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Abstract

A method for blending surfaces ( implicit or parametric) is introduced. The blending surface is
defined by a collection of curves generated through the same base curve and has a parametric
representation. Here the given surfaces are not restricted to any particular type of surface repre-
sentation as long as they have a well-defined and continuous normal vector at each point of their
boundaries, where are to be blended. In this paper, we mainly discussed the blending problems
of quadratic surfaces. In particular, we derive the uniform parametric blending surface of some
quadratic surfaces( 6 close quadratic surfaces) at the first time. This method also can solve n-
way quadratic close surfaces joints. To some special kind of surfaces, we can get higher order
continuity blending surfaces. The method is extensible to blend general surfaces, although we
concentrate on quadratic surfaces.
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1 Introduction

One of the fundamental tasks of CAGD is surface blending. There are several methods to solve the

problem. For example, Hoffmann and Hopcroft proposed the potential method in 1986 (see [7]); Warren

proposed the ideal theory method in 1989 (see [10]); Bloor and Wilson proposed PDE method in 1989

and 1990 (see [2], [3]); Bajaj and Ihm proposed Hermite interpolation method in 1992 (see [1]); Wu and

Wang proposed Wu’s method in 1994 (see [12]); Zhu and Jin proposed the generatrix method in 1998 (see

[8]); Wu and Zhou in 1995 (see [11]); Hartmann in 1994 and 2001 (see [5], [6]); Rossignac and Requicha

proposed rolling ball method in 1984 (see [9]), Chen et al.( see [4]) use piecewise algebraic surfaces to blend
∗E-mail address: jcheng@mmrc.iss.ac.cn. The current corresponding address is the second one.
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pipe surfaces, and so on. Hartmman( [6]) introduced a method for constructing Gn-continuous transition

surfaces between two given normal ringed surfaces based on a recent Gn-blending method for parametric

curves. Here a ringed surface is a surface generated by sweeping a circle with non constant radius along

a curve. The ringed surface is called normal if the circle is contained in the normal planes of the curve.

But the method is only fit for a special kind of surfaces. Chen et al.( [4]) presented a scheme to blend

three cylinders with piecewise cubic algebraic surfaces. They used 6 algebraic surfaces to form the whole

blending algebraic surface with degree three. But to get one part of the blending surface, one needs fussy

computation. And it is not easy to get the range of the parameters of the blending surface we need. Zhu and

Jin( [8]) presented a method which was based on generatrix for blending round or elliptical tubes. The basic

idea of it is to design a basic generatrix and then change the parameter of the generatrix to form the blending

surface. Wu and Wang( [12]) studied the blending problem of several quadrics by using Wu’s method and

gave some examples in transition of pipelines. In these examples, the method can be used to find all

possible blending surfaces with given degree. However, one has to do complicated symbolic computation

in this way. And one is not sure which surface is a ”good ” surface that can be used in practice.When

drawing it on computer, one has to seek a parametric representation of the implicit algebraic surface. And

the blending surfaces are difficult(or not) to be adjusted. The problem still exists in Wu and Zhou’s method

([11]). However they reduced the problem of finding blending algebraic surfaces to one of solving a linear

system by virtue of the properties of Gröbner bases.

In this paper, we mainly discuss the smoothly joint problem of two quadric surfaces and derive the

corresponding explicit formula. And we point out that the method can be expanded to n-way blending

problems. The method is called the base curve method. It works as follows. We first construct a curve

connecting the two axes of the surfaces to be blended. Based on the curve, we construct a collection of

curves. And the blending surface is defined by these curves. Examples are given in this paper shown that

this method gives nice solution to the problem. To get the blending surfaces, we only need the normal

vector of the given surfaces on each point of their boundaries. Here the boundary curves are regular and

continuous, and the normal vector at each point of the boundaries are well-defined and continuous. That

means the blending surfaces are only defined by the boundary conditions. This is an extrusive advantage

of the method. Further more, we can adjust the shape of the blending surface by adjust the base curve.

And the method is easy to expand to solve other blending problems. And the blending surfaces having a

parametric representation make them easy to be realized on computers or industrial applications. But the

blending surfaces are non-rational.

2 The blending surface of quadric surfaces

Definition 1 Two C1 continuous surfaces meet along a common boundary. Say they connect with G1

continuity (or tangent plane continuity) if they have the same tangent plane at each point of the boundary

and the unit normal vector is continuous along the common boundary.
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Definition 2 Let C, S denote a curve and a surface respectively. C ⊂ S. The curvature of C at P ⊂ C

is called normal curvature of S at P if the unit main normal vector of C at P is same to the unit normal

vector of s at P .

Definition 3 Two C2 continuous surfaces meet along a common boundary. Say they connect with G2

continuity if they are G1 continuous along the common boundary , further more, the normal curvature on

the point of boundary is continuous along the common boundary and is linear to the normal vector of the

surfaces on the same point.

A space curve (surface(parametric or implicit). Here we only consider the parametric curve. ) is called

regular if the tangent vector (normal vector) at every point on the curve (surface) exists and is unique

and nonzero. For example, if space curve (P (t) = (x(t), y(t), z(t)), t ∈ [0, 1]) has a tangent vector Q(t)

=(∂x(t)
∂t , ∂y(t)

∂t , ∂z(t)
∂t ) and Q(t) 6= (0, 0, 0) for all t in [0, 1], P (t) is a regular curve. A regular space curve is

called a base curve of a curve or a surface ( base curve for short) if the curve or the surface is constructed

through the space curve based on some rule you give. That is, for example, we can regard X-axes as the

base curve of the surface of revolution (t, t2 cos θ, t2 sin θ)(t ∈ [1, 4], θ ∈ [0, 2π]) and the rule is revolving

y = t2 along X-axes.

Theorem. Let S1, S2 be regular surfaces, C = C(t) be regular space curve, N = N(t) is the normal

vector of S1 at each point on C, S1

⋂
S2 = C. ∀ P = C(t0) ∈C, if there exists a regular space curve

C2 = C2(s) ⊂ S2 and C2(s0) = P , Further more,

C ′(t0)× C ′2(s0)
‖C ′(t0)× C ′2(s0)‖ = ± N(t0)

‖N(t0)‖ . (2.1)

Here C ′(t0), C ′2(s0) are the tangential vectors of the curves C, C2 at point P respectively. Then S1 and S2

meet with G1 continuity along C. C ′(t0) is the first derivative of C(t) when t = t0. Here it denote the

tangent line of curve C(t) at C(t0) (Other similar denotations are the same meaning.).

Proof. The tangent plane of S1 at P is {Q1|(Q1 − P ) ·N(t0) = 0}. And the tangent plane of S2 at P

is {Q2|(Q2 − P ) · (C ′(t0)× C ′2(s0)) = 0}. The two planes are obvious the same plane when (2.1) holds.

As is shown in Figure 1. It means that the two surfaces are tangent plane continuity. So the theorem holds.

Corollary. Let S1, S2 be regular surfaces, C = C(t) be regular space curves, S1

⋂
S2 = C. ∀ P =

C(t0) ∈ C, if there exists regular space curves C1 = C1(s) ⊂ S1,C2 = C1(s′) ⊂ S2 and C1(s0) = P ,

C2(s′0) = P , Further more ∃ a ∈ R/{0}, ∀ b ∈ R, such that




C ′1(s0) = a ∗ C ′2(s
′
0)

C ′(t0) 6= b ∗ C ′1(s0)
(2.2)

Then S1 and S2 meet with G1 continuity along C.

Make use of the definition of geometric continuity, the theorem and the corollary tell us a constructive

method to construct blending surfaces. We will show you how to do so.

A quadric surface is a surface defined by a polynomial with degree two. And here we don’t discuss

the surfaces or other graphs defined by quadric polynomial such as x2 = ±a2, x2 + b2y2 = 0. And we
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Figure 1: proof of the theory and corollary

mainly discussed the close surfaces, whose plane sections are either ellipses or circles if the planes intersect

with the surfaces appropriately. In other words, they are 6 surfaces given below: elliptic cylinder, elliptic

cone, elliptic paraboloid, elliptic sphere, hyperboloid of one sheet and hyperboloid of two sheet. There

are 3 quadric surfaces which are not close. They are hyperbolic paraboloid, hyperbolic cylinder, parabolic

cylinder.

Problem. Let S1, S2 be regular quadric surfaces, h1, h2 be two planes perpendicular to the axes of the

surfaces respectively. We need to construct a blending surface which will intersect S1 and S2 along the

intersection curves S1

⋂
h1, S2

⋂
h2 with G1 continuity.

In what below, we show how to construct the blending surface.

2.1 Constructing the base curve
Let A, B be the points of intersection between the axes of quadric surfaces S1, S2 and h1, h2 respec-

tively. Here the axes of a quadric close surface is a straight line enclosed by the surface. That is, for

example, X-axes is the axes of surface y2 + z2 = r2. The vertical distance and the angle between two axes

are d0 and α. Here the base curve is the curve connecting the two axes at A, B with G1 continuity. The first

step is to construct the base curve. We can consider one of the axes as the X-axis, the common vertical line

of two axes as Z-axis. The other axes intersects Z-axis at point O′. O is the origin. And the Y-axis is vertical

to both the X-axis and Z-axis. B is on the X-axis. Let O′A = d1, OB = d2. We can use many methods to

construct the base curve. For example, Bézier curve, Hermite interpolation and so on. Here we use Bézier’s

method. We use A, B and other two points A1, B1 as the control points to construct the base curve. A1 is

on the same axes as A, and B1 is on the same axes as B. Such that OB1 = l2d2, AA1 = (1− l1)d1. Here

l1 ∈ (0, 1), l2 ∈ (0, 1). As it is shown in Figure 2, and curve ˜Rt=0PtRt=1 is the base curve. As we know,

the base curve is G1−contact with the two axes of the surfaces at points A and B respectively.

Then we can get the base curve defined by the following equation.

P (t) = A ·B3,0(t) + A1 ·B3,1(t) + B1 ·B3,2(t) + B ·B3,3(t) (2.3)

In fact, a base curve is not needed always be Bézier curve with 4 control points for our problem. We can

use arc of an ellipse to contact the two axes when d0 = 0 . For the sake of avoiding the blending surface

intersecting itself, the radius of curvature of the base curve at every point should be larger than the maximal
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Figure 2: position in coordinate system

radius ( in the normal plane of the base curve) at the point, which means that the following inequality should

hold:

( (∂x(t)
∂t , ∂y(t)

∂t , ∂z(t)
∂t )× ( (∂2x(t)

∂t2 , ∂2y(t)
∂t2 , ∂2z(t)

∂t2 )

(∂2x(t)
∂t2 + ∂2y(t)

∂t2 + ∂2z(t)
∂t2 )

3
2

≥ max
θ∈[0,2π)

r(θ, t),∀t ∈ [0, 1] (2.4)

Here r(θ, t) is defined by (2.15). We can adjust the value of t1 and t2 to satisfy this inequality for all t in

[0,1]. Changing the value of t1 and t2 also can be used to rectify the shape of the base curve. That means

the shape of the blending surface can be adjusted.

2.2 Designing the radius function
Now we have a base curve (x(t), y(t), z(t)), t ∈ [0, 1]. The second step is to construct the radius

function. We will define a radius function: r(θ, t), θ ∈ [0, 2π), t ∈ [0, 1]. In the normal plane of the base

curve at every point Pt(x(t), y(t), z(t)), there exists a ont-to-one correspondence between the real number

in [0,2π) and the radials from Pt. Let h0 be the normal plane of the base curve at Pt, Rt be the radial from

Pt in h0 which is parallel to the XOY-plane, Rθ be the radial from Pt in h0 which forms an angle θ with

Rt, Qt be the intersection of Rθ and the blending plane to be constructed. Then r(θ, t) is the distance from

Pt to Qt. Obversely, it should be positive. To the same θ, we can define a regular continuous space curve

by Qt when t changes from 0 to 1. Let Sθ(t)( It is curve ˜Q0QtQ1 as shown in figure 2) denote the curve.

In order to connect the given surfaces smoothly, the tangential line of the curve at the extreme points should

be in the tangential plane of the given surfaces. As is shown in the theorem. Let θ change in [0, 2π). We can

get a collection of curves. All these curves form the blending surface. Each point on the intersection curve

(S1

⋂
h1 or S2

⋂
h2) and the axes of the given surface (S1orS2) defines a plane, which intersects the given

surface to a planar curve Cs1(s)(or Cs2(s))( Here C ′s1(s)(C
′
s2(s)) is equal to M1(M2) at point Q0(Q1) ).

The tangent of angle between the tangential line of the curve at the point and the axes is tanα1(or tanα2),

where αi is a function of θ. We can use the planar vector
−→
M ′

i = (1,M ′
i(θ)) = (1, tanαi)(i=1,2) to denote it

( if the tangential line is vertical to the axes, then
−→
M ′

i = (0,±1) ). We show the radius function in Figure 2.

Here r1(θ) (or r2(θ)) is the distance from A (or B) to the point on the intersection curve which corresponds

to θ ∈ [0, 2π). Form what we state above, we know Cs1(s)(or Cs2(s)) connecting Sθ(t) with G1 continuity.

When θ changes from 0 to 2π, Sθ(t) forms the blending surface S(θ, t). The corollary ensures that S(θ, t)

connects S1(or S2) with G1 continuity. We can get the following representation about the radius function.
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Figure 3: radius function(Qt is a point of the blending curve.)

r(θ, t) = PtQt, t ∈ [0, 1], θ ∈ [0, 2π) (2.5)

We will show how to calculate the radius function of an elliptic cone and a cylinder for example. The

standard functions of them are ( It is not denoted the corresponding position in the coordinate system ) :

y2

a2
+

z2

b2
− c ∗ x2 = 0 (2.6)

y2 + z2 − 0.25 = 0 (2.7)

In order to simplify the calculation, we consider the parametric form of the surface (2.6).




x(θ, t) = t

y(θ, t) = a cos θf(t)

z(θ, t) = b sin θf(t)

(2.8)

Here f(t) =
√

c t, t > 0. Then

r1(θ) = f(d1)
√

a2 sin2 θ + b2 cos2 θ (2.9)

M1(θ) =
√

a2 sin2 θ + b2 cos2 θ
∂f(t)

∂t
|t=d1 (2.10)

So

r1(θ) =
√

cd1

√
a2 sin2 θ + b2 cos2 θ (2.11)

M1(θ) =
√

c
√

a2 sin2 θ + b2 cos2 θ (2.12)
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In the same way, we can get the following result.

r2(θ) = 0.5 (2.13)

M2(θ) = 0 (2.14)

The curve defined by the radius function to be constructed should pass P0(0, r1(θ)), P1(1, r2(θ)), and the

tangent vectors of which at P0, P1 are the same with−→M1,−→M2 respectively. We can use Hermite interpolation

method to get the radius function:

r(θ, t) = (M1 −M2 − 2r2 + 2r1)t3 + (3r2 − 3r1 − 2M1 + M2)t2 + M1t + r1 (2.15)

Here t(∈ [0, 1]) increases along the base curve from A to B. We also can construct a Bézier curve to get the

radius function.

2.3 Getting the parametric blending surface
From the discussion above,we can get the expression of the blending surface. One can prove that it

connects the given surfaces with tangent plane continuity.




x(θ, t) = r(θ, t)( − ∂x(t)
∂t

∂z(t)
∂t√

((
∂x(t)

∂t )2+(
∂y(t)

∂t )2+(
∂z(t)

∂t )2)((
∂x(t)

∂t )2+(
∂y(t)

∂t )2)
sin θ

+ − ∂y(t)
∂t√

(
∂x(t)

∂t )2+(
∂y(t)

∂t )2
cos θ) + x(t)

y(θ, t) = r(θ, t)( − ∂y(t)
∂t

∂z(t)
∂t√

((
∂x(t)

∂t )2+(
∂y(t)

∂t )2+(
∂z(t)

∂t )2)((
∂x(t)

∂t )2+(
∂y(t)

∂t )2)
sin θ

+
∂x(t)

∂t√
(

∂x(t)
∂t )2+(

∂y(t)
∂t )2

cos θ) + y(t)

z(θ, t) = r(θ, t) (
∂x(t)

∂t )2+(
∂y(t)

∂t )2√
((

∂x(t)
∂t )2+(

∂y(t)
∂t )2+(

∂z(t)
∂t )2)((

∂x(t)
∂t )2+(

∂y(t)
∂t )2)

sin θ + z(t)

(2.16)

Here (x(t), y(t), z(t))is the parametric expression of the base curve. It can be defined by (2.3).

This method is easy to solve the blending problems of so-called normal ringed surfaces mentioned in

[6]. We only need to change r(θ, t) to r(t) in (2.16). r(t) can still be defined by (2.15), but here Mi and ri

are constant to the given blending problem.

3 Examples

Example 1 In this example, we consider the connecting of an elliptic cylinder and an elliptic paraboloid.

The standard equations are:
y2

a2
2

+
z2

b2
2

− c2 ∗ x = 0 (2.17)

y2

a2
1

+
z2

b2
1

− 1 = 0 (2.18)

We can use (2.3) to construct the base curve. The radius function can be defined by (2.15). Here

r2(θ) =
√

c2d2

√
a2 sin2 θ + b2 cos2 θ (2.19)
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M2(θ) =
√

a2
2 sin2 θ + b2

2 cos2 θ
c

2
√

cd2

(2.20)

r1(θ) =
√

a2
1 sin2 θ + b2

1 cos2 θ (2.21)

M1(θ) = 0 (2.22)

Then we can get the blending surface defined by (2.16). And the parameters of the blending surface shown

in Figure 4 are given below: t1 = t2 = 0.5, d0 = 0.3, d1 = 0.5, d2 = 0.6, α = 5π/6, a1 = 0.25, b1 = 0.3,

a2 = 0.3, b2 = 0.35, c2 = 0.3.

Example 2 Let us assume that the surfaces to be blended are two cylinders with intersecting axes. The two

axes form an angle α. The radii of the cylinders are r1 and r2 respectively. Using the method introduced in

section 2, we construct the blending surface. First, we can construct the base curve of the following form:





x(t) = (d1 cos α + d2)t2 − 2d1 cos αt + d1 cos α

y(t) = d1 sinαt2 − 2d1 sinαt + d1 sinα

z(t) = 0

(2.23)

Secondly, we can get the following radius function by (2.15):

r(θ, t) = 2(r1 − r2)t3 − 3(r1 − r2)t2 + r1 (2.24)

Then we can get the blending surface as the following form by (2.16):




x(θ, t) = r(θ, t)( − ∂y(t)
∂t√

(
∂x(t)

∂t )2+(
∂y(t)

∂t )2
cos θ) + x(t)

y(θ, t) = r(θ, t)(
∂x(t)

∂t√
(

∂x(t)
∂t )2+(

∂y(t)
∂t )2

cos θ) + y(t)

z(θ, t) = r(θ, t) sin θ + z(t)

(2.25)

In order to get a ”good” blending surface, we should think about inequality (2.4). The problem is trans-

formed to the following form:

1
2
√

d2
1 + d2

2 + 2d1d2 cos α
≥ 2(r1 − r2)t3 − 3(r1 − r2)t2 + r1,∀ t ∈ [0, 1] (2.26)

One can easily get an equivalent representation of (2.26) as the following:

1
2
√

d2
1 + d2

2 + 2d1d2 cos α
≥ max{r1, r2} (2.27)

The parameters of the graph shown in Figure 5 are : r1 = 0.2, r2 = 0.3, d1 = 0.4, d2 = 0.3, α = 5π/6.

Example 3 In this example, we will show that our method introduced in section 2 can be modified to

construct blending surfaces for non-planar cutting curves. Let us think about the blending of two cylinders
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Figure 4: elliptic cylinder jointing with elliptic
paraboloid Figure 5: connecting of two cylinders

intersecting axes. The axes of two cylinders are vertical. One cylinder cuts in another. The equations of the

cylinders in the coordinate system are given below.

y2 + z2 − r2
1 = 0 (2.28)

x2 + z2 − r2
2 = 0 (2.29)

Another cylinder is defined by the following equation.

y2 + z2 − r2 = 0 (2.30)

Where r < r2. Cylinder (2.30) intersects cylinder (2.29) at a space curve. We can get the parametric

equation of it.





x(θ) =
√

r2
2 − r2sin2θ

y(θ) = r cos θ

z(θ) = r sin θ

(2.31)

We can get the blending surface with the following representation.





x(θ, t) = d0 − t

y(θ, t) = r(t) cos θ

z(θ, t) = r(t) sin θ

(2.32)

Here t ∈ [0, t(θ)]. And t(θ), r(t) are defined by the equations below:

t(θ) = d0 −
√

r2
2 − r2 sin2 θ (2.33)
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.

r(t) = (2r1−2r+3l2

√
r2
2 − r2 sin2 θ

r2
2 − r2 sin2 θ cos2 θ

)t3+(−3r1+3r−3l2

√
r2
2 − r2 sin2 θ

r2
2 − r2 sin2 θ cos2 θ

)t2+r1 (2.34)

Here the parameters l1, l2 are used to adjust the shape the radius function. That is, to adjust the shape of the

blending surface. The parameters of the figure shown in Figure 6 are the following: d0 = 0.6, r1 = 0.2,

r2 = 0.3, r = 0.2, l1 = 0.1, l2 = 0.1.

Example 4 In this example, we will show several cylinders whose axes jointing at the same point connecting

a sphere with G1 continuity. We can use this method to solve n-way blending problems. The picture shown

in Figure 7 is defined by the following parameters. The radius of the sphere is 0.3. The radiuses of the given

cylinders are 0.15. The radius of the circle defined by a plane intersecting sphere is 0.2. The distances from

the origin to the planes intersecting the given cylinders are
√

0.32 − 0.152 + 0.15.

Figure 6: one cylinder inserting another Figure 7: five cylinders jointing

4 Conclusion

A method for connecting two surfaces G1-continuously is introduced. It is based on a G1-continuous

parametric regular curve. Obviously, this method can be extended to connecting general regular surfaces.

Thanks Thanks for professor Xiao-shan Gao for his good advices on my paper.
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