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Abstract

Based on the primitive factorization theorem, this paper presents an improved
algorithm for computing free bases of syzygy modules of bivariate polynomial
matrices, which additionally enables e�cient computation of µ-bases for rational
parametric surfaces. Experimental results show that the new algorithm outper-
forms two existing algorithms in terms of computational e�ciency. Furthermore,
by leveraging this algorithm, we generalize the general matrix factorization the-
ory of full-rank bivariate polynomial matrices to the rank-deficient case for the
first time.

Keywords: Bivariate polynomial matrices, Primitive factorization theorem, Syzygy
modules, Free bases, General matrix factorization

Mathematics Subject Classification: 68W30 , 15B33

1

Manuscript Click here to access/download;Manuscript;CIMS_Revised.tex

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www2.cloud.editorialmanager.com/cims/download.aspx?id=48537&guid=71f22b02-6414-4bc8-bab2-d99ad994a14e&scheme=1
https://www2.cloud.editorialmanager.com/cims/download.aspx?id=48537&guid=71f22b02-6414-4bc8-bab2-d99ad994a14e&scheme=1


1 Introduction

An essential research topic in symbolic computation and multidimensional systems
theory concerns factorizations of multivariate polynomial matrices, which find exten-
sive applications across circuits, signal processing, computer aided geometric design,
and various engineering disciplines (see, e.g., [1–4]). Since the 1970s, when engineers
and mathematicians first applied algebraic analysis methods [5–7] to this subject, the
research methods have gradually evolved: from Gröbner basis [8], a classical approach
for handling polynomial-related problems in symbolic computation, to module theory
[9] in commutative algebra. Moreover, with the rapid development of computational
software such as Maple and Singular, significant progress has been made in this field
(see [10] and references therein).

Since univariate polynomial rings are Euclidean domains, univariate polynomial
matrices can be factorized through the application of the Euclidean division algorithm.
Huang and Chen [3] used univariate polynomial matrix factorization to compute µ-
bases of rational parametric curves. When the number of variables is greater than
one, the above Euclidean division algorithm fails due to the fact that any multivariate
polynomial ring is no longer a principal ideal domain.

In 1977, during their investigation of two-dimensional systems theory, Morf et al.
[6] proposed the classical primitive factorization theorem; however, this theorem is
subject to a critical restriction – the necessity for the underlying number field to
be algebraically closed. In 1982, Guiver and Bose [5] eliminated the aforementioned
constraint by leveraging the technique of modulo univariate irreducible polynomials.
Consequently, the primitive factorization algorithm developed under this theorem has
emerged as a critical tool for fully addressing the general matrix factorization problem
of full-rank bivariate polynomial matrices. Furthermore, Deng et al. [4] developed an
e�cient algorithm for computing µ-bases of rational parametric surfaces by means of
the primitive factorization theorem. However, the method proposed in [5] cannot be
straightforwardly generalized to cases where the number of variables is greater than
two, rendering the general matrix factorization problem for multivariate polynomial
matrices an open challenge.

In 1979, Youla and Gnavi [7], while investigating the structural properties of mul-
tidimensional systems, classified polynomial matrix factorizations into three distinct
categories based on their inherent characteristics: zero prime factorization, minor
prime factorization, and factor prime factorization. In 2001, Lin and Bose [11] con-
jectured that any full-rank multivariate polynomial matrix whose maximal reduced
minors generate the unit ideal admits a zero prime factorization. Subsequently, this
conjecture was independently resolved by Pommaret [12], Srinivas [13], Wang and Feng
[14], and Liu et al. [15] using di↵erent approaches. In 2005, Wang and Kwong [16] first
established that the necessary and su�cient condition for the existence of a minor
prime factorization of any full-rank multivariate polynomial matrix is the freeness of
a specific quotient module. In 2007, Wang [17] introduced the concept of regularity
and proposed the necessary and su�cient condition for the existence of factor prime
factorizations under such a regularity constraint. Subsequently, Liu and Wang char-
acterized the equivalent condition for regularity [18], and addressed the uniqueness
of general matrix factorizations for full-rank multivariate polynomial matrices [19]. In
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recent years, Guan et al. [20, 21] and Lu et al. [22, 23] have respectively advanced the
factor prime factorization and minor prime factorization problems for rank-deficient
multivariate polynomial matrices, and have made some new progress.

In this paper, we revisit the factorization problem of bivariate polynomial matri-
ces. Building upon the primitive factorization theorem, we explore how to compute
free bases of syzygy modules more e�ciently, while further explore the general
matrix factorization theory for the rank-deficient case. This study aims to extend
existing theoretical foundations and enhance practical implementations in symbolic
computation.

The rest of the paper is organized as follows. We introduce some related concepts
and the primitive factorization theorem in Section 2. In Section 3, we present an
improved algorithm for computing free bases of syzygy modules, and the experimental
data show the e�ciency of this algorithm. In Section 4, we establish the general matrix
factorization theory for rank-deficient bivariate polynomial matrices. We conclude the
paper in Section 5.

2 Preliminaries

Throughout the paper, we assume without loss of generality that r  l  m, where
r, l,m are three positive integers. In addition, we use “w.r.t.” to represent “with respect
to”.

Let K be a field, K[s, t] be the bivariate polynomial ring in the variables s, t over
K, and K(s)[t] be the univariate polynomial ring in the variable t with coe�cients in
K(s), where K(s) is the fraction field of K[s]. Given f 2 K[s, t], we use degs(f) to
denote the degree of f w.r.t. s. We use K[s, t]l⇥m to represent the set of l⇥m matrices
with entries in K[s, t]. Let F 2 K[s, t]l⇥m with rank r, we use dr(F) to denote the
greatest common divisor (GCD) of all the r ⇥ r minors of F.

2.1 Basic notions

In linear algebra, a matrix U 2 Kl⇥l is called invertible if det(U) 6= 0. In symbolic
computation, there exists an analogous concept as follows.
Definition 1. Let R be a commutative ring and U 2 Rl⇥l. Then U is said to be
unimodular if det(U) is a unit in R.

In Definition 1, if R = K[s, t], then det(U) 2 K \ {0}; if R = K(s)[t], then
det(U) 2 K(s) \ {0}.

Every vector space over K in linear algebra possesses a basis. However, modules
over polynomial rings do not necessarily admit bases in general. A simple example is
supplied by the module M = h~u1, ~u2i ⇢ K[s, t]1⇥2, where ~u1 = (s, s) and ~u2 = (t, t).
Since ~u1 and ~u2 are not K[s, t]-linearly independent, the generating set {~u1, ~u2} is not
a basis of M . Furthermore, it is straightforward to verify that M cannot be generated
by any single vector ~u 2 K[s, t]1⇥2. Consequently, M does not admit a basis. If a
module has a basis, then it is given a special name.
Definition 2. Let M be a module over a commutative ring R. M is said to be a free
module if M has a basis (that is, a generating set that is R-linearly independent). In
particular, this basis is called a free basis.

3

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Definition 3. Given F 2 K[s, t]l⇥m, the set

Syz(F) =
n
~u 2 K[s, t]m⇥1 | F~u = ~0

o

is a K[s, t]-module, which is called a syzygy module of F.
Let A 2 Kl⇥m and Y = (y1, . . . , ym)T 2 Km⇥1. A well-known conclusion in linear

algebra is that the rank of the kernel space for AY = ~0 is m � rank(A). This result
also applies to the case of bivariate polynomial matrices.
Lemma 1 ([24]). Let F 2 K[s, t]l⇥m with rank r. Then the rank of Syz(F) is m� r.

Although certain modules are not free, Chen et al. [25] demonstrated in their
investigation of the computation of µ-bases for rational parametric surfaces that the
syzygy module of the homogeneous expression form of an arbitrary rational parametric
surface must be a free module. Subsequently, Liu and Wang [26] extended this result
to arbitrary full-rank bivariate polynomial matrices. Based on the conclusion in [26],
we derive the following corollary.
Corollary 2. Let F 2 K[s, t]l⇥m with rank r. Then Syz(F) is a free module of rank
m� r.

Proof. According to Lemma 1, the rank of Syz(F) is m � r. Let F1 2 K[s, t]r⇥m be
an arbitrary full row rank submatrix of F. There exists a full column rank matrix
G 2 K(s, t)l⇥r such that F = GF1. On the one hand, it is easy to check that Syz(F1) ✓
Syz(F). On the other hand, if ~u 2 Syz(F), then

F~u = (GF1)~u = G(F1~u) = ~0.

Since G has full column rank, F1~u = ~0. This implies that ~u 2 Syz(F1) and Syz(F) ✓
Syz(F1). Thus, Syz(F) = Syz(F1). It follows from the proof of Lemma 4.1 in [26] that
Syz(F1) is a free module. Therefore, Syz(F) is a free module of rank m� r.

The following concept, first proposed in [7], is central to multidimensional systems.
Definition 4 ([7]). Let A 2 K[s, t]r⇥m be of full row rank. If dr(A) is a nonzero
constant in K, then A is said to be a minor left prime (MLP) matrix.

Let B 2 K[s, t]m⇥r be of full column rank. Similarly, B can be defined as a minor
right prime (MRP) matrix.

A general matrix factorization of a bivariate polynomial matrix is now formulated
as follows.
Definition 5. Let F 2 K[s, t]l⇥m with rank r, and f 2 K[s, t] be an arbitrary divisor of
dr(F). F is said to admit a general matrix factorization w.r.t. f if F can be factorized
as

F = G0F0,

where G0 2 K[s, t]l⇥r satisfies dr(G0) = f , and F0 2 K[s, t]r⇥m.
In particular, F in Definition 5 is said to admit an MLP factorization if F0 is an

MLP matrix. At this point, it follows directly from the Binet-Cauchy formula that
dr(G0) = dr(F).

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2.2 Primitive factorization theorem

Prior to presenting the primitive factorization theorem, we introduce the following
concept.
Definition 6. Let f 2 K[s, t], we consider f as a polynomial in t with coe�cients in
K[s]. We write f in the form

f =
NX

i=0

ai(s) · ti,

where ai(s) 2 K[s] for i = 0, . . . , N . Then the content of f w.r.t. t is the GCD of
a0(s), . . . , aN (s).

Analogously, the content of f w.r.t. s can be defined.
Theorem 3 (Primitive Factorization Theorem, [5]). Let F 2 K[s, t]l⇥m be of full row
rank, and g 2 K[s] be the content of dl(F) w.r.t. t. Then there are G0 2 K[s, t]l⇥l and
F0 2 K[s, t]l⇥m such that

F = G0F0 and det(G0) = g.

To prove the correctness of Theorem 3, Guiver and Bose [5] presented a constructive
proof based on the following calculation procedure, which is termed the primitive
factorization algorithm.

Assume that p 2 K[s] is an irreducible divisor of g. Let Rp = K[s]/(p). Then Rp is
a field and Rp[t] is a Euclidean domain. We consider the following homomorphism

�p : K[s, t] ! Rp[t]PN
i=0 ai(s) · ti 7!

PN
i=0 ai(s) · ti,

where ai(s) ⌘ ai(s) (mod p) 2 Rp for i = 0, . . . , N . This homomorphism can
extend canonically to �p : K[s, t]l⇥m ! Rp[t]l⇥m by applying �p entry-wise. Let
F 2 K[s, t]l⇥m, we use F to denote �p(F) in Rp[t]l⇥m.

Since p | dl(F), we can transform F 2 Rp[t]l⇥m into the following form

F1 =

0

BBB@

⇤ · · · · · · · · · ⇤
...

...
...

...
...

⇤ · · · · · · · · · ⇤
0 · · · · · · · · · 0

1

CCCA

exclusively via elementary transformations of the first kind (row interchange) and
third kind (adding a multiple of one row to another) over Rp[t]. For each entry of every
elementary matrix, we take its representative element in K[s, t] with s-degree less than
degs(p). Through these operations, each elementary matrix in Rp[t]l⇥l corresponds to
an elementary matrix in K[s, t]l⇥l. Let U denote the product of all such elementary
matrices in K[s, t]l⇥l. ThenU is unimodular, and there existsH 2 K[s, t]l⇥m satisfying

UF = diag{1, . . . , 1, p} ·H.
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By iterating this computational procedure until g is extracted from dl(F), we obtain
F = G0F0 with det(G0) = g.
Remark 1. The primary computational procedure of the above primitive factorization
algorithm closely parallels the Gaussian elimination method in linear algebra. This
algorithm cannot be directly extended to multivariate cases, which fundamentally stems
from the fact that (K[x1, . . . , xn�1]/(p))[xn] no longer constitutes a Euclidean domain,
where x1, . . . , xn are variables, n > 2 and p 2 K[x1, . . . , xn�1] is irreducible.

3 Improved Algorithm for Computing Free Bases of
Syzygy Modules

Lin [27] derived a special case result applicable to the bivariate setting while studying
the properties of syzygy modules for multivariate polynomial matrices.
Proposition 4 (Proposition 7 in [27]). Let F 2 K[s, t]l⇥m be of full row rank. There
exists an MRP matrix W 2 K[s, t]m⇥r such that FW = 0, where r = m � l.
Furthermore, the column vectors of W constitute a free basis for Syz(F).

Given a rational parametric surface in homogeneous form P (s, t) = (a, b, c, d),
where a, b, c, d 2 K[s, t] are jointly coprime. In 2005, Chen et al. [25] proved the
equivalence between the µ-basis of P and the free basis of Syz(P ). Subsequently,
Deng et al. [4] first presented an algorithm for computing a µ-basis of P based on
Proposition 4, by using the primitive factorization algorithm and the GCD extraction
algorithm (see Theorem 6.2 in [6]). In the following, we present an improved algorithm
for computing free bases of bivariate polynomial matrices.

Algorithm 1 computing free bases of syzygy modules of bivariate polynomial matrices

Require: a matrix F 2 K[s, t]l⇥m with rank r.
Ensure: a free basis of Syz(F).
1: let F1 2 K[s, t]r⇥m be an arbitrary full row rank submatrix of F;
2: compute a unimodular matrix V1 2 K(s)[t]m⇥m such that F1V1 is a lower

triangular matrix;
3: convert the last m � r columns of V1 to W 2 K[s, t]m⇥(m�r) by clearing

denominators;
4: compute an MRP factorization W = W1G of W by using the primitive

factorization algorithm;
5: return W1.

We present a detailed explanation of the calculation process for Step 2 in Algorithm
1:

First, we consider F1 a univariate polynomial matrix in K(s)[t]r⇥m. Let

~f1 = (f11, . . . , f1m)
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be the first row of F1, and g1 2 K(s)[t] be the GCD of f11, . . . , f1m. Note that K(s)[t]
is a Euclidean domain, there is a unimodular matrix U1 2 K(s)[t]m⇥m such that

~f1U1 = (g1, 0, . . . , 0).

It follows that

F1U1 =

✓
g1 ~0
~u1 F2

◆
,

where ~u1 2 K(s)[t](r�1)⇥1 and F2 2 K(s)[t](r�1)⇥(m�1).

Second, let ~f2 be the first row of F2. There exists a unimodular matrix U2 2
K(s)[t](m�1)⇥(m�1) such that

~f2U2 = (g2, 0, . . . , 0),

where g2 2 K(s)[t] be the GCD of the entries in ~f2. Thus,

F2U2 =

✓
g2 ~0
~u2 F3

◆
,

where ~u2 2 K(s)[t](r�2)⇥1 and F3 2 K(s)[t](r�2)⇥(m�2).

Third, let Ũ2 =

✓
1
U2

◆
2 K(s)[t]m⇥m. Then

FU1Ũ2 =

0

@
g1 0 ~0
v21 g2 ~0
~u31 ~u2 F3

1

A ,

where v21 2 K(s)[t] and ~u31 2 K(s)[t](r�2)⇥1, satisfying ~u1 =

✓
v21
~u31

◆
.

Finally, repeat the above process, and we can obtain a unimodular matrix V1 2
K(s)[t]m⇥m such that

F1V1 =

0

BBBB@

g1 0 · · · · · · · · · · · · 0

v21 g2 0
...

...
...

. . .
. . .

...
vr1 vr2 · · · gr 0 · · · 0

1

CCCCA
. (1)

Therefore, F1V1 is a lower triangular matrix.
Theorem 5. Algorithm 1 outputs as specified within a finite number of steps.

Proof. Correctness. Based on the proof process of Corollary 2, Syz(F) = Syz(F1). In
addition, from the explanation of Step 2 provided above, there is a unimodular matrix
V1 2 K(s)[t]m⇥m such that F1V1 is a lower triangular matrix.
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Let V2 2 K(s)[t]m⇥(m�r) be the matrix formed by the last m� r column vectors
of V1. It follows from Equation (1) that

F1V2 = 0.

Let gi 2 K[s] be the least common multiple of all the denominators in the i-
th column of V1, where i = 1, . . . ,m. Let W = V2 · diag{gr+1, . . . , gm}. Then
W 2 K[s, t]m⇥(m�r), and we have

F1W = 0.

Next, we prove dm�r(W) 2 K[s].
Let U = V1 · diag{g1, . . . , gm}. Then U 2 K[s, t]m⇥m. By the fact that V1 is a

unimodular matrix over K(s)[t], we have det(V1) 2 K(s). This implies that

det(U) 2 K[s].

Let a1, . . . , a� 2 K[s, t] be all the (m � r) ⇥ (m � r) minors of W. According to the
Laplace expansion formula, it follows from W being the submatrix of U that

det(U) = a1b1 + · · ·+ a�b� ,

where b1, . . . , b� 2 K[s, t]. As dm�r(W) = gcd(a1, . . . , a�), we get

dm�r(W) | det(U) and dm�r(W) 2 K[s].

Based on the primitive factorization theorem, there exist W1 2 K[s, t]m⇥(m�r) and
G 2 K[s, t](m�r)⇥(m�r) such that

W = W1G and det(G) = dm�r(W).

Based on the Binet-Cauchy formula, we have dm�r(W1) = 1. This implies that W1

is an MRP matrix. In addition, it follows from F1W = 0 and det(G) 6= 0 that

F1W1 = 0.

Based on Proposition 4, the columns of W1 is a free basis of Syz(F1).
Termination. The key techniques of Step 2 and the primitive factorization algo-

rithm are the Gaussian elimination method, with the only distinction lying in the
di↵erent univariate polynomial rings where Euclidean division is performed. Therefore,
Algorithm 1 terminates within a finite number of steps.

Now, we use an example to illustrate the e↵ectiveness of Algorithm 1.
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Example 1 (see Example 2, [4]). The Steiner surface P (s, t) = (a, b, c, d) defined by

8
>><

>>:

a(s, t) = 2st,
b(s, t) = 2t,
c(s, t) = 2s,
d(s, t) = s2 + t2 + 1.

Since the GCD of a, b, c, d in K(s)[t] is 2s, there exits a unimodular matrix V1 2
K(s)[t]4⇥4 such that

PV1 = (2st, 2t, 2s, s2 + t2 + 1) ·

0

BB@

0 0 1 0
0 1 0 0

1 � t
s �t � s2+t2+1

2s
0 0 0 1

1

CCA = (2s, 0, 0, 0),

where det(V1) = �1 2 K(s). Let V2 2 K(s)[t]4⇥3 be the submatrix composed of the last
3 columns of V1. Then the least common multiples of denominators in each column
of V2 are s, 1 and 2s. Let W = V2 · diag{s, 1, 2s}. Then d3(W) = s. We use the
primitive factorization algorithm to factorize W and obtain an MRP factorization:

W = W1G =

0

BB@

1 0 0
0 �st t2 + 1
�t �s2 � 1 st
0 2s �2t

1

CCA ·

0

@
0 1 0
t 0 t2 + 1
s 0 st

1

A ,

where W1 is MRP. Therefore, the columns of W1 is a free basis of Syz(P ), i.e., a
µ-basis of the Steiner surface P (s, t).
Remark 2. Compared with Example 2 in [4], the calculation process in Example 1 is
more concise and clear.

We have implemented Algorithm 1 and the algorithm (hereinafter referred to as the
DCS Algorithm) proposed in [4] in the computer algebra system Maple. In addition,
Fabiańska and Quadrat [28] designed another algorithm (hereinafter referred to as the
FQ Algorithm) for computing free bases by utilizing the famous Quillen-Suslin theorem
and implemented it in Maple. We randomly generated some bivariate polynomial
matrices to verify the computational e�ciency of the above three programs, and the
results are presented in the following Table 1.

We explain the setup for our experiments so that the timings reported here can be
reproduced independently.

1. The timings in Table 1 were obtained using a personal laptop equipped with an
Intel Core i5 1.4 GHz processor, Intel Iris Plus 645 1536 MB Graphics, and 8GB
of memory.

2. To get reliable timings, particularly when the computing time is minimal compared
to the clock resolution, we executed each program multiple times on the same
input and calculated the average of the computation times. Additionally, if the
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Table 1 Comparisons of the computational costs of three
algorithms (sec)

Example Algorithm 1 DCS Algorithm FQ Algorithm
P1 0.279 0.303 1.226
P2 0.203 0.21 >3600
F1 0.849 2.577 >3600
F2 56.853 102.484 >3600
F3 210.685 >3600 >3600
F4 20.307 109.149 >3600
F5 14.437 52.564 >3600
F6 193.978 649.538 >3600
F7 305.639 357.033 >3600
F8 9.94 54.029 >3600

computation time for executing a program on a given input exceeded one hour, we
terminated the execution.

3. P1 and P2 in Table 1 are two rational parametric surfaces, which are respectively
from Examples 3 and 4 in [4]. F1, . . . ,F8 are bivariate polynomial matrices gener-
ated randomly according to the following rules. First, the sizes of these matrices
range from 2 ⇥ 4 to 6 ⇥ 10; second, the total degrees of all polynomials in these
matrices do not exceed 5; third, the number of monomials in each polynomial is
controlled within 8. Please refer to Appendix A for specific details.

4. The codes and examples are available on the web:
http://www.mmrc.iss.ac.cn/⇠dwang/software.html.

As is evident from Table 1, our algorithm performs better than the DCS Algorithm
and the FQ Algorithm. Through a rigorous comparative analysis of the computational
procedures of the three algorithms, it is demonstrated that the DCS Algorithm neces-
sitates an additional invocation of the primitive factorization algorithm compared to
Algorithm 1, whereas the FQ Algorithm involves more intricate free resolution compu-
tations and the construction of unimodular matrices. Consequently, both algorithms
exhibit inferior computational e�ciency relative to Algorithm 1.

4 Factorization Theory for Rank-deficient Bivariate
Polynomial Matrices

In 1982, Guiver and Bose [5] employed the primitive factorization algorithm to com-
pletely resolve the general factorization problem for full-rank bivariate polynomial
matrices, and derived the following result.
Lemma 6 (Theorem 3 in [5]). Let F 2 K[s, t]l⇥m be of full row rank, and f 2 K[s, t]
be an arbitrary divisor of dl(F). Then there are G0 2 K[s, t]l⇥l and F0 2 K[s, t]l⇥m

such that
F = G0F0 and det(G0) = f.

To generalize Lemma 6 to the rank-deficient case, we first introduce the MLP
factorization theory for rank-deficient matrices developed in [23].
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Lemma 7 (Theorem 3.1 in [23]). Let R be a polynomial ring, F 2 Rl⇥m with rank
r, and F1 2 Rr⇥m be an arbitrary full row rank submatrix of F. Then F has an MLP
factorization if and only if ⇢(F1) : dr(F1) is a free module of rank r.

In Lemma 7, ⇢(F1) denotes the submodule in R1⇥m generated by the rows of F1,
and

⇢(F1) : dr(F1) =
�
~u 2 R1⇥m | dr(F1) · ~u 2 ⇢(F1)

 

is called the quotient module of ⇢(F1) w.r.t. dr(F1). Let

H =
�
F

T
1 ,�dr(F1) · Im

�
2 Rm⇥(r+m),

where Im is the m⇥m identity matrix. Wang and Kwong [16] established a one-to-one
correspondence between ⇢(F1) : dr(F1) and Syz(H). That is, ⇢(F1) : dr(F1) is free if
and only if Syz(H) is free. If R = K[s, t], then we have the following result.
Theorem 8 (MLP factorization). Let F 2 K[s, t]l⇥m with rank r. Then F admits an
MLP factorization.

Proof. Let F1 2 K[s, t]r⇥m be an arbitrary full row rank submatrix of F, and set
H = (FT

1 ,�dr(F1) · Im) 2 K[s, t]m⇥(r+m). It is obvious that rank(H) = m. According
to Corollary 2, Syz(H) is a free module of rank r. That is, ⇢(F1) : dr(F1) is a free
module of rank r. It follows from Lemma 7 that F admits an MLP factorization.

Now, we present the following general factorization theory for the rank-deficient
case.
Theorem 9 (general factorization theory). Let F 2 K[s, t]l⇥m with rank r, and f 2
K[s, t] be an arbitrary divisor of dr(F). Then there are G0 2 K[s, t]l⇥r and F0 2
K[s, t]r⇥m such that F = G0F0 and dr(G0) = f .

Proof. Based on Theorem 8, F admits an MLP factorization:

F = G01F01,

where G01 2 K[s, t]l⇥r with dr(G01) = dr(F), and F01 2 K[s, t]r⇥m is an MLP matrix.
Since G01 is a full column rank matrix, by Lemma 6 there exist G0 2 K[s, t]l⇥r and
G1 2 K[s, t]r⇥r such that

G01 = G0G1 and det(G1) =
dr(F)

f
.

It follows from the Binet-Cauchy formula that dr(G0) = f . Let F0 = G1F01. Then
F = G0F0 is a general matrix factorization of F w.r.t. f .

Building upon Theorem 9, we propose an algorithm for computing the general
matrix factorization of F w.r.t. f .
Theorem 10. Algorithm 2 outputs as specified within a finite number of steps.

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Algorithm 2 computing general matrix factorizations of bivariate polynomial
matrices
Require: a matrix F 2 K[s, t]l⇥m with rank r, and an arbitrary divisor f of dr(F).
Ensure: a general matrix factorization of F w.r.t. f .
1: let F1 2 K[s, t]r⇥m be an arbitrary full row rank submatrix of F;
2: let H = (FT

1 ,�dr(F1) ·Im), and use Algorithm 1 to compute an MRP matrix M 2
K[s, t](r+m)⇥r such that HM = 0;

3: let F01 be the transpose of the matrix formed by the last m rows of M, and
compute the right inverse F

�1
01 of F01;

4: letG01 = FF
�1
01 , and use Lemma 6 to computeG0 2 K[s, t]l⇥r andG1 2 K[s, t]r⇥r

such that G01 = G0G1 and det(G1) =
dr(F)

f ;
5: return G0 and G1F01.

Proof. Correctness. It follows from Proposition 4 that the columns of M constitute a
free basis of Syz(H). It is easy to see that

H ·
✓
dr(F1) · Ir

F
T
1

◆
= 0.

This implies that each column of the matrix

✓
dr(F1) · Ir

F
T
1

◆
belongs to Syz(H). It

follows that
⇢ ((dr(F1) · Ir,F1)) ✓ ⇢(MT). (2)

Let M
T = (F00,F01), where F00 2 K[s, t]r⇥r and F01 2 K[s, t]r⇥m. According to

Equation (2), there exists a bivariate polynomial matrix G
0 2 K[s, t]r⇥r such that

(dr(F1) · Ir,F1) = G
0 · (F00,F01). (3)

It is easy to verify that dr((dr(F1)·Ir,F1)) = dr(F1). By the fact thatMT = (F00,F01)
is an MLP matrix, we have det(G0) = dr(F1) using the Binet-Cauchy formula.
Therefore, we have an MLP factorization of F1:

F1 = G
0
F01, (4)

where F01 is an MLP matrix. According to the proof of Theorem 3.1 in [23], we get

⇢(F) ✓ ⇢(F01). (5)

It follows from Equation (5) that F admits an MLP factorization:

F = G01F01, (6)
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where G01 2 K[s, t]l⇥r and dr(G01) = dr(F). As F01 is a full row rank matrix, we
compute the generalized right inverse F

�1
01 2 K(s, t)m⇥r of F01 over K(s, t) such that

F01F
�1
01 = Ir.

Then, G01 = FF
�1
01 . Based on Lemma 6, there exist two polynomial matrices G0 2

K[s, t]l⇥r and G1 2 K[s, t]r⇥r such that

G01 = G0G1 and det(G1) =
dr(G01)

f
=

dr(F)

f
.

By the Binet-Cauchy formula, we have dr(G0) = f . Let F0 = G1F01. Combining
Equation (6), we obtain a general matrix factorization of F w.r.t. f :

F = G0F0 and dr(G0) = f.

Termination. The termination of Algorithm 2 rely on Algorithm 1 and Lemma 6.
Therefore, Algorithm 1 terminates within a finite number of steps.

5 Concluding Remarks

This paper first investigates the computational problem of free bases for syzygy mod-
ules of bivariate polynomial matrices. The key idea is to treat F 2 K[s, t]l⇥m as a
matrix over K(s)[t]. By performing elementary transformations over K(s)[t], we can
obtain a unimodular matrix, a subset of whose columns lies in Syz(F). By clearing
denominators to get a bivariate polynomial matrix over K[s, t], it is ensured that the
GCD of its maximal minors is a univariate polynomial in K[s]. This critical property
enables the direct application of the primitive factorization algorithm to compute a
free basis for the syzygy module of F over K[s, t]. We propose an improved algorithm
(Algorithm 1), and experimental results demonstrate that Algorithm 1 outperforms
two existing methods in terms of computational e�ciency. In addition, we study gen-
eral matrix factorizations under rank-deficient conditions, develop a general matrix
factorization theory (Theorem 9) for this case, and present an algorithm (Algorithm 2)
by leveraging Algorithm 1. Consequently, we have completely solved the general matrix
factorization problem for rank-deficient bivariate polynomial matrices. We anticipate
that the theory and algorithms proposed in this paper can promote the development of
related fields such as multidimensional systems and computer aided geometric design.
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Appendix A Examples in Table 1

Examples listed in the first column of Table 1 are as follows. Given the large size
of some matrices, for the sake of convenience, we represent them in their transposed
forms.

(1) Given a bi-quadratic surface P1(s, t) := (a, b, c, d) defined by
8
>><

>>:

a(s, t) = t2 + st + 2s2 � 2s2t,
b(s, t) = t2 + 2st + st2 + 2s2 � s2t + 2s2t2,
c(s, t) = �t2 + st + 2st2 + 2s2 � s2t � 2s2t2,
d(s, t) = 2st � 2st2 � 2s2t � s2t2.

(2) Given a rational parametric surface P2(s, t) := (a, b, c, d) defined by
8
>><

>>:

a(s, t) = �3s2t2 + 5s2t � 5t2 � 4st + 5,
b(s, t) = �3s2t2 + 3s2t + s2 + st2 � s � 2t2 � 5st + 1,
c(s, t) = �5s2t2 + 6s2t + 2st � t2 � t � 5,
d(s, t) = �4s2t2 + 3s2t � st + 6t2 � t + 1.

(3) F1 2 Q[s, t]2⇥4 and the transposed matrix of F1 is

FT
1 =

0

BB@

�3s3 + 3s2t + 2 3s2 � 3t2 � s
s2 + 3st � s st2 � 2t3 � 3s � 3t

�2s2t � t3 � 2s2 + 3t2 3s2 � 2t2 � t � 3
s3 + 2s2 � 2st � t 2t3 � 2t + 3

1

CCA .

(4) F2 2 Q[s, t]2⇥4 and the transposed matrix of F2 is

FT
2 =

0

B@
�t5�s4+6s2t�6st2�4st+5t2�2s+5 �2st4�2t5+4s4+st3+6s3�s2+2t2+2

�3s5�5s4t+5st4+2st2+5s2+5 �4s4t�3s2t3+4s2t2�4s3+4st2�2t2�3t+1

�2s2t3+2t5�2t4�s3�5s2t�5t3�1 �s4+6s2t2�5st3�5s2t�2st2+5t3+t2�2

�2st4+5t5�3s4+3st3+2s3+st�6t2�3 4s4t+4st4�5s3t+t4�4s2t�5st2�2t3

1

CA .

(5) F3 2 Q[s, t]3⇥5 and the transposed matrix of F3 is

FT
3 =

0

BB@

�s4+3st2�t3�s2+4st 2s4+4s2t2+1 �2s4+2st3+5t4�5st2

�2s2t2+st2�5t3�3s2+5s 4s4+2s2t+4s2�5t s4�5s2t�4t3

�5t4+5st2+3t3+st s3�2s2t+st2+t3�3s �2s2t2�3t4�2t3�2st

4s3t+5t4+5st�3s�3 �5s4+5s2t2+t4�2st �4s3�2st�3t2+s+2

2s4�4s3t�3st2+4s�t �4t4�4t3+s2+2st+4 �4s4�3s2t2�4s2t�4s2+3t

1

CCA .

(6) F4 2 Q[s, t]3⇥5 and the transposed matrix of F4 is

FT
4 =

0

BB@

�4st2+5t3+3s�5t�4 5s3�3s2+5st�5s �3st2�2s2�st+3t2+t

�3s3�5s2t�2st2�s�4 2s3�3st2�5st+s+3 �4st2+5t3�3t2+s

�2st2+2s2�t2�2 �3s2t+2t3�2t2�2s+5t �5s3+4s2t+4s2+4

3s3�4s2t�3st2�3s2�t 2s3+3t3�s2�5t+3 �st2�3t2+2s�4

�s3�2st2�5s2+t2 �5t3+3s2�5t2�3t�3 �5s3�s2t+2st�2

1

CCA .

(7) F5 2 Q[s, t]3⇥8 and the transposed matrix of F5 is

FT
5 =

0

BBBBBBB@

�st�s+2t �3t2+3s�1 s2�2t2�t

3s2+3st�3t s2+st�3t2 2s2+3st�3s

s2�2t�3 2st+t2+2s �3t2�2

�s2+2t2 �s2+2t2�2 1+3s+3t

2+3s 2+2s�t �2st+3t2+t

3st�t+2 st+2t2+3t �3st�2t+3

�3s2�s+1 �3t2�3t �t2�2t

�3t2�2s�3t �2s2�2st�3 st�t

1

CCCCCCCA

.

(8) F6 2 Q[s, t]4⇥6 and the transposed matrix of F6 is

FT
6 =

0

BBBB@

�3s3+4st2+4s2�4st 3s2t+4st2�s2+2st �4s2t�st2+2t3�2t �3t2+s+3t

�4s3�2s2t�2s2+t2 s2�2st+4t �s3�3s2t+2st+s 3t3�s2�3t2+2t

�2s2t+4t �2st2+2s2�t2�2 �4s2t+st+s s2t�3t2�4s

�3s2+st+t2�2s 2t3+4t+2 �4t3�s2�t2�4s �3s2t�2s2+3st+s

�s2t�3t3�2t2+2 �s2+st�t2+3s 3s3+2t2�3t+1 t3+3t

3s2t+s2�2s+3 �2s2t+4t3�4s2�1 �4s2t+st2+t3�4st 2s3�3s2t�st2�4st

1

CCCCA
.
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(9) F7 2 Q[s, t]4⇥8 and the transposed matrix of F7 is

FT
7 =

0

BBBBBBB@

�2t2+t+2 �3t2+3t+2 3st+3s�2t st+2s�1

2st+3t2 3st st+3s�3 �s2�3t2+2t

3s2�3st+1 s2�t2�2t 2�2t 2s2�t2�3s

3s2+3t2+2t st+t2�s �s2�3st+t2 �2s+t

�3st+s+t 2t2�2s �s2+3st+t �2s2+3s

�st+3t2 s2�3st�3 3s2�3st�3t2 3t2+2t

�st�3s 3st+s+t 2s2�3s�3 �s2+2

s�t �s�3t �s2�3st+2 �3�2s+3t

1

CCCCCCCA

.

(10) F8 2 Q[s, t]6⇥10 and the transposed matrix of F8 is

FT
8 =

0

BBBBBB@

3s+t+2 �2s�2t�3 �s+3t+3 t+1 s+t�3 �s�1
2t+1 2s+2t�3 �s�3 s�2t 2s �s+3t�2
2s�3 2s+1 �s+3t�1 �2s+2t+1 3s+t+2 3s+3t+1

3s+t+3 �s+t+2 �3s�t+2 3s�3t �2s�t�1 �2s+2t
3s�t+1 �3s�2 3t+1 s+2t+2 �s�2 �3s+3t+3
�3s�1 s�2t�3 2s�t+1 �s+t+1 �s�t�1 2s�2t�2
�s�1 3t�3 3s+3t�2 3s�2t+2 2s�t+1 �3s+2

�s+t�2 �2s+3t+3 �2s+1 �3s�t+1 2s�t�3 �3s+3t�2
�s�2t�1 s+3t�3 2s+3t�1 s+3t�2 s+2 2s�t+2
�2t+1 �2s t�3 2s�2 2s+3 3s�2t

1

CCCCCCA
.
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