
Journal of Computational and Applied Mathematics 376 (2020) 112825

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A newdeflationmethod for verifying the isolated singular
zeros of polynomial systems
Jin-San Cheng a,c,∗, Xiaojie Dou b,∗, Junyi Wen a,c

a KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
b College of Science, Civil Aviation University of China, 300300, Tianjin, China
c University of Chinese Academy of Sciences, Beijing, China

a r t i c l e i n f o

Article history:
Received 2 June 2019
Received in revised form 2 December 2019

Keywords:
Polynomial system
Deflation method
Isolated singular zero
Interval verification

a b s t r a c t

In this paper, we develop a new deflation technique for refining or verifying the isolated
singular zeros of polynomial systems. Starting from a polynomial system with an isolated
singular zero, by computing the derivatives of the input polynomials directly or the
linear combinations of the related polynomials, we construct a new system, which can
be used to refine or verify the isolated singular zero of the input system. In order to
preserve the accuracy in numerical computation as much as possible, new variables
are introduced to represent the coefficients of the linear combinations of the related
polynomials. To our knowledge, it is the first time that considering the deflation problem
of polynomial systems from the perspective of linear combinations. Some acceleration
strategies are proposed to reduce the scale of the final system. We also give some further
analysis of the tolerances we use, which can help us have a better understanding of our
method. The experiments show that our method is effective and efficient. Especially, it
works well for zeros with high multiplicities of large systems. It also works for isolated
singular zeros of non-polynomial systems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Solving polynomial systems with singular zeros is always a challenge in algebraic and geometric computation. For an
isolated simple zero of a polynomial system, the classical Newton’s method is widely used and quadratic convergent.
However, for singular zeros of a polynomial system, Newton’s method is not fit for the original system directly because
it converges slowly or even does not converge in a bad situation. What is more, it is an ill-posed problem to compute
an isolated singular zero of a polynomial system or a nonlinear system, since a small perturbation of coefficients may
transform an isolated singular zero into a cluster of simple zeros.

Therefore, finding methods to keep the quadratic convergence of Newton’s method for singular zeros is a way to handle
this problem. Given a polynomial system with an isolated singular zero, we can construct a new system owing the same
singular zero as an isolated simple one. Based on this idea, in recent years, there are many symbolic or symbolic-numerical
methods coming up to deal with this problem. The basic idea is the deflation techniques [1–8], which usually have two
basic strategies: adding new equations only or both new equations and new variables to the original system.

Deflation for an isolated singular solution originated from the ideas of Ojika [9–11]. T. Ojika et al. present a deflation
algorithm for determining the multiple zeros for a system of nonlinear equations. Through triangulating the Jacobian

∗ Corresponding author.
E-mail addresses: jcheng@amss.ac.cn (J.-S. Cheng), xjdou@cauc.edu.cn (X. Dou), wenjunyi15@mails.ucas.ac.cn (J. Wen).

https://doi.org/10.1016/j.cam.2020.112825
0377-0427/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2020.112825
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2020.112825&domain=pdf
mailto:jcheng@amss.ac.cn
mailto:xjdou@cauc.edu.cn
mailto:wenjunyi15@mails.ucas.ac.cn
https://doi.org/10.1016/j.cam.2020.112825

2 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

matrix of the original system at an approximate zero, new equations, which comes from the minors of the Jacobian
matrix, are introduced to the original system to reduce the multiplicity until they get a system which is regular at the
singular zero.

In [12], Giusti and Yakoubsohn propose a construction, which is based on two operations: deflating and kerneling, to
determine a regular system without adding new variables. In the deflating, all the partial derivatives of the polynomials,
which are zero at the multiple zero, are introduced to replace the corresponding polynomials. The kerneling operation
consists of adding the polynomials given by the nonzero numerators of the coefficients of the Schur complement of the
Jacobian matrix of the original system to the original system.

In [6], Hauenstein and Wampler define a strong deflation by only adding new equations coming from the one order
differential of the Jacobian matrix of the original system to the original system. Different from [12], at each iteration step,
both the number and the degree of the added equations are reduced.

In [13], Mourrain et al. give a method which uses a single linear differential form defined from the Jacobian matrix of
the input system, and defines the deflated system by applying this differential form to the original system.

These above methods do introduce new equations and finally get a new system owing the isolated singular zero of the
original system as a simple zero. In order to get the new polynomials, one needs to compute the determinant of some
polynomial matrices. Thus the degree of the polynomials in the new system may be very high.

In the following, denote n as the number of both the variables and the equations in the original system, and µ as the
multiplicity of the isolated singular zero of the original system.

In [14], Yamamoto introduces new equations and new variables to the original system simultaneously. New variables
are used to bring some perturbations of the original system and the Jacobian matrix of the original system, which produce
new equations.

In [15–17], Leykin et al. present an effective modification of Newton’s method to restore quadratic convergence for
isolated singular solutions of polynomial systems. Different from [14], new variables are only introduced to the Jacobian
matrix of the original system, which produce new equations. Meanwhile, they also prove that the number of deflation
stages is bounded by µ.

In [18], Dayton and Zeng modify the method in [15] and further prove that the number of deflation steps is bounded
by the depth of the dual space. For the special case of breadth one, they also propose a modified deflation method, which
is based on duality analysis, to reduce the final size 2µ−1n × 2µ−1n of deflated system in [15] to µn × µn.

In [19], by introducing a smoothing parameter to the original system and n−1 new variables to the Jacobian matrix of
the original system, which produces new equations, Rump and Graillat consider the case of the double zero of the original
system. In [20], based on the parameterized multiplicity structure, Li and Zhi generalize the algorithm in [19] to deflate
the breadth-one isolated singular zero of the original system. Their final deflated regular system is of size µn × µn.

In [21], based on the given multiplicity structure of the original system, which depends on the accuracy of the given
approximate multiple zero, Mantzaflaris and Mourrain give a method to find a (small) perturbed system of the original
system and then first compute a deflated system in one deflation step. The size of the final deflated system is equal to
µn × µn.

In [22], by lifting the independent perturbations in the first-order differential system appearing in [14] back to the
original system, Li and Zhi modify the method in [14] and also prove that the modified deflation technique terminates
after a finite number of steps bounded by the depth of the dual space. The size of the final modified regularized system
is bounded by 2µ−1n × 2µ−1n.

In [13], by introducing some variables to represent the coefficients of the dual basis, Mourrain et al. give a method to
deflate the original system and determine the multiplicity structure simultaneously. They also show that the number of
variables and equations in this method is bounded by n+ nµ(µ− 1)/2 and nµ+ n(n− 1)(µ− 1)(µ− 2)/4. However, one
point worth noting is that this method needs to know the monomial basis of the original system first.

These methods introduce new variables and new equations to the original system simultaneously. By repeatedly using
these deflation constructions, they will get an augmented system finally, which has an isolated simple zero, whose partial
projection corresponds to the isolated singular zero of the original system.

Main contributions. In this paper, given a polynomial system F ⊂ C[x] with an isolated singular zero p, by computing
the derivatives of the input polynomials directly or the linear combinations of the related polynomials, we propose a
new deflation method to construct a final deflated system F̃′(x, α), which has an isolated simple zero (p, α̂), whose
projection corresponds to the isolated singular zero p of the input system. New variables α are introduced to represent the
coefficients of the linear combinations of the related polynomials to ensure the accuracy of the numerical implementation.
Moreover, we also prove that the size of our deflation system depends on the depth or the multiplicity of p.

Compared to the previous methods, our method has the following differences:

1. For the input system F, we can, if needed, compute the derivatives of every fi to get the needed polynomials, which
are regular at p at the beginning. Then, we put all these polynomials together to construct a system F0, such that
the rank r of its Jacobian matrix at p is maximal. In some cases, we have r = n, which means that we need not
introduce new variables.

2. We compute the derivatives of the linear combinations of the related polynomials to get some polynomials which
are regular at p. Here we introduce new variables to represent the coefficients of the linear combinations.

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 3

3. Considering that we know only the approximate zero p̃ in actual computations, we use a tolerance θ to judge if
a polynomial is θ-regular or θ-singular at p̃ and another tolerance ε to judge the numerical rank of the Jacobian
matrix. As long as the tolerance θ is chosen properly, we will get the same judgement in numerical case as in
the exact case. Thus, our deflation system usually has the same isolated zero as the input system. Inspired by the
work [15] of Leykin et al., we also give some further analysis on the tolerances θ and ε, which tells us that our final
system is a perturbed system with a bounded perturbation in the worst case. To make our final system as accurate
as possible, we also analyse the case that the tolerance θ is not introduced.

Thanks to the above acceleration strategies, the size of the final system in our actual computations is much less than
that we give in theory.

Furthermore, we implement our method in Matlab. The experiments show that our method is effective and efficient,
especially for large systems with singular zeros of high multiplicities. Besides, for the non-polynomial systems, our method
is also applicable.

The paper is organized as below. We introduce some notations and preliminaries in Section 2. In Section 3, we give a
new deflation idea to construct a deflated system from the input system with an isolated singular zero. Some analysis of
the tolerances we use is given in Section 4. Numerical experiment results are given to demonstrate the performance of
our algorithm in Section 5 and at last, we draw some conclusions in Section 6.

2. Notations and preliminaries

Let C be the complex field and C[x] = C[x1, . . . , xn] be the polynomial ring. Denote F = {f1, f2, . . . , fn} ⊂ C[x] as a
polynomial system and deg(fi) as the degree of the polynomial fi. Similarly, deg(F) = max

fi∈F
deg(fi). Let p = (p1, . . . , pn) ∈ Cn.

F(p) = 0 denotes that p is a zero of F(x) = 0.
Let V(F) ⊂ Cn denote the variety defined by F and dimV(F) denote the dimension of V(F).
Let dγ

x : C[x] → C[x] denote the differential functional defined by

dγ
x (f) =

1
γ1! · · · γn!

·
∂ |γ|f

∂xγ1
1 · · · ∂xγn

n
, ∀f ∈ C[x],

where γ = (γ1, . . . , γn) ∈ Nn with N = {0, 1, 2, . . .} and |γ| =

n∑
i=1

γi.

Denote rank(A) as the rank of a matrix A. Denote J(F) as the Jacobian matrix of F. That is,

J(F) =

⎛⎜⎜⎝
∂ f1
∂x1

. . .
∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . .
∂ fn
∂xn

⎞⎟⎟⎠ .

For a polynomial f ∈ C[x], let J(f) denote (∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

) and Ji(f) =
∂ f
∂xi

. Let J(F)(p) denote the value of a function
matrix J(F) at a point p, similarly for J(f)(p).

Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. We have two following definitions:

Definition 1. An isolated zero of F(x) = 0 is a point p ∈ Cn which satisfies:

∃ ε > 0 : {y ∈ Cn
: ∥y − p∥ < ε} ∩ F−1(0) = {p},

where F−1(0) ≜ {p ∈ Cn
: F(p) = 0}.

Definition 2. We call an isolated zero p ∈ Cn of F(x) = 0 an isolated singular zero if and only if

rank(J(F)(p)) < n.

Otherwise, p is an isolated regular (simple) zero of F(x) = 0.

The Taylor series expansion (Taylor expansion for short) of f ∈ C[x] at p = (p1, . . . , pn) ∈ Cn is

f (x) = f (p) +

n∑
j=1

∂ f (p)
∂xj

(xj − pj) +

∑
1≤i,j≤n

∂2f (p)
∂xi∂xj

(xi − pi)(xj − pj) + · · · . (1)

Definition 3. Let p ∈ Cn and f (p) = 0. We say f ∈ C[x] is singular at p if
∂ f (p)
∂xj

= 0, ∀1 ≤ j ≤ n.

Otherwise, we say f is regular at p.

4 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

Definition 4. Let f ∈ C[x], p̃ ∈ Cn and a tolerance θ > 0, s.t. |f (p̃)| < θ . We say f is θ-singular at p̃ if⏐⏐⏐⏐∂ f (p̃)∂xj

⏐⏐⏐⏐ < θ,∀1 ≤ j ≤ n.

Otherwise, we say f is θ-regular at p̃.

Lemma 1. Let f ∈ C[x] \ C, s.t. f (p) = 0. Then there exists at least a γ ∈ Nn, s.t. dγ
x (f) is regular at p.

Proof. Without loss of generality, we assume p = 0. Then f can be rewritten as a sum of homogeneous polynomials as

f =

deg(f)∑
d=1

fd.

Since f ̸≡ 0, there exists at least a γ ′
∈ Nn such that dγ ′

x (f)(p) ̸= 0. Thus there exists at least a γ ∈ Nn such that dγ
x (f) is

regular at p.

Now, we give an example to explain Definitions 3 and 4, and Lemma 1.

Example 1. Let f = x1 +3 x3 +4 x4 − x21 + x23 − x24 − x32. For the exact point p = (0, 0, 0, 0), we have the Taylor expansion
of f at p is:

f (x) = x1 + 3 x3 + 4 x4 − x21 + x23 − x24 − x32.

Since

|f (p)| = 0, |J2(f)(p)| = 0, |Ji(f)(p)| ̸= 0, i = 1, 3, 4,

we know that f is regular at p. So is d(0,2,0,0)
x (f) = −3 x2.

Similarly, for the approximate point p̃ = (0.001, −0.001, 0.002, −0.001) and a tolerance θ = 0.01, we have:

f (x) =0.003002001 + 0.998(x1 − 0.001) − 3 · 10−6(x2 + 0.001) + 3.004(x3 − 0.002)

+ 4.002(x4 + 0.001) − (x1 − 0.001)2 + 3 · 10−3(x2 + 0.001)2 + (x3 − 0.002)2

− (x4 + 0.001)2 − (x2 + 0.001)3.

Since |f (p̃)| = 0.003002001 < θ , |
∂ f
∂x2

(p̃)| = 3 · 10−6 < θ , |
∂ f
∂x1

(p̃)| = 0.998 > θ , |
∂ f
∂x3

(p̃)| = 3.004 > θ ,
|

∂ f
∂x4

(p̃)| = 4.002 > θ , thus f is θ-regular at p̃.

From this example, it is easy to see that when compared with the exact case, the approximate zero p̃ brings a small
perturbation in the coefficients of the Taylor expansion of f at p̃. However, once given a proper θ , we could acquire the
same judging result as the exact case. For the above example, f is regular at p and it is also θ-regular at p̃.

Definition 5. Denote the operation set ∆ ≜ {+, ·, ∂}, where ‘‘ + ’’ denotes the sum of two polynomials, ‘‘ · ’’ denotes
scalar multiplication and ‘‘ ∂ ’’ the differential of a polynomial. Given a polynomial system F = {f1, . . . , fn} ⊂ C[x] and
p ∈ Cn such that F(p) = 0, we define a polynomial set ∆p(F), which satisfies:

(1) F ⊂ ∆p(F);
(2) {a h|h ∈ ∆p(F), a ∈ C\{0}} ⊂ ∆p(F);
(3) {h1 + h2|h1(p) + h2(p) = 0, h1, h2 ∈ ∆p(F)} ⊂ ∆p(F);
(4) {

∂h
∂xi

|
∂h
∂xi

(p) = 0, i ∈ {1, . . . , n}, h ∈ ∆p(F)} ⊂ ∆p(F).

Especially, for one polynomial f ∈ C[x], we have the corresponding set ∆p(f).

The following lemma shows the relationship between the polynomials in ∆p(F) and the polynomials in F.

Lemma 2. Let F = {f1, . . . , fn} ⊂ C[x] and p ∈ Cn, s.t. F(p) = 0. ∀g ∈ ∆p(F), we have

g =

n∑
i=1

∑
j

ai,j
∂ |γ i,j|fi
∂xγ i,j

, (2)

where ai,j ∈ C and γ i,j ∈ Nn.

Proof. The proof is obvious.

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 5

We illustrate Definition 5 and Lemma 2 by the following example.

Example 2. Let F = {f1 = (x+y)2+x3, f2 = x+y+y3}. p = (0, 0) is an isolated zero of F = 0. Let h1 =
∂ f1
∂x = 2 (x+y)+3 x2,

h2 =
∂ f1
∂y = 2 (x+y), h3 = h1−2 f2 = 3 x2−2 y3, h4 =

∂h3
∂x = 6 x, h5 =

∂2h3
∂y2

= −12 y. It is clear that hi ∈ ∆p(F), i = 1, . . . , 5
and hi has the form as (2).

3. Deflation of polynomial systems

Given a polynomial system with a multiple zero, Newton-type method usually is not used directly on the input system
since it converges slowly or even does not converge. Thus, deflation techniques are developed to transform the input
system into another deflated system, which is regular at some zero whose certain projection is the given multiple zero.
In the following section, we consider the deflation problem of polynomial systems from a new perspective: the linear
combination.

3.1. Symbolic deflation system

In this section, given a polynomial system F ⊂ C[x] with an isolated singular zero p ∈ Cn, by employing some
differential operations on the input polynomials or on the linear combinations of the related polynomials, we propose a
new method to construct a new square system F′

⊂ C[x], which satisfies that p is a simple zero of F′
= 0. We also prove

the existence of F′ and show some properties of it.
First, let us see a simple example to explain our idea.

Example 3 (Toy Example). Let F = {f1 = x−y+x2, f2 = x−y+y2} with a 3-fold isolated zero p = (0, 0). Obviously, f1 and
f2 are already regular at p. However, it is easy to find that the terms with degree one of f1 and f2 are linearly dependent.
Using f2 − f1 to eliminate these terms of degree one, we get the polynomial h = y2 − x2 and two new polynomials
∂h
∂x = −2 x, ∂h

∂y = 2 y, which are both regular at p. Selecting the two polynomials f1 and ∂h
∂y , we get a new square system

F′
= {x − y + x2, 2 y}, which has a regular zero p = (0, 0). Moreover, it is a system without perturbation.

Based on the idea in the above simple example, now we show our technique to construct a deflated square system
below.

Assume that we have got the polynomials g1, . . . , gs, which are regular at p, from the input polynomials f1, . . . , fs such
that

rank(J(g1, . . . , gs)(p)) = s.

Given one more polynomial fs+1, we want to compute another polynomial gs+1, s.t.

rank(J(g1, . . . , gs, gs+1)(p)) = s + 1.

Using only g1, . . . , gs and fs+1, we may not get the suitable gs+1 if

dimV(g1, . . . , gs, fs+1) > dimV(f1, . . . , fs, fs+1).

The input polynomials are needed in this case. Thus, we use {g1, . . . , gs}∪{f1, . . . , fs+1} to compute gs+1. We will show
how to compute gs+1 in the following lemma.

Lemma 3. Let F = {f1, . . . , fs, fs+1, . . . , fs+k} ⊂ C[x1, . . . , xn](k ≥ 1) and p ∈ Cn, s.t. F(p) = 0 and rank(J(F)(p)) = s.
Assume dimV(F) ≤ n − s − 1 and deg(F) = m(m > 1). Then we can get a polynomial system F′

= {f ′

1, . . . , f
′
s , f

′

s+1}, which
satisfies:

1. rank(J(F′)(p)) = s + 1, and f ′

j ∈ ∆p(F)(1 ≤ j ≤ s + 1);
2. deg(F′) ≤ m.

Proof. Without loss of generality, we assume that p is the origin and

rank(J(f1, . . . , fs)(p)) = s. (3)

In the following, we consider the case of s > 0, since if s = 0, we can use the operator ∂ on fi(1 ≤ i ≤ s + k) to get some
polynomials, which are regular at p.

To construct a polynomial system F′, s.t. rank(J(F′)(p)) = s + 1, we consider the rest polynomials {fs+1, . . . , fs+k}. Our
proof is constructive.

First, fi(i = 1, . . . , s) has the form:

fi =

n∑
k=1

aikxk + Ti,

6 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

where Ti ∈ C[x] and deg(Ti) = 0 or deg(Ti) ≥ 2. It is easy to know that the row vector ai = (ai1, . . . , ain)(1 ≤ i ≤ s) of
the Jacobian matrix of (f1, . . . , fs) at p is linearly independent since (3) holds.

Therefore, we can consider the following linear coordinate transformation L:

L :

⎧⎪⎨⎪⎩yi =

n∑
k=1

aikxk, 1 ≤ i ≤ s

yi = xi, i = s + 1, . . . , n.

With a realignment of the sequence of the variables {x1, . . . , xn}, we can always have the first s columns of the coefficient
matrix of L being linearly independent. Then L is invertible. Denote the inverse of L as L−1. Let p′

= L(p) and Fi = L−1(fi) ∈

C[y1, . . . , yn]. We have:⎧⎪⎨⎪⎩
Fi = yi + L−1(Ti), i = 1, . . . , s,

Fs+i =

s∑
j=1

bi,jyj + L−1(Ts+i), i = 1, . . . , k.
(4)

Since dimV(F) ≤ n − s − 1 and L−1 is invertible, it is obvious that

dimV(F1, . . . , Fs+k) ≤ n − s − 1.

Therefore, noticing that the terms with degree one of all Fi(i = 1, . . . , s+ k) in (4) contain only s variables, there must be
at least one of {L−1(Ti), i = 1, . . . , s + k} containing at least one term, which has the form of yds+1

s+1 yds+2
s+2 · · · ydnn , such that

n∑
j=s+1

dj > 1.

It is easy to prove the claim. Suppose all L−1(Ti)(1 ≤ i ≤ s+ k) contain no terms of the form of yds+1
s+1 yds+2

s+2 · · · ydnn . Then,

all the terms of Fi(1 ≤ i ≤ s + k) have the form of yd11 · · · ydss yds+1
s+1 · · · ydnn ,

s∑
j=1

dj > 0. In this case, the system {F1, . . . , Fs+k}

vanishes on {y1 = 0, . . . , ys = 0}. Thus, we can verify easily that dimV(F1, . . . , Fs+k) = n − s, which contradicts with
dimV(F1, . . . , Fs+k) ≤ n − s − 1. Thus, the claim is true.

Without loss of generality, we suppose that L−1(Tl)(l ∈ {1, . . . , s + k}) has the term with the form of yds+1
s+1 yds+2

s+2 · · · ydnn
and take the variable ys+1 for example, i.e. ds+1 ̸= 0. Further, we ask for the term with a lowest degree among all this
kind of terms and denote the lowest degree as d. Then, we have:

F ′

s+1 =
∂d−1Fl

∂yds+1−1
s+1 yds+2

s+2 · · · ydnn
=

n∑
i=1

γiyi + T′

l, d =

n∑
j=s+1

dj. (5)

It is easy to see that γs+1 ̸= 0, deg(F ′

s+1) < deg(Fl).
Thus, we have a new system {F1, . . . , Fs, F ′

s+1}. It is easy to check that

rank(J(F1, . . . , Fs, F ′

s+1)(p
′)) = s + 1.

Finally, after doing the transformation L on Fi(1 ≤ i ≤ s) and F ′

s+1, we have the new system F′
= {f ′

1, . . . , f
′

s+1}, where

f ′

i = L(Fi) = fi(i = 1, . . . , s), f ′

s+1 = L(F ′

s+1) with rank(J(F′)(p)) = s + 1.

By the definition of ∆p(F) (see Definition 5), we can find that f ′

i ∈ ∆p(F)(1 ≤ i ≤ s+ 1). Therefore, we finish the first part
of the proof.

From Lemma 2 and (5), it is easy to know that the maximal degree of f ′

i (i = 1, . . . , s + 1) is no larger than m. That is,
deg(F′) ≤ m. Thus, we complete the proof.

Now, we consider constructing a square system, which is regular at an isolated singular zero of the input system.

Theorem 1. Let F = {f1, . . . , fN} ⊂ C[x](N ≥ n) be a polynomial system. p ∈ Cn an isolated singular zero of F = 0 and
deg(F) = m. Then there exists a square polynomial system F′

= {f ′

1, . . . , f
′
n} ⊂ ∆p(F), s.t.

1. p is an isolated regular zero of F′
= 0;

2. deg(F′) ≤ m.

Proof. Without loss of generality, assume that p is the origin. In the following, we will construct a square system by the
polynomials in ∆p(F).

First, we can choose a system F0 from F, denoted as F0 = {f1, . . . , fr}, whose Jacobian matrix at p has a maximal rank,
s.t.

rank(J(f1, . . . , fr)(p)) = rank(J(F)(p)) = r, 0 ≤ r ≤ n.

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 7

If r = n, we finish the proof. Noticing that when r = 0, we need only considering at least one of the polynomials in
f1, . . . , fN and can always get at least one polynomial, which is regular at p by Lemma 1. Thus, in the following, we
consider the case of 1 ≤ r < n.

First, considering the system {f1, . . . , fr , fr+1, . . . , fN}, by Lemma 3, we can get a system

F1 = {f (1)1 , . . . , f (1)r , f (1)r+1},

s.t.

F1(p) = 0 and rank(J(f (1)1 , . . . , f (1)r , f (1)r+1)(p)) = r + 1.

Using the technique in Lemma 3, by considering the system F ∪ {f (1)1 , . . . , f (1)r , f (1)r+1}, we can get a system

F2 = {f (2)1 , . . . , f (2)r+1, f
(2)
r+2},

s.t.

F2(p) = 0 and rank(J(f (2)1 , . . . , f (2)r+1, f
(2)
r+2)(p)) = r + 2.

Repeat this process n − r times and finally, we get a square system

Fn−r = {f (n−r)
1 , f (n−r)

2 , . . . , f (n−r)
n },

s.t.

Fn−r (p) = 0 and rank(J(f (n−r)
1 , f (n−r)

2 , . . . , f (n−r)
n)(p)) = n.

Thus, our final square system

F′
= {f ′

1 = f (n−r)
1 , f ′

2 = f (n−r)
2 , . . . , f ′

n = f (n−r)
n }.

By Lemma 3, it is obvious that the maximal degree of f ′

i (1 ≤ i ≤ n) is no larger than m. That is, deg(F′) ≤ m.

Remark 1. 1. In the above construction process, we repeat n − r times to get the deflated system F′. If considering all
the variables simultaneously, we get more than one eligible polynomial each time in (5). Thus, the number of times in
actual computation is less than n − r .

2. In the beginning of our construction, we also can compute all the related polynomials of all the input polynomials,
which are regular at p. Then, we choose a system from these polynomials, whose Jacobian matrix at p has a maximal
rank. That is to say that we make r as big as possible to reduce our repeating steps.

Theorem 1 tells us that given a polynomial system F with an isolated singular zero p, we can construct a new square
system F′, which is regular at p and moreover, the degree of the polynomials in F′ does not increase. We give an example
to illustrate our method in the following example.

Example 4 (DZ2 [18]). Let F = {f1 = x41, f2 = x21x2 + x42, f3 = x3 + x23 −7 x31 −8 x21}, which has a 16-fold zero p = (0, 0, −1).
The maximal degree of f1, f2, f3 is 4. First, by the Taylor expansions of f1, f2, f3 at p, we have:

f1 = x41,
f2 = x21x2 + x42,
f3 = −(x3 + 1) − 8 x21 + (x3 + 1)2 − 7 x31.

It is easy to find that only f3 is regular at p. Since s = rank(J(F)(p)) = 1 and dimV(f3, f2) = 1, we consider the system
{f3, f2} directly. By Lemma 3, we have a system

{f (1)1 = f3, f
(1)
2 = d(2,0,0)

x (f2) = x2},

which satisfies rank(J(f (1)1 , f (1)2)(p)) = 2.
Next, we consider the system {f (1)1 , f (1)2 } ∪ F. Since dimV(f (1)1 , f (1)2 , F) = 0, by Lemma 3, we have a system

{f (2)1 = f3, f
(2)
2 = x2, f

(2)
3 = d(3,0,0)

x (f1) = 4 x1},

which satisfies rank(J(f (2)1 , f (2)2 , f (2)3)(p)) = 3.
Thus, we acquire the final square system F′

= {f3, x2, 4 x1}. It is easy to check that p is a simple zero of F′
= 0 and the

degree of every polynomial in F′ is no more than 4.

In this example, we repeat n − s = 2 times to acquire the final square system F′. In fact, as what we say in Remark 1
of Theorem 1, computing twice is not necessary. Noticing that when computing f (1)2 = d(2,0,0)

x (f2) = x2, we also can get
d(1,1,0)
x (f2) = 2 x1. They are both regular at p. It is easy to check that

rank(J(f (1)1 , f (1)2 , d(1,1,0)
x (f2) = 2 x1)(p)) = 3.

Thus, we obtain another square system F′
= {f3, x2, 2 x1}.

8 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

3.2. Parametric deflation system

Given a polynomial system F with an isolated singular zero p, by employing some differential operations on the input
polynomials directly or on the linear combinations of the related polynomials, we give a method to construct a new
polynomial system F′ in Section 3.1, which satisfies that p is a simple zero of F′

= 0.
However, in practice, once given a polynomial system Fwith an isolated singular zero p, we can just get an approximate

zero p̃ by some numerical methods [23]. As what we say in Example 1, the inexact value of p̃ usually brings perturbations
in the coefficients when doing the Taylor series expansions of the input polynomials at p̃. Therefore, we cannot do exact
computations when adding two or more polynomials together. The inexact computations would produce a perturbed
system of F′, which will lead to a bad final deflation result. We show an example to illustrate this case.

Example 5 (Toy Example). Continue with Example 3. Given an approximate zero p̃ = (0.0006721, 0.0008381). Using the
method in Theorem 1, we have h̃ = f2 + α̃f1. By solving a Least Square problem, we can get α̃ = −0.9984909264232.
Finally, we get an inexact system

F̃′
= {x − y + x2, 2 y − 0.0015090735767}.

Obviously, we cannot get a good result by the system F̃′.

With a simple analysis, we can find that we could not get an exact coefficient α of the linear combination of the
polynomials with an approximate zero.

In the following, by introducing some new variables to represent the coefficients of the linear combinations, we give
an effective version of our deflation method. Finally, the effective version of our deflation method will usually produce
an exact deflated system, which has a simple zero, whose partial projection corresponds to the isolated singular zero of
the input system. Furthermore, we also provide the size bound of our method. To our knowledge, it is the first time that
considering the deflation of the polynomial system from the perspective of linear combinations.

Similarly, before giving our theoretical results, we also show our main idea with a simple example first.

Example 6 (Toy Example). Still consider Example 3. Once given an approximate zero of the input system: p̃ =

(0.0006721, 0.0008381), by Example 5, we know the coefficient α̃ is inexact. Now we introduce a new variable α1. Let
h = f2 + α1f1 and compute

∂h
∂x

= 1 + α1(2 x + 1),
∂h
∂y

= 2 y − 1 − α1.

Similar as in Example 5, we have α̃1 = −0.9984909264232. Given a tolerance ε = 0.05, we have

rank(J(f1,
∂h
∂x

,
∂h
∂y

)(p̃, α̃1), ε) = 2 < 3.

Do once again this process and introduce two new variables α2, α3. Let

g =
∂h
∂y

+ α2f1 + α3
∂h
∂x

and compute

∂g
∂x

= 2α1α3 + α2(2 x + 1),
∂g
∂y

= 2 − α2,
∂g
∂α1

= α3(2 x + 1) − 1.

By solving another Least Square problem, we get the approximate values:

α̃2 = 1.9985955412653, α̃3 = 1.0014510032456.

Then, we have

rank(J(f1,
∂ f
∂x

,
∂g
∂x

,
∂g
∂y

,
∂g
∂α1

)(p̃, α̃1, α̃2, α̃3), ε) = 5.

Thus, we get a polynomial system

F̃′(x, α) = {f1,
∂h
∂x

,
∂g
∂x

,
∂g
∂y

,
∂g
∂α1

},

whose Jacobian matrix at (p̃, α̃1, α̃2, α̃3) has a full rank under the tolerance ε.
In fact, we can find that (0, 0, −1, 2, 1) is a simple zero of F̃′(x, α) = 0 and the partial projection (0, 0) of (0, 0, −1, 2, 1)

corresponds to the isolated singular zero p of the input system F.

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 9

Given a polynomial system with an isolated zero, we have the following lemma.

Lemma 4 ([15]). Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. p ∈ Cn is an isolated singular zero of F = 0.
λ = (λ1, . . . , λn) ∈ Cn is a nonzero row vector, which satisfies J(F)(p)λT

= 0. For the new system

G = {λ1
∂ f1
∂x1

+ · · · + λn
∂ f1
∂xn

, . . . , λ1
∂ fn
∂x1

+ · · · + λn
∂ fn
∂xn

},

we have the multiplicity of p in {F,G} = 0 is lower than the multiplicity of p in F = 0.

Remark 2. In Remark 2.1 of [6], the authors mentioned that deflation could also be constructed using the left null space.
That is, we can replace G by the following system

G′
= {λ1

∂ f1
∂x1

+ · · · + λn
∂ fn
∂x1

, . . . , λ1
∂ f1
∂xn

+ · · · + λn
∂ fn
∂xn

}, (6)

where λ J(F)(p) = 0. Furthermore, we have the following lemma.

Lemma 5. Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. p ∈ Cn be an isolated singular zero of F = 0. Assume
rank(J(f1, . . . , fs)(p)) = rank(J(F)(p)) = s. Consider the augmented system

G = {f1, . . . , fn, h1, . . . , hn} ⊂ C[x, α],

where

hj = α1
∂ f1
∂xj

+ · · · + αs
∂ fs
∂xj

+
∂ fs+1

∂xj
, j = 1, . . . , n.

Then, we have:

1. there exists a unique α̂ ∈ Cs such that the system G has an isolated zero at (p, α̂).
2. the multiplicity of G at (p, α̂) is lower than that of F at p.

Proof. Let

Aij(x) =
∂ fi
∂xj

∈ C[x], aij =
∂ fi(p)
∂xj

∈ C, i = 1, . . . , s + 1, j = 1, . . . , n.

Denote the matrix A = (aij), i = 1, . . . , s, j = 1, . . . , n and the row vector b = (as+1,1, . . . , as+1,n).
On one hand, when we fix x = p, the system

H(p, α) = {hj(p, α) = a1jα1 + · · · + asjαs + as+1,j, j = 1, . . . , n}

is a linear system with respect to the variables α1, . . . , αs. Furthermore, it is easy to check that α̂, which is determined by
AATα̂ = −AbT, is the unique zero of H(p, α) = 0. That is, there exists a unique α̂ such that the system G has an isolated
zero at (p, α̂).

On the other hand, with the row operations, we could reduce the system G to the system

{α1 = l1(x), . . . , αs = ls(x)},

where li(x) are rational expressions and α̂i = li(p). Thus, considering the multiplicity of G at (p, α̂) is equivalent to
considering the multiplicity of G(x, α̂) at p. Note that (α̂1, . . . , α̂s, 1, 0, . . . , 0) J(F)(p) = 0. By Lemma 4 and (6), we know
the second part holds. Thus, we finished the proof.

In the above lemma, we construct n new polynomials h1, . . . , hn. In fact, we can get them from the following way.
Note that

rank(J(f1, . . . , fs)(p)) = rank(J(F)(p)) = s.

We know easily that J(fs+1)(p) and J(f1)(p), . . . , J(fs)(p) are linearly dependent. Thus, we can do the linear combination
between fs+1 and f1, . . . , fs to eliminate this linear relationship. Let

g = fs+1 +

s∑
i=1

αifi,

where new variables αi are used to represent the coefficients of the linear combination. Compute all the derivatives of g
with respect to the variables x1, . . . , xn and we get

hj =
∂g
∂xj

= α1
∂ f1
∂xj

+ · · · + αs
∂ fs
∂xj

+
∂ fs+1

∂xj
, j = 1, . . . , n.

10 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

Thus, the above lemma tells us that after doing the linear combination of polynomials between fs+1 and f1, . . . , fs, we
get an augmented system G, which satisfies that the multiplicity of G at (p, α̂) is lower than that of F at p. By repeating
using the linear combination between polynomials in the original system and its related derivatives, we can construct a
final deflated system, which processes an isolated simple zero. Denote µ be the multiplicity of F at p. We do this repetitive
process at most µ times.

Further, based on Lemma 5, we have the following theorem.

Theorem 2. Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. p ∈ Cn be an isolated singular zero of F = 0. Denote
m = deg(F). Then there exists a square polynomial system F̃′(x, α) = {g1, . . . , gt} ⊂ C[x, α], s.t.

1. (p, α̂) ∈ Ct is an isolated simple zero of F̃′(x, α) = 0;
2. t is bounded by 2µ n, where µ is the multiplicity of p in F;
3. deg(̃F′(x, α)) ≤ m.

Next, based on Lemma 5 and Theorem 2, we give an effective Algorithm 1 to compute a deflated square system from
the input system with an approximate isolated singular zero below. It is an effective version of Lemma 3. θ is a tolerance
to detect the regularity of the polynomials and we will talk about it in next subsection. ε is another tolerance to judge
the numerical rank of the Jacobian matrix at an approximate zero and we also talk about it in next section.

Algorithm 1 CDSS : Compute a deflated square system.

Input:
a polynomial system F := {f1, . . . , fn} ⊂ C[x], an approximate isolated singular solution p̃ ∈ Cn, two tolerances θ and
ε.

Output:
a square polynomial system F̃′(x, α) := {f̃1, . . . , f̃t} ⊂ C[x, α] and a point α̃, s.t. (p̃, α̃) is an approximate regular zero
of F̃′(x, α) = 0.

1: Compute G = {dγ
x (f)|d

γ
x (f) is θ-regular at p̃, f ∈ F};

2: Let H := F ∪ G, X := x;
3: while rank(J(H)(p̃), ε) ̸= |X| do
4: Compute r := rank(J(H)(p̃), ε);
5: Choose any H1 := {h1, . . . , hr} ⊂ H, s.t. rank(J(H1)(p̃), ε) = r;
6: Choose hr+1 := H \ H1, s.t. dimV(H1, hr+1) = n − r − 1;

7: Let g := hr+1 +

r∑
j=1

αjhj;

8: Compute α̃ := LeastSquares((J(H1, hr+1)(p̃))T(α, 1)T = 0);
9: Compute g1 := J1(g), . . . , gn := Jn(g);

10: Set H := {H, g1, . . . , gn}, X := x ∪ α and p̃ := (p̃, α̃);
11: end while
12: Return: a square system F̃′(x, α) = {H1, g1, . . . , gn} and a point α̃.

Remark 3. 1. The termination and correctness of the algorithm is guaranteed by Lemma 5 and Theorem 2.
2. In the above algorithm, we compute polynomials of every fi, which are regular at p at the beginning. Then, we put

all these polynomials together to compute a system F0, such that the rank of its Jacobian matrix at p is maximal. This
operation can make r as big as possible. In some cases, we have r = n, which means we need not introduce new variables,
such as Example 8. The aim of this preprocessing operation can speed up our algorithm.

Now, we give two examples to illustrate Algorithm 1.

Example 7 (General Case). Consider a polynomial system F = {f1 = −
9
4 +

3
2 x1 + 2 x2 + 3 x3 + 4 x4 −

1
4 x21, f2 =

x1 −2 x2 −2 x3 −4 x4 +2 x1x2 +3 x1x3 +4 x1x4, f3 = 8−4 x1 −8 x4 +2 x24 +4 x1x4 −x1x24, f4 = −3+3 x1 +2 x2 +4 x3 +4 x4}.
Given an approximate singular zero

p̃ = (p̃1, p̃2, p̃3, p̃4) = (1.00004659, −1.99995813, −0.99991547, 2.00005261)

of F = 0 and the tolerance ε = 0.005.
First, we have the Taylor expansion of f3 at p̃:

f3 = 3 · 10−9
− 3 · 10−9(x1 − p̃1) + 0.00010522(x4 − p̃4) + 0.99995341(x4 − p̃4)2

− 0.00010522(x1 − p̃1)(x4 − p̃4) − (x1 − p̃1)(x4 − p̃4)2.

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 11

Consider the tolerance θ = 0.05. Since

|f3(p̃)| < θ,

⏐⏐⏐⏐∂ f3∂xi
(p̃)

⏐⏐⏐⏐ < θ (i = 1, 2, 3, 4),
⏐⏐⏐⏐∂2f3
∂x24

(p̃)
⏐⏐⏐⏐ > θ,

we get a polynomial
∂ f3
∂x4

= −8 + 4 x1 + 4 x4 − 2 x1x4,

which is θ-regular at p̃. Similarly, by the Taylor expansion of f1, f2, f4 at p̃, we have that f1, f2, f4 are all θ-regular at p̃.
Thus, by Algorithm 1, we have G = {f1, f2, −8 + 4 x1 + 4 x4 − 2 x1x4, f4}. Compute

r = rank(J(G)(p̃), ε) = 3.

We can choose H1 = {h1 = f1, h2 = f2, h3 = −8 + 4 x1 + 4 x4 − 2 x1x4} from H = G ∪ F. To h4 = f4 ∈ H \ H1, let

g = h4 + α1h1 + α2h2 + α3h3.

First, by solving a Least Square problem:

LeastSquares((J(H1, h4)(p̃))T [α1, α2, α3, 1]T = 0),

we get an approximate value:

(α̃1, α̃2, α̃3) = (−1.000006509, −0.9997557989, 0.000106178711).

Then, compute⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 =
∂g
∂x1

= 3 +
3
2
α1 + α2 + 4α3 −

1
2
α1x1 + 2α2x2 + 3α2x3 + 4α2x4 − 2α3x4,

g2 =
∂g
∂x2

= 2 + 2α1 − 2α2 + 2α2x1,

g3 =
∂g
∂x3

= 4 + 3α1 − 2α2 + 3α2x1,

g4 =
∂g
∂x4

= 4 + 4α1 − 4α2 + 4α3 + 4α2x1 − 2α3x1,

and we get the polynomial set

H′
= {h1, h2, h3, g1, g2, g3, g4},

which satisfies

rank(J(H′)(p̃, α̃1, α̃2, α̃3), ε) = 7.

Thus, we get the final square system F̃′(x, α) = H1 and the point α̃ = (α̃1, α̃2, α̃3) = (−1.000006509, −0.9997557989,
0.000106178711).

In this example, given the input polynomial system F with an approximate singular zero p̃, we can get a final square
system by Algorithm 1 with only one step. In fact, α3 is not necessary to be introduced in this example by noticing that
we can acquire a needed square system F̃′(x, α) by using F = f4 + α1f1 + α2f2. We give another example to illustrate the
case that we do not introduce new variables.

Example 8 (Special Case). (DZ2) Continue with Example 4. Given an approximate isolated singular zero

p̃ = (p̃1, p̃2, p̃3) = (0.00006787, 0.00007577, −0.9999)

and a tolerance ε = 0.005, we use the Taylor series to expand fi(i = 1, 2, 3) at p̃ and compare all the coefficients with a
tolerance θ = ε. For f1, we have

f1 = 2.121833963630161 · 10−17
+ 1.250528341612 · 10−12(x1 − p̃1) + 2.76380214 · 10−8

(x1 − p̃1)2 + 0.27148 · 10−3(x1 − p̃1)3 + (x1 − p̃1)4.

It is obvious that only the absolute value of the coefficient of (x1− p̃1)4 is bigger than θ . Therefore, compute d(3,0,0)
(x1,x2,x3)

(f1) =

4x, which is θ-regular at p̃. Similarly, for f2, f3, we have the corresponding polynomial(s): {2x1, x2} and f3. Thus, we have
G = {4 x1, 2 x1, x2, f3}. It is easy to check that

r = rank(J(G)(p̃), ε) = rank(J(4x1, x2, f3)(p̃), ε) = 3.

Thus, we get the needed square system F̃′(x) = G = {4x1, x2, f3}.

In the above two examples, we assume that we have a right judgement on the tolerances θ and ε. In fact, the choice
of the tolerances θ and ε is important to our algorithm. Next section, we give some analysis of them.

12 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

4. The analysis of θ and ε

As what we say in Example 1, θ is an important parameter in deciding if a polynomial is θ-regular at p̃. The other
important parameter involved in our actual computation is ε, which is used to judge the numerical rank of the Jacobian
matrix. Therefore, in this section, we will give some analysis about the parameters θ and ε.

4.1. The analysis of θ

First, we point out that θ is related to the absolute values of the coefficients of the Taylor expansion of the polynomial
at its approximate zero.

For example, given a polynomial f = x2 + 10000 y2 with an approximate zero

p̃ = (p̃1, p̃2) = (0.0006851, −0.0004368),

we have the Taylor expansion of f at p̃:

f = 0.001908411762 + 0.0013702(x − p̃1) − 8.7360(y − p̃2) + (x − p̃1)2 + 10000(y − p̃2)2.

Given θ = 0.5, we have

|f (p̃)| < θ, |
∂ f
∂x

(p̃)| < θ, |
∂ f
∂y

(p̃)| > θ.

Thus, we draw the conclusion that f is θ-regular at p̃. However, considering that the lowest degree of f is 2, we know
that f is singular at the exact zero p = (0, 0) actually, which is a different result from the case of p̃. That means θ is
not chosen properly. The main reason is that the coefficient of f has a great fluctuation or the accuracy of p̃ is not high
enough. If given another approximate zero q̃ = (q̃1, q̃2) = (0.000006851, −0.000004368) with higher precision, we have:

f = 1.908411762 · 10−7
+ 0.000013702(x − q̃1) − 0.087360(y − q̃2)

+ (x − q̃1)2 + 10000(y − q̃2)2.

By this time, using the same θ = 0.5, we have f is θ-singular at q̃, which is the same judgement as the exact case of p.
In actual computation, to deal with this case, we give one solution: For a nonzero polynomial f ∈ C[x], let Γf be a set

of the absolute values of all the coefficients of f . We denote the maximal and minimal ones inside Γf as M = max(Γf) and
m = min(Γf) respectively. If m/M ≤ 10−a, we regard that the coefficients of f fluctuate a lot and take ϵ = (m + M)/2M;
Else, we take θ = (m + M)/(2M × 10a), where a ∈ N is related to the precision of the given approximate zero p̃. For
example, if the accuracy of the given approximate zero p̃ has three significant digits, we can take a = 3. Of course, we
can overcome this problem thoroughly by refining the approximate zero to a higher precision with the input system if
the Jacobian matrix of the system at p̃ is numerically nonsingular.

In summary, the reason for the above situation is that we judge a polynomial, which is singular at the exact zero p, as
a polynomial being θ-regular at the approximate zero p̃.

The other situation is that a polynomial, which is regular at the exact zero p, may be judged as a polynomial being
θ-singular at the approximate zero p̃.

For example, consider the polynomial f =
1
20x + x2 + 10000y2 with the approximate zero q̃ = (q̃1, q̃2) =

(0.000006851, −0.000004368). We have:

f = 5.333911762 · 10−7
+ 0.05001370(x − q̃1) − 0.087360(y − q̃2) + (x − q̃1)2 + 10000(y − q̃2)2.

Still use θ = 0.5 and we get the judgement that f is θ-singular at q̃. In fact, f is regular at p = (0, 0). One way to deal
with this case is that we can take a smaller θ . When we take θ = 0.05, we will acquire the appropriate result.

From the above analysis about the tolerance θ , we know that the choice of θ is crucial to our method. We give a further
theoretical analysis about the tolerance θ below. Here, we assume that the judgement of the other tolerance ε, which is
used to decide the numerical rank of the Jacobian matrix at the approximate zero, is correct.

Let θ be a tolerance. Assume that we have computed an intermediate system H = {h1, . . . , hs} ⊂ C[x′
]. Denote

x′
= (x, α). Assume that p is an isolated singular zero of the original system. The exact value of α related to the coefficients

of linear combinations is α̂. Denote p′
= (p, α̂). Let p̃′ be an approximate zero of H related to p′ such that

rank(J(H)(p̃′)) = s.

Next, we consider one more polynomial h ∈ C[x′
]. If h, which is regular at p′, is judged as being θ-singular at p̃′, we

may get a perturbed system finally. Specifically, compute the Taylor expansion of h at p̃′:

h = h(p̃′) +

∑
j

∂h(p̃′)
∂xj

(xj − p̃′

j) +

∑
i,j

∂h2(p̃′)
∂xi∂xj

(xi − p̃′

i)(xj − p̃′

j) + · · · .

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 13

Since h is θ-singular at p̃′, we know that |h(p̃′)| < θ and all |
∂h(p̃′)
∂xj

| < θ . Thus, we compute

∂h
∂xj

=
∂h(p̃′)
∂xj

+ 2
∑

i

∂2h(p̃′)
∂xi∂xj

(xi − p̃′

i) + · · · . (7)

If there exists some j such that

rank(J(H,
∂h
∂xj

)(p̃′)) = s + 1 and
∂h(p′)
∂xj

̸= 0,

we may derive a perturbed system in the end, where ∂h
∂xj

has and only has one perturbed term ∂h(p′)
∂xj

compared to the

polynomial ∂h
∂xj

−
∂h(p′)
∂xj

which vanishes at p′.

For other cases, if

rank(J(H,
∂h
∂xj

)(p̃′)) = s + 1 and
∂h(p′)
∂xj

= 0,

it is clear that ∂h
∂xj

vanishes at p′. Thus it is exact. If

rank(J(H,
∂h
∂xj

)(p̃′)) = s(∀j),

according to our constructive method, we should do the linear combination

f =
∂h
∂xj

+

s∑
i=1

αihi (for some j)

and compute its derivatives. Thus the perturbed term ∂h(p′)
∂xj

disappears. We will get an exact polynomial which vanishes
at p′ in the end. Notice that if hi’s have perturbed terms, which are constants hi(p′). We know that if we compute the
derivatives of f , these terms will disappear. Thus whether hi’s have perturbed terms or not, the polynomials in the final
deflated system derived by the linear combinations vanish at the exact zero p′.

Now we consider the case that h is regarded as θ-regular at p̃′ while it is singular at p′. If

rank(J(H, h)(p̃′)) = s,

we will do the linear combination of h and h1, . . . , hs and compute its derivatives. It is obvious that this operation has no
influence on our result. Usually the case

rank(J(H, h)(p̃′)) = s + 1

will not happen. It is related to the numerical computation of the rank of the Jacobian matrix of (H, h) at p̃′.
As a summary of the foregoing analysis, we have:
Let F = {f1, . . . , fn} ⊂ C[x] be a polynomial system. p̃ ∈ Cn is an approximate zero of F = 0 and θ is a tolerance.

According to our method, we acquire a final system F̃′
⊂ C[x, α]. During we compute the final system F̃′,

1. if we judge a polynomial, which is singular at the exact zero p, as being θ-regular at p̃, the final system F̃′ is accurate.
2. if we judge a polynomial, which is regular at the exact zero p, as being θ-singular at p̃, the final system F̃′

= F̃+ϑ,
is a perturbed system, where F̃ is an accurate system and ϑ is the perturbed term, which satisfies maxi |ϑi| < θ .

In actual computation, to make our method as accurate as possible, we give an adaptive adjustment step at the end
of our algorithm. To be specific, assume that the initial tolerance θ = θ1. We use Newton-type methods [24–26] on the
final system F̃′ to refine p̃ to a higher accuracy. After the refining steps, denote the refined zero as p̄. We compute the
Taylor expansions of all the related polynomials in computing the system F̃′ at p̄, including all the input polynomials. We
denote the maximal absolute value of both the coefficients of the polynomials, which are judged as θ1-singular at p̃ and
the polynomials, which are judged as θ1-regular at p̃, as θ2. It is also the term named ‘‘Max err’’ in Tables 1 and 2 in the
next section.

It is easy to imagine that θ2 ≤ θ1 usually. If θ2 has a very higher precision than θ1, such as θ1 = 10−2 and θ2 = 10−13,
we are sure that our conclusion is exact. If θ2 > θ1 or θ2 still has a bad accuracy, such as θ1 = 10−2 and θ2 = 10−1 or
θ2 = 10−4, we will take a smaller θ < min{θ1, θ2} and repeat our method again.

After repeating our method several times, if θ2 is still bad, we will merely get a perturbed system.
Now, we give two examples to explain the above analysis of θ .

Example 9. Given a polynomial system F = {f1 = x + x2 + 10000y2, f2 = x2 + 10000y2} with an approximate zero

p̃ = (p̃1, p̃2) = (0.0006851, −0.0004368).

14 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

Consider the tolerances ε = 0.05 and θ = 0.5. By the Taylor expansions of fi at p̃, we know that f1, f2 are both θ-regular
at p̃.

Next, according to Algorithm 1, we compute

rank(J(F)(p̃), ε) = 2.

Thus, we can use Newton’s method to refine p̃ to a higher accuracy and get

p̃′
= (0.0000000001, −0.0000008533).

At this time, it is easy to check that f1 is θ-regular at p̃′ and f2 is θ-singular at p̃′. Therefore, for f2, we have
∂ f2
∂x

= 2x,
∂ f2
∂y

= 20000y,

which are both θ-regular at p̃′. Furthermore,

rank(J(f1,
∂ f2
∂y

), ε) = 2.

Thus, we get the final system F̃′
= {f1, 20000y}. After applying Newton’s method, we get the refined zero p̄ = (p̄1, p̄2) =

10−16
· (0.53016, 0).

At last, we check if our chosen θ is proper. We compute the Taylor expansion of all the polynomials, which is judged
as θ-singular at p̃, at the refined zero p̄ and get:

f2 = 2.810696256 · 10−33
+ 1.060320 · 10−16

· (x − p̄1) + (x − p̄1)2 + 20000 · (y − p̄1)2.

Thus, we have

Max err := max{2.810696256 · 10−33, 1.060320 · 10−16
} = 1.060320 · 10−16

≪ θ,

which means that our final system F̃′ is more accurate than before.

Example 10. Consider the system F = {f1 = x+x2 +2xy+10000y2, f2 =
1
20x+x2 +2xy+10000y2} with an approximate

zero

p̃ = (p̃1, p̃2) = (0.000006851, −0.000004368).

Let the tolerances ε = 0.05 and θ = 0.5. Similarly, by the Taylor expansions of fi at p̃, we know that f1 is θ-regular at p̃
and f2 is θ-singular at p̃. Therefore, we have

∂ f2
∂x

=
1
20

+ 2x + 2y,
∂ f2
∂y

= 2x + 20000y.

Compute

rank(J(f1,
∂ f2
∂x

), ε) = 2.

Thus, we get the final system

F̃′

1 = {f1,
1
20

+ 2x + 2y}.

Obviously, F̃′

1 is a perturbed system and ϑ2 =
1
20 is the perturbed term, which satisfies |ϑ2| < θ . It is easy to imagine that

with F̃′

1, we could not get a good result. The main reason is that θ = 0.5 is too big, which leads to a wrong judgement
on whether f2 is θ-regular at p̃.

If given another smaller tolerance θ ′
= 0.05, we will get a right judgement that f2 is θ ′-regular at p̃. Thus, we consider

the linear combination of f1 and f2. Let f = f2 + αf1 and compute

g1 =
∂ f
∂x

=
1
20

+ 2x + 2y + α(2x + 2y + 1),

g2 =
∂ f
∂y

= 2x + 20000y + α(2x + 20000y),

where α is a new variable and its initial value α̃ = −0.050076986. Compute

rank(J(f1, g1, g2), ε) = 3.

Thus, we get the final system F̃′
= {f1, g1, g2}. Similarly, we consider applying Newton’s method on the final system F̃′

and get the refined zero:

p̄ = (0.000000000000000, 0.000000000000000, −0.050000000000000).

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 15

Then, we check the coefficients of the terms with degree one of the Taylor expansion of f at p̄ and get

Max err := {0, 0, 0} = 0 ≪ θ ′
= 0.05.

Thus, we are sure that our final system F̃′ is accurate. Here, ‘‘0’’ is not exact zero but means in Matlab machine accuracy.

From the above two examples, we can see that once given an appropriate tolerance θ , we can make sure that our final
system is accurate. Otherwise, what we acquired is just a perturbed system, such as the system F̃′

1 in Example 10.

4.2. The analysis of ε

We continue analysing the other tolerance ε, which is used to judge the numerical rank of a matrix. That is,
we determine the numerical rank by comparing the absolute values of the singular values of the Jacobian matrix at
approximate zero with the tolerance ε. Specifically, assume that we have computed an intermediate system H =

{h1, . . . , hs} ⊂ C[x′
]. Denote x′

= (x, α). Assume that p is an isolated singular zero of the original system. The exact
value of α related to the coefficients of linear combinations is α̂. Denote p′

= (p, α̂) ∈ Ct . Let p̃′
∈ Ct be an approximate

zero of H related to p′ such that

rank(J(H)(p̃′), ε) = s.

Next, we consider one more polynomial hs+1 ∈ C[x′
]. Given the tolerance θ , we can compute a polynomial h from

hs+1, which is θ-regular at p̃′. Denote

rank(J(h1, . . . , hs, h)(p′)) = r1, rank(J(h1, . . . , hs, h)(p̃′), ε) = r2.

For simplicity, we denote the deflated system as H′, which comes from {H, hs+1} after one step deflation, and its
corresponding exact zero as q, whose partial projection is p′.

According to the above analysis of θ , for hs+1, we have the following cases:

1. if θ is chosen properly, that is, we judge hs+1, which is regular or singular at p′, as being θ-regular or θ-singular at
p̃′ respectively, we know that h is regular at p′. Thus, we have:

(a) if r2 = r1, we, of course, get an exact system H′. That is, H′(q) = 0.
(b) if r2 < r1, according to our algorithm, we consider doing the linear combination:

g = h +

s∑
j=1

αjhj

and compute all the derivatives of g with respect to all variables: gi =
∂g
∂x′i

, i = 1, . . . , t . Correspondingly,
H′

= {h1, . . . , hs, g1, . . . , gt}. Note that J(h)(p′) and J(h1)(p′), . . . , J(hs)(p′) are actually linearly independent,
which means that the equations (α1, . . . , αs, 1) J(H)(p′) = 0 has no solution. Thus, although we can give the
initial value α̃j of αj by solving a Least Squares problem, the linear independence will bring us some inexact
polynomials gi, which means gi(q′) ̸= 0. Further, we may get a perturbed system H′. That is, H′(q) ̸= 0.

(c) if r1 < r2, we will add h to the system H directly and get an exact system H′
= {h1, . . . , hs, h}.

2. if θ is chosen too big, that is, we judge hs+1, which is regular at p′, as being θ-singular at p̃′, we may get a perturbed
polynomial h, which means that h(p′) ̸= 0 and h − h(p′) is regular at p′. Thus, we have:

(a) if r2 = r1, only the choice of θ affects our final result. Thus, we may get a perturbed system H′ in this case.
(b) if r2 < r1, with a similar discussion with the case of 1(b), we get a perturbed system H′.
(c) if r1 < r2, we add h to {h1, . . . , hs} directly and get a perturbed system H′.

3. if θ is chosen too small, that is, we judge hs+1, which is singular at p′, as being θ-regular at p̃′, we know that h = hs+1
is singular at p′. Thus, we have:

(a) if r2 = r1, only the choice of θ affects our result. Thus, the system H′ is exact in this case.
(b) if r2 < r1, similar to the case of 1(b), we consider doing the linear combination:

g = h +

s∑
j=1

αjhj.

One difference from 1(b) is that h is singular at p′. Thus, all the gi =
∂g
∂x′i

are exactly vanished at q. So, the
system H′ is also exact in this case.

(c) if r1 < r2, we add h to {h1, . . . , hs} directly and get an exact system H′.

16 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

With the above analysis, we know that the choice of the tolerances θ and ε has an influence on our final deflated
system: an exact deflated system or a perturbed system. To judge which case a final deflated system belongs to, we use
the following judgement method:

Denote the input system as F = {f1, . . . , fn}, the final deflated system F̃′. Noticing that we use Newton’s method to
refine the system F̃′, thus, we denote Newton’s iteration sequence as {p̃l, l ≥ 1} and the final certified zero p̃′.

• First, we check if Newton’s iteration sequence {p̃l, l ≥ 1} is quadratic convergence. If not, we claim that our deflated
system is a perturbed system.

• If it is, we compute

∆ := max{|fi(p̃′)| |fi ∈ F, i = 1, . . . , n}.

• Next, we give a tolerance θ ′, which is usually a very small value, and compare the magnitude of θ ′ and ∆. If ∆ < θ ′,
we regard the final deflated system F̃′ as an exact system; otherwise, F̃′ is a perturbed system.

Of course, for the exact case, we are done. For the perturbed case, we hope to make our final deflated system as accurate
as possible by adjusting the values of θ and ε. However, we still do not have a good idea on how to distinguish the effect of
the two tolerances θ and ε on the final system. Fortunately, noting that the tolerance θ is used to accelerate our algorithm
and is not necessary, therefore, according to the remark of Lemma 4, we can use the deflation construction (6) to compute
the final system. In this case, we just need to consider the tolerance ε, which is used to judge the numerical rank of the
Jacobian matrix. That is to say, even if the first two steps of Algorithm 1 are removed, our deflation construction process
can still work well.

Considering the possible judgement, our final system can also be a perturbed system. Next, we give a possible modified
method to overcome this case.

let F = {f1, . . . , fn} be the input system, p̃ ∈ Cn be the initial approximate zero. Let ε and θ ′ be the given tolerances.

• First, assume rank(J(F)(p̃), ε) = n. We apply Newton’s method on the system F and get the refined zero p̃′. Next, we
check if Newton’s iteration sequence is quadratic convergence. If it is, we continue comparing the magnitude of θ ′

and ∆. If ∆ < θ ′, we regard F as a system with an isolated simple zero; otherwise, we know F is a system with a
multiple zero and rank(J(F)(p̃), ε) < n.

• Assume rank(J(F)(p̃), ε) = n − 1. After using the deflation construction in Algorithm 1 once(from step 3 to step 10),
we get a deflation system F̃1 and an approximate zero p̃1. Then, we consider all the possibilities of rank(J(̃F1)(p̃1), ε).
For every case, we go on our deflation construction in Algorithm 1 and use our mentioned judging method to check
which case the final deflated system belongs to. As long as the final deflated system is judged to be an exact system,
we will stop our deflation process; Otherwise, we know rank(J(F)(p̃), ε) < n − 1.

• Assume rank(J(F)(p̃), ε) = n − 2. We consider as the case of n − 1.

About the above judgement process, we have two things to say:

1. The above judgement process must terminate in finite steps considering that our deflation construction terminates
in finite steps.

2. In the above judgement process, we traverse all the possibilities of the rank of the Jacobian matrix. Thus, there must
be at least one case that we get an exact deflated system.

Now, we give an example below to illustrate our idea.

Example 11. Continue with Example 10. Here, we only use the tolerance ε = 0.05 to judge the numerical rank. First, we
compute

rank(J(f1, f2)(p̃), ε) = 2.

Thus, we consider using Newton’s method on the system F directly. Given an iterative error 10−8, we have the following
Newton’s iteration sequence:

pi x y
p̃1 0.000006851 −0.000004368
p̃2 0.0000000000000 −0.0000021841948
p̃3 −0.0000000000000 −0.0000010920974
p̃4 −0.0000000000000 −0.0000005460487
p̃5 −0.0000000000000 −0.0000002730243
p̃6 −0.0000000000000 −0.0000001365122
p̃7 −0.0000000000000 −0.0000000682561
p̃8 0.0000000000000 −0.0000000341280
p̃9 −0.0000000000000 −0.0000000170640
p̃10 −0.0000000000000 −0.0000000853201

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 17

We can check easily that Newton’s iteration sequence {p̃j, j = 1, . . . , 10} is linear convergence. According to our
judging criteria, we know that

rank(J(f1, f2)(p̃), ε) = 1.

Next, according to our construction process in Algorithm 1, we let

g = f2 + αf1

and compute

g1 = J1(g) = α(2x + 2y + 1) + (1/20 + 2x + 2y), g2 = α(2x + 20000y) + (2x + 20000y).

We have α̃ = −0.091484814324.
Next, let F̃1 = {f1, g1, g2} and p̃1 = (p̃, α̃). By our given revised method above, we continue considering all the

possibilities of rank(J(̃F1)(p̃1), ε). For example, we consider the case of

rank(J(̃F1)(p̃1), ε) = 3.

Similarly, given the iterative error 10−8, by using Newton’s method on the system F̃1, we get the following iteration
sequence:

pi x y α

p̃1 0.000006851 −0.000004368 −0.091484814324
p̃2 0.0000002081968 0.0000001993959 −0.0500009466172
p̃3 0.0000000003977 −0.0000000000002 −0.0500000007560
p̃4 0.0000000000000 0.0000000000000 −0.0500000000000

It is easy to check that the iteration sequence {p̃j, j = 1, 2, 3, 4} is quadratic convergence. Furthermore, given a
tolerance θ ′

= 10−12, we can compute

∆ := max{|f1(p̃4)|, |f2(p̃4)|} = 0

and verify that ∆ < θ ′. Thus, we regard the final deflated system F̃′
= F̃1 as an exact system. At the same time, we stop

our deflation process.

Until now, we have finish all the discussions about the tolerances θ and ε. Once given a polynomial system F ⊂ C[x]
with an isolated singular zero, we use Algorithm 1 to compute a new system F̃′(x, α), which has a simple zero. What is
more, according to the analysis of the tolerances θ and ε, our final system F̃′(x, α) is an accurate system usually. For the
perturbed case, we also give one ergodic way to adjust our final result as accurate as possible. Thus, we can use the final
system F̃′(x, α) to certify the isolated zeros of the input system.

In the following, by using the algorithm verifynlss in INTLAB [27], we give Algorithm 2 to verify the isolated singular
zeros of the input system heuristically. In the verification steps, we employ the algorithm verifynlss in INTLAB for
computing two inclusions X = ([x1, x1], . . . , [xn, xn]) and A = ([α1, α1], . . . , [αn, αn]) for the simple zero of the deflated
system.

Algorithm 2 VDSS : Verifying the deflated square system.

Input:
a polynomial system F := {f1, . . . , fn} ⊂ C[x], an approximate isolated zero p̃ = (p̃1, . . . , p̃n) ∈ Cn, a tolerance ε.

Output:
a deflated system: F̃(x, α) := {f̃1, . . . , f̃t} ⊂ C[x, α], two inclusions X and A;

1: (̃F′, α̃) := CDSS(F, p̃, ε) ;
2: [X,A] := verifynlss(̃F′, (p̃, α̃));
3: Return: a deflated system F̃(x, α) := F̃′, two inclusions X and A.

Now, we give an example in the following to explain how we certify the isolated singular zero of the input system
heuristically.

18 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

Example 12. Continue with Example 7. Applying Algorithm 2, we get the system:

F̃(x, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃1 = −
9
4

+
3
2
x1 + 2x2 + 3x3 + 4x4 −

1
4
x21,

f̃2 = x1 − 2x2 − 2x3 − 4x4 + 2x1x2 + 3x1x3 + 4x1x4,

f̃3 = −8 + 4x1 + 4x4 − 2x1x4,

f̃4 = 3 +
3
2
α1 + α2 + 4α3 −

1
2
α1x1 + 2α2x2 + 3α2x3 + 4α2x4 − 2α3x4,

f̃5 = 2 + 2α1 − 2α2 + 2α2x1,

f̃6 = 4 + 3α1 − 2α2 + 3α2x1,

f̃7 = 4 + 4α1 − 4α2 + 4α3 + 4α2x1 − 2α3x1,

and two verified inclusions

X =

⎡⎢⎣ [0.99999999999999, 1.00000000000001]
[−2.00000000000001, −1.99999999999998]
[−1.00000000000001, −0.99999999999999]
[1.99999999999999, 2.00000000000001]

⎤⎥⎦
and

A =

[
[−1.00000000000001, −0.99999999999999]
[−1.00000000000001, −0.99999999999999]
[−0.00000000000001, −0.00000000000001]

]
.

For the deflated system F̃(x, α), we affirm that there is a unique isolated simple zero (x̂, α̂) ∈ (X,A), such that
F̃(x̂, α̂) = 0. What is more, the projection x̂ of (x̂, α̂) corresponds to the isolated singular zero of the input system F.
That is to say, we certified the isolated singular zeros of the original system.

5. Experiments and results

We implement our method in Matlab of Algorithm 2. The code and some examples can be found in http://www.mmrc.
iss.ac.cn/~jcheng/VDSS. In this section, we show the results of the experiment and the comparison of our method with
some other methods. We do the experiments in Matlab R2012b with INTLAB-V5.5 on a computer with Windows 7, Intel
i7 processor and 8 GB memory.

In [22], by modifying the method proposed by Yamamoto [14], they give a deflation method to compute a regular
and square augmented system. Which can be used to prove the existence of an isolated singular solution of a slightly
perturbed system. Moreover, by applying INTLAB function verifynlss [27], they also give an algorithm viss to compute
verified error bounds. However, noticing that their method is essentially a deflation method. Thus, we also implement
our algorithm based on INTLAB function verifynlss.

In Table 1, we compare our algorithm VDSS with the algorithm viss. These examples are relatively simple and small
scale, which can be found in [18,22]. We also list them in http://www.mmrc.iss.ac.cn/~jcheng/VDSS/fun.m. We denote var
the number of polynomials, mul the multiplicity and Verified acc the final verified accuracy, which is measured by the
breath of the verified inclusion X. And Max err is δ2 as mentioned in Section 4. We use a same initial accuracy 10−4 for
all the examples. ‘‘true’’ means we get two same endpoints of the verified inclusion. When the term for Max err is ‘‘0’’, it
does not mean Max err is exactly zero and only shows in Matlab machine precision.

From Table 1, we can see that our algorithm is effective. On one hand, the verified accuracy of our method is never
worse than viss for all these examples. On the other hand, thanks to our acceleration strategies, our practical size and
computing time are smaller than those of viss in most cases.

We also compare our method with viss for large-scale polynomial systems. All the examples in Table 2 can be found in
http://www.mmrc.iss.ac.cn/~jcheng/VDSS/example.m. The example LZ2000 can be found in [28]. The example nonpoly3
is a non-polynomial nonlinear system. We construct the other examples as below: First, we produce some polynomials
randomly to form a zero-dimensional system {f1, . . . , fn}, which has a simple zero p and deg(fi) ≥ 2 usually. The final
systems have the form: F = {f dii + gi, 1 ≤ i ≤ n, gi ∈ {f

d′
1

1 , . . . , f d
′
n

n , 0}, di ≥ 1, d′

i ≥ 1, 1 ≤ i ≤ n}. The new systems are
always dense polynomial systems. The examples named simple1, reduce3, big1, big2, big3, large3, large6, large8 are of
the form that gi = 0(1 ≤ i ≤ n); The examples named addvar3, unre3, unre5, rankone2, rankone3 are of the form that
gi are not all zeros. The ranks of the Jacobian matrices of the examples rankone2, rankone3 at the zeros both are one. In
Table 2, ‘‘–’’ means there is no results with the code.

From Table 2, we can see that for the examples with more variables and high multiplicity, our method has a better
result regardless of the verified accuracy, computing time or the final scale.

We also test the example: {x31 − x21 − x22, x
3
2 + x22 − x3, . . . , x3n−1 + x2n−1 − xn, x2n} in [29]. The example named breath2 in

Table 2 has this form for n = 5. The method in [13] can compute this example for n = 6 and it takes 659.59 s with the

http://www.mmrc.iss.ac.cn/~jcheng/VDSS
http://www.mmrc.iss.ac.cn/~jcheng/VDSS
http://www.mmrc.iss.ac.cn/~jcheng/VDSS
http://www.mmrc.iss.ac.cn/~jcheng/VDSS/fun.m
http://www.mmrc.iss.ac.cn/~jcheng/VDSS/example.m

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 19

Table 1
Comparison of VDSS and viss for simple systems.
System var mul Verified acc Max err Times Final size

VDSS viss VDSS viss VDSS viss

DZ1 4 131 True e−322 0 0.3066 0.3337 4 16
DZ2 3 16 e−14 e−14 0 0.2989 0.7343 3 24
DZ3 2 4 e−14 e−15 e−14 0.8780 1.0093 3 10
cbms1 3 11 True e−322 0 0.1851 0.1107 3 6
cbms2 3 8 True e−322 0 0.2546 0.1271 3 6
mth191 3 4 e−14 e−14 e−32 0.3118 0.1221 4 6
KSS 10 638 e−14 e−14 0 8.2295 0.3036 19 20
RuGr09 2 4 e−323 e−14 0 0.1567 0.4955 2 8
LZ 100 3 e−320 e−14 0 2.0197 13.3068 100 300
Ojika1 2 3 e−14 e−14 0 0.7636 0.3447 5 6
Ojika2 3 2 e−14 e−14 e−16 0.3936 0.2942 5 6
Ojika3 3 2 e−14 e−14 0 0.3967 0.3427 4 6
Ojika4 3 3 e−14 e−14 0 0.1851 1.0621 3 9
Decker2 3 4 e−323 e−14 0 0.1752 0.4650 3 8
Caprasse 4 4 e−14 e−14 e−31 2.0180 0.5126 6 8
Cyclic9 9 4 e−14 e−14 e−15 5.9266 3.6878 12 18

Table 2
Comparison of VDSS and viss for large systems.
System var mul Verified acc Max err Times Final size

VDSS viss VDSS viss VDSS viss

LZ2000 2000 3 e−319 – 0 448.07 – 2000 –
simple1 5 9 e−14 e−14 0 0.29 8.20 5 45
addvar2 4 12 e−14 e−13 e−14 11.10 250.67 6 32
reduce3 4 24 e−14 e−14 e−11 12.21 317.50 7 12
unre3 4 36 e−15 e−14 e−13 4.08 360.32 4 32
unre5 8 576 e−14 e−14 e−13 24.26 229.83 8 64
big1 20 512 e−14 e−15 e−12 29.92 1724.09 20 160
big2 20 8192 e−14 e−14 e−12 40.90 1751.61 20 160
big3 30 196608 e−15 e−14 e−15 155.18 425.51 30 240
rankone2 6 32 e−15 e−15 e−15 6.8693 1.5199 11 12
rankone3 6 96 e−15 e−14 e−14 12.44 136.54 11 48
breadth2 5 25 e−322 – 0 0.20 – 5 –
large3 100 3100 e−323 e−319 0 187.88 647.86 100 400
large6 500 4100 e−321 e−34 0 905.00 3262.78 500 2000
large8 500 4300 e−321 – 0 1745.85 – 500 –
nonpoly3 3 64 e−322 e−14 0 0.19 6.62 3 36

final size for 321 variables and 819 polynomials. We test the cases for n = 6, n = 1000 and n = 2000 with our code, it
takes 0.228965 s, 165.274439 s and 1036.773847 s respectively without introducing new variables.

For our method, although we introduce new variables, the size of our final deflated system is small in experiments.
And further, we also compare our method with the other four deflation methods appeared in [13] on the following four
systems.

1. {x41 − x2x3x4, x42 − x1x3x4, x43 − x1x2x4, x44 − x1x2x3} at (0, 0, 0, 0) with µ = 131;
2. {x4, x2y + y4, z + z2 − 7x3 − 8x2} at (0, 0, −1) with µ = 16;
3. {14x+ 33y− 3

√
5x2 − 12

√
5xy− 12

√
5y2 − 6

√
5+ x3 + 6x2y+ 12xy2 + 8y3 +

√
7, 41x− 18y−

√
5+ 8x3 − 12x2y+

6xy2 − y3 + 12
√
7xy − 12

√
7x2 − 3

√
7y2 − 6

√
7} at p ≈ (1.5055, 0.36528) with µ = 5;

4. {2x1 + 2x21 + 2x2 + 2x22 + x23 − 1, (x1 + x2 − x3 − 1)3 − x31, (2x
3
1 + 5x22 + 10x3 + 5x23 + 5)3 − 1000x51} at (0, 0, −1) with

µ = 18.

The result (see also in [13]) is below, where method A is in [15,18], method B is in [6], method C is in [12], method D
is in [13], method E is our method VDSS. In Table 3, we denote Poly the number of the polynomials of the final deflation
system and Var the number of the variables in the final deflation system. Noting that our final system does not always
contain all the polynomials of the input system, therefore, we will contain the number of the different polynomials in the
input system, which is not contained in the final system, into Poly.

In Table 3, for system 1, 2 and 4, our method matches the best of the other four methods and simultaneously has a
smallest deflated system in the five methods. For system 3, although our final system has one more variable than method
D, we have less polynomials.

20 J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825

Table 3
Comparison of VDSS and other methods for four examples.

Method A Method B Method C Method D Method E

Poly Var Poly Var Poly Var Poly Var Poly Var

1 16 4 22 4 22 4 16 4 8 4
2 24 11 11 3 12 3 12 3 5 3
3 32 17 6 2 6 2 6 2 4 3
4 96 41 54 3 54 3 22 3 5 3

6. Conclusions

In this paper, we develop a new deflation method for refining or verifying the isolated singular zeros of polynomial
systems. Given a polynomial system F ⊂ C[x] with an isolated singular zero p, by computing the derivatives of the input
polynomials directly or the linear combinations of the related polynomials, we prove constructively that there exists
a final deflated system F̃′(x, α), which has an isolated simple zero (p, α̂), whose partial projection corresponds to the
isolated singular zero p of the input system F. New variables α are introduced to represent the coefficients of the linear
combinations of the related polynomials to ensure the accuracy of the numerical implementation.

Compared to the previous deflation methods, on one hand, our method also has an output size depending on the depth
or the multiplicity of p in theory. On the other hand, thanks to the acceleration strategies we proposed in the paper, the
size of the final system in our actual computations is much less than that we give in theory. The results of the experiments
we conduct give a very persuasive argument for this.

In order to essentially have a deeper understanding of our approach, we also give some further analysis of the
tolerances θ and ε we use. The results of the analysis tells us that our final system is a perturbed system with a bounded
perturbation in the worst case. To make our final system as accurate as possible, we also analyse the case that the tolerance
θ is not introduced.

Acknowledgement

The work is partially supported by National Natural Science Foundation of China (NSFC) Grants 11471327.

References

[1] B. Dayton, T. Li, Z. Zeng, Multiple zeros of nonlinear systems, Math. Comp. 80 (2011) 2143–2168.
[2] M. Giusti, B. Salvy, G. Lecerf, J.-C. Yakoubsohn, On location and approximation of clusters of zeros of analytic functions, Found. Comput. Math.

5 (2005) 257–311.
[3] M. Giusti, G. Lecerf, B. Salvy, J.-C. Yakoubsohn, On location and approximation of clusters of zeros: case of embedding dimension one, Found.

Comput. Math. 7 (2007) 1–58.
[4] G. Lecerf, Quadratic newton iteration for systems with multiplicity, Found. Comput. Math. 2 (2002) 247–293.
[5] W. Hao, A.J. Sommese, Z. Zeng, Algorithm 931: an algorithm and software for computing multiplicity structures at zeros of nonlinear systems,

ACM Trans. Math. Softw. 40 (1) (2013) 5, 16 pages.
[6] J.D. Hauenstein, C.W. Wampler, Isosingular sets and deflation, Found. Comput. Math. 13 (3) (2013) 371–403.
[7] F. Sottile, J.D. Hauenstein, Algorithm 921: alphacertified: Certifying solutions to polynomial systems, ACM Trans. Math. Software Volume 38

Issue 4 (2012).
[8] Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comp. 74 (2005) 869–903.
[9] T. Ojika, Modified deflation algorithm for the solution of singular problems. i. a system of nonlinear algebraic equations, J. Math. Anal. Appl.

123 (1987) 199–221.
[10] T. Ojika, A numerical method for branch points of a system of nonlinear algebraic equations, Appl. Numer. Math. 4 (1988) 419–430.
[11] T. Ojika, S. Watanabe, T. Mitsui, Deflation algorithm for the multiple roots of a system of nonlinear equations, J. Math. Anal. Appl. 96 (1983)

463–479.
[12] M. Giusti, J.-C. Yakoubsohn, Multiplicity hunting and approximating multiple roots of polynomial systems, Contemp. Math. 604 (2013) 105–128.
[13] J.D. Hauenstein, B. Mourrain, A. Szanto, Certifying isolated singular points and their multiplicity structure, in: Proceedings of the International

Symposium on Symbolic and Algebraic Computation, ISSAC ’2015, ACM, New York, 2015, pp. 213–220.
[14] N. Yamamoto, Regularization of solutions of nonlinear equations with singular jacobian matries, J. Inf. Process. 7 (1984) 16–21.
[15] A. Leykin, J. Verschelde, A. Zhao, Newton’s method with deflation for isolated singularities of polynomial systems, Theoret. Comput. Sci. 359

(2006) 111–122.
[16] A. Leykin, J. Verschelde, A. Zhao, Higher-order deflation for polynomial systems with isolated singular solutions, in: A. Dickenstein, F.-O. Schreyer,

A. Sommese (Eds.), Algorithms in Algebraic Geometry, in: The IMA Volumes in Mathematics and its Applications, vol. 146, Springer, New York,
2008, pp. 79–97.

[17] J. Verschelde, A. Zhao, Newton’s method with deflation for isolated singularities, in: Poster Presented at ISSAC’04, 2004.
[18] B. Dayton, Z. Zeng, Computing the multiplicity structure in solving polynomial systems, in: M. Kauers (Ed.), Proceedings of the 2005 International

Symposium on Symbolic and Algebraic Computation, in: ISSAC ’05, ACM, New York, NY, USA, 2005, pp. 116–123.
[19] S.M. Rump, S. Graillat, Verified error bounds for multiple roots of systems of nonlinear equations, Numer. Algorithms 54 (3) (2010) 359–377.
[20] N. Li, L. Zhi, Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one, Theoret. Comput. Sci. 479 (2013)

163–173.
[21] A. Mantzaflaris, B. Mourrain, Deflation and certified isolation of singular zeros of polynomial systems, in: Proc. ISSAC 2011, 2011, pp. 249–256.
[22] N. Li, L. Zhi, Verified error bounds for isolated singular solutions of polynomial systems, SIAM J. Numer. Anal. 52 (4) (2014) 1623–1640.

http://refhub.elsevier.com/S0377-0427(20)30116-3/sb1
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb2
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb2
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb2
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb3
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb3
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb3
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb4
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb5
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb5
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb5
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb6
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb7
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb7
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb7
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb8
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb9
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb9
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb9
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb10
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb11
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb11
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb11
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb12
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb13
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb13
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb13
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb14
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb15
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb15
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb15
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb16
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb16
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb16
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb16
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb16
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb17
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb18
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb18
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb18
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb19
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb20
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb20
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb20
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb22

J.-S. Cheng, X. Dou and J. Wen / Journal of Computational and Applied Mathematics 376 (2020) 112825 21

[23] J. Verschelde, Algorithm 795: Phcpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software
25 (1999).

[24] D.W. Decker, C.T. Kelley, Newton’s method at singular points i, SIAM J. Numer. Anal. 17 (1980) 66–70.
[25] D. Li, M. Fukushima, A globally and superlinearly convergent gauss-newton based bfgs method for symmetric nonlinear equations, SIAM J.

Numer. Anal. 37 (1999) 152–172.
[26] W. Zhou, D. Li, On the q-linear convergence rate of a class of methods for monotone nonlinear equations, Pac. J. Optim. 14 (2018) 723–737.
[27] S.M. Rump, INTLAB - INTerval LABoratory, in: T. Csendes (Ed.), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht,

1999, pp. 77–104.
[28] N. Li, L. Zhi, Compute the multiplicity structure of an isolated singular solution: case of breadth one, J. Symbolic Comput. 47 (2012) 700–710.
[29] A. Szanto, J.D. Hauenstein, B. Mourrain, On deflation and multiplicity structure, J. Symbolic Comput. 83 (2017) 228–253.

http://refhub.elsevier.com/S0377-0427(20)30116-3/sb23
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb23
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb23
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb24
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb25
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb25
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb25
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb26
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb27
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb27
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb27
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb28
http://refhub.elsevier.com/S0377-0427(20)30116-3/sb29

	A new deflation method for verifying the isolated singular zeros of polynomial systems
	Introduction
	Notations and preliminaries
	Deflation of polynomial systems
	Symbolic deflation system
	Parametric deflation system

	The analysis of and
	The analysis of
	The analysis of

	Experiments and results
	Conclusions
	Acknowledgement
	References

