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Abstract An algorithm for computing parametric order bases for univariate polynomial matrices

with parameters is first presented in this paper. Starting from the non-parametric univariate polynomial

matrix, our key idea is to construct a special module and module order. Then based on Gröbner

basis theory for modules, we present that the order basis can be obtained by computing a minimal

Gröbner basis for this module under this order. Further, we extend the definition of the order basis

to the parametric polynomial matrix, and give the concept of comprehensive order basis systems.

More importantly, the method based on Gröbner bases for modules can be naturally generalized to

the parametric case by means of comprehensive Gröbner systems for modules. As a consequence, we

design a new algorithm for computing comprehensive order basis systems. The proposed algorithm has

been implemented on the computer algebra system Singular and Maple.

Keywords Order basis, comprehensive order basis system, Gröbner basis, comprehensive Gröbner

system.
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1 Introduction

The concept of order basis can be traced back to the proof of the transcendence for e

presented by Hermite [1] in 1873 . Let F ∈ K[[x]]m×n be a matrix of power series and given a

non-negative integer σ, we are concerned with the problem of finding a vector p such that

F · p ≡ 0 mod xσ,

which is involved in the well-known Hermite-Padé approximations defined by Padé [2]. In fact,

all vectors satisfying the above equation form a free module over K[x]. The researchers focus

on how to find a specific basis to represent the whole free module. Beckermann and Labahn [3]

gave a type of minimal degree property, named reduced order basis, and they also used the order

basis to construct the Padé related rational interpolation tables. Meanwhile, the order basis

is widely used in the inversion of structured matrices, normal forms of polynomial matrices,

matrix inversion, column reduction, determinant, and nullspace basis computation [4–7].

Many researchers are committed to developing efficient algorithms for computing order

bases. In 1994, Beckermann and Labahn [8] proposed a rapid algorithm that transforms the

matrix problem into a higher-order vector problem (refer to as the Power Hermite-Padé prob-

lem). In 2003, Giorgi [6] introduced a divide-and-conquer approach for computing order bases,

which converts the high-dimensional matrix order problem into a lower-dimensional vector

problem of higher orders. This method has proven to be highly effective when the matrix is

nearly square. In 2006, Storjohann [9] presented a novel algorithm that effectively reverses

the construction established by Beckermann and Labahn. They transform the low-dimensional

order basis problem into a high-dimensional one with the reduced order. These works reach

complexity bounds that are deemed satisfactory in the most interesting cases, and return a ba-

sis in a so-called shifted reduced form. Subsequently, in 2013 Zhou [10] extended Storjohann’s

transformation to address limitations in Storjohann’s method without sacrificing efficiency. In

recent years, significant advancements have been achieved in the rapid computation of Popov

form, which is a more stringent canonical representation compared to order basis [11–13]. Their

algorithms are designed to accommodate arbitrary shifts without compromising efficiency.

Several algorithms have been devised to compute fraction-free order bases. For example,

Beckermann and Labahn [14, 15] presented the FFFG algorithm for computing matrix rational

interpolants by means of the Mahler systems they defined. They showed that type 2 Mahler

systems at normal indices generate all the solutions to a simultaneous Padé problem of a given

type for any order, and those solutions constitute an order basis. The main purpose of using a

fraction-free approach is to avoid coefficient growth.

Although there are many fast algorithms for computing order bases of univariate polynomial

matrices, there is still a blank in the study of parametric order basis. In practice, we always

encounter situations with parametric matrices. For example, Danik and Dmitriev [16] consider

the stabilizing regulators for a family of nonlinear control systems with a small positive pa-

rameter. They used Padé representation with parameters and limited the parameters so that

they could discuss different situations to solve this representation, which can be done by the
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algorithm in this paper without any limitations for parameters. The parametric order basis for

univariate polynomial matrices with parameters is precisely the issue we are considering and

paying attention to.

Given a matrix F ∈ K[U ][x]m×n with parameters U = {u1, · · · , uk} and variable x. We

expect to find all the order bases of the matrix F after each parameter takes any value in

the algebraic closure L of K. This is different from [14, 15] that give fraction-free order bases

over an integral domain. In addition, the above mentioned algorithms for computing order

bases for non-parametric polynomial matrices can not be simply extended to the case with

parameters. This paper focuses on finding finite sets O = {(A1,O1), · · · , (Al,Ol)} such that

for all a ∈ Ai ⊂ Lk, after specializing U induced by a (i.e., U takes the value a, denoted by

πa), πa(Oi) is an order basis of πa(F). {A1, · · · , Al} represents the partition of parameter

space. In fact, for each branch Ai, F shares the same expression of order basis for U taking any

values in Ai. This finite set is defined by us as a comprehensive order basis system which is

parallel to the concept of comprehensive Gröbner system proposed by Weispfenning [17]. For

the comprehensive Gröbner system, many improved algorithms have been proposed [18–24].

In this paper, we begin to present the idea from the non-parametric case and give the method

by using Gröbner bases proposed by Buchberger [25] in 1976 to compute the order basis. For a

given matrix F ∈ K[x]m×n and a positive integer list −→σ , we construct a special matrix F′ with

the form of

F′ =

F x
−→σ

In 0n×m

 ∈ K[x](m+n)×(m+n).

The idea is to calculate the minimal Gröbner basis for the module generated by column vectors

of F′ under a special block order. Then we can obtain an order basis directly from this minimal

Gröbner basis. Note that Gröbner bases for modules have been applied to compute the univari-

ate polynomial matrix forms (Hermite normal form, Popov normal form, shifted reduced forms,

etc.). Further, we extend the definition of the order basis to the parametric polynomial matrix,

and give an exact definition of comprehensive order basis systems. By means of comprehensive

Gröbner systems for modules which presented by [26] as the generalization of comprehensive

Gröbner systems for polynomial rings, the method based on Gröbner bases for modules can be

naturally generalized to the parametric case. Therefore, we design an algorithm for computing

comprehensive order basis systems. Moreover, we have implemented the algorithm on Singular

and Maple, and provide two examples to illustrate the steps of the algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce some notations and

definitions, including the order basis, Gröbner basis, and comprehensive Gröbner system. In

the last of Section 2, we give a strict definition of a comprehensive order basis system. The main

results are presented in Section 3. We prove that by computing a minimal Gröbner basis for

constructed special modules with respect to a specific block order, an order basis directly from

the minimal Gröbner basis can be obtained. Then we further extend the idea to the parametric

case. In Section 4, we propose the algorithm for computing comprehensive order basis systems

based on the main theorem. Finally, we end with some concluding remarks in Section 5.
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2 Preliminaries

In this section, we will introduce some basic notations and definitions for further discussion

in this paper.

Let K be a field, K[x] be the polynomial ring with variable x, K[U ][x] be the parametric

polynomial ring with parameters U = {u1, · · · , uk} and univariate x, F ∈ K[x]m×n (or F ∈
K[U ][x]m×n) be a m × n matrix with entries in K[x] (or K[U ][x]). Let −→σ = [σ1, · · · , σm] be a

non-negative integer list, and −→s = [s1, · · · , sn] ∈ Zn be an integer list.

A subset of K[x]n is called a module over K[x], if this subset is closed under addition

and scalar multiplication by elements of K[x]. For a finite set of vectors f1, · · · , fs ∈ K[x]n,

we consider the set of all polynomial vectors in K[x]n which can be written as a K[x]-linear

combination of these vectors:

M = {h1f1 + · · ·+ hsfs ∈ K[x]n : hi ∈ K[x] for i = 1, · · · , s}.

Then M is a submodule of K[x]n generated by {f1, · · · , fs} and denoted by 〈f1, · · · , fs〉.
The set {f1, · · · , fs} is called a generating set of M . However, the generating set of M is not

necessarily linearly independent. If {f1, · · · , fs} is K[x]-linearly independent, {f1, · · · , fs} is a

basis of M . Moreover, if a module M has a basis, then M is called a free module. Since K[x]

is a principal ideal domain, any submodule of K[x]n is free.

First, we introduce the concept of order bases.

Definition 2.1 A column degree for a column vector p = (p1, · · · , pn)T ∈ K[x]n×1, de-

noted by cdeg p, is just the maximum of the degrees of its elements, that is,

cdeg p = max
1≤i≤n

deg pi.

Given an integer list −→s = [s1, · · · , sn] ∈ Zn(we always call −→s a shift), a shifted column

degree of p with respect to a shift −→s (denoted by cdeg−→s p), or simply the −→s -column degree of

p is

cdeg−→s p = max
1≤i≤n

{deg pi + si} = deg(x
−→s · p),

where

x
−→s = diag([xs1 , · · · , xsn ]) =


xs1

. . .

xsn

 .
For a matrix P ∈ K[x]m×n, we use cdeg P and cdeg−→s P for the lists of its column degrees

and shifted −→s -column degrees for all its column vectors.

Next, we give a comparable order for cdeg P and cdeg−→s P. We can rearrange the list

cdeg P = [a1, · · · , an] by the entries of the list from small to large. When comparing the two

lists, cdeg P1 and cdeg P2, we first need to rearrange them and then compare the ordered
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lists −→a and
−→
b . As for two pre-ordered integer lists −→a = [a1, · · · , an] and

−→
b = [b1, · · · , bn], we

compare −→a and
−→
b by following rules:

−→a ≥
−→
b , if ai ≥ bi,∀i ∈ [1, · · · , n];

−→a ≤
−→
b , if ai ≤ bi,∀i ∈ [1, · · · , n];

−→a >
−→
b , if ai ≥ bi,∀i ∈ [1, · · · , n], and aj > bj for at least one j ∈ [1, · · · , n];

−→a <
−→
b , if ai ≤ bi,∀i ∈ [1, · · · , n], and aj < bj for at least one j ∈ [1, · · · , n].

Note that not all integer lists are comparable by the above rules. For example, the lists [1, 4]

and [2, 3] can not be comparable. Moreover, cdeg P1 ≥ cdeg P2 if and only if the corresponding

ordered lists −→a ≥
−→
b .

Definition 2.2 A matrix P ∈ K[x]m×n is said to be column reduced if cdeg P ≤ cdeg PU

for any unimodular matrix U. Note that this includes the comparability for cdeg P and

cdeg PU. More generally, for a shift −→s ∈ Zn, a matrix P ∈ K[x]m×n is said to be −→s -column

reduced if cdeg−→s P ≤ cdeg−→s PU for any unimodular matrix U.

Lemma 2.3 A matrix P ∈ K[x]m×n with no zero columns is column reduced if and only

if lcoeff P has full column rank. The lcoeff P is the leading column coefficient matrix of P,

defined as

lcoeff P = [lcoeff p1, · · · , lcoeff pn]

= [coeff(p1, cdeg p1), · · · , coeff (pn, cdeg pn)],

where coeff(pi, cdeg pi) =

[
coeff(p1i,cdeg(pi))

...
coeff(pmi,cdeg(pi))

]
for pi =

[ p1i

...
pmi

]
∈ K[x]m×1.

Definition 2.4 A column vector p ∈ K[x]n×1 has order (F,−→σ ) if F · p ≡ 0 mod x
−→σ ,

which means the following matrix equation holds for some r ∈ K[x]m×1.

F · p = x
−→σ r =


xσ1

. . .

xσm

 r.

Particularly, if −→σ = [σ, · · · , σ], we say p has order (F, σ). All vectors which have order

(F,−→σ ) form a free K[x]-module, denoted by 〈(F,−→σ )〉.
Definition 2.5 A polynomial matrix P is called an order basis of F with respect to the

order −→σ and shift −→s , denoted by (F,−→σ ,−→s )-basis, if the column vectors of P is the basis

of module 〈(F,−→σ )〉, and P has minimal −→s -column degree. Or precisely, the following three

conditions hold:

1) Each column vector of P has (F,−→σ ) order;

2) P is a nonsingular matrix of dimension n, and is −→s -column reduced;
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3) ∀q ∈ 〈(F,−→σ )〉, q can be K[x]-linearly expressed as a combination of column vectors of P.

Remark 2.6 For the definition of order bases in [10], F ∈ K[[x]]m×n is a matrix of formal

power series. But for computing a (F, σ,−→s )-basis with input matrix F ∈ K[[x]]m×n, shift −→s ,

and order σ one can view F as a polynomial matrix with degree σ − 1, as higher order terms

are not needed in the computation. Then for convenience, throughout this paper we consider

F ∈ K[x]m×n.

Now we introduce Gröbner bases and comprehensive Gröbner systems for modules.

Let � be a monomial order on K[x], and �Tn be a module order by extending � to K[x]n.

By convention, e1 �Tn e2 �Tn · · · �Tn en, where e1, . . . , en are unit vectors in K[x]n. For

p ∈ K[x]n, the leading term, leading coefficient and leading monomial of p with respect to �Tn

are denoted by LT(p), LC(p), LM(p). We say p �Tn
q if LM(p) �Tn

LM(q) or LM(p) =

LM(q) and (p− LT(p)) �Tn
(q− LT(q)).

The definition of Gröbner bases for modules is as follows.

Definition 2.7 Let M be a submodule of K[x]n, and �Tn
be a monomial order on K[x]n.

1) We denote 〈LT(M)〉 the monomial submodule generated by the leading term of all p ∈M
with respect to �Tn .

2) A finite set G = {g1, . . . ,gs} ⊂ M is called a Gröbner basis of M , if 〈LT(M)〉 =

〈LT(g1), . . . ,LT(gs)〉.

3) A Gröbner basis G of M is said to be minimal, if LM(g) /∈ 〈LM(G \ {g})〉 for all g ∈ G.

Next, we introduce some definitions for parametric univariate polynomials.

Let L be the algebraic closure of K, a specialization of R is a homomorphism π : K[U ]→ L.

In this paper, we consider the specializations induced by the elements in Lk, which means for an

element a ∈ Lk, there is a homomorphism defined as πa : f → f(a) for a polynomial f ∈ K[U ].

Every specialization π : K[U ]→ L extends canonically to a homomorphism π : K[U ][x]→ L[x]

or K[U ][x]m×n → L[x]m×n by applying π coefficient-wise. We denote the variety defined by

F ⊂ K[U ] as V (F ) = {a ∈ Lk | f(a) = 0,∀f ∈ F} ⊂ Lk. We can use the following definition to

group parametric specializations, called a parametric constraint.

Definition 2.8 For E,N ⊂ K[U ], we call a pair (E,N) a parametric constraint and

the set A = V (E) \ V (N) an algebraically constructible set defined by (E,N).

For parametric systems, by the upper description, we review the definitions of comprehensive

Gröbner systems and minimal comprehensive Gröbner systems for modules.

Definition 2.9 Let F ⊂ K[U ][x]n, A1, . . . , Al be algebraically constructible subsets of Lk

and G1, . . . , Gs be subsets of K[U ][x]n, and S be a subset of Lk such that S ⊂ A1 ∪ · · · ∪ Al.
A finite set G = {(A1, G1), · · · , (Al, Gl)} is called a comprehensive Gröbner system(CGS)

on S for F if πa(Gi) is a Gröbner basis of the submodule 〈πa(F )〉 ⊂ L[x]n. Each pair (Ai, Gi)

is called a branch of G.

Definition 2.10 A comprehensive Gröbner system G = {(A1, G1), · · · , (Al, Gl)} on S for

F ⊂ K[U ][x]n is said to be minimal if for each i = 1, . . . , l, the following properties holds.
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1) Ai 6= ∅, and furthermore, for each i, j = 1, . . . , l, Ai ∩Aj = ∅ whenever i 6= j;

2) πa(Gi) is a minimal Gröbner basis of 〈πa(F )〉 ⊂ L[x]n for all a ∈ Ai;

3) for each g ∈ Gi, πa(LCx(g)) 6= 0 for all a ∈ Ai, where LCx(g) denotes the leading

coefficient of g with respect to the variable x under the order �Tn
.

Finally, we define the comprehensive order basis system, which is analogical to the compre-

hensive Gröbner system.

Definition 2.11 Let F ∈ K[U ][x]m×n, −→σ and −→s be integer lists. Let A1, · · · , Al be

subsets of Lk and O1, · · · ,Ol be polynomial matrices in K[U ][x]n×n, and S be a subset of Lk

such that S ⊂ A1∪· · ·∪Al. A finite setO = {(A1,O1), · · · , (Al,Ol)} is called a comprehensive

order basis system on S for F with respect to −→σ and −→s if πa(Oi) is a (πa(F),−→σ ,−→s )-basis

for a ∈ Ai and i = 1, · · · , l. Each (Ai,Oi) is called a branch of O.

3 Order Basis and Comprehensive Order Basis System

In this section, we study the order basis based on Gröbner bases for modules. That is, we

can construct a special module, and compute a minimal Gröbner basis of this module to obtain

an order basis directly. Then, we will extend the method to parametric cases for computing

comprehensive order basis systems.

3.1 Order basis for non-parametric matrices

First, we introduce a block term order.

Definition 3.1 Let K be a field, and K[x] be a polynomial ring. Let e1, · · · , em+n be

the unit vectors of K[x]m+n, the symbol deg be the normal degree on K[x] about variable x.

For two monomials xαei and xβej on K[x]m+n, we define a block order >Tm|n on K[x]m+n

satisfying:

1) xαei >Tm|n x
βej for 1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+ n;

2) xαei >Tm|n x
βej for 1 ≤ i, j ≤ m, if i < j, or i = j and deg(xα) > deg(xβ);

3) xαei >Tm|n x
βej for m + 1 ≤ i, j ≤ m + n, if deg(xα) > deg(xβ), or deg(xα) = deg(xβ)

and i < j.

The block order >Tm|n is a term order on module K[x]m+n, and we can describe the main

theorem now.

Theorem 3.2 Let F ∈ K[x]m×n be a polynomial matrix of size m × n, and −→σ be an

integer list. Consider a new polynomial matrix F′ with size of (m+ n)× (m+ n) as follows:

F′ =

F x
−→σ

In 0n×m

 ∈ K[x](m+n)×(m+n), where In is the n× n identity matrix.
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Let M be a module generated by the column vectors of F′. Assume G = {g1, · · · ,gs} is a

minimal Gröbner basis of M with respect to >Tm|n , gij ∈ K[x] and gj =
∑m+n
i=1 gijei with

LM(gi) >Tm|n LM(gj) for 1 ≤ i, j ≤ s. Then Ĝ is a (F,−→σ ,−→0 ) basis, where

Ĝ =


gm+1,m+1 · · · gm+1,m+n

...
. . .

...

gm+n,m+1 · · · gm+n,m+n


n×n

.

Proof Let G = [gij ] ∈ K[x](m+n)×s corresponding to the Gröbner basis G. We first

claim s = m + n. On the one hand, it is easy to conclude that the column vectors of F′ are

K[x]-linear independent, so the minimal Gröbner basis G has at least m + n elements, which

means s ≥ m + n. On the other hand, for any gi,gj ∈ G, i 6= j, suppose LM(gi) = xaes and

LM(gj) = xbet are the leading monomials of gi and gj . Then we claim that s 6= t. Otherwise,

we have LM(gj) ∈ 〈LM(gi)〉 or LM(gj) ∈ 〈LM(gi)〉. This is inconsistent with the minimal

property of G. Therefore, each element in G corresponds to a distinct unit vector ei. Since

there are at most m+ n unit vectors in K[x]m+n, so we have s ≤ m+ n.

Now, we are ready to prove that Ĝ satisfies the following three properties.

1) Any column vector in Ĝ has (F,−→σ )-order.

We claim gij = 0 for any i ≤ m, j ≥ m + 1. We have proved that there is a one-to-one

correspondence between elements (leading terms) in G and unit vectors e of K[x]m+n.

Since the block order >Tm|n compare the position firstly by items 1) and 2) of Definition

3.1, then g1, · · · ,gm correspond to e1, · · · , em. Assume that there exist i, j ∈ Z+, i ≤
m, j ≥ m + 1, such that gij 6= 0, According to Definition 3.1, LM(gj) = xaei. That is,

(gj) is corresponding to ei, which contradicts that (gi) corresponds to ei since i ≤ m.

Therefore, we have

G =

G1 0m×n

G2 Ĝ

 ,
where G1 ∈ K[x]m×n and G2 ∈ K[x]n×n. Since G ⊂ M , the elements in G can be

K[x]-linear expressed by the column vectors of F′. Thus, there exists a matrix C ∈
K[x](m+n)×(m+n) such that

F′C = G. (1)

That is F x
−→σ

In 0n×m

C1 C2

C3 C4

 =

G1 0m×n

G2 Ĝ

 , (2)

where C1 ∈ K[x]n×m, C2 ∈ K[x]n×n, C3 ∈ K[x]m×m, and C4 ∈ K[x]m×n. It followed by

F ·C2 + x
−→σ C4 = 0m×n and In ·C2 + 0n×m ·C4 = Ĝ, (3)

which means F · Ĝ = x
−→σ · (−C4). So any column vector of Ĝ has (F,−→σ )-order.
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2) Ĝ is a nonsingular matrix and −→s -column reduced.

So far, we know that the leading term of {gm+1, · · · ,gm+n} are corresponding to distinct

em+i, 1 ≤ i ≤ n. According to Definition 3.1, the leading terms of column vectors in Ĝ

correspond to the leading terms of {gm+1, · · · ,gm+n}, then the leading terms of column

vectors in Ĝ are in different positions. It means that Ĝ is a nonsingular matrix, and

the leading coefficient matrix of Ĝ is a triangle matrix after suitable column exchanges.

According to Lemma 2.3, Ĝ is −→s -column reduced.

3) For any q ∈ 〈(F,−→σ )〉, q can be K[x]-linear expressed by the column vectors of Ĝ.

Since q ∈ 〈(F,−→σ )〉, there exists r ∈ K[x]m×1 such that Fq = x
−→σ r. Then the following

equation holds: Fm×n

0n×n

q =

Fm×nq

0n×1

 =

x−→σ r

0n×1

 =

 x
−→σ

0n×m

 r. (4)

From above, we have0m×1

q

 =

Fm×n

In×n

q−

Fm×n

0n×n

q =

Fm×n

In×n

q−

 x
−→σ

0n×m

 r ∈M. (5)

Since G is the minimal Gröbner basis of M ,

0m×1

q

 ∈ M can be K[x]-linear expressed

by G. Suppose

0m×1

q

 =
m+n∑
i=1

βigi, βi ∈ K[x]. According to the proof of item 1), gij = 0

for i ≤ m, j ≥ m+ 1, then

m∑
i=1

βigi =

0m×1

q

− n∑
i=m+1

βigi =

0m×1

v

 (6)

with v ∈ K[x]n×1. By the above analyses, we have LM(gi) = xaiei for i = 1, . . . ,m.

Therefore, it is easy to obtain βi = 0 for i = 1, . . . ,m from Equation (6), which implies

that 0m×1

q

 =

m+n∑
i=m

βigi.

In other words, q can be K[x]-linear expressed as a combination of the column vectors in

Ĝ.

According to Definition 2.5, we have proved that Ĝ is a (F,−→σ ,−→0 ) basis.

In Theorem 3.2, we assume that −→s = [0, · · · , 0]. Now we consider the shift −→s = [s1, · · · , sn]

with at least one si 6= 0. Similar to Definition 3.1, we define a new block order >Tm|n,
−→s as

follows.
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Definition 3.3 Let e1, · · · , em+n be the unit vectors of K[x]m+n. For two monomials

xαei and xβej on K[x]m+n, we define a block order >Tm|n,
−→s with respect to the integer list −→s

satisfying:

1) xαei >Tm|n,
−→s x

βej for 1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+ n;

2) xαei >Tm|n,
−→s x

βej for 1 ≤ i, j ≤ m, if i < j, or i = j and deg(xα) > deg(xβ);

3) xαei >Tm|n,
−→s xβej for m + 1 ≤ i, j ≤ m + n, if deg(xα) + si−m > deg(xβ) + sj−m, or

deg(xα) + si−m = deg(xβ) + sj−m and i < j.

We give the following examples to illustrate the block order >Tm|n,
−→s .

Example 3.4 Let m = 2, n = 3, and −→s = [2, 4, 1]. Then we have following facts:

1. x2e2 >Tm|n,
−→s x4e3 by Rule 1.

2. x2e1 >Tm|n,
−→s x4e2 by Rule 2).

3. x3e4 >Tm|n,
−→s x4e3 by Rule 3), because deg(x3) + 4 > deg(x4) + 2.

Theorem 3.5 Theorem 3.2 holds for the block order >Tm|n,
−→s with −→s 6= −→0 .

Proof First of all, the reduction process of calculating Gröbner bases can be well defined

under the new block order >Tm|n,
−→s . This is because the reduction happens on two terms whose

leading terms correspond to the same unit vector ei for modules M . When adding the same

integer si, it does not affect the usual reduction process.

From the proof of Theorem 3.2, the items 1) and 3) hold since they are not relevant to the

changes of module orders. For the item 2), although the new order changes the leading terms

and reduction when calculating the Gröbner basis, the shift −→s does not affect the one-to-one

correspondence between {gi} and {ei} for i = 1, · · · ,m+ n. Thus, the main result still holds.

Since Theorem 3.2 holds for the new block order >Tm|n,
−→s with −→s 6= −→0 , we can use the same

way to compute a (F,−→σ ,−→s )-basis with −→s 6= −→0 . Based on Theorem 3.2 and 3.5, we can design

an algorithm to compute the order basis of (F,−→σ ,−→s ). That is, we only need to construct the

module M by inputting polynomial matrices F and then compute a minimal Gröbner basis for

M with respect to >Tm|n .

3.2 Comprehensive order basis system for parametric matrices

For parametric univariate polynomial matrices, we can generalize the above non-parametric

method to the parametric case for computing comprehensive order basis systems by means of

the minimal CGSs for modules.

Theorem 3.6 Let F ∈ K[U ][x]m×n be a polynomial matrix of size m×n with parameters

U = {u1, · · · , uk} and variable x, S be a subset of Lk, −→σ and −→s be integer lists. Consider a

new parameter polynomial matrix F′ with size of (m+ n)× (m+ n) as follows:

F′ =

F x
−→σ

In 0n×m

 ∈ K[U ][x](m+n)×(m+n).
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Let M be the module generated by the column vectors of F′. Assume O = {(A1, O1), . . . , (Al, Ol)}
is a minimal comprehensive Gröbner system of M on S with respect to the order >Tm|n,

−→s . For

each branch (Ai, Oi), we can get a matrix Ôi by using the method in Theorem 3.2. Then the

set Ô = {(A1, Ô1), . . . , (Al, Ôl)} is a comprehensive order basis system on S for F with respect

to −→σ and −→s .

Proof Since O is a minimal comprehensive Gröbner system ofM , in each branch πa(Oi) is a

minimal Gröbner basis of πa(M) for any a ∈ Ai. Besides, there is no element in Oi specializing

to 0 because the leading coefficients of all elements in Oi are non-zero under specialization.

Thus, it is easy to derive the results that the correspond matrix πa(Ôi) is a (πa(F),−→σ ,−→s )-

basis for all a ∈ Ai and i = 1, . . . , l from Theorem 3.2 and 3.5.

4 Algorithm and Example

We now give the main algorithm for computing a comprehensive order basis system. The-

orem 3.6 ensures that this algorithm works correctly. The algorithm also terminates, since the

algorithm for computing minimal comprehensive Gröbner system terminates.

Algorithm 1 Computing comprehensive order basis systems

Require: integer list −→s , non-negative integer list −→σ , and (E,N,F): E,N ⊂ K[U ]and F ∈
K[U ][x]m×n.

Ensure: a finite set {(Ei, Ni, Ôi)
l
i=1} such that {(V (Ei) \ V (Ni), Ôi)

l
i=1} is a comprehensive

order basis system for F on V (E) \ V (N) with respect to −→σ and −→s .

1) Construct F′ defined in Theorem 3.6 and the module block order >Tm|n,
−→s .

2) Compute a minimal CGS {(Ai, Oi)li=1} for the module M generated by column vectors

of F′ on V (E) \ V (N) with respect to >Tm|n,
−→s , and get {(Ei, Ni,Oi)

l
i=1} where Ai =

V (Ei) \ V (Ni) and Oi is the corresponding matrix to the parametric Gröbner basis Oi.

3) Let Ôi be the bottom right n× n submatrix of Oi for i = 1, · · · , l.

4) Return {(Ei, Ni, Ôi), i = 1, · · · , l}.

For the computation of CGSs for modules, there exists an algorithm given by [26] which is

based on the results proposed by [23]. In this paper, we extend the KSW algorithm proposed

in [18] for computing CGSs over polynomial rings to the case of modules and then compute

CGSs for modules since the KSW algorithm generates fewer branches and is the most efficient

algorithm so far.

Below is a brief explanation about algorithm implementation.

There is currently no implementation version of CGS algorithms for modules under the

block order >Tm|n,
−→s on Singular and Maple. During the algorithm implementation process, we

should transform the modules into a specific polynomial ring. A general way can be found in

Chapter 5 of [27], which is adding extra position variables pi to expand the original module, and
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removing the polynomial including two and above degree of position variables in final Gröbner

basis. The remainder polynomials can be transformed to the Gröbner basis for the original

module. The difficulty is how to define the proper term order on the expanded polynomial ring.

In our implementation, we use the weighted degree lexicographic order about x and position

variables pi, which is defined as

wdeg(xα0pα1
1 pα2

2 · · · pαn
n , [s0, · · · , sn]) = α0s0 + · · ·+ αnsn.

Note that the weighted degree lexicographic order is a term order on the expanded polynomial

ring, so Gröbner bases can be calculated. Also the remainder polynomials are all linear about

position variables, i.e.,
∑n
i=1 αi = 1. Let s0 = 1, assume αi 6= 0,

wdeg(xα0pα1
1 pα2

2 · · · pαn
n , [s0, · · · , sn]) = α0 + si = deg(xα) + si.

This is consistent to the block order >Tm|n,
−→s .

The proposed algorithms have been implemented on both Maple and Singular, the codes

and examples are available at http://www.mmrc.iss.ac.cn/ dwang/software.html.

Here we use two simple examples to illustrate the steps.

Example 4.1 (Example 3.21 in [10].) Let K = Z2, U = ∅, −→s = [0, 1, 2, 3, 3, 3], −→σ =

[8, 4, 4], and

F =


0 x8 x6 + x9 x4 + x6 + x9 x6 + x8 + x9 + x10 x5 + x8

0 0 x5 x4 + x6 x4 + x6 x5 + x6

0 x4 x5 x5 x4 + x5 + x6 x4

 .
Now we use the algorithm to compute the (F,−→σ ,−→s )-basis.

Step 1) By Theorem 3.6, we construct F′ as following:

F′ =



0 x8 x6 + x9 x4 + x6 + x9 x6 + x8 + x9 + x10 x5 + x8 x8 0 0

0 0 x5 x4 + x6 x4 + x6 x5 + x6 0 x4 0

0 x4 x5 x5 x4 + x5 + x6 x4 0 0 x4

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0



,

and the corresponding order is >T3|6,[0,1,2,3,3,3] (under Definition 3.3).

Step 2) Since U = ∅, then E = ∅, N = K. Now we compute the minimal CGS for the

module M generated by column vectors of F′ on V (E) \ V (N) with respect to >T3|6,[0,1,2,3,3,3]

http://www.mmrc.iss.ac.cn/~dwang/software.html
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and get (E1, N1,O1), where E1 = E,N1 = N and

O1 =



x4 0 0 0 0 0 0 0 0

0 x4 0 0 0 0 0 0 0

0 0 x4 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 x x2

1 0 0 0 0 0 0 x 0

0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 x 1 0



.

Step 3) The corresponding matrix ( the bottom right n× n submatrix of O1) is

Ô1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 x x2

0 0 0 0 x 0

0 0 1 0 0 0

0 0 0 x 1 0


.

Step 4) We obtain a system {(E1 = ∅, N1 = K, Ô1)}.
Thus, the comprehensive order basis system for F is {(V (∅) \V (K), Ô1)}. This result is the

same as [10] after exchanging some columns.

This is an example without parameters, the following example is with extra comprehensive

variables.

Example 4.2 Let K = Q, U = {u1, u2}, −→s = [1, 2], −→σ = [4, 4], and

F =

 x2 + u1 x2 + 1

x+ u2 x+ u1

 .
Now we use the algorithm to compute a comprehensive order basis system for F with respect

to −→σ and −→s .

Step 1) By Theorem 3.6, we construct F′ as following:

F′ =


x2 + u1 x2 + 1 x4 0

x+ u2 x+ u1 0 x4

1 0 0 0

0 1 0 0

 ,
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and the corresponding order is >T2|2,[1,2] (under Definition 3.3).

Step 2) Since U = [u1, u2], and E = ∅, N = K. Now we compute the minimal CGS for the

module M generated by column vectors of F′ on V (E) \ V (N) with respect to >T2|2,[1,2]. And

there are three branches with {(E1, N1,O1), (E2, N2,O2), (E3, N3,O3)}, where E1 = ∅, N1 =

{u2
1 − u2}, E2 = {u2

1 − u2}, N2 = {u1 − 1}, E3 = {u1 − 1, u2 − 1}, N3 = {1},

O1 =


34 0 0 0

g21 u8
1 − 4u6

1u2 + 6u4
1u

2
2 − 4u2

1u
3
2 + u4

2 0 0

g31 g32 0 x4

g41 g42 x4 0

 ,

O2 =


1 0 0 0

−x3 − x2 + x+ u1 u1x− x 0 0

−u1x
2 − x −u2x

2 − x2 − u1x− 1 0 x3

−u1x
3 + x3 + u2x

2 − x2 + u1x+ 1 u1x
3 − u2x

3 + u1u2x
2 + x2 + u2x+ u1 x4 −u1x

3

 ,

O3 =


1 0 0 0

−x3 − x2 + x+ 1 x4 0 0

0 0 0 1

−x2 + 1 0 x4 −1

 .

Step 3) The corresponding matrices (the bottom right n × n submatrices of O1,O2,O3)

are

Ô1 =

 0 x4

x4 0

 , Ô2 =

 0 x3

x4 −u1x
3

 , Ô3 =

 0 1

x4 −1

 .
Step 4) We obtain a system {(E1 = ∅, N1 = {u2

1 − u2}, Ô1), (E2 = {u2
1 − u2}, N2 =

{u1 − 1}, Ô2), (E3 = {u1 − 1, u2 − 1}, N3 = {1}, Ô3)}
Thus, the comprehensive order basis system for F with respect to −→σ = [4, 4] and −→s = [1, 2]

is {(V (Ei) \ V (Ni), Ôi), i = 1, 2, 3}.

5 Concluding Remarks

In this paper we prove that the order basis can be obtained by computing a minimal Gröbner

basis for a constructed special module M with respect to a specific block order >Tm|n,
−→s . More-

over, we first give the concept of comprehensive order basis systems for parametric polynomial

matrices. Based on comprehensive Gröbner systems for modules, we obtained an algorithm

for computing comprehensive order basis systems. We believe our algorithm can be further

improved and the comprehensive order basis system has more applications for the unimodular

completion or determinant computing.
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[24] Kapur D, Comprehensive Gröbner basis theory for a parametric polynomial ideal and the asso-

ciated completion algorithm, Journal of Systems Science and Complexity, 2017, 30: 196-233.

[25] Buchberger B, A theoretical basis for the reduction of polynomials to canonical forms, ACM

SIGSAM Bulletin, 1976, 10: 19-29.

[26] Nabeshima K, On the computation of parametric Gröbner bases for modules and syzygies, Japan
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6 Appendix

In Example 4.2,

g21 = −34x3− 34x2 + (17u1− 25u2 + 38 + 4u2
2)x+ (8u7

1u2 + 6u7
1 + 24u6

1u2− 24u5
1u

2
2− 16u6

1−
22u5

1u2−72u4
1u

2
2 +24u3

1u
3
2 +9u5

1 +40u4
1u2 +26u3

1u
2
2 +72u2

1u
3
2−8u1u

4
2 +13u4

1−14u3
1u2−32u2

1u
2
2−

10u1u
3
2 − 24u4

2 − 21u3
1 − 22u2

1u2 + 5u1u
2
2 + 8u3

2 − 4u2
1 + 21u1u2 + 9u2

2 + 34u1 + 4u2),

g31 = (8u4
1u2 +6u4

1 +8u2
1u

2
2−34u3

1−46u2
1u2 +16u1u

2
2 +75u2

1 +30u1u2−24u2
2−80u1 +8u2 +

33)x3 + (−8u5
1u2− 6u5

1− 16u4
1u2 + 8u3

1u
2
2 + 22u4

1 + 26u3
1u2 + 16u2

1u
2
2− 31u3

1− 26u2
1u2− 24u1u

2
2−

13u1−24u2 +24u2
1 +48u1u2 +4)x2 +(8u4

1u2 +6u4
1 +16u3

1u2−8u2
1u

2
2−22u3

1−34u2
1u2−16u1u

2
2 +

25u2
1 + 18u1u2 + 24u2

2 + 4u1− 4u2− 34)x+ (−8u5
1u2− 6u5

1− 24u4
1u2 + 16u3

1u
2
2 + 16u4

1 + 16u3
1u2 +

48u2
1u

2
2 − 8u1u

3
2 − 9u3

1 − 24u2
1u2 − 10u1u

2
2 − 24u3

2 − 13u2
1 + 5u1u2 + 8u2

2 + 21u1 + 9u2 + 4),

g32 = (u5
1−3u4

1 + 3u3
1 + 2u2

1u2−u1u
2
2−3u2

1−2u1u2 +u2
2 + 3u1−1)x3 + (−u6

1 +u5
1 + 2u4

1u2−
u4

1 − 2u3
1u2 − u2

1u
2
2 + 2u3

1 + u2
1u2 + u1u

2
2 − u2

1 − 2u1u2 + u2)x2 + (u5
1 − u4

1 − 2u3
1u2 + 2u2

1u2 +

u1u
2
2 − u2

2)x+ (−u6
1 + 3u4

1u2 − 3u2
1u

2
2 + u3

2),

g41 = (8u4
1u2− 16u3

1u
2
2 + 6u4

1− 4u3
1u2− 24u2

1u
2
2− 28u3

1 + 22u2
1u2 + 64u1u

2
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2 − 71u1 + 4u2 + 34)x3 + (8u4
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2
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2
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2
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1 − u3
1u2 + 2u2

1u
2
2 + u1u

3
2 + u3

1 + 2u2
1u2 − u3

2 − u1u2)x2 + (−u6
1 + u5

1 + 2u4
1u2 −

2u3
1u2 − u2

1u
2
2 + u1u

2
2)x+ (u7

1 + 3u3
1u

2
2 − u1u

3
2 − 3u5

1u2).
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