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Abstract1

Using the local geometrical properties of a given zero-dimensional square multivari-2

ate nonlinear system inside a box, we provide a simple but effective and new criterion3

for the uniqueness and the existence of a real simple zero of the system inside the box.4

Based on the result, we design an algorithm based on subdivision and interval arith-5

metics to isolate all the real zeros of a general real nonlinear system inside a given box.6

Our method is complete for systems with only finite isolated simple real zeros inside7

a box. A termination precision is given for general zero-dimensional systems. Multi-8

ple zeros of the system are output in bounded boxes. A variety of benchmarks show9

the effectivity and efficiency of our implementation (in C++). It works for polynomial10

systems with Bezout bound more than 100 million. It also works for non-polynomial11

nonlinear systems. We also discuss the limitations of our method.12

Keywords: Real root isolation; real nonlinear system; opposite monotone system; sub-13

division method; uniqueness and existence.14

Mathematics Subject Classification: 13P15 · 14Q30 · 65H10 · 65G4015

1 Introduction16

Real root isolation of equation systems is a fundamental problem in mathematics and17

engineering applications. There are many famous symbolic computation methods to solve18

the problem: the Gröbner basis method [6, 16], the Ritt-Wu characteristic set method19

[55], the cylindrical algebraic decomposition(CAD)[2] and the resultant method [26] and20

so on. Though the size of the polynomial systems that can be solved is limited, symbolic21

methods can get the algebraic representation(s) of all the complex solutions, even including22

the multiplicity of the solutions. Numerical methods, such as the homotopy continuation23

method [36], can get all the isolated complex solutions of square polynomial systems (sys-24

tems with n variables and n polynomials) with large sizes, even for over-determined systems25

or positive dimensional systems [3]. Though the solutions with traditional homotopy con-26

tinuation method are lack of certification, the certified homotopy method was proposed27

[4, 5, 22, 53, 56] in some literatures to overcome the shortcoming based on the famous α-28

theory. To ensure that the output results are reliable, certification with interval Newton’s29
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method (see [34, 41, 47]) for possible real roots after homotopy continuation method is30

applied in [48].31

Subdivision method is also used to get the real solutions of the given systems, which32

are not limited to polynomial case [7, 8, 25, 31, 27, 32, 38, 44, 45, 49, 57]. There are many33

methods to exclude the domains without solutions [25, 44, 49, 29, 14]. More requirements34

are needed to ensure that the boxes are isolating boxes. There are three main methods for35

certifying a real root: Miranda theorem with Jacobian test, the interval Newton method,36

and the α-theory.37

Miranda theorem [39] and its practical version MK test [25, 33, 42] is used for checking38

the existence of a real zero of a system inside a box. The MK test works well for linear39

systems [42]. Jacobian test [1] is used for certifying that a system has at most one real40

zero inside a box, so does the methods in [27]. Thus, the termination of the subdivision41

method based on the MK test and Jacobian test is guaranteed in a theoretical sense for42

square systems with simple roots. When MK test is used for systems with more than43

two variables, it seldom succeeds which can also be found in our experiments. We also44

analyze the reason in the experiments section. Besides that, the interval Newton method45

[34, 41, 47] and α-theory [50] can work for testing the uniqueness and existence of the46

complex (or real) zeros. The interval Newton method can verify that a box is an isolating47

box. In [31, 32, 45, 28], the authors use the interval Newton method for real root finding.48

But the termination of the method is not ensured for certifying a box containing a simple49

zero or not by successive subdivision. Since an isolating box of a square system may not50

satisfy the existence and uniqueness condition, the termination condition of subdivision is51

absent. Thus the theory for root isolation of equation systems based on interval Newton52

method is not complete even for systems with only simple roots. The α-theory is slightly53

different from the other two methods, which computes derivatives with high orders, and the54

verified domain of α-theory is a ball, not a box. Similar as the interval Newton method,55

the termination of the α-theory method for root isolation of a square system is also not56

complete. In [38], the authors present the concept of the α-inclusion box and use it for57

seeking the real roots of a square system. In [14], we presented a new method which was58

based on the geometrical property, the so-called orthogonal monotonicity inside a box for a59

bivariate polynomial system to certify the existence and uniqueness of a real root inside the60

box. We used bounding polynomials to exclude the regions which contained no roots. The61

termination of the method is guaranteed. Thus it can be used for real root isolation inside62

a box containing only simple real zeros. The method was extended to bivariate nonlinear63

systems in the journal version [15]. We extend the method to general zero-dimensional64

equation systems in this paper.65

In this paper, we present a new existence criterion of a simple real root of a zero-66

dimensional square system inside a box, which is much easier to succeed than Miranda67

based criterion. Based on the new criterion, we propose an algorithm to isolate the real68

roots of a zero-dimensional real nonlinear square system F = (f1, . . . , fn) inside a given box69

B = [a1, b1]× . . .× [an, bn], where fi and ∂fi
∂xj

are well defined in B for 1 ≤ i, j ≤ n. In order70

to analyze the roots of the system locally inside a box, we give the concept of the opposite71

monotone system (O-M system for short) in an n−D box and give a criterion to check the72

existence and uniqueness of a simple real zero of the given system in the given box based on73

properties of the opposite monotone system. Though the O-M system is firstly presented74

in [14] for 2-D case (It is called orthogonal monotone in [14]), the O-M condition for n-D75

systems are more complicated than that for 2-D systems.76
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Simply speaking, for a system F and an n-D box B, we transform locally the original77

system F into a new system G = (g1, . . . , gn) with the same zeros as F such that the curve78

S = V(g1, . . . , gn−1) is monotone in B and S intersects transversally with the hypersurface79

V(gn) in B (see Definition 3). The evaluation of the functions of the tangent vector of S on80

B does not contain zeros ensures its monotonicity inside B. The direction of the tangent81

vector of S and the normal vector of V(gn) are almost identical or opposite when evaluating82

on B, which ensures the uniqueness of the root inside B. The existence of a real zero of83

G inside the box B can be determined by the change of the signs of the evaluations of gn84

on the two endpoints of S which are the intersection of S and the boundaries of B. Some85

local transformation techniques in MK test [33, 42] are modified and used in our method.86

The new system in MK test is JF (mB)−1F T , here JF (mB)−1 is the inverse of the Jacobian87

matrix of F at the middle point of B and F T is the transpose of F . In our method,88

G = U JF (mB)−1F T , where U is an invertible matrix under some requirements. We prove89

that the termination of the subdivision process for finding all simple real zeros of a system90

inside a box. So our method is complete for real root isolation of a square nonlinear system91

inside a bounded box.92

Since the existence condition based on the opposite monotone method is used recursively,93

we revise the original conditions for the opposite monotone system and propose the concept94

of the strong monotone (S-M) system to avoid constructing opposite monotone systems95

repeatedly. For boxes which contain multiple real zeros of systems, our method is invalid,96

thus we give a terminate precision for subdivision process. Therefore, we may get some97

suspected boxes which reach the terminate precision and do not satisfy the conditions of98

our method. We give a heuristic verification method to deal with those suspected boxes.99

Based on our theory, we design an algorithm to isolate the real zeros of a multivariate100

equation system. We also analyze the complexity of our algorithm. We implement our101

algorithm in C++. Our experiments show the effectivity and efficiency of our method. We102

compare our method with some existing methods and analyze some aspects of the methods.103

Notice that our method can be used for complex root isolation since a complex nonlinear104

system can be transformed into a real nonlinear system.105

The rest of this paper is organized as follows. We introduce some notations and pre-106

liminaries in the next section. In Section 3, we give the concepts of O-M system and S-M107

system in a box and prove the uniqueness and existence theorem, then we show how to108

match the uniqueness and existence conditions for a given system and a given box. The109

algorithm of the method is also given in this section. The complexity analysis is also given110

there. In Section 4, some experiment results are given and an analysis based on the results111

is shown. We draw a conclusion in the last section.112

2 Notations and Preliminaries113

In this section, we will give some notations, definitions and basic results.114

2.1 Notations115

Let Ci(Ω) denote the set of all i-order continuous differentiable functions defined in Ω,
where Ω ⊂ Rn and R is the field of real numbers. Let B = [a1, b1]× . . .× [an, bn] be an n-D
box in Rn. Let

F li (B) = {(p1, . . . , pn) ∈ B|pi = ai}, i = 1, . . . , n,
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F ri (B) = {(p1, . . . , pn) ∈ B|pi = bi}, i = 1, . . . , n.

We call F li (B) or F ri (B) a face of B for any 1 ≤ i ≤ n. Let m(B) = (a1+b1
2 , . . . , an+bn

2 ) be116

the middle point of the box B and w(B) = max{b1−a1, . . . , bn−an} be the width of B. Let117

∂B =
⋃n
i=1 F

l
i (B) ∪

⋃n
i=1 F

r
i (B) be the boundaries of the box and v(B) = {(p1, . . . , pn) ∈118

B|pi = ai or bi, i = 1, . . . , n} be the set of the vertexes of B.119

Let F = (f1(X), · · · , fn(X)) be a function system, where X = {x1, · · · , xn} are variables120

and fi(X) ∈ C1(B). We denote F = 0 as the equation system {f1 = 0, · · · , fn = 0}. If121

a point p ∈ Rn satisfies f1(p) = · · · = fn(p) = 0, then we call p is a real zeros of the122

function system F or a real root of equation system F = 0. We denote all the real zeros of123

F as V(F ). Let JXF be the Jacobian matrix of F with respect to X (simply for JF without124

misunderstanding). Denote IR, IRn and IRn×n by the set of real intervals, n-D interval125

vectors and n × n interval matrices, respectively. For a (an interval) matrix M ∈ Rn×n126

(IRn×n), we let Mi,: (M:,i) denote the i−th row (column) of M .127

Let f(X) ∈ C1(B) be a real function and B an n-D box. For a subset B′ ⊂ B, we
denote f(B′) = {f(p)|p ∈ B′} and we say f(B′) > 0(< 0) if ∀p ∈ B′, f(p) > 0 (< 0).
Similarly, for an interval I ⊂ R, we say I > 0 (< 0) if ∀a ∈ I, a > 0 (< 0). We define a sign
function of f(B′) as following:

Sign(f(B′)) =


1, if f(B′) > 0,

−1, if f(B′) < 0,

0, otherwise.

2.2 Interval Analysis128

Using our method, we need to compute the evaluation of a function f(x1, . . . , xn) ∈129

C1(B) on a box B = I1 × · · · × In ⊂ Rn: f(B) = {f(p)|p ∈ B}. However, f(B) is130

usually difficult to be computed exactly. Interval analysis [40] is a useful tool to compute131

the enclosure of the range of a function over a box. A real function f can be extended to132

an interval function by interval analysis. The basic arithmetic operations over intervals133

are as below. Let I1 = [a, b] ⊂ R, I2 = [c, d] ⊂ R.134

I1 + I2 = [a+ c, b+ d],

I1 − I2 = [a− d, b− c],
I1 ∗ I2 = [min{a ∗ c, a ∗ d, b ∗ c, b ∗ d},max{a ∗ c, a ∗ d, b ∗ c, b ∗ d}],
I1/I2 = [a, b] ∗ [1/d, 1/c], 0 6∈ I2.

Let �f denote the interval function of f , it has two properties [37]:135

1. f(B) ⊂ �f(B),136

2. lim
i→∞
�f(Bi) = f( lim

i→∞
Bi),137

where B,Bi ⊂ Rn and lim
i→∞

Bi = p,p is a point in Rn. There are many different forms of138

�f , for polynomial case, a simple way is just using interval arithmetic [40]. Fox example,139

g = x2 − x,B = [0, 1], then �g(B) = [0, 1] · [0, 1] − [0, 1] = [0, 1] − [0, 1] = [−1, 1]. Since140

g(B) = [−1
4 , 0], we can find that �g(B) is much bigger than g(B). Notice that most of the141

real functions (such as exp, sin, cos, etc.) are also easy to be extended to interval functions.142

Since we usually can not get the exact representation of f(B), we use it to represent143

�f(B) for simplicity if there is no doubt in the rest of the paper.144
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3 Uniqueness and Existence145

We will give the uniqueness and existence conditions of a square system containing a146

simple zero inside a box in this section.147

Let p ∈ Rn be an isolated zero of a system F . We always assume that the functions in148

this section are C1 inside the domain we consider. We call p ∈ V(F ) a simple zero of F149

if det(JF (p)) 6= 0, otherwise we say p is a singular or multiple zero of F .150

3.1 An opposite monotone (O-M) system in a box151

The concept of the opposite monotone system inside a box for 2-D case is first presented152

in [14]. We extend it to n-D case which is much more complicated. Let G = (g1, . . . , gn) be153

a nonlinear system and G′ = (g1, . . . , gn−1), our O-M condition is based on the geometric154

properties of V(G′). Generally speaking, we know that V(G′) is a one-dimensional curve in155

Rn if it exists. We denote the tangent vector of V(G′) at p ∈ V(G′) as below:156

Tp = (det(T1(p)), . . . , (−1)i+1 det(Ti(p)), . . . , (−1)n+1 det(Tn(p))), (1)

where Xi = X\xi = {x1, . . . , xi−1, xi+1, . . . , xn} and Ti = JXiG′ , i = 1, . . . , n.157

We introduce some definitions and lemmas below and then give the concept of the158

monotonicity of S = V(G′) in B.159

Definition 1. Let U = (ui) ∈ IRn and V = (vi) ∈ IRn be n-dimensional interval vectors.160

We say U and V are matched, if161

(1) for any i ∈ {1, . . . , n}, 0 /∈ ui and 0 /∈ vi.162

(2) for any i, j ∈ {1, . . . , n}, ui · vi and uj · vj have the same signs.163

For example, ([1, 2], [2, 3], [−2,−1]) and ([−4,−3], [−2,−1], [1, 2]) are matched. Let164

U1,U2,U3 be interval vectors. It is easily to see that the following properties hold.165

1. If U1 and U2 are matched, U2 and U3 are matched, then U1 and U3 are matched.166

2. If U1 and U2 are matched, then U1 and −U2 are matched.167

The following lemma is well-known and can be found in many text books (see Chap. 2168

Part. III in [23] for example).169

Lemma 1. (Mean Value Theorem) Let Ω ⊂ Rn be a convex set, f = f(x1, . . . , xn) is a
differentiable function defined on Ω. Then ∀p1, p2 ∈ Ω,p1 6= p2, ∃θ ∈ (0, 1) s.t.

f(p1)− f(p2) = ∇f(p2 + θ(p1 − p2))(p1 − p2).

Definition 2. Let G′ = (g1, . . . , gn−1) and S = V(G′) = {p ∈ Rn|g1(p) = · · · = gn−1(p) =170

0}. We say S is strong monotonous in B if 0 /∈ det(Ti(B)), i = 1, . . . , n (see (1) for Ti).171

Example 1. G′ = (x2/2 + y2 − 2 ∗ z2, x2/2 + y2/2 − z2/2 − 1/2) and B = [0.10, 0.11] ×
[0.10, 0.11]× [0.10, 0.11]. We have

T1 = J
{y,z}
G′ =

(
2 ∗ y −4 ∗ z
y −z

)
, T2 = J

{x,z}
G′ =

(
x −4 ∗ z
x −z

)
, T3 = J

{x,y}
G′ =

(
x 2 ∗ y
x y

)
.
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Thus,172

det(T1(B)) = det(

(
2 ∗ [0.10, 0.11] −4 ∗ [0.10, 0.11]

[0.10, 0.11] −1 ∗ [0.10, 0.11]

)
)

= −2 ∗ [0.10, 0.11] ∗ [0.10, 0.11] + 4 ∗ [0.10, 0.11] ∗ [0.10, 0.11]

= −2 ∗ [0.01, 0.0121] + 4 ∗ [0.01, 0.0121]

= [−0.0242,−0.02] + [0.04, 0.0484]

= [0.0158, 0.0284].

Similarly, we have det(T2(B)) = [0.0279, 0.0384], det(T3(B)) = [−0.0142,−0.0079]. So S =173

V(G′) is strong monotonous in B since 0 6∈ det(Ti(B)) for i = 1, 2, 3.174

Then, we will prove some nice properties of S if it is strong monotonous in B. Let175

p = (p1, · · · , pn) ∈ Rn, we define Πi(p) = pi, for any i = 1, . . . , n.176

Lemma 2. Let G′ = (g1, · · · , gn−1) and S = V(G′). If S is strong monotonous in B =177

[a1, b1]× · · · × [an, bn], then we have:178

(a) ∀x̂i ∈ [ai, bi], i = 1, . . . , n, the hyperplane xi = x̂i intersects S at most once in B.179

Moreover, the hyperplane and S are not tangent.180

(b) S can not be a loop in B.181

(c) ∀p,q ∈ S ∩B and p 6= q, (Πi(p−q))1≤i≤n and ((−1)i+1 det(Ti(B))1≤i≤n are matched.182

Proof. (a) We prove only that ∀x̂1 ∈ I1, the hyperplane x1 = x̂1 intersects S at most once
in B. The case i = 2, . . . , n can be proved similarly. Assume that the hyperplane x1 = x̂1

intersects S at two points p,p′ in B. Let p−p′ = ∆x = (∆x1,∆x2, . . . ,∆xn). Using mean
value theorem for every gj , we have that there exists a point qj ∈ B s.t.

n∑
i=1

∂gj
∂xi

(qj)∆xi = gj(p)− gj(p′) = 0, j = 1, . . . , n− 1.

Since ∆x1 = 0, thus we have the following equation183 
1 0 · · · 0

∂g1
∂x1

(q1) ∂g1
∂x2

(q1) · · · ∂g1
∂xn

(q1)
...

...
. . .

...
∂gn−1

∂x1
(qn−1) ∂gn−1

∂x2
(qn−1) · · · ∂gn−1

∂xn
(qn−1)




∆x1

∆x2
...

∆xn

 = 0.

Let A denote the above matrix, i.e., A∆xT = 0. Since ∆x is nonzero, it implies det(A) =184

0. However, since S is strong monotonous in B, we have 0 /∈ det(T1(B)), then we have185

det(A) = 1 det(M1) 6= 0, where M1 ∈ T1(B). It is a contradiction. Moreover, if x1 = x̂1186

and S are tangent at point p in B, then T1(p) = 0. It is also a contradiction since S is187

strong monotonous in B.188

(b) If S is a loop in B, then ∃x̂i ∈ Ii, the hyperplane xi = x̂i must intersect S at two189

points in B. It is a contradiction with (a).190

(c) For any two point p,q, let p − q = ∆x = (∆x1,∆x2, . . . ,∆xn). By Lemma 2 (a),191

we know that ∆xi 6= 0,∀i = 1, . . . , n. Then, we need only to prove that for i = 2, . . . , n,192

∆x1 det(T1(B)) and ∆xi(−1)i+1 det(Ti(B)) have the same signs.193
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We consider the following equation system194 
∆xi 0 · · · 0 −∆x1 0 · · · 0

∂g1
∂x1

(q1) · · · · · · · · · ∂g1
∂xi

(q1) · · · · · · ∂g1
∂xn

(q1)
...

...
...

...
...

...
...

...
∂gn−1

∂x1
(qn−1) · · · · · · · · · ∂gn−1

∂xi
(qn−1) · · · · · · ∂gn−1

∂xn
(qn−1)




∆x1

∆x2
...

∆xn

 = 0.

Let A′ denote the above matrix, whose last n− 1 rows are the same as A, we have195

det(A′) = ∆xi det(M1)−∆x1(−1)i+1 det(Mi),

where M1 ∈ T1(B),Mi ∈ Ti(B). If196

∆x1 det(T1(B)) ·∆xi(−1)i+1 det(Ti(B)) < 0,

we have ∆xi det(M1) and ∆x1(−1)i+1 det(Mi) have different signs, then det(A′) 6= 0, and197

∆x = 0. It is a contradiction with p,q are two different points. Therefore,198

∆x1 det(T1(B)) ·∆xi(−1)i+1 det(Ti(B)) > 0.

Notice that ∆xi and det(Mi) are all nonzero for i = 1, . . . , n. Then we know that for199

any j = 1, . . . , n, ∆xj(−1)j+1 det(Tj(B)) have the same signs, i.e., (Πi(p − q))1≤i≤n and200

((−1)i+1 det(Ti(B))1≤i≤n are matched.201

Now, we will give the definition of an O-M system in a box B.202

Definition 3. Let M ∈ IRn×n. For any i = 1, . . . , n, we denote M{n,i} ∈ IR(n−1)×(n−1) as203

a sub-matrix of M by deleting the n-th row and i-th column and we denote Mn,: as n−th row204

of M . We say M is an O-M matrix if ((−1)i+n det(M{n,i}))1≤i≤n and Mn,: are matched.205

Remark 1. If M ∈ Rn×n is a matrix and satisfies the above conditions, we also regard M206

as an O-M matrix.207

Example 2. Let M =

[1, 2] [3, 4] [−1, 1]
[3, 4] [−1, 1] [5, 6]
[1, 2] [−2,−1] [−2,−1]

. We have208

(−1)1+3 det(M{3,1}) = [14, 25],

(−1)2+3 det(M{3,2}) = [−16,−1],

(−1)3+3 det(M{3,3}) = [−18,−7],

and209

M3,: = ([1, 2], [−2,−1], [−2,−1]).

Therefore, M is an O-M matrix.210

Definition 4. Let F = (f1, . . . , fn), F ′ = (f1, . . . , fn−1) and S = V(F ′). We say F is an211

O-M system in B if212

(1) S is strong monotonous in B.213

(2) ((−1)i+nTi(B))1≤i≤n and (∂fn∂xi
(B))1≤i≤n are matched, where Ti = JXiF ′ (see (1) for more214

details).215
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i.e, JXF (B) is an O-M matrix.216

We can use interval evaluation to get JXF (B) and check whether it is an O-M matrix or217

not.218

Theorem 3. Let F = (f1, . . . , fn) and B a box. If F is an O-M system in B, then F has219

at most one zero in B.220

Proof. Assume that F has two different real zeros p = (p1, . . . , pn),q = (q1, . . . , qn) in B.221

Using Mean Value Theorem for fn, there exists a point p′ ∈ B such that222

n∑
i=1

∂fn
∂xi

(p′) ·Πi(p− q) = fn(p)− fn(q) = 0.

However, by Lemma 2, since S is strong monotonous in B, we have (Πi(p − q))1≤i≤n223

and ((−1)i+1 det(Ti(B))1≤i≤n are matched. By the definition of O-M system, we have224

((−1)i+nTi(B))1≤i≤n and (∂fn∂xi
(B))1≤i≤n are matched. Therefore, (Πi(p − q))1≤i≤n and225

(∂fn∂xi
(B))1≤i≤n are matched. Then, we know that226

∀q′ ∈ B,
n∑
i=1

∂fn
∂xi

(q′) ·Πi(p− q) 6= 0.

It is a contradiction. Hence F has at most one zero in B.227

3.2 Preconditioner228

In this subsection, we will find an equivalent system of the original system inside a box,229

that is, two systems have the same solution(s) inside the box, such that the new system230

satisfies the O-M condition inside the box.231

We give the following lemma first. Though it is clear, we give the proof below.232

Lemma 4. Let F = (f1, · · · , fn) and M ∈ Rn×n be an n × n invertible matrix. Then233

V(F ) = V(MF T ), where F T is the transpose of F .234

Proof. On one hand, ∀p ∈ V(F ), we have F (p) = 0, then MF T (p) = 0 i.e., p ∈ V(MF T ).235

On the other hand, ∀p ∈ V(MF T ), we have MF T (p) = 0. Since M is an invertible matrix,236

then we have F T (p) = M−1MF T (p) = 0 i.e., p ∈ V(F ). Thus, we have V(F ) = V(MF T ).237

238

We give the preconditioner which transforms locally a square system F into a new239

system UJ−1
F (p) · F T , where U ∈ Rn×n is an O-M matrix (In the rest of the paper, U240

always denotes an O-M matrix) and p ∈ B. In general, we choose p as m(B). The idea241

of multiplying J−1
F (p) to the original system originates from [33] and used by [24, 42, 44].242

They just transform locally the system F into J−1
F (p) · F T = (f̃1, . . . , f̃n)T s.t. V(f̃i) are243

almost orthogonal to each other in the neighborhood of p. Then the Miranda theorem can244

be used to check the existence of a real zero of the system. But we further do a rotation on245

J−1
F (p) · F T by multiplying the matrix U to make the system UJ−1

F (p) · F T becoming an246

O-M system in B. See the example below for illustration. A similar example to illustrate247

the same problem can be found in [14].248
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Example 3. Let F = (2 y2− z2 + 2x+ 0.16, x2 +x+ 3 y− z− 0.02, 3x2− 5.08x− 0.2492−249

4 y2 − 6 z + 3 z2 + 3 y), B = [−0.09,−0.04]× [0.01, 0.06]× [0.01, 0.06], U =

3 1 1
1 −3 1
1 1 −3

.250

F has a unique zero (−0.080966, 0.049827, 0.055071) in B. However, we can find that F251

is not an O-M system in B. The preconditioner in [33] produces G′ = J−1
F (m(B)) · F T =252  1.09864 y2 − 0.570758 z2 + 1.11937x+ 0.0864214− 0.0667392x2 + 0.131059 z − 0.0715789 y

−2.42325 y2 + 1.62329 z2 − 2.93426x− 0.163387 + 1.16858x2 − 2.40357 z + 1.03577 y

−2.02830 y2 + 1.22491 z2 − 2.45787x− 0.143304 + 0.430319x2 − 1.06258 z + 0.026427 y

, but253

our preconditioner generates G = UJ−1
F (m(B)) · F T =254  −1.15563 y2 + 1.13593 z2 − 2.03402x− 0.047427 + 1.39868x2 − 3.07297 z + 0.847460 y

6.34009 y2 − 4.21572 z2 + 7.46428x+ 0.433278− 3.14216x2 + 6.27919 z − 3.15246 y

4.76029 y2 − 2.62220 z2 + 5.55872x+ 0.352946− 0.18912x2 + 0.91523 z + 0.884910 y

. We can255

find that both F and G′ do not satisfy the condition of Miranda theorem. But it is easy to256

check that G is an O-M system in B.

Figure 1: The left figure is of F = 0, the middle one is of G′ = 0, the right one is of G = 0.

257

Remark: We have many choices for the O-M matrix U . For example, when n = 2,258 (
1 1
1 −1

)
and

(
2 1
1 −2

)
are both O-M matrices. When n = 3,

2 1 0
1 2 1
1 −1 2

,

3 1 1
1 −3 1
1 1 3

259

and

3 1 1
1 −3 1
1 1 −3

 are all O-M matrices. We will discuss how to select a better rotation260

matrix later.261

For each simple zero p∗ of F , we will prove that there always exists a small box B262

containing p∗ s.t. UJ−1
F (m(B)) · F T is an O-M system in B.263

For a point p ∈ Rn and a positive number δ > 0, we define a set of box as B(p, δ) = {B|B264

is a box and p ∈ B,w(B) < δ}. Then, we have the following theorem:265

Theorem 5. Let F = (f1, . . . , fn), fi ∈ C1(B), 1 ≤ i ≤ n and p∗ a simple zero of F . Then,266

∃δ > 0 s.t. ∀B ∈ B(p∗, δ), UJ−1
F (m(B)) · F T is an O-M system in B.267

Proof. LetG = UJ−1
F (m(B))·F T , whenB → p∗, we have lim

B→p∗
JG(B) = lim

B→p∗
UJ−1

F (m(B))·268

JF (B) = UJ−1
F (p∗) · JF (p∗) = U . Since U is an O-M matrix, we prove the theorem.269
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Remark: If p∗ is a singular root, then for any box B containing p∗, we can not transform270

F into an O-M system in B since 0 = det(JF (p∗)) ∈ det(JF (B)). Hence, our method is271

invalid for singular roots.272

For an O-M system in B, it has at most one real zero in B by Theorem 3. We will273

discuss how to determine whether F does have a zero in B in the next subsection.274

3.3 Existence275

In this subsection, we will give a method to determine whether an O-M system has one276

zero inside a box or not.277

Lemma 6. Let G′ = (g1, · · · , gn−1) and S = V(G′). If S is strong monotonous in B =278

[a1, b1] × · · · × [an, bn], then we have that B contains at most one connected component of279

S.280

Proof. Assume that B contains two connected components of S: L,L′. By Lemma 2 (a)281

and (b), we know that L intersects the boundaries of B at most twice. We prove the lemma282

in the following two cases:283

1. If L intersects the boundaries of B twice, there are two cases:284

(1.1) L passes B from F li (B) to F ri (B). For a point q ∈ L′, we have πi(q) ∈ [ai, bi].285

Since L is a connected component, ∃p ∈ L such that Πi(p) = Πi(q). It is a contradiction286

with Lemma 2.287

(1.2) L passes B from F li (B) to F rj (B), i 6= j. Let L∩F li (B) = {p1} and L∩F rj (B) =
{p2}, then we have Πi(p1) = ai and Πj(p2) = bj . For a point q ∈ L′, since L is a
connected component and Lemma 2 (a), we have Πi(q) /∈ [ai,Πi(p2)] i.e., Πi(q) > Πi(p2)
and obviously Πj(q) < bj = Πj(p2). Then we have

∆xi = Πi(p1)−Πi(p2) < 0,∆xj = Πj(p1)−Πj(p2) < 0,

∆x′i = Πi(q)−Πi(p2) > 0,∆x′j = Πj(q)−Πj(p2) < 0.

Thus we have ∆xi · ∆xj > 0 and ∆x′i · ∆x′j < 0. However, by Lemma 2 (c), ∀p 6=288

q ∈ S ∩B, Πi(p−q)(−1)i+1 det(Ti(B))Πj(p−q)(−1)j+1 det(Tj(B)) > 0. Since the sign of289

(−1)j+1 det(Ti(B)) (−1)j+1 det(Tj(B)) is unchanged, we know the sign of Πi(p−q)Πj(p−q)290

is unchanged too. Therefore we get a contradiction. Notice that L passes B from F ri (B) to291

F lj(B) (F li (B) to F lj(B), F ri (B) to F rj (B)) can be proved in a similar way.292

2. If L and L′ both intersect the boundaries of B only once, we know that the intersection293

points must be vertexes of B. Let L∩∂B = {p}, L′∩∂B = {p′}. Without loss of generality,294

assume that p = (a1, . . . , an), then by Lemma 2 (a), p′ must be (b1, . . . , bn). Considering the295

tangent vector of L at p, by Lemma 2 (c), we have (Πi(p−p′)) and ((−1)i+1 det(Ti(B)) are296

matched, therefore the sign of the tangent vector (Sign((−1)i+1 det(Ti(p))) = (1, 1, . . . , 1)297

or (−1,−1, . . . ,−1). That is to say L will go forward to the inside of B. Then L must go298

out of B and intersects the boundaries of B at another point. It is contradiction with the299

assumption. Notice that if p is another vertex, we can prove it in a similar way. Thus, we300

prove the lemma.301

By Lemma 2, we know that if S is strong monotonous in B, then S intersects the302

boundaries of the box ∂B at most twice, that is to say #(S ∩∂B) ≤ 2, where #(A) denotes303

the number of elements of a set A. Next, we determine whether F has a root or not in B304

based on the three cases: #(S ∩ ∂B) = 0, 1, 2.305
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If #(S ∩ ∂B) = 0, since S can not be a loop in B, then we know that S dose not pass306

the box B. If #(S ∩ ∂B) = 1, we know that S intersects only the box at a point and this307

point must be a vertex of B. Next, we will analyze the last case: #(S ∩ ∂B) = 2.308

Lemma 7. Let F = (f1, . . . , fn) be an O-M system in B. Let F ′ = (f1, . . . , fn−1) and309

S = V(F ′). Assume that S ∩ ∂B = {p1,p2}, we have:310

(1) If fn(p1)fn(p2) 6 0, F = 0 has a unique root in B.311

(2) If fn(p1)fn(p2) > 0, F = 0 has no root in B.312

Proof. Since B contains a unique component of S, we can parameterize it as η(t) =313

(x1(t), . . . , xn(t)), t1 6 t 6 t2, where η(ti) = pi, i = 1, 2. Since S is strong monotone314

inside B, η(t)(t1 ≤ t ≤ t2) is strictly contained inside B. Consider the univariate function315

g(t) = fn(x1(t), . . . , xn(t)). If fn(p1)fn(p2) 6 0, i.e. g(t1)g(t2) 6 0, then ∃t′ ∈ [t1, t2] s.t.316

g(t′) = 0. Thus (x1(t′), . . . , xn(t′)) is a root of F = 0. Since F is an O-M system in B, we317

know that F = 0 has a unique root in B. If fn(p1)fn(p2) > 0, i.e., g(t1)g(t2) > 0, then318

there are even number roots (counting multiplicity) of g(t) = 0 in [t1, t2]. Since F = 0 has319

most one root in B, we can know that F = 0 has no root in B.320

3.4 Checking the existence321

We will show how to check the existence of a real zero of a system in a box in this322

subsection.323

Let F = (f1, . . . , fn) be an O-M system in B and F ′ = (f1, . . . , fn−1). By the defini-324

tion of the O-M system, we know that S = V(f1, . . . , fn−1) is strong monotonous in B.325

Then by Lemma 7, in order to check the existence, we need to compute the intersection326

points p1,p2 of S and ∂B. However, it is not easy and unnecessary to get the points327

exactly, we need only to get two (n − 1)-boxes containing p1,p2, say Bp1 , Bp2 . Then by328

computing Sign(fn(Bp1)),Sign(fn(Bp2)), we can get Sign(fn(p1)),Sign(fn(p2)). The signs329

of fn(Bp1), fn(Bp2) can be obtained by interval computation, since 0 /∈ ∂fn
∂xi

(B), we can use330

the following lemma to compute the signs in an easier way.331

Lemma 8. Let f(x1, . . . , xn) ∈ C1(B) and B = [a1, b1] × · · · × [an, bn] a box. If 0 /∈332

∂f
∂xi

(B), i = 1, . . . , n and f(v(B)) > 0(< 0), then f(B) > 0(< 0).333

Proof. WLOG, we assume that f(v(B)) > 0 since f(v(B)) < 0 can be proved similarly. We334

prove the lemma with mathematical induction:335

We first prove the case n = 1, i.e., B = [a1, b1]: Since ∂f
∂x1

(B) > 0, we know that f is a336

monotonous univariate function, then we have f(B) > 0 since f(a1) > 0 and f(b1) > 0.337

Next we assume that the lemma is proved for n = k−1 and we are going to prove the case338

n = k, where k is a positive integer. Let Bi = [a1, b1]×· · ·× [ai−1, bi−1]× [ai+1, bi+1]×· · ·×339

[an, bn] ⊂ Rn−1, i = 1, . . . , n and ti = ai or bi. ∀1 ≤ i ≤ n, since f |xi=ti(v(Bi)) ⊂ f(v(B)),340

we have f |xi=ti(v(Bi)) > 0. Then by the assumption we have f |xi=ti(Bi) > 0 since the341

function f |xi=ti is with k − 1 variables. In summary, we have f(∂(B)) > 0. ∀p1 ∈ [a1, b1],342

we have f |x1=p1(v(B1)) ⊂ f(∂(B)), thus f |x1=p1(v(B1)) > 0. Then by the assumption we343

have f |x1=p1(B1) > 0. By the arbitrariness of p1, we have f(B) > 0.344

By Lemma 8, we need only to compute the signs of fn at the vertexes of Bp1 , Bp2 . If345

fn(v(Bp1)), fn(v(Bp2)) are all positive or negative, then we know the signs of fn(Bp1), fn(Bp2).346

So do the signs of fn(p1), fn(p2).347
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Next, we will show how to check the existence of a real zero of the system in B.
Let B = [a1, b1] × · · · × [an, bn] and Bi = [a1, b1] × · · · × [ai−1, bi−1] × [ai+1, bi+1] × · · · ×
[an, bn] ⊂ Rn−1, i = 1, . . . , n. For all pi ∈ [ai, bi], let F ′|xi=pi = (f1|xi=pi , . . . , fn−1|xi=pi) =
(f1(x1, . . . , pi, . . . , xn), . . ., fn−1(x1, . . . , pi, . . . , xn)). For convenience, we define the index
set of the box B with 2n elements as follows

Ind(B) = {(i, ai), (i, bi)|i = 1, . . . , n}.

If S ∩ ∂B = {p1,p2}, it is easy to see that there exist (i1, t1), (i2, t2) ∈ Ind(B) such348

that F ′|xi1=t1 , F ′|xi2=t2 both have a unique zero in Bi1 , Bi2 respectively. Therefore, for349

(i, t) ∈ Ind(B), we need to know the square system F ′|xi=t has a zero in Bi or not. We can350

solve those systems by our method recursively. Finally we need to isolate some bivariate351

systems, which is solved in [14]. Notice that for non-polynomial case, the method is also352

valid. We give the algorithm structure of checking existence as following:353

(1) Solve systems F ′|xi=t in Bi where (i, t) ∈ Ind(B).354

(2) If ∀(i, t) ∈ Ind(B), F ′|xi=t has no zero in Bi, it means that S does not pass the box B355

and F has no zero in B.356

(3) Else if ∃(i1, t1), (i2, t2) ∈ Ind(B) such that both F ′|xi1=t1 and F ′|xi2=t2 have a u-357

nique zero in Bi1 , Bi2 respectively. Then we compute the signs of fn|xi1=t1(v(Bi1))358

and fn|xi2=t2(v(Bi2)).359

(a) If Sign(fn|xi1=t1(v(Bi1)))Sign(fn|xi2=t2(v(Bi2))) < 0, F has a unique zero in B.360

(b) Else, if Sign(fn|xi1=t1(v(Bi1)))Sign(fn|xi2=t2(v(Bi2))) > 0, F has no zero in B.361

(c) Else if we can not determine the sign of fn|xi1=t1(v(Bi1)) or fn|xi2=t2(v(Bi2), we362

need to refine the boxes Bi1 , Bi2 and check the signs again.363

(4) Else, we can not determine if F has a real zero in B or not. We need to subdivide the364

box and check again.365

In Step(1), we will solve 2n systems with n − 1 equations and n − 1 variables in the366

worst case, that is to say, we need to solve 2n× 2(n− 1)× · · · × 2 · 2 = 2n−1 · n! univariate367

functions recursively in the worst case.368

In Step(3-c), if we can not determine the signs of fn|xij=tj (v(Bij )), j = 1, 2, we will369

refine the box Bij . That is to say, we will subdivide Bij and find the unique box containing370

the zero of F ′|xij=tj in those sub-boxes. The worst case is that the width of refined box is371

very small, but we still can not determine the signs. This case happens when the zero p∗372

of F is on (or very close to) the boundaries of B, we will discuss the bad situation later.373

Based on the above discussion, if a system and a box satisfy our O-M and existence374

conditions, we can determine that the box is an isolating box of the system. We can375

design an algorithm for real root isolation based on the O-M condition and the subdivision376

method. However, from the discussion above, we know that a recursive solving is required377

in our existence checking step. We need to ensure that the related system in the related378

box is an O-M system. In order to avoid constructing an O-M system for each one by379

one, we prefer to construct all these systems in their related boxes together. In doing so,380

we introduce the Jacobian test. One can find that the O-M condition implies the famous381

Jacobian test based on the following theorem. One can find it in many places, see the382

corollary of Theorem 12.1 in [1].383
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Theorem 9. Let G = (g1, . . . , gn), gi ∈ C1(B). If 0 /∈ det(JXG (B)), then G = 0 has at most384

one real root in B.385

It is clear that the Jacobian test is weaker than our conditions in Definition 3. The386

Condition (1) in Definition 3 is for existence checking. The Condition (2) in Definition 3 is387

for uniqueness checking, but it is not necessary. We can replace it with a weaker condition388

as the Jacobian test. In fact, when we check the existence, for (i, t) ∈ Ind(B), we need to389

know whether the system F ′|xi=t has a zero in Bi or not. In some cases, the system F ′|xi=t390

may not be an O-M system in the related box, thus we can not use the existence condition391

directly and need an (n−1)-D O-M matrix U to help us construct O-M system again. This392

operation may take much time, which is not necessary. In order to improve the situation,393

we present the Strong Monotone (S-M) system revised from O-M system.394

3.5 Strong Monotone system (S-M)395

Giving an interval matrix M ∈ IRn×n, we denote Mi ∈ IRi×n(1 ≤ i ≤ n) as the first396

i rows of M and denote S(Mi) as the set of all i-order sub-matrices of Mi. We give the397

following definition:398

Definition 5. Let M ∈ IRn×n and M = (mij)1≤i,j≤n. We say M is an S-M matrix if399

• 0 /∈ det(A),∀A ∈ S(Mi), 1 ≤ i ≤ n.400

Remark 2. If M ∈ Rn×n is a matrix and satisfy the above conditions, we also regard M401

as an S-M matrix.402

Example 4. Let M = (mij) =

[3, 4] [1, 2] [1, 2]
[1, 2] [3, 4] [−2,−1]
[1, 2] [−2,−1] [−2,−1]

. We can verify that M is403

an S-M matrix. First, we have 0 /∈ m1j, 1 ≤ j ≤ 3. Then for i = 2, we have that M2 =404 (
[3, 4] [1, 2] [1, 2]
[1, 2] [3, 4] [−2,−1]

)
and S(M2) = {A1, A2, A3} = {

(
[1, 2] [1, 2]
[3, 4] [−2,−1]

)
,

(
[3, 4] [1, 2]
[1, 2] [−2,−1]

)
,405 (

[3, 4] [1, 2]
[1, 2] [3, 4]

)
}. After computing, we have det(A1) = [−12,−4], det(A2) = [−12,−4] and406

det(A3) = [5, 15]. For i = 3, we have M3 = M , S(M3) = {M} and det(M) = [−72,−16].407

Therefore, M is an S-M matrix.408

In the following, we always denote V as an S-M matrix, then we will introduce the409

definition of the S-M system.410

Definition 6. Let F = (f1, . . . , fn), fi ∈ C1(B), 1 ≤ i ≤ n and B a box. We call F an S-M411

system in B if JXF (B) is an S-M matrix.412

Theorem 10. Let F = (f1, . . . , fn), fi ∈ C1(B), 1 ≤ i ≤ n. If F is an S-M system in B,413

then F = 0 has at most one root in B.414

Proof. Since F is an S-M system in B, we have 0 /∈ det(JXF (B)). Then by Theorem 9, we415

know that F = 0 has at most one root in B.416

For simplification, we set A =IsSMSys(F,X,B) as the algorithm to check whether417

JXF (B) is an S-M system or not. Interval evaluation can be used here to get JXF (B).418

Similar as Theorem 5, we have the following result.419
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Theorem 11. Let F = (f1, . . . , fn), fi ∈ C1(B), 1 ≤ i ≤ n and p∗ a simple zero of F .420

Then, ∃δ > 0 s.t. ∀B ∈ B(p∗, δ), V J−1
F (m(B)) · F T is an S-M system in B, where V is a421

S-M matrix.422

Now, we will show how to check the existence for an S-M system inside a box. we give423

the following lemma first.424

Lemma 12. Let F = (f1, . . . , fn), fi ∈ C1(B), 1 ≤ i ≤ n, B = I1 × · · · × In, F ′ =425

(f1, . . . , fn−1). If F is an S-M system in B, then for any x̂i ∈ Ii, i = 1 . . . , n, F ′|xi=x̂i is426

still an S-M system in I1 × · · · × Ii−1 × Ii+1 × · · · × In.427

Proof. It can be derived from Definition 6 directly.428

Let F be an S-M system in B and S = V(F ′). By the definition of S-M system, we429

know that S is strong monotone in B, meanwhile, we know that F = 0 has at most one430

root in B. Thus, in Lemma 7, if we replace the O-M system by S-M system, the lemma is431

still hold:432

Lemma 13. Let F = (f1, . . . , fn) be an S-M system. Let F ′ = (f1, . . . , fn−1) and S =433

V(F ′). Assume that S ∩ ∂B = {p1,p2}, we have:434

(1) If fn(p1)fn(p2) 6 0, F = 0 has a unique root in B.435

(2) If fn(p1)fn(p2) > 0, F = 0 has no root in B.436

Therefore, the existence condition for an O-M system can be applied for an S-M system.
We still consider the index set:

Ind(B) = {(i, ai), (i, bi)|i = 1, . . . , n}.

For (i, t) ∈ Ind(B), we also need to solve F ′|xi=t in Bi. Compared with the O-M system,437

the advantages of the S-M system are as follows:438

1. By Lemma 12, F ′|xi=t is still S-M system in Bi.439

2. Let F ′|xi=t = (f ′1, . . . , f
′
n−1). If f ′j(v(Bi)) > 0 or < 0 for some j ∈ {1, . . . , n− 1}, then440

by Lemma 8, we have f ′j(Bi) > 0 or < 0. Thus F ′|xi=t has no zero in Bi, we do not441

need to solve F ′|xi=t.442

We give the following example to show how to check the existence.443

Example 5. Let F = (f1, f2, f3) = (x − y + z, y2 + x + y + 2z, x2 + yz − 3x − y + z)444

and B = [−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1], B1, B2, B3 are all [−0.1, 0.1] × [−0.1, 0.1].445

One can verify that F is an S-M system in B. Next we check the existence consition. Let446

F ′ = (f1, f2) and other notations are as above, we need to check whether these systems447

F ′|xi=ti have a real zero in Bi or not, where x1 = x, x2 = y, x3 = z, ti = −0.1, 0.1. (Some448

systems can be checked easily, for example, let g = f2|z=0.1 = y2 + x + y + 0.2, we have449

g(0.1, 0.1) > 0, g(0.1,−0.1) > 0, g(−0.1, 0.1) > 0 and g(−0.1,−0.1) > 0, i.e., g(v(B3)) > 0.450

By Lemma 8, we know that g(B3) > 0, hence F ′|z=0.1 has no zero in B3 and we do not451

need to solve the system). Finally we find both the two systems F ′|x=0.1 and F ′|x=−0.1 have452

a unique zero in B1, see the left and right figures in Figure 2. Then we check the condition453

of Lemma 13, by simple evaluation, we have f3|x=0.1(v(B1)) < 0 and f3|x=−0.1(v(B1)) > 0.454

Therefore we know that F = 0 has a unique zero in B.455
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Figure 2: The figures for Example 5

Based on the discussion above, we give an algorithm Existence below.456

Algorithm 1 A =Existence(F,B, εb) :

1. Input: An S-M system F = (f1, . . . , fn), a box B, a given precision εb > 0 for
refinement, where X = {x1, . . . , xn} are variables of F .

2. Output: 1,0,or Unknown.

1. F ′ ← (f1, . . . , fn−1), T ← Ind(B), num← 0, S = {}.

2. While T 6= ∅ and num < 2

• Take (i, t) from T and T = T \ {(i, t)}.
• b← Existence(F ′|xi=t, Bi, εb).
• If b =Unknown, return Unknown.

• Else if b = 1, num = num+ b, S ← S
⋃
{(i, t)}.

3. If num = 0, return 0.

4. Else, {(i, t), (j, t′)} ← S

a. t1 ← Sign(fn|xi=t(v(Bi))), t2 ← Sign(fn|xj=t′(v(Bj))).

b. While w(Bi) > εb and t1 = 0 do

• Refine Bi w.r.t. F ′|xi=t, and still denote the refined boxes as Bi.

• t1 ← Sign(fn|xi=t(v(Bi))).

c. While w(Bj) > εb and t2 = 0 do

• Refine Bj w.r.t. F ′|xj=t′ , and still denote the refined boxes as Bj .

• t2 ← Sign(fn|xj=t′(v(Bj))).

d. If t1t2 < 0, return 1.

e. Else if t1t2 > 0, return 0.

f. Else, return Unknown.

Remarks for the algorithm:457
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1. A = 1 means that the system F has a unique zero in B, A = 0 means that the system458

F has no zero in B.459

2. When the algorithm returns Unknown, it means that we do not find two systems460

which have a unique zero in their corresponding boxes or can not determine the sign461

of fn|xi=t(v(Bi))·fn|xj=t′(v(Bj)). This case happens when the zero is on (or very close462

to) a k-dimensional (k ≤ n− 2) the boundaries of B, so that our precision εb can not463

handle this case. This also explains why there are at most two (n − 1)-dimensional464

faces of B intersects S in Step 4. We can avoid this case by changing the length of465

the box or combining some adjacent boxes with the same output “Unknown” to form466

a new box. Subdividing the new box and checking the conditions again, one usually467

succeeds in finding the results. The Existence for bivariate systems are presented in468

[14].469

3. In Steps 3.b, 3.c, refining the boxes Bi, Bj means to refine the root of the systems F ′470

for xi = t, xj = t′ in the boxes to get smaller boxes. Notice that we know there exists471

and only exists one unique real zero in the related boxes. We can use interval-Newton472

method for the refinement. Bi(Bj) or part of it can be set as the original box for the473

iteration.474

4. The correctness and termination of the algorithm is based on theories before.475

3.6 Choosing a proper S-M matrix V476

A better S-M matrix helps us reducing some unnecessary computation. In this subsec-477

tion, we will discuss how to choose a “better” S-M matrix V . As mentioned before, we478

may meet some bad cases: although both F ′|xi=t and F ′|xj=t′ have a unique zero in Bi and479

Bj , we can not determine the signs of fn|xi=t(v(Bi)) and fn|xj=t′(v(Bj)). Thus, we need to480

refine the boxes Bi and Bj . Therefore, we want to select some “nice” S-M matrices V to481

avoid bad cases as much as possible. See the following example first.482

Example 6. Consider the example in [14]. Let F = (y − x2, x − 2y), B = [−0.1, 0.1] ×483

[−0.1, 0.1]. Let V1 =

(
1 1
1 −1

)
and V2 =

(
2 1
1 −2

)
. We have G1 = V1J

−1
F (m(B)) · F T =484

(−3x2 + x+ y,−x2 + x− y)T = (g
(1)
1 , g

(1)
2 )T and G2 = V2J

−1
F (m(B)) · F T = (−5x2 + 2x+485

y, x − 2y)T = (g
(2)
1 , g

(2)
2 )T . It is easy to check that G1 and G2 are both S-M systems in486

B. Next we consider the existence condition. For the system G1, g
(1)
1 |x=0.1 has a unique487

zero in B1 = [−0.1, 0.1], however, g
(1)
2 |x=0.1(v(B1)) are not all positive(negative), then we488

need to refine B1, see the left figure in Figure 3. For the system G2, both g
(2)
1 |y=0.1 and489

g
(2)
1 |y=−0.1 have a unique zero in B2 = [−0.1, 0.1], then we can get g

(2)
2 |y=0.1(v(B2) < 0 and490

g
(2)
2 |y=−0.1(v(B2)) > 0 immediately, thus we know the existence without refinement, see the491

right figure in Figure 3. It means that V2 is “better” than V1.492

Give a system F = (f1, . . . , fn) and a box B, we assume that B is an isolating box of F493

(i.e., B contains only one simple zero p of F ). Let G = V J−1
F (m(B)) · F T = (g1, . . . , gn)T494

and G′ = (g1, . . . , gn−1). Our goal is to choose an S-M matrix V such that S = V(G′)495

goes through F ln(B) and F rn(B), i.e., both G′|xn=an and G′|xn=bn have a unique zero in496

Bn, meanwhile, gn|xn=an(v(Bn)) · gn|xn=bn(v(Bn)) < 0. Then we immediately know B is497

an isolating box of F . Notice that when w(B) is small, i.e., m(B) is close to the simple498
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Figure 3: The influlence of the different S-M matrixes to the same system.

zero p = (p1, p2, . . . , pn), we know that J−1
F (m(B)) · F T ≈ (x1 − p1, . . . , xn − pn)T and499

G ≈ V · (x1 − p1, . . . , xn − pn)T in B. That is to say gi is approximately a hyperplane in B500

and ∇gi(m(B)) ≈ Vi,: for i = 1, . . . , n.501

Based on the analysis above, we assume that p = 0, F = (x1 + h1, . . . , xn + hn) and502

B = [−1, 1]n is a unit box, where hi ∈ C1(B) and the Taylor expansion of hi at p = 0 has503

only terms with degree greater than 1, i = 1, . . . , n. Then we show how to choose V such504

that the system G = (g1, . . . , gn)T = V · F T satisfying the following conditions:505

(1) V is an S-M matrix.506

(2) (g1, . . . , gn−1)|xn=an and (g1, . . . , gn−1)|xn=bn have a unique zero in F ln(B) and F rn(B).507

(3) Sign(gn(F ln(B))) · Sign(gn(F rn(B))) < 0.508

For example, V2d =

(
N 1
1 −N

)
for N = 2 or a larger positive integer and V3d =509 N 1 1

1 −N 1
1 1 N

 for N = 3 or a larger positive integer satisfy our conditions, see Figure 4.510

V2d · (x, y)T V3d · (x, y, z)T

Figure 4: Examples for choosing V .

For general cases,511

Vnd =


α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
...

...
αn1 αn2 · · · αnn

 .
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Let αii = (−1)i+1N and |αij | ≤ 1, i 6= j, by generating αij randomly, we can find an S-M512

matrix Vnd satisfies the above conditions with high probability, where N can be n or another513

integer larger than n. We can also choose αii for different sign(s) for more choices. Usually,514

it is easier to get an S-M matrix for ∂G
∂X (B) when N is larger. This phenomenon can be515

obtained by observing the matrix of ∂G
∂X (B). We can also check whether it is a matrix we516

want by Definition 5 and we ensure that it is an S-M matrix.517

3.7 Algorithm518

In this subsection, we give the main algorithm for real zero isolation of real nonlinear519

systems. Our method is a subdivision method, we need the exclusion test which is based520

on the following famous box predicate C0(f,B)[46]:521

C0(f,B) := 0 /∈ �f(B). (2)

Given a function f and a box B, we say C0(f,B) is true if 0 /∈ �f(B). Based on the box522

predicate, we can write it as an algorithm A =Exclusion(F,B). Obviously, if the algorithm523

Exclusion returns 1, F = 0 must have no root in B.524

If the given system is a polynomial system, we can isolate the real zeros of bounding
polynomials to exclude boxes [14]. We rewrite a multivariate polynomial as below.

fi(x1, . . . , xn) =

di∑
j=0

ti,j(x1, . . . , xn−1)xjn.

Let B = I1×· · ·× In = B1× In. We split B1 into small boxes with a given length. For each
these small (n−1)-D box b, we evaluate fi(x1, . . . , xn) on b to get a sleeve polynomial [12].

fi(b, xn) =

di∑
j=0

ti,j(b)xjn =

di∑
j=0

[ai,j , bi,j ]x
j
n.

Isolating the real zeros of f1(b, xn) in In (see [14] for details), we can get a list of intervals,525

say J1, . . . , Jm. Continuing to isolate the real zeros of f2(b, xn) in J1, . . . , Jm, we can526

get a list of intervals, say J ′1, . . . , J
′
m′ , or an empty set. If we get an empty set, the box527

b× In can be thrown away. Else, doing so for f3, . . . , fn, we can get a list of intervals, say528

J̄1, . . . , J̄m′′ or an empty set. Then we can get candidate boxes b × J̄k(1 ≤ k ≤ m′′) or529

throwing away the box b× In. Thus we exclude some sub-boxes of B. We can recursively530

do so on the boxes to exclude some sub-domain of B. When In is large, this method may531

be more efficient to compute the possible candidate boxes than the method in (2). In532

fact, this method also works for non-polynomial systems. But the way to construct the533

upper (lower) bounding function is a little more complicated than polynomial case and534

we need to isolate the real zeros of non-polynomial univariate equations. We denote it535

as an algorithm A =Candidate(F,B). Our implementation uses mainly this method for536

polynomial systems.537

Based on the discussion above, we have the main algorithm Realrootfinding.538
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Algorithm 2 R,SR =Realrootfinding(F,B0, ε) :

1. Input: A system F = (f1, . . . , fn), an initial box B0, a termination precision ε > 0.

2. Output: An isolating box set R and a suspected root box set SR.

1. R← ∅,SR← ∅ and BS← {B0}.

2. While BS 6= ∅

(1) Take B ∈ BS, BS← BS \ {B}, A←Exclusion(F,B).

(2) If A = 0,

(a) G← VndJ
−1
F (m(B)) · F T .

(b) A′ ←IsSMSys(G,B).

(c) If A′ = 1,

• A′′ ←Existence(G,B, ε).

• If A′′ = 1, R← R
⋃
{B}.

• If A′′ =Unknown, SR← SR
⋃
{B}.

(d) Else if w(B) > ε,

• Split B into two similar parts and add them into BS.

(e) Else, SR← SR
⋃
{B}.

3. Return R,SR.

The correctness of the algorithm Realrootfinding is guaranteed by Theorem 6 and539

Lemma 13. The termination of the algorithm is guaranteed by Theorem 11 and the given540

ε.541

Remarks for the Realrootfinding algorithm:542

1. For a system F with only simple zeros, we can always get all the isolating boxes of543

all the zeros of F in B0 by recursively subdividing those suspected root boxes. Our theories544

ensure the termination of the algorithm.545

2. If F has singular zeros, we can not determine whether a box contains only a singular546

zero or not. Thus, we give the termination precision ε > 0 and repeat subdividing the boxes547

until the widths of the obtained boxes are less than ε. Finally we get some suspected root548

boxes. Each suspected root box may contain several zeros (counting the multiplicities of549

the zeros) or no zero.550

3. In order to get all the real zeros of a given system in a general given real box,551

we consider the coordinate transformation: xi → 1
xi

. We map the interval [−b,−1] to552

[−1,−1/b], and the interval [1, b] to [1/b, 1], where b > 1. Hence, we need only to consider553

finding real zeros in [−1, 1]n. Doing this way, we take only interval computation inside554

[−1, 1]n which need less interval evaluation. If the given system has only finite real zeros555

in a bounded box, we can get all its real zeros in the whole real space. For example, for a556

bivariate system F = (f1(x, y), f2(x, y)), we can get the isolating boxes or suspected boxes557

of real zeros of the original system in [1, b]× [−1, 1] by isolating the real zeros of the system558

(f1( 1
x , y), f2( 1

x , y)) in [1/b, 1]× [−1, 1]. If F is a polynomial system, then we can get all the559

real zeros of F if we take b as its root bound.560

4. In Step 2.(2) (d), we can find that some regions in B may be computed for several561
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times which waste much computing time. Thus we can split the given box B0 into many562

smaller boxes at first.563

5. In Step 2.(1), our aim is to find the candidate regions which may contain real zeros564

of the given system. For the case that the give system is a polynomial system, we can565

compute candidate regions as below (see more details in [12, 13, 14]). Given a system566

F = (f1, . . . , fn) and a box B = I1×· · ·× In, let J = I2×· · ·× In ⊂ Rn−1. We denote Ti as567

the set of the real (interval) zeros of the interval polynomial fi(x1, J) for i = 1, . . . , n, and568

let {t1 ∩ · · · ∩ tn ∩ I1|ti ∈ Ti, i = 1, . . . , n} = {I ′1, . . . , I ′m}. We call {I ′1 × J, . . . , I ′m × J} the569

candidates of F in B. It is obvious that all the real zeros of F in B are in the candidates. If570

the width w(J) is large, we can split J into (n−1)k parts equally (by splitting Ii, i = 2, . . . , n571

into k parts equally) and compute the candidates separately.572

6. For each suspect box we got, it may contain no zero, a simple zero, a multiple zero,573

several simple zeros or, one or more simple zero(s) together with one or more multiple574

zero(s) of the given system. This happens because we set a termination precision for the575

subdivision precess since we are not sure if the given system has multiple real zeros or576

not. For some examples, there may be so many suspect boxes and most of them contain577

no roots. We need to remove the redundant boxes which contains no roots. For a given578

system, there may exist one or several cluster(s) of boxes. Each cluster of boxes may contain579

one (or several) multiple (or simple) root(s), or no roots. If there is a root, the Newton’s580

method will converge to the root if the start point is chosen well, that is, the start point581

is in the basins of attraction of the system for the root [52]. The convergent region for the582

root will intersect some the boxes inside the cluster of the boxes. If we choose properly583

some point(s) in each suspect box in the cluster of boxes as start point(s) for Newton’s584

method for the system, we may get the root(s) inside the cluster of boxes and remove the585

redundant boxes. For the derived box(es) after computing with Newton’s method, we can586

do only a heuristic verification of a suspect box by deflation methods (see [11, 21, 35] and587

the methods mentioned therein). Notice that we may miss some root(s) or get more roots588

with this operation. For example, a root on (or very close to) the boundaries of a suspected589

box, the root may be missed or counted twice because of numerical computation. But it590

usually works well. We will show experiments for illustration with this step.591

3.8 Complexity analysis592

We analyze the bit complexity of isolating the real roots of a zero-dimensional polynomial593

system Σ in this subsection. We assume that there are n variables and the degrees of the594

polynomials of the system are bounded by d, the number of their terms are bounded by m595

and the bit sizes of their coefficients are bounded by τ .596

The complexity analysis for subdivision based algorithm of a single polynomial was con-597

sidered by [9, 17]. The complexity analysis for subdivision based algorithm for a polynomial598

system was given in [38]. Different from their work to find exact results, our analysis is for599

a given terminating precision without assuming that the system has only simple real roots.600

We would like to mention that the condition number is an important parameter for the601

complexity analysis of subdivision based methods for root finding. There are a series of602

works about real root counting of polynomial systems with probatilistic numeric methods603

and related analysis based on condition number [18, 19, 20].604

In this paper, O means the bit complexity, Õ(·) indicates that we omit poly-logarithmic605

factors.606

Consider the real roots of Σ inside B = [−1, 1]n. Notice that if we want to get all the607
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real zeros of Σ, we can transform the original system into new system by replacing xi with608

1/xi and removing the denominators of the whole polynomials. We can get 2n this kind of609

systems in [−1, 1]n. We assume that the termination precision for the boxes is ρ, that is, we610

stop subdividing the boxes when their lengths are less than ρ, where ρ is a rational number611

such that 0 < ρ < 1. So the number of the boxes in B is bounded by (2
ρ)n. The bitsize of612

the endpoints of the boxes is bounded by −log(ρ).613

For each box, we take one exclusion test and one our existence test at most. We will614

analyse these two operations one by one.615

Lemma 14 (Multivariate polynomial interval evaluation). Let g ∈ Z[x1, . . . , xn] be of mag-616

nitude (d, τ) and m terms. I1, . . . , In are intervals whose endpoints are rational numbers617

with bitsize σ, then evaluating g(I1, . . . , In) has a bit complexity of Õ(dmσ +mτ), and the618

bitsize of the endpoints of g(I1, . . . , In) is O(dσ + τ).619

Proof. Consider one term of g at first. The operations here include the multiplications of620

d intervals at most and one multiplication between the coefficient and the product of the621

intervals. We can divide d intervals into d
2 pairs. Each pair usually contains two intervals. If622

d is odd, the last pair contains only one interval. To get the product of them includes at most623

4 multiplications. The total bit complexity for computing all the pairs is d
2 ∗4∗σ = 2 dσ. The624

bitsizes of the products are 2σ. For these d
2 products, we divide them into d

4 pairs. Similarly,625

the total bit complexity for computing the products of all the pairs is d
4 ∗4∗2σ = 2 dσ. The626

bitsizes of the products are 4σ. Doing so in a similar way until the k step such that d = 2k,627

that is, k = log(d), we can get the product of all the intervals. So to get the product of628

all the intervals, we have the total bit complexity 2 dσ ∗ log(d) and the bitsize of the final629

product is 2log(d)σ = d σ. Considering the coefficient into the product, we have the total630

bit complexity of evaluating one term is 2 dσ ∗ log(d) + d σ + τ = Õ(dσ + τ). The bitsize631

of the final product for one term is dσ + τ . So evaluating g(I1, . . . , In) has a complexity of632

Õ(dmσ +mτ), and the bitsize of the endpoints of g(I1, . . . , In) is O(dσ + τ).633

Lemma 15. [51] Let A = (ai,j) ∈ Zn×n be nonsingular. We denote by ‖A‖ := max |ai,j |634

the maximum magnitude of entries in A, and by κ(A) := ‖A‖‖A−1‖ the condition number635

of the matrix with respect to the max norm. We give a Las Vegas probabilistic algorithm636

that has expected running time Õ(n3(log‖A‖+ logκ(A))) bit operations to compute the exact637

inverse of A. Thus, for a well conditioned A, with κ(A) bounded by a polynomial function638

of nlog‖A‖, this cost estimate becomes Õ(n3log‖A‖).639

Lemma 16. We can compute the least common multiple of n integers with bitsize σ by640

Õ(nσ) bit complexity and the bit size of the least common multiple is nσ.641

Proof. We can divide n intervals into n
2 pairs. Each pair is two integers. Note that if n is642

odd, the last one can be regarded as a pair. For each pair, we compute the least common643

multiple of the two integers a, b. It is a b/ gcd(a, b). The bit complexity is 2Õ(σ). So the644

bit complexity of computing all the pairs is nÕ(σ). The bit sizes of the results are all645

2σ. We continue to divide the results into n
4 pairs. For each pair we compute its least646

common multiple with bit complexity 4Õ(σ). So the bit complexity of computing all the647

pairs is nÕ(σ). And the bit sizes of the results are 4σ. Doing so, until we get the least648

common multiple of the n integers, which we need log(n) steps. So the total bit complexity649

is log(n)Õ(nσ) = Õ(nσ). The bit size of the last least common multiple is 2log(n)σ = nσ.650
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For a nonsingular matrix M with rational entries such that the bit sizes of the entries651

are bounded by σ, we can rewrite M = M1M2, where M1 is a diagonal matrix and M2 is a652

matrix with integer entries. We can compute the least common multiple of the denominators653

of the elements of each row. Set its inverse as the element of the related row of M1. Each654

of the related element of M of the row multiplies the least common multiple and set them655

as the related elements of M2. The bit size of each element of M2 is nσ, so as M1. By656

Lemmas 15, 16, we can find that the bit complexity of computing the inverse of M is657

Õ(n4σ + n3 log(κ(‖M2‖)) ( a well conditioned one is Õ(n4σ)) and the bit sizes of the658

elements of M−1 = M−1
2 M−1

1 is 2nσ.659

Now we consider the complexity to check the existence and the uniqueness of a real root660

inside a box. When we compute the intersection between the space curve formed by the661

n − 1 functions and the boundaries of a box. We need to check each face of the box to662

intersect the space curve. There are 2n faces. Each face is related to a zero-dimensional663

system with n − 1 functions and n − 1 variables. Recursively, we will do root finding of664

2n−1 n! univariate polynomials. In order to get an approximating root, we can bisect the665

interval a fixed number times, say 10 times, if there is a root. We also need to multiply two666

square matrices with order n: One is V , the other is J−1
F (m(B)).667

Lemma 17. Let F = (f1, . . . , fn) ⊂ Z[x1, . . . , xn] and each fi be of magnitude (d, τ), and668

m terms. If B = I1 × · · · In is a box with rational intervals such that the endpoints of669

I1, . . . , Im all with bitsize σ, then checking whether F contains a unique real root in B has670

a bit complexity of O(2nnn+1m (dσ + τ)).671

Proof. Denote the Jacobian matrix of F w.r.t. x1, . . . , xn as JF . The bitsize of the middle672

point of B, say P, is σ. It is clear that the bitsize of each element of JF (P) is O(dσ + τ).673

The bit complexity to compute JF (P) is O(n2mdσ + n2mτ) by Lemma 14. Thus the674

bitsize of the elements of the inverse of J−1
F (P) is O(ndσ + n τ) and the bit complexity to675

compute J−1
F (P) is O(n5σ + n4τ) by the analysis below Lemma 16. The bit complexity to676

compute V J−1
F (P) is n3O(ndσ + n τ) = O(n4 dσ + n4 τ), where V is the S-M matrix we677

mentioned before whose elements are with bitsize O(1). And the bitsize of the elements of678

V J−1
F (P) is O(ndσ + n τ).679

Let G = (g1, . . . , gn) = V J−1
F (P)F T . Then JG = V J−1

F (P)JF . After we evaluate JF on
B, denoted as JF (B), we have that each element of the matrix has a bitsize of O(dσ + τ)

by Lemma 14. Notice that fi and ∂fi
∂xj

have the same bitsize after evaluating on B. In order

to check whether the matrix JG(B) = V J−1
F (P)JF (B) is strong monotonous over B, we

compute the minors of the determinant of JG(B) step by step. We compute the order i+ 1
minors with the result of the order i minors until we get the determinant of JG(B), where
changes from 1 to n−1. Totally, we can consider computing n! products among n intervals.
From the way we check the strong monotonous matrix condition, we compute each product
by multiplying the n intervals one by one. There are 4(n− 1) multiplications. Notice that
the bit size of JG(B) is O(ndσ + n τ). The total complexity to get one product is

4 ∗ O(n dσ + n τ) + 4 ∗ 2O(n dσ + n τ) + . . . + 4 ∗ (n− 1)O(n dσ + n τ) = 2 ∗ n ∗ (n− 1)O(n dσ + n τ) = O(n
3
dσ + n

3
τ).

By Stirling’s approximation, the total bit complexity to check the strong monotonous con-680

dition is O(nn)O(n3 dσ+n3τ) = O(nn+3 dσ+nn+3τ). Notice that the uniqueness condition681

is already checked by the determinant of JG(B). To check the number of intersections be-682

tween the space curve formed by g1, . . . , gn−1 and the faces of B, we need to check whether683

2n n! univariate polynomials with magnitude (d, n dσ+n τ) and at most nm terms have so-684

lutions in the related intervals. So for one root isolation on one interval, the bit complexity685
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is O(nm(dσ + ndσ + nτ)) = O(nmdσ + nmτ) by Lemma 14. So the total bit complexity686

for the root isolation is 2nn!O(nmdσ + nmτ) = O(2nnn+1m (dσ + τ)). It is not difficult687

to find that this is the main part for the whole bit complexity when compared all the steps.688

Thus the total bit complexity of checking whether F contains a unique real root in B is689

O(2nnn+1m (dσ + τ)).690

We want to mention that there exist more efficient algorithm to compute the determinant691

of an interval matrix, see [30]. But it does not change the total bit complexity. The analysis692

is based on our implementation.693

From the analysis above, we can directly deduce the following result.694

Theorem 18. Isolating the real roots of a square system of polynomials with magnitude695

(d, τ) and m terms with the algorithm mentioned above, one takes a bit complexity of696

O((8
ρ)nnn+1m (−d log(ρ) + τ)).697

4 Experiments698

We implement our algorithm in C++, and we do some experiments under Linux with699

a computer of 64 AMD 3990X 2.90GHz CPU and 64 GB RAM. We also realize the par-700

allel computation with MPI. Our code can be downloaded from http://mmrc.iss.ac.cn/701

˜ jcheng/pai/RootFinding.tar.gz as well as a simple user guider from http://mmrc.iss.ac.cn/702

˜ jcheng/pai/Pai User Guide.pdf. We compare our algorithm with MK test [25, 33, 42] and703

Bertini [3]. There are two other famous homotopy continuation softwares: PHCpack [54]704

and Hom4ps [10]. We choose Bertini to compare just because it derives real roots directly.705

For systems with small sizes, we check their roots with symbolic methods such as [13]706

and we will point out if the results of some methods are not correct.707

We use NiDj to represent the systems formed by polynomials with i variables and degree708

j in the tables. NiDjE means we scaling back the coordinates of the variables. For example,709

the polynomials in N2D5E case is got by substituting variables (x1, x2) with (100∗x1, 100 ∗710

x2), and then we can just compute the roots in [−1, 1]2 to get the roots in [−100, 100]2 of711

the original system, which is more efficient in some cases. In the tables, Case means the712

type of systems. Terms means the number of terms of each polynomial in the system. Coef713

means the maximal absolute value of the coefficients of the polynomials in the systems.714

Range means the box to search the real roots for our method and MK test. But Bertini715

finds all the complex roots of the given systems, including the real roots out of the given716

box. Roots means the number of real roots of the systems. For our method, there are717

three parameters: The first one is the number of certified real roots of the system inside718

the box; The second one is the number of the suspected boxes of the system inside the box;719

The last one is the number of possible real roots of the system in all the suspected boxes720

with the method mentioned in Remark 6 of Algorithm 2. MK contains only the first two721

parameters for their roots. Bertini shows only the real roots among all its complex roots,722

including the real roots out of the box. Times means the computing times for the related723

examples in seconds. We take 5 systems for each case to get their average computing time.724

“˜” means we do not compute the examples. For Bertini, it means the example is out of725

its computing ability or the computing time is larger than 10000 seconds or their cases are726

NiDjE. For MK, there are no certified real roots, thus we do not compute the examples. In727

the examples, we usually set the precision ρ = 10−6. See the data in Table 1.728
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Case Terms Coeff Range
Roots Times(seconds)

Ours MK Bertini Ours MK Bertini

N2D5 10 10 -100˜100 3.0/0/0 1.2/11.6 3.0 0.391 0.633 0.012
N2D5E 10 10 -1˜1 3.0/0/0 1.0/10.6 ˜ 0.212 0.324 ˜
N2D9 10 10 -100˜100 6.2/49.8/0.2 1.8/77.4 6.4 7.148 8.232 0.222
N2D9E 10 10 -1˜1 6.4/139.4/0 1.8/190.2 ˜ 13.193 14.227 ˜
N2D51 10 10 -100˜100 7.4/15.6/0 0.4/53.4 7.8 20.862 17.265 1140.89
N2D51E 10 10 -1˜1 7.6/128.4/0 0.4/154.0 ˜ 38.208 38.065 ˜
N2D101 10 10 -100˜100 6.0/390.0/3.0 0.4/421.0 ˜ 137.141 140.961 >10000
N2D101E 10 10 -1˜1 5.6/274.4/1.2 0.2/290.2 ˜ 91.37 97.727 >10000
N3D9 10 10 -100˜100 12.6/1493.4/0.2 0/2348.6 13.2 721.023 798.912 5.891
N3D9E 10 10 -1˜1 12.8/519.0/0 0/1067.2 ˜ 173.859 207.422 ˜
N3D51 10 10 -2˜2 5.2/89.4/0 ˜ ˜ 45.913 ˜ >10000
N3D101 10 10 -2˜2 8.0/44.2/0 ˜ ˜ 4079.618 ˜ >10000
N4D9 10 10 -2˜2 9.8/0/0 ˜ ˜ 338.795 ˜ >10000
N4D51 10 10 -1˜1 2.8/0/0 ˜ ˜ 131.885 ˜ >10000
N4D101 10 10 -1˜1 1.0/0/0 ˜ ˜ 72.618 ˜ >10000
N5D11 10 10 -1˜1 1.2/0/0 ˜ ˜ 322.770 ˜ >10000
N6D11 10 10 -1˜1 1.6/0/0 ˜ ˜ 8071.526 ˜ >10000

Table 1: Comparing our method with MK and Bertini for polynomial systems.

Remarks for Table 1:729

1. In case N2D51, one example has 7 roots and we get 5 of them and miss finding the730

other 2 from the suspected boxes. In the related case N2D51E, we directly find 7731

certified roots for the example but another example miss one root from the suspected732

boxes.733

2. In case N3D9, the number of the total average roots is 13.4. Bertini misses one root,734

one of whose coordinate is around 3,000,000. Our code finds all the real roots of the735

systems inside the box [−100, 100]3. There are totally 3 roots out of the box.736

3. In case N3D101, the computing times for 3 of the 5 systems are less than 100 seconds.737

But one example takes 20157 seconds and there are 11 certified solutions and no738

suspected boxes. We find that several roots are very close to each other. One example739

has 17 certified roots and 162 suspected boxes, which takes 112.398 seconds.740

4. In Table 1, the examples above N3D51 does not use parallel computing and the results741

are proved by symbolic computation. From N3D51, we use MPI parallel computing742

with 30 cores and the results are without proof with symbolic computation.743

System [g1, g2, g3], gi = Terms Times(second) Roots

fi 5 1.536 4.2/0/0

fi ∗ (x21 + 1) 10 3.964 4.2/1.6/0

fi ∗ (x21 + x22 + x23 + 1) 20 8.470 4.2/1.6/0

fi ∗ ((x1 + x2)
2 + (x1 + x3)

2 + 1)) 30 355.113 4.2/68.8/0

fi ∗ ((x1 + x2 + 1)2 + (x1 + x3 − 1)2 + 1)) 40 326.391 4.2/166.6/0

fi ∗ ((x1 + x2 + x3 + 1)2 + 1)) 50 4229.643 4.2/4882.8/0

Table 2: The influence of the number of terms of the input polynomials to our method. The
first system [f1, f2, f3] is with randomly generated polynomials of degree 11 and 5 terms.
All the systems are expanded before computing. We consider the roots inside [−1, 1]3.
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In order to analyse the influence of the number of the terms to our method, we design the744

examples in Table 2. The systems all have the same solutions but the number of the terms745

of the polynomials are different. We can find that our method is sensitive to the number746

of terms of the polynomials in the systems. When the terms of the polynomials increase,747

the computing times increase and the suspected roots increase. This claim matches the748

complexity analysis in Lemma 17.749

The examples in Table 3 shows the influence of the bit size of the coefficients of the750

polynomials in the systems to our method. Increasing the bit size of the coefficients does751

not influence a lot to our method or to MK method but does influence a lot to Bertini since752

the trick step in Bertini is sensitive to the bit size of the coefficients. This phenomenon753

matches the bit complexity analysis of our algorithm, see Theorem 18. We can also find754

that Bertini can not work for systems with large coefficients.755

System [g1, g2, g3], gi =
Times(second) Roots

Ours MK Bertini Ours MK Bertini

fi 47.093 49.262 0.213 4.8/138.2/0 0/262.4 5.0

fi ∗ 210 45.397 48.985 0.636 4.8/138.2/0 0/262.4 5.0

fi ∗ 250 45.362 49.254 ˜ 4.8/138.2/0 0/262.4 ˜

fi ∗ 2100 45.464 49.302 ˜ 4.8/138.2/0 0/262.4 ˜

fi ∗ 2200 45.484 49.009 ˜ 4.8/138.2/0 0/262.4 ˜

Table 3: The influence of the bitsize of the coefficients of the input polynomials to the
methods. The first system [f1, f2, f3] is with randomly generated polynomials of degree
5 and 10 terms. The other systems are formed as shown in the table. The systems are
expanded before computing. We consider the roots inside [−100, 100]3. There is 1 root, one
of whose coordinate is out of [−100, 100] that is why the number of our roots is 4.8 but that
of Bertini is 5.0. Bertini cannot work for systems with large coefficients.

We also check the influence of the number of real roots inside a box to our method, see756

Table 4. If a system has more real roots inside a box, then our methods will take more757

times. It is reasonable since more roots mean that there are more boxes need to do the758

existence checking which is time-consuming. The number of real roots of a system almost759

does not influence the computing times of Bertini since the number of the total complex760

roots is unchanged under the situation.761

We also check the systems with multiple zeros, see Table 5. Usually, systems with762

multiple real zeros will take more computing time since near the multiple zeros there exist763

many suspected boxes. To exclude the ones without real roots with the method mentioned764

in Remark 6 of Algorithm 2 is time-consuming. And in Case multiN3D12, when excluding765

suspected boxes, one root is counted twice since it is very close to the boundaries of two766

suspected boxes. Some multiple roots of the systems may be computed as several roots by767

Bertini, so the numbers of roots in Cases multiN2D6 and multiN2D12 are not exactly the768

numbers of the exact roots of the systems.769

We test the five systems N2D9 in Table 1 with our method for different precisions, see770

Table 6. We can find that the higher precision we use, the less suspected boxes we get and771

the more computing times we need.772

We check our implementation of parallel computing with MPI on N4D9 in Table 1. We773

use 4, 8, 16, 32, 60 cores to compute the 5 systems and get the average computing time.774

The related data is given in Table 7. It shows the speedup of the parallel computing of our775
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# roots
Times Roots

Bertini our method Bertini our method

8 1.100 42.839 8 8/0/0

16 0.900 61.049 16 16/0/0

24 1.050 114.557 24 24/0/0

32 1.180 301.210 32 32/0/0

40 0.900 1082.670 40 40/728/0

48 1.280 982.576 48 48/536/0

Table 4: The influence of the number of roots of the input polynomials to the methods.
The systems are [f − ai, g − bi, h − ci] such that they have 8, 16, 24, 32, 40, 48 real root-
s respectively, where [ai, bi, ci] are [62, 61, 63], [5, 61, 61], [32, 31, 37], [22, 21, 17], [2, 63, 7],
[10, 10, 10] respectively and f, g, h are the expansions of
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respectively. Al-

l the roots are inside [−1, 1]3.

Case Exact roots
Roots Times

Ours Bertini Ours Bertini

multiN2D6 3.8 2.4/8665/1.4 6.8 334.389 0.09

multiN2D12 6.4 2.6/16535/3.8 9.8 6149.520 1.518

multiN3D6 6.4 2.2/6744.2/4.2 6.4 264.546 2.446

multiN3D12 6.6 1.0/16779.2/5.8 6.6 3115.749 1929.558

Table 5: We test systems with multiple real zeros with our method and Bertini. For cases
multiN2D6 and multiN2D12, we first randomly generate two polynomials f and g with 4
terms, then the polynomial system {f1, f2} is got by: f1 = f ∗ g and f2 = ∂f1

∂x2
. For cases

multiN3D6 and multiN3D12, we first randomly generate two polynomials f and g with 4
terms, then the polynomial system {f1, f2, f3} is got by: f1 = f ∗ g, f2 = ∂f1

∂x1
and f3 is a

randomly generated polynomial.

ρ Certified roots Suspected boxes Refined roots Times
10−2 1/3/2/3/1 31/106/91/87/44 2/6/5/2/7 1.735/4.346/4.671/3.916/3.192
10−4 3/8/6/4/8 14/57/128/106/8 0/1/1/1/0 2.737/8.640/8.849/9.847/4.345
10−6 3/9/6/5/8 0/26/123/100/0 0/0/1/0/0 3.014/11.083/14.595/16.017/4.446
10−8 3/9/7/5/8 0/0/3/0/0 0/0/0/0/0 3.031/11.389/18.164/17.942/4.335
10−10 3/9/7/5/8 0/0/0/0/0 0/0/0/0/0 3.049/11.390/18.332/18.153/4.429

Table 6: The influence of the termination precisions to the 5 systems in N2D9 in Table 1.
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code.

Number of cores 4 8 16 32 60

Computing times 1299.0 803.2 533.4 364.8 250.8

Table 7: The influence of the number of cores of parallel computing with our method for
N4D9 in Table 1.

776

From Table 1, we can find that our method is sensitive to the number of variables777

and the degree of the polynomials also influence the computing times, this suits for the778

complexity analysis in Theorem 18. For some examples whose roots are distributed in a779

very bad position, our method may take much time.780

Compared to the three related methods, our method is complete for square nonlinear781

systems with only simple roots, as the MK method. But the interval Newton’s method782

and the α-theory method are not complete. Since the exclusion test of MK method and783

our method are the same, the computing times of two methods are very close if we do not784

exclude the suspected roots. But we have more certified roots. The existence checking785

method of MK seldom works for systems with more than two variables. But our method786

works for systems with 6 variables as shown in Table 1. The reason is that Miranda theorem787

works for evaluating the functions of the systems directly on some of the boundaries of the788

boxes to require that the result interval does not contain zero. For certifying a simple root,789

the MK method, our method and the interval Newton’s method need only to compute the790

evaluations of the functions in the system and their order-one derivatives. The α-theory791

method needs compute higher order derivatives of each function in the system. The existence792

criteria of the interval Newton method, the α-theory method and our method, all need the793

information of order-one derivatives of the functions. But the Miranda based method needs794

only the evaluation of the functions. When the box which contains a zero of the system795

becomes small, the functions are very close to zero. When evaluated on the boundaries796

of the box, which are also a box (or an interval), the intervals derived from the functions797

contain zero with high probability, especially for functions with more than two variables.798

The deeper subdivision does not change the situation and even makes it worse in practice799

because of the interval calculus. This is the reason why the Miranda based method works800

only for less variables systems with lower degrees. Our experiments support the claim. Our801

method avoids using functions directly but using order-one derivatives of the functions for802

the existence of a zero. It works for systems with more variables and high degrees.803

Compared to Bertini, our method works well for polynomial systems with larger Bézout804

bound, higher degrees and less variables. Bertini works well for systems with many variables805

but not so larger Bézout bound. Our method can find roots of non-polynomial systems but806

Bertini can not. There are two other advantages of our method: One is that it can find roots807

of a system in a fixed local region. The other is that each of our certified root box contains808

exactly one real root of the system. Currently, our method can work only for systems with809

only several variables. To overcome this shortcoming is our future work.810

We will use our code to solve two problems in applications.811

Example 7. The equations of this example is from robotics and describes the inverse kine-812

matics of an elbow manipulator. One can find the problem in [28, 29]. We solve directly the813

original one without transforming it to an algebraic system. Thus we have only 6 variables814
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but there are 12 variables in [28, 29]. The following is the system given in [28, 29].815

s2 c5 s6− s3 c5 s6− s4 c5 s6 + c2 c6 + c3 c6 + c4 c6− .4077,

c1 c2 s5 + c1 c3 s5 + c1 c4 s5 + s1 c5− 1.9115,

s2 s5 + s3 s5 + s4 s5− 1.9791,

3 c1 c2 + 2 c1 c3 + c1 c4− 4.0616, (3)

3 s1 c2 + 2 s1 c3 + s1 c4− 1.7172,

3 s2 + 2 s3 + s4− 3.9701,

si2 + ci2 − 1, i = 1, . . . , 6.

We replace si, ci with sin(6.3xi), cos(6.3xi) for i = 1, . . . , 6 in (3). Thus we can consider816

xi in [0, 1] such that 6.3xi covers [0, 2π]. Doing so, we get all the solutions of the system.817

Computing the real roots of the new system in [0, 1]6 with precision ρ = 10−3 and 32 cores818

with MPI parallel computing, we can get 10 certified roots:819

[[0.0625, 0.0644531], [0.0957031, 0.0976562], [0.148438, 0.150391], [0.107422, 0.109375], [0.277344, 0.279297], [0.230469, 0.232422]],

[[0.0625, 0.0644531], [0.128906, 0.130859], [0.0820312, 0.0839844], [0.140625, 0.142578], [0.275391, 0.277344], [0.224609, 0.226562]],

[[0.0625, 0.0644531], [0.0957031, 0.0976562], [0.148438, 0.150391], [0.107422, 0.109375], [0.277344, 0.279297], [0.787109, 0.789062]],

[[0.0625, 0.0644531], [0.128906, 0.130859], [0.0820312, 0.0839844], [0.140625, 0.142578], [0.275391, 0.277344], [0.783203, 0.785156]],

[[0.560547, 0.5625], [0.400391, 0.402344], [0.347656, 0.349609], [0.390625, 0.392578], [0.220703, 0.222656], [0.289062, 0.291016]],

[[0.560547, 0.5625], [0.400391, 0.402344], [0.347656, 0.349609], [0.390625, 0.392578], [0.220703, 0.222656], [0.728516, 0.730469]],

[[0.561523, 0.5625], [0.368164, 0.369141], [0.415039, 0.416016], [0.357422, 0.358398], [0.22168, 0.222656], [0.285156, 0.286133]],

[[0.561523, 0.5625], [0.390625, 0.391602], [0.394531, 0.395508], [0.329102, 0.330078], [0.304688, 0.305664], [0.257812, 0.258789]],

[[0.561523, 0.5625], [0.368164, 0.369141], [0.415039, 0.416016], [0.357422, 0.358398], [0.22168, 0.222656], [0.724609, 0.725586]],

[[0.561523, 0.5625], [0.390625, 0.391602], [0.394531, 0.395508], [0.329102, 0.330078], [0.304688, 0.305664], [0.693359, 0.694336]].

Furthermore, we get 4116 suspected boxes and find none roots from them. We miss 6 real820

roots. The computing time is 843.994 seconds.821

If we set ρ = 10−6, we get exactly 16 certified roots and no suspected boxes which takes822

2133.05 seconds:823

[[0.0625, 0.0644531], [0.0957031, 0.0976562], [0.148438, 0.150391], [0.107422, 0.109375], [0.277344, 0.279297], [0.230469, 0.232422]],

[[0.0625, 0.0644531], [0.128906, 0.130859], [0.0820312, 0.0839844], [0.140625, 0.142578], [0.275391, 0.277344], [0.224609, 0.226562]],

[[0.0625, 0.0644531], [0.0957031, 0.0976562], [0.148438, 0.150391], [0.107422, 0.109375], [0.277344, 0.279297], [0.787109, 0.789062]],

[[0.0625, 0.0644531], [0.128906, 0.130859], [0.0820312, 0.0839844], [0.140625, 0.142578], [0.275391, 0.277344], [0.783203, 0.785156]],

[[0.560547, 0.5625], [0.400391, 0.402344], [0.347656, 0.349609], [0.390625, 0.392578], [0.220703, 0.222656], [0.289062, 0.291016]],

[[0.560547, 0.5625], [0.400391, 0.402344], [0.347656, 0.349609], [0.390625, 0.392578], [0.220703, 0.222656], [0.728516, 0.730469]],

[[0.561523, 0.5625], [0.368164, 0.369141], [0.415039, 0.416016], [0.357422, 0.358398], [0.22168, 0.222656], [0.285156, 0.286133]],

[[0.561523, 0.5625], [0.390625, 0.391602], [0.394531, 0.395508], [0.329102, 0.330078], [0.304688, 0.305664], [0.257812, 0.258789]],

[[0.561523, 0.5625], [0.368164, 0.369141], [0.415039, 0.416016], [0.357422, 0.358398], [0.22168, 0.222656], [0.724609, 0.725586]],

[[0.561523, 0.5625], [0.390625, 0.391602], [0.394531, 0.395508], [0.329102, 0.330078], [0.304688, 0.305664], [0.693359, 0.694336]],

[[0.562012, 0.5625], [0.40332, 0.403809], [0.371582, 0.37207], [0.339844, 0.340332], [0.308105, 0.308594], [0.25293, 0.253418]],

[[0.562012, 0.5625], [0.40332, 0.403809], [0.371582, 0.37207], [0.339844, 0.340332], [0.308105, 0.308594], [0.688965, 0.689453]],

[[0.0634766, 0.0637207], [0.107178, 0.107422], [0.103516, 0.10376], [0.169189, 0.169434], [0.193115, 0.193359], [0.195068, 0.195312]],

[[0.0634766, 0.0637207], [0.0952148, 0.095459], [0.126953, 0.127197], [0.158691, 0.158936], [0.19043, 0.190674], [0.190674, 0.190918]],

[[0.0634766, 0.0637207], [0.107178, 0.107422], [0.103516, 0.10376], [0.169189, 0.169434], [0.193115, 0.193359], [0.756348, 0.756592]],

[[0.0634766, 0.0637207], [0.0952148, 0.095459], [0.126953, 0.127197], [0.158691, 0.158936], [0.19043, 0.190674], [0.751465, 0.751709]].

824

Example 8. The following problem is the inverse position problem for a six-revolute-joint825

problem in mechanics, one can find it in [28, 43]. The defining equations in the reference826

are as below.827

ai3 x2 x3 + ai4 x2 x4 + ailx1 x3 + ai2 x1 x4 + ai5 x5 x7 + ai6 x5 x8 + ai7 x6 x7 + ai8 x6 x8

+ai9 x1 + ai10 x2 + ai11 x3 + ai12 x4 + ai13 x5 + ai14 x6 + ai15 x7 + ai16 x8 + ai17 ,

x2i + x2i+1 − 1, i = 1, 3, 5, 7.

There are 8 equations and 8 variables. The values of ai,j , j = 1, . . . , 17 can be found in828

[28]. We replace xi, xi+1 with sin(6.3 y i+1
2

), cos(6.3 y i+1
2

) for i = 1, 3, 5, 7 in the first equation829
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above. Then we can get a system with 4 equations and 4 variables. Computing its real roots830

in [0, 1]4 with precision ρ = 10−3 and 32 cores with MPI parallel computing, we get 9 certified831

roots:832

[[0.199219, 0.203125], [0.195312, 0.199219], [0.703125, 0.707031], [0.167969, 0.171875]],

[[0.175781, 0.177734], [0.228516, 0.230469], [0.375, 0.376953], [0.609375, 0.611328]],

[[0.189453, 0.191406], [0.871094, 0.873047], [0.0703125, 0.0722656], [0.496094, 0.498047]],

[[0.917969, 0.919922], [0.152344, 0.154297], [0.355469, 0.357422], [0.630859, 0.632812]],

[[0.902344, 0.904297], [0.0566406, 0.0585938], [0.662109, 0.664062], [0.179688, 0.181641]],

[[0.859375, 0.861328], [0.345703, 0.347656], [0.748047, 0.75], [0.148438, 0.150391]],

[[0.712891, 0.714844], [0.728516, 0.730469], [0.746094, 0.748047], [0.257812, 0.259766]],

[[0.0722656, 0.0732422], [0.379883, 0.380859], [0.566406, 0.567383], [0.387695, 0.388672]],

[[0.21875, 0.219727], [0.960938, 0.961914], [0.0576172, 0.0585938], [0.513672, 0.514648]].

and 2143 suspected boxes. We did not find roots from the suspected boxes. It takes 322.695833

seconds.834

If we set ρ = 10−6, we get exactly 12 certified roots and no suspected boxes which takes835

902.642 seconds:836

[[0.199219, 0.203125], [0.195312, 0.199219], [0.703125, 0.707031], [0.167969, 0.171875]],

[[0.175781, 0.177734], [0.228516, 0.230469], [0.375, 0.376953], [0.609375, 0.611328]],

[[0.189453, 0.191406], [0.871094, 0.873047], [0.0703125, 0.0722656], [0.496094, 0.498047]],

[[0.917969, 0.919922], [0.152344, 0.154297], [0.355469, 0.357422], [0.630859, 0.632812]],

[[0.902344, 0.904297], [0.0566406, 0.0585938], [0.662109, 0.664062], [0.179688, 0.181641]],

[[0.859375, 0.861328], [0.345703, 0.347656], [0.748047, 0.75], [0.148438, 0.150391]],

[[0.712891, 0.714844], [0.728516, 0.730469], [0.746094, 0.748047], [0.257812, 0.259766]],

[[0.0722656, 0.0732422], [0.379883, 0.380859], [0.566406, 0.567383], [0.387695, 0.388672]],

[[0.21875, 0.219727], [0.960938, 0.961914], [0.0576172, 0.0585938], [0.513672, 0.514648]],

[[0.0625, 0.0629883], [0.385742, 0.38623], [0.567871, 0.568359], [0.391602, 0.39209]],

[[0.0993652, 0.0996094], [0.712646, 0.712891], [0.292236, 0.29248], [0.515625, 0.515869]],

[[0.656242, 0.65625], [0.773285, 0.773293], [0.321335, 0.321342], [0.549934, 0.549942]].

837

This two examples show that our method works for non-polynomial systems and gives838

certified solutions.839

5 Conclusion840

In this paper, we propose a numerical method to isolate real zeros of a zero-dimensional841

multivariate square nonlinear system. We present the concept of the O-M system and the842

S-M system for a multivariate nonlinear system in an n-D box. Based on that, a new843

existence criterion of a real zero of a system inside a box which is different from Miranda844

based method is presented, it is much easier to be satisfied than Miranda based method.845

The uniqueness of a real zero of a system inside a box presented in the paper is related to846

the existence condition and it contains the traditional Jacobian test. For nonlinear systems,847

we use the exclusion test to get candidate boxes and for polynomial systems, we can use848

the bounding polynomials to get the candidate boxes. Then we check the uniqueness and849

existence conditions for each candidate box. If it succeeds, we get an isolating box of the850

system. If not, we split these candidate boxes until they satisfy the conditions or their851

widths reach a given precision. Our method is complete for systems with only finite simple852

real roots inside a box. We implemented the presented algorithms which shows it works853

well. The shortcoming of our current method is that we can not solving systems with so854

many variables. In the future, we will overcome this shortcoming and consider real zero855

isolating of high dimensional systems.856
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