ∉ ⟨𝐸⟩;
(2) For any a ∈ V(𝐸) \V(𝑁 ), the matrixM(a, 𝑋 ) is a unimodular

completion matrix of f (a, 𝑋 ) if and only if 𝑑 (a) ≠ 0.

The main idea to constructM is as follows. First, we construct

the function field of V(𝐸) and apply the Quillen-Suslin theorem in

the polynomial ring over this function field to obtain a unimodular

matrix M(0)
(over the new polynomial ring). Then, pulling M(0)

back to the original polynomial ring, we obtain the desired matrix

M.

To apply the Quillen-Suslin theorem in the polynomial ring over

this function field, the following lemma is required.

Lemma 3.6. Let f (𝑈 ,𝑋 ) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 be a polynomial vector, and
let 𝐶 = V(𝐸) \ V(𝑁 ) be a nonempty principal constructible set with
V(𝐸) irreducible. Assume that f (a, 𝑋 ) is unimodular for any a ∈ 𝐶 .
Then 𝜋 (f) is unimodular over K[𝑋 ], where K = 𝑘 (V(𝐸)) and 𝜋 is
the canonical map.

Proof. Suppose that 𝐸 = {𝑔1, . . . , 𝑔𝑟 }, 𝑁 = {ℎ1, . . . , ℎ𝑠 }. We

claim that

V
(
⟨𝑓1, . . . , 𝑓𝑚, 𝑔1, . . . , 𝑔𝑟 ⟩𝑘 [𝑈 ,𝑋 ]

)
\V

(
⟨ℎ1, . . . , ℎ𝑠 ⟩𝑘 [𝑈 ,𝑋 ]

)
= ∅.

(1)

Otherwise, there exists (a, b) ∈ C𝑠+𝑛 such that

𝑓𝑖 (a, b) = 0, 𝑔 𝑗 (a) = 0, 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑟 .

and ℎ𝑖 (a) ≠ 0 for some 𝑖 . This implies that a ∈ V(𝐸)\V(𝑁 ) and
b ∈ V (𝑓1 (a, 𝑋 ), . . . , 𝑓𝑚 (a, 𝑋 )). This contradicts the fact that f (a, 𝑋 )
is unimodular. According to (1), we have

V
(
⟨𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑟 ⟩𝑘 [𝑈 ,𝑋 ]

)
⊂ V

(
⟨ℎ1, . . . , ℎ𝑠 ⟩𝑘 [𝑈 ,𝑋 ]

)
.

By Hilbert Nullstellensatz theorem, we have√︃
⟨ℎ1, . . . , ℎ𝑠 ⟩𝑘 [𝑈 ,𝑋 ] ⊂

√︃
⟨𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑟 ⟩𝑘 [𝑈 ,𝑋 ] . (2)

Since V(𝐸)\V(𝑁 ) ≠ ∅, there exists ℎ ∈ 𝑘 [𝑈 ], such that ℎ ∈ ⟨𝑁 ⟩,
but ℎ ∉

√︁
⟨𝐸⟩. By (2), ℎ ∈

√︃
⟨𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑟 ⟩𝑘 [𝑈 ,𝑋 ] , which

implies that

ℎ𝑟 = 𝑞1 𝑓1 + 𝑞2 𝑓2 + · · · + 𝑞𝑚 𝑓𝑚 + 𝑔,

for some 𝑟 > 0, 𝑞1, . . . , 𝑞𝑚 ∈ 𝑘 [𝑈 ] [𝑋 ] and 𝑔 ∈ ⟨𝐸⟩𝑘 [𝑈 ,𝑋 ] . Applying
the canonical map 𝜋 on the both sides, we have

𝜋
(
ℎ𝑟

)
∈ ⟨𝜋 (𝑓1) , . . . , 𝜋 (𝑓𝑚)⟩K[𝑋 ] .

Since ℎ ∉
√︁
⟨𝐸⟩, ℎ𝑟 ∉

√︁
⟨𝐸⟩. Hence 𝜋 (ℎ𝑟 ) ≠ 0 is a unit in K , which

means that 𝜋 (𝑓1) , . . . , 𝜋 (𝑓𝑚) generate the unit ideal in K[𝑋 ] as
needed. □

Thanks to Lemma 3.6, we are able to apply Quillen-Suslin theo-

rem to (𝜋 (𝑓1), . . . , 𝜋 (𝑓𝑚)) over K[𝑋 ] and get a unimodular matrix

M0 with entries in K[𝑋 ] and determinant is in K . According to

Lemma 3.6, we now prove Theorem 3.5.

Proof of Theorem 3.5. Let R = 𝑘 [V(𝐸)] and K = 𝑘 (V(𝐸)). By
Lemma 3.6, 𝜋 (f) is unimodular over K[𝑋 ], and according to the

Quillen-Suslin theorem, there exists a matrix M(0) ∈ K[𝑋 ]𝑚×𝑚

such thatM(0)
is a unimodular completematrix of 𝜋 (f). Multiplying

each row of M(0)
by appropriate elements in R \ {0}, we obtain a

matrixM(1) ∈ R[𝑋 ]𝑚×𝑚
, which is also a unimodular completion

of 𝜋 (f). Because M(1)
is unimodular, it follows that det(M(1) ) ∈

R \ {0}.
Let M ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚×𝑚

and 𝑑 ∈ 𝑘 [𝑈 ] such that 𝜋 (M) = M(1)

and 𝜋 (𝑑) = det(M(1) ). Then 𝑑 ∉ ⟨𝐸⟩ as 𝜋 (𝑑) ≠ 0. Since the first

row of M(1)
is 𝜋 (f), it follows that for any a ∈ V(𝐸) \ V(𝑁 ), the

first row ofM(a, 𝑋 ) is 𝑓 (a, 𝑋 ). Furthermore,

det(M) ≡ 𝑑 mod

√︁
⟨𝐸⟩.

Therefore, for any a ∈ V(𝐸) \ V(𝑁 ),

det(M(a, 𝑋 )) = 𝑑 (a) ∈ 𝐿.

This implies that for a ∈ V(𝐸) \ V(𝑁 ), M(a, 𝑋 ) is unimodular if

and only if 𝑑 (a) ≠ 0.

3.4 Reduce to smaller branches
For a principal constructible set V(𝐸) \ V(𝑁 ) where V(𝐸) is irre-
ducible, according to the above process and Theorem 3.5, we get

a parametric matrix M(𝑈 ,𝑋 ) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚×𝑚
which is exactly the

completion of f we want to compute in the principal constructible

set V(𝐸) \ V(𝑁 × {𝑑}). Moreover, by splitting

V(𝐸) \ V(𝑁 ) = (V(𝐸 ∪ {𝑑}) \ V(𝑁 )) ∪ (V(𝐸) \ V(𝑁 × {𝑑})),
(3)

we only need to complete in a strictly smaller parameter branch

V(𝐸 ∪ {𝑑}) \ V(𝑁 ) if it’s not empty by Theorem 3.5 (1).

Repeating Step 2-4 for principal constructible set V(𝐸 ∪ {𝑑}) \
V(𝑁 ) and by the Noetherian property of the polynomial ring 𝑘 [𝑈 ],
we can solve the desired parametric matrices at every parametric

branches in finite steps.

4 Algorithm
With the detailed analysis in previous sections, we now give the

algorithm for computing unimodular completion matrix system

for a given parametric vector f = (𝑓1, . . . , 𝑓𝑚) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 . To our

knowledge, there is currently no such algorithm for completing

the unimodular row with parameters to unimodular matrices in

different parametric branches.
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Algorithm 2 Compute the unimodular completion matrix system

Input: f (𝑈 ,𝑋 ) = (𝑓1, . . . , 𝑓𝑚) ∈ 𝑘 [𝑈 ] [𝑋 ]𝑚 .

Output: M = {(𝐴0, ∅), (𝐴1,M1), . . . , (𝐴𝑙 ,M𝑙 )} is a unimodular

completion matrix system of f .
1: Compute the minimal CGS of {𝑓1, . . . , 𝑓𝑚} using the algorithm

in [10] and denote the union of all principal constructible sets

whose corresponding minimal Gröbner basis is {1} as 𝐶 . Let
𝐴0 = 𝐿

𝑠 \𝐶 . If 𝐶 = ∅, return M = {(𝐿𝑠 , ∅)}.
2: For each separated principal constructible set appearing in 𝐶 ,

compute its disjoint irreducible decomposition using Algorithm

1 and denote the whole union of all such irreducible branches

by 𝑆 ;

3: Set M = {(𝐴0, ∅)};
4: while 𝑆 ≠ ∅ do
5: Take (𝐸, 𝑁 ) ∈ 𝑆 and delete it from 𝑆 , set R = 𝑘 [V(𝐸)] with

the canonical map 𝜋 and K = 𝑘 (V(𝐸));
6: View 𝜋 (𝑓1), . . . , 𝜋 (𝑓𝑚) as elements in K[𝑋 ], compute the

unimodular matrixM(0) ∈ K[𝑋 ]𝑚×𝑚
with first row being

(𝜋 (𝑓1), . . . , 𝜋 (𝑓𝑚)) using Quillen-Suslin theorem;

7: Compute the multiplication of denominators for all entries

in 𝑖-th row ofM(0)
and denote as 𝑟𝑖 , for 𝑖 = 1, . . . ,𝑚;

8: For each 𝑖 , multiply 𝑟𝑖 (𝑈 ) to 𝑖-th row of M(0)
and denote

the new matrix as M(1)
;

9: Compute M(𝑈 ,𝑋 ) = 𝜋−1 (M(1) ) and 𝑑 (𝑈 ) =

𝜋−1 (det(M(1) ));
10: Let M = M ∪ {(V(𝐸) \ V(𝑁 × {𝑑}),M)};
11: if V(𝐸 ∪ {𝑑}) \ V(𝑁 ) ≠ ∅ then
12: Compute its disjoint irreducible decompositions using

Algorithm 1 and add the results to 𝑆 ;

13: end if
14: end while
15: return M.

Remark 4.1. The set 𝑆 consists of elements (𝐸𝑖 , 𝑁𝑖 ) for 𝑖 ∈ Λ,
where Λ is the index set. For each 𝑖 ∈ Λ, ⟨𝐸𝑖 ⟩ is a prime ideal and
V(𝐸𝑖 ) \ V(𝑁𝑖 ) for 𝑖 ∈ Λ are pairwise disjoint. After Step 2, we have
𝐶 =

⋃
𝑖∈Λ V(𝐸𝑖 ) \ V(𝑁𝑖 ) by Lemma 3.3.

Theorem 4.2. Algorithm 2 terminates within a finite number of
steps.

Proof. Using König’s lemma, it suffices to show that: (1) in each

step, the algorithm only creates finite branches; (2) each branch

terminates after finite steps.

(1) follows from the fact that any radical ideal can be decomposed

into a finite intersection of prime ideals, since Algorithm 2 only

creates new branches when calling Algorithm 1.

As for (2), for convenience, we can suppose that there is only

one term (𝐸, 𝑁 ) in 𝑆 after Step 2. In Step 9, we have 𝑑 ∉ 𝐸 and

⟨𝐸⟩ ⊊ ⟨𝐸⟩ + ⟨𝑑⟩ according to Theorem 3.5.

In this case, if V(𝐸 ∪ {𝑑}) \ V(𝑁 ) = ∅, the “while” process

is over and we finish. Otherwise, we add the decompositions of

V(𝐸 ∪ {𝑑}) \V(𝑁 ) ≠ ∅ into the set 𝑆 , with the guarantee that each

new term is induced by an irreducible subvariety of V(𝐸 ∪ {𝑑}),
which is properly contained in V(𝐸). Then we start a new iteration.

We remark that this whole process will induce an increasing chain

of ideals

⟨𝐸⟩ ⊊ ⟨𝐸⟩ + ⟨𝑑⟩ ⊊ . . .

This process will terminate within finitely many iterations because

of the Noetherian property of 𝑘 [𝑈 ] and Theorem 3.5.

□

Theorem 4.3. Algorithm 2 works correctly. That is,M constructed
from Algorithm 2 is a unimodular completion matrix system of f .

Proof. Obviously,

𝑙⋃
𝑖=0

𝐴𝑖 = 𝐿
𝑠
. For 𝑖 = 0, . . . , 𝑙 , each𝐴𝑖 is disjoint

by the construction of 𝐴0, the computation of minimal comprehen-

sive Gröbner system, Lemma 3.3 and Formula 3.

By Lemma 3.2, f (a, 𝑋 ) is not unimodular if and only if a ∈ 𝐴0,

for any a ∈ 𝐿𝑠 .
By Theorem 3.5, we have thatM𝑖 (a, 𝑋 ) is unimodular over 𝐿[𝑋 ]

with the first row being f (a, 𝑋 ) for any a ∈ 𝐴𝑖 , where 𝑖 = 1, . . . , 𝑙 .

As a consequence,M is a unimodular completion matrix system

of f . □

5 Example
In this section we give an example to illustrate the steps of the

above proposed algorithm.

Example 5.1. Let

f (𝑢1, 𝑢2, 𝑥1, 𝑥2) = (𝑢2𝑥2 + 𝑢1 + 𝑥1, 𝑥21 + 𝑢1𝑥2 + 𝑢2, 𝑢1𝑥1 + 𝑥2)
= (𝑓1, 𝑓2, 𝑓3) ∈ Q[𝑢1, 𝑢2] [𝑥1, 𝑥2]3 .

Firstly, we compute the minimal comprehensive Gröbner system

of 𝑓1, 𝑓2, 𝑓3 and obtain G = {(C2\V(ℎ), {1}), (V(ℎ), {𝑥2+𝑢3
1
−𝑢1𝑢2

2
+

𝑢2, 𝑥1 − 𝑢3
1
𝑢2 + 𝑢1𝑢3

2
− 𝑢2

2
+ 𝑢1})}, where

ℎ = 𝑢4
1
𝑢2 − 𝑢21𝑢

3

2
− 𝑢3

1
+ 2𝑢1𝑢

2

2
− 𝑢2

1
− 𝑢2 .

This implies that for any (𝑎1, 𝑎2) ∈ C2, f (𝑎1, 𝑎2, 𝑥1, 𝑥2) is unimodu-

lar if and only if ℎ(𝑎1, 𝑎2) ≠ 0. LetM = {(V(ℎ), ∅)}.
Let 𝐶 = C2 \ V(ℎ). Let

K1 = Q(C2) = Frac(Q[𝑢1, 𝑢2]/I(C2)) = Q(𝑢1, 𝑢2),
where Frac(𝐴) denotes the fractional field of a domain𝐴. ByQuillen-

Suslin algorithm, 𝜋1 (f) can be completed to a unimodular matrix

M1 over K1 [𝑋 ], andM1 =©­«
𝑢2𝑥2 + 𝑢1 + 𝑥1 𝑢1𝑥2 + 𝑥2

1
+ 𝑢2 𝑢1𝑥1 + 𝑥2

(𝑢1𝑢2 − 1)2 𝑢1 𝑢4
1
𝑢2 − 𝑢3

1
+ 𝑢1𝑢2𝑥2 − 𝑢2

1
− 𝑥2 0

0 𝑚[3, 2] (𝑢1𝑢2 − 1)2 𝑢1

ª®¬
where𝑚[3, 2] = (𝑢2

1
𝑢2
2
−2𝑢1𝑢2+1)𝑥1+ (𝑢2−𝑢1𝑢2

2
)𝑥2−𝑢3

1
𝑢2+𝑢2

1
+𝑢1.

The determinant ofM1 is

𝑑1 = det(M1) = 𝑢21 (𝑢1𝑢2 − 1)2ℎ.
Then for any (𝑎1, 𝑎2) ∈ C2\V(𝑢2

1
(𝑢1𝑢2−1)2ℎ2) = C2\V(𝑢1 (𝑢1𝑢2−

1)ℎ), the matrixM1 (𝑎1, 𝑎2, 𝑥1, 𝑥2) is a unimodular completion ma-

trix of f (𝑎1, 𝑎2, 𝑥1, 𝑥2). LetM = M∪{(C2 \V(𝑢1 (𝑢1𝑢2−1)ℎ),M1)}.
Then we consider the branchV(𝐸1) \V(ℎ) = V(𝑢1 (𝑢1𝑢2−1)ℎ) \

V(ℎ). By Algorithm 1, V(𝐸1) \ V(ℎ) can be decomposed as

V(𝐸1) \ V(ℎ) = V(𝑢1) \ V(ℎ) ∪ V(𝑢1𝑢2 − 1) \ V(𝑢1ℎ) .
Consider the principal constructible set V(𝑢1) \ V(ℎ). Let

K2 = Q(V(𝑢1)) = Frac(Q[𝑢1, 𝑢2]/⟨𝑢1⟩).
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By Quillen-Suslin algorithm, 𝜋2 (f) can be completed to a unimodu-

lar matrix M(0)
2

over K2 [𝑋 ], and

M(0)
2

=
©­«
[𝑢2]𝑥2 + 𝑥1 𝑥2

1
+ [𝑢2] 𝑥2

[1] 𝑥1 [0]
[0] −[𝑢2]𝑥1 [1]

ª®¬ ,
whose determinant is [−𝑢2] . Let

M2 =
©­«
𝑢2𝑥2 + 𝑥1 𝑥2

1
+ 𝑢2 𝑥2

1 𝑥1 0

0 −𝑢2𝑥1 1

ª®¬
and 𝑑2 = 𝜋−1

2
(det(M(0)

2
)) = −𝑢2 . Then for any (𝑎1, 𝑎2) ∈ V(𝑢1) \

V(ℎ𝑢2) = V(𝑢1) \V(𝑢2),M2 (𝑎1, 𝑎2, 𝑥1, 𝑥2) is a unimodular comple-

tion matrix of f (𝑎1, 𝑎2, 𝑥1, 𝑥2). LetM = M∪{(V(𝑢1) \V(𝑢2),M2)}.
Then we consider V(𝑢1, 𝑢2) \ V(ℎ).We can check that V(𝑢1, 𝑢2) \
V(ℎ) = ∅.

We consider the branch V(𝑢1𝑢2 − 1) \ V(𝑢1ℎ). Let
K3 = Q(V(𝑢1𝑢2 − 1)) = Frac(Q[𝑢1, 𝑢2]/⟨𝑢1𝑢2 − 1⟩).

By Quillen-Suslin algorithm, 𝜋3 (f) can be completed to a unimodu-

lar matrix M(0)
3

over K3 [𝑋 ], and

M(0)
3

=
©­«
[𝑢2]𝑦 + 𝑥 + [𝑢1] 𝑥2 + [𝑢1]𝑦 + [𝑢2] [𝑢1]𝑥 + 𝑦

[0] [1] [0]
[𝑢2

2
] [0] [𝑢2]

ª®¬ ,
whose determinant is [1] . Let

M3 =
©­«
𝑢2𝑦 + 𝑥 + 𝑢1 𝑥2 + 𝑢1𝑦 + 𝑢2 𝑢1𝑥 + 𝑦

0 1 0

𝑢2
2

0 𝑢2

ª®¬
and𝑑3 = 𝜋

−1
3

(det(M(0)
3

)) = 1. Then for any (𝑎1, 𝑎2) ∈ V(𝑢1𝑢2−1)\
V(𝑢1ℎ) = V(𝑢1𝑢2−1),M3 (𝑎1, 𝑎2, 𝑥1, 𝑥2) is a unimodular completion

matrix of f (𝑎1, 𝑎2, 𝑥1, 𝑥2). LetM = M ∪ {(V(𝑢1𝑢2 − 1),M3)}.
In summary, the unimodular completion matrix system of f is

M = {(V(ℎ), ∅), (C2 \ V(𝑢1 (𝑢1𝑢2 − 1)ℎ),M1),
(V(𝑢1) \ V(𝑢2),M2), (V(𝑢1𝑢2 − 1),M3)}.

6 Concluding remarks
In this paper, we propose an algorithm for completing parametric

unimodular vectors to unimodular matrices. By means of compre-

hensive Gröbner systems, we first partition the entire parameter

space into a finite number of constructible subsets and select the

unimodular branches. The key is that based on the irreducible de-

composition of constructible subsets, we construct the fractional

fields and then apply the Quillen-Suslin theorem on the each con-

structed field to compute the completion matrix. By pulling the

matrix back to the original polynomial ring and further iterations,

we obtain the unimodular completion matrix system.

Nevertheless, the difficulties in implementing the algorithmic

Quillen-Suslin theorem over function fields arise when we try to

implement our algorithm in specific codes in computer algebra

software like Maple. This is likely to be a practical problem we

need to solve next. Since the detailed implementation related to

the Quillen-Suslin theorem only involves some simple computable

fields such as the rational field or finite fields, it seems to be a

promising area worth studying.
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