
Generating Symbolic Interpolants for Scattered Data with

Normal Vectors

Ming Li1, Xiao-Shan Gao2∗and Jin-San Cheng2

1School of Computer Science, Cardiff University, Cardiff, CF24 3AA, UK

2KLMM, AMSS, Academia Sinica, Beijing 100080, China

Email: m.li@cs.cf.ac.uk; xgao@mmrc.iss.ac.cn; jcheng@amss.ac.cn

Abstract

Algorithms to generate a triangular or a quadri-

lateral interpolant with G1-continuity are given in

this paper for arbitrary scattered data with asso-

ciated normal vectors over a prescribed triangular

or quadrilateral decomposition. The interpolants

are constructed with a general method to generate

surfaces from moving Bézier curves under geomet-

ric constraints. With the algorithm, we may ob-

tain interplants in complete symbolic parametric

forms, leading to a fast computation of the inter-

polant. A dynamic interpolation solid modelling

software package DISM is implemented based on

the algorithm which can be used to generate and

manipulate solid objects in an interactive way.

Keywords: Solid modelling, Hermite interpola-

tion surface, Bézier curve, sweeping curve

∗ Partially supported by a National Key Basic Re-

search Project of China (NO. G1998030600) and by a US

NSF grant CCR-0201253.

1 Introduction

Given a set of scattered data with a prescribed tri-

angular or quadrilateral decomposition in space, a

smooth interpolation surface (or interpolant) is of-

ten needed to pass through these points. Such a

problem arises in numerous areas of applications

such as reverse engineering, solid modelling, medi-

cal imaging and scientific visualization. Addition-

ally, the tangent planes or normal vectors at the

interpolated points might be prescribed by the user

simultaneously to give a local control for the final

interpolation surface. The surface passing through

a set of spatial points with prescribed normal vec-

tors at these points is called an Hermite Interpo-

lation Surface (HIS).

Numerous schemes have been proposed to deal

with the problem of scattered data interpolation

with or without normal vectors being prescribed.

A survey of scattered data interpolation methods

1

for electronic imaging systems can be found in [1].

Besides the subdivision method reported in [2, 3, 4,

5], various interpolation schemes could be mainly

categorized into two classes: the implicit schemes,

with interpolants expressed as f(x, y, z) = 0,

and the parametric schemes, with interpolants ex-

pressed as S(u, v)=(x(u, v), y(u, v), z(u, v)). As an

implicit scheme, Dahmen used piecewise quadratic

implicit patches in Bernstein-Bézier form to con-

struct an HIS [6]. Various improvements for this

work were then proposed later in order to decrease

the number of the interpolation patches and over-

come some shape control problems such as multi-

sheets and self-intersections [7, 8, 9, 10, 11]. Gao

and Li used blending methods to generate an im-

plicit HIS [12]. Turk and O’Brien constructed an

implicit interpolation surface with a variational

scattered data interpolation approach [13].

It has been studied for a long time to construct

an interpolation surface in parametric form. The

interpolants involved in these schemes mainly con-

sist of the tensor product patches, the Bézier tri-

angles, the NURBS and the Coons patches. Some

of these parametric interpolation scheme can be

found in [14] and in surveys [15, 16, 17]. Mann et al

surveyed several parametric interpolation schemes

for triangulated data [17]. Most of these paramet-

ric schemes proceeded by first building boundary

curves for a triangle face, and then filling the inte-

rior of the face with one or more surface patches.

However, the twist compatibility problem might ap-

pear in some of these schemes. Furthermore, as

investigated in [17], most of these schemes might

introduce shape defects. An interpolant with G1-

continuity was derived from a spline surface cover-

ing the prescribed boundary curves in [18]. Nielson

took a side-vertex method to generate a surface

by passing a curve from one vertex to its opposite

side [19]. Loop presented an algorithm to con-

struct an approximation smooth spline surface for

an irregular control mesh [20]. Pottmann et al.

presented an active contour model for curve and

surface approximation[21]. Fasshauer and Schu-

maker gave a parametric spline surface with mini-

mum certain natural energy to interpolate the pre-

scribed 3D scattered data [22]. Bajaj and Xu pro-

posed a symbolic technique to construct boundary

curves with minimum bending energy and some

numerical methods are then used to construct sur-

faces to interpolate these wire frames smoothly

[23]. Wiltsche focused on the construction of a Ck-

continuous (k = 0, 1, 2) interpolating spline surface

for a given data set [24].

In this paper, a general method is proposed to

generate a surface from moving Bézier curves un-

der some geometric constraints. We call this a

sweeping curve. It can be used to construct an

HIS, to convert a polygonal model into a paramet-

ric surface, to deform a 3D object, to form blending

surfaces and to fill N-sided hole. Here we mainly

use it to construct an HIS. A basic idea behind the

method is that a surface is the locus of a curve that

is moving through space and thereby changing its

shape [25]. To generate surfaces following this idea,

2

we need answer some important questions: how to

control the shape of the surface generated from a

sweeping curve? Specifically, how to give a precise

mathematical expression for the sweeping curve?

How to control the variation of the sweeping curve

to satisfy some prescribed geometric constraints?

The answer to the questions will be illustrated in

detail in our construction of an HIS in this paper.

In our method, we treat a surface as a sweep-

ing cubic Bézier curve determined by its four mov-

ing control points, which are called control curves.

Based on the above idea, a triangular or quadri-

lateral parametric interpolant with pleasing shape

will be given over an arbitrary spatial data with

a prescribed triangular or quadrilateral decompo-

sition. All our computations are taken in vector

forms, leading to a complete symbolic expression

for the final interpolant.

The algorithm consists of three steps. First,

boundary curves are constructed with a minimum

bending energy in cubic Bézier form with one free

parameter left to control the shape. A normal

vector function along the boundary curve is given

in a quadratic form. Second, the interior be-

tween two boundary curves is filled with a sweep-

ing curve interpolating the corresponding points

on the boundary curves, resulting a pre-interpolant

in a bicubic Bézier form. The pre-interpolant can

be regarded as a moving cubic Bézier curve with

some control curves as its control points. The fi-

nal interpolant is taken as a convex combi-

nation of the pre-interpolants, ending with

a complete symbolic G1 parametric repre-

sentation. All our constructions in this scheme,

including the boundary curve and pre-interpolant

construction, can be regarded as the construction

of an interpolation cubic Bézier curve from two

points with associated normal vectors. In the end,

a triangular and quadrilateral interpolant are ob-

tained respectively from these steps. However,

in the process of the triangular interpolant

generation, an unexpected degenerate case

appears, which might result in impractical

inpotalants although it also provides nice

theory analysis for the interpolant construc-

tion. While the quadrilateral interpolant

involves less patches and the degenerated

bicubic surface will not appear in its con-

struction, a quadrilateral decomposition is

preferred to a triangle one.

Based on the method, a dynamic interpolation

solid modelling software package DISM is imple-

mented which can be used to generate and ma-

nipulate solid objects dynamically. The software

has the following features. (1) 3D points and vec-

tors at points could be generated in an interactive

way; (2) after a triangular or quadrilateral decom-

position is given by the user, the interpolating sur-

face can be generated automatically; (3) when the

user changes the position of the points or the nor-

mal vectors, the interpolation surfaces will change

continuously. This process can be considered as a

dynamic deformation from one object to another.

DISM provides a convenient tool to generate and

3

manipulate solid objects.

The rest of the paper is organized as follows.

We introduce the problem in section 2. The con-

struction of the boundary curves and its associated

normal vectors is included in section 3. The main

result, a quadrilateral interpolant and a triangu-

lar one, is illustrated in section 4. The software is

shown in section 5 with some examples given. In

the end, we conclude this paper in section 6.

2 Preliminaries

2.1 Problem Description

The following notations will be used in the paper.

P := {pi ∈ R3, i = 1, · · · , k}, a set of points.

N := {ni ∈ R3, i = 1, · · · , k}, a set of unit

vectors.

[P ,N] := {(pi,ni), pi ∈ P , ni ∈ N}.

Λ := {(u, v, w) ∈ R3, 0 ≤ u, v, w ≤ 1 and u +

v + w = 1}.

Γ := {(s, t) ∈ R2, 0 ≤ s, t ≤ 1}.

The dot product of two vectors is denoted as v0 ·
v1 and the cross product of two vectors is denoted

as v0 × v1.

Without confusion, we will not take specific

distinction between points and vectors throughout

this paper. When a point is taken as a vector, we

refer to the vector starting from the origin point

and ending at this point.

A quadrilateral interpolant and a triangular in-

terpolant will be given in this paper, which are

stated as follows:

Quadrilateral interpolant: Let q = (i, j, k, l)

be a prescribed quadrilateral decomposition. Find

a quadrilateral spline surface

Sq : [P,N]4 × Γ → R3

(pi,ni,pj,nj,pk,nk,pl,nl, s, t) → Sq[i, j, k, l](s, t)

such that the following conditions are satisfied

1. Interpolation conditions

Sq(0, 0) = pi, Sq(1, 0) = pj,

Sq(1,1) = pk, Sq(0, 1) = pl,

∂Sq(0,0)
∂µ · ni = 0,

∂Sq(1,0)
∂µ · nj = 0,

∂Sq(1,1)
∂µ · nk = 0,

∂Sq(0,1)
∂µ · nl = 0, µ = s, t.

2. For two adjacent points pi,pj in P , two

patches passing through pi,pj must meet with

G1-continuity.

Without confusion, we also denote Sq[i, j, k, l] by

Sq.

Triangular interpolant: Let I = (i, j, k) be a

prescribed triangulation. Find a triangular spline

surface

SI : [P,N]3 ×Λ → R3

(pi,ni,pj,nj,pk,nk, u, v, w) → SI[i, j, k](u, v, w)

such that the following conditions are satisfied

4

1. Interpolation conditions

SI(1, 0, 0) = pi,

SI(0, 1, 0) = pj, SI(0, 0, 1) = pk,

∂SI(1,0,0)
∂µ · ni = 0,

∂SI(0,1,0)
∂µ · nj = 0, ∂SI(0,0,1)

∂µ · nk = 0,

where µ = u, v.

2. For two adjacent points pi,pj in P , two

patches passing through pi,pj must meet with

G1-continuity.

Without confusion, we also denote S[i,j,k] by SI.

2.2 Bézier Curves

Let Bn
i (t) = Ci

nt
i(1 − t)n−i denote the Bern-

stein polynomials. A Bézier curve of degree n

with control points bi can be defined as bn(t) =
∑n

i=0 biB
n
i (t) with some properties listed below

[25].

Derivative: Let ∆ be the difference operator de-

fined as ∆bi = bi+1 − bi, then the derivative of

bn(t) is given by

d

dt
bn(t) = n

n−1∑
i=0

∆biB
n−1
i (t). (1)

Integrals: For any 0 ≤ i ≤ n,

∫ 1

0

Bn
i (t) =

1

n + 1
. (2)

Theorem 2.1 bm(t) =
∑m

i=0 diB
m
i (t) is normal

to bn(t) if and only if

∑

i+j=k

Ci
nC

j
m

Ck
n+m

bi · dj = 0, 0 ≤ k ≤ m + n.

Proof: bm(t) is normal to bn(t) if and only if their

dot product is zero. Since,

bm(t) · bn(t) =
m+n∑

k=0

(
∑

i+j=k

Ci
nC

j
m

Ck
n+m

bi · dj)B
m+n
k (t)

(3)

and Bm+n
k (t), 0 ≤ k ≤ m + n is the bases of a

polynomial space of degree m+n, the corresponding

coefficients must be identically zero.

The following lemma is known:

Lemma 2.2 Let n0,n1,n2 and f be any space vec-

tors and we have

(n0 × n1 · n2)f = (f · n0)(n1 × n2)+

(f · n1)(n2 × n0) + (f · n2)(n0 × n1).
(4)

3 Boundary Constructions

The boundary constructions includes the construc-

tion of a boundary curve gv(t) and a normal vector

gn(t).

Boundary constructions: Suppose that two ad-

jacent points (p0,n0), (p1,n1) ∈ [P ,N] are given.

Find an interpolation curve gv(t) and its corre-

sponding normal vector gn(t),

gv : [P,N]2 × [0, 1] → R3

(p0,n0,p1,n1, t) → gv[p0,n0,p1,n1](t)

gn : [P,N]2 × [0, 1] → R3

(p0,n0,p1,n1, t) → gn[p0,n0,p1,n1](t)

5

such that

gv(0) = p0, gv(1) = p1,

g′v(0) · n0 = 0, g′v(1) · n1 = 0,

gn(0) = c0n0, gn(1) = c1n1, c0, c1 6= 0 ∈ R
gv

′(t) · gn(t) = 0, t ∈ [0, 1].

We denote gv[p0,n0,p1,n1](t) and

gn[p0,n0,p1,n1](t) by gv(t) and gn(t) with-

out confusion.

3.1 Boundary Curve Construction

The following lemma shows the limitation of a

quadratic curve in the construction of a boundary

curve.

Lemma 3.1 If n0 and n1 are linearly dependent,

there exists a quadratic interpolation curve gv(t) if

and only if (p1 − p0) · n0 = 0. In this case gv(t)

is degenerated to the line p0p1.

Proof. Since a quadratic curve gv(t) is just a

parabola, whose derivative is a monotonic func-

tion, there does not exist two points on it which

share the same tangent direction.

n1n0

p1p0

n1
n0

p1p0

n1n0

p1p0

Figure 1: (p0,n0), (p1,n1) are in general cases

n1

n0

p1p0

n1

n0

p1p0

n1
n0

p1p0

Figure 2: (p0,n0), (p1,n1) are in special cases

From lemma 3.1, instead of a quadratic curve,

a cubic Bézier curve in the following form will be

constructed

gv(t) =
3∑

i=0

biB
n
i (t).

It is evident that b0 = p0 and b3 = p1. We will

construct b1 and b2 in what follows, where we

convert the point-normal problem to the point-

tangent problem according to the algorithm de-

scribed in [25]. The resulted boundary curve is a

cubic Bézier curve with minimum bending energy

with one free parameter left to control its shape.

The construction algorithm will be illustrated in

two cases: the general cases and the special cases

according to the relation of the points and their

corresponding normals vectors. Figure 1 shows

some general cases that neither n0 nor n1 is paral-

lel to p0p1 and Figure 2 shows special cases that

one or both of n0 and n1 are parallel to p0p1.

1. Tangent direction of the boundary curve

General cases: Project b3 into the plane pass-

ing through b0 and with the normal direction

n0. We get the projection point

b̃1 = b3 +
(b0 − b3) · n0

‖n0‖2
n0.

In a similar way, we get

b̃2 = b0 +
(b3 − b0) · n1

‖n1‖2
n1.

Define the tangent directions at points b0 and

b3 as

T0 =
b̃1 − b0

‖b̃1 − b0‖
, T3 =

b3 − b̃2

‖b3 − b̃2‖
. (5)

6

1
1

1
b3

b2

b1

b0

Figure 3: Parameter selection

Special cases: In these cases one or both of

b̃1 − b0 and b3 − b̃2 is zero. A plane p is first

selected according to the following criteria and

n is defined as the unit normal vector of p.

• If just one of n0 or n1 is parallel to p0p1

and suppose it is n0. Let p be the plane

containing p0,p1 and paralleling to n1.

• Suppose that both n0 and n1 are parallel

to p0p1. If b0b3 is shared by two trian-

gles, let p be a plane passing through

p0p1 and forming the same angle with

the two triangles; otherwise let p be a

plane perpendicular to the triangle con-

taining p0p1.

Let T0 = n× n0 and T3 = n× n1.

Now the point-normal interpolation problem

with respect to (p0,n0) (p1,n1) is converted

into the point-tangent problem with respect

to (b0,T0) and (b3,T3).

2. Parameter selection

We can set b1 = b0 + α0T0 and b2 =

b3 − α3T3 for arbitrary α0, α3 6= 0. How-

ever, if the value for α0 or α3 is too

small, there could exist corners at the

endpoints. On the other hand, if the

value is too large , there could exist

loops. Proper values of ᾱ0 and ᾱ3 are

first given as below following an idea

from [25] (see Figure 3):

For i = 0, 3, let θi be the angle between

Ti and the vector b3 − b0 and we have

that

cos θi =
(b3 − b0) · Ti

‖b3 − b0‖ .

Let

di =
‖b3 − b0‖

3 cos θi

=
‖b3 − b0‖2

3(b3 − b0) · Ti

,

and take

ᾱi =





di if θi ≤ 60◦,

2
3
‖b3 − b0‖, otherwise.

Let α̃i = ωᾱi, where ω > 0 is a free pa-

rameter influencing the shape of the fi-

nal interpolation curve, which can be

used to deform an object as shown in

our later examples. We take ω = 1 as a

default selection. Taking b1 = b0 + α̃0T0

and b2 = b3 − α̃3T3, we get the curve gv(t)

which is the dotted curve in Figure 3.

3. Minimum bending energy

The parameters α̃0 and α̃3 selected as above

generally result in a fine curve shape, but we

will improve it by enforcing the resulted curve

to have a minimum bending energy.

Take α0 = sα̃0 and α3 = (2 − s)α̃3 and let s

minimize the bending energy
∫ 1

0
‖ gv

′(t) ‖2 dt

as follows:

∆b0 = α0T0,

7

∆b1 = (b3 − b0)− (α0T0 + α3T3),

∆b2 = α3T3.

From (1) and (3), we get

gv
′(t) = 3(∆b0B2

0(t) + ∆b1B2
1(t) + ∆b2B2

2(t)),

‖gv
′(t)‖2 = 9

4X

k=0

(
X

i+j=k

Ci
2Cj

2

Ck
4

∆bi ·∆bj)B
4
k(t).

From (2) we have

Z 1

0
‖gv

′(t)‖2dt =
9

5

4X

k=0

X

i+j=k

Ci
2Cj

2

Ck
4

∆bi ·∆bj

=
9

5
(‖∆b0‖2 + ∆b0 ·∆b1 +

1

3
(2‖∆b1‖2 + ∆b0 ·∆b2) + ∆b1 ·∆b2 + ‖∆b2‖2).

Let d
ds

∫ 1

0
‖gv

′(t)‖2dt = 0 and we get a unique

s that minimizes the bending energy

s=

8α̃2
3 + α̃0(b3 − b0) ·T0 + 2α̃0α̃3T0 ·T3 + α̃3(b0 − b3) ·T3

2(2α̃2
0 + α̃0α̃3T0 ·T3 + 2α̃2

3)
.

(6)

We can also minimize
∫ 1

0
‖gv

′′(t)‖2dt in a sim-

ilar way and get

s=

4α̃2
3 + α̃0(b3 − b0) ·T0 − 2α̃0α̃3T0 ·T3 + α̃3(b0 − b3) ·T3

2(α̃2
0 − α̃0α̃3T0 ·T3 + α̃2

3)
.

(7)

It can be seen from (6) or (7) that s = 1 when

θ0 = θ3, i.e. when (b3 − b0) ·T0 = (b3 − b0) ·T3.

When s = 0 or s = 2, the endpoint b0 or b3

will be a singular point and we set s = 1 for the

cases. The solid curve in Figure 3 is a cubic curve

with minimum bending energy with s expressed as

(7). Figures 1 and 2 show the resulted curves gv(t)

generated in this way.

Lemma 3.2 The boundary curve gv(t) =
∑3

i=0 biB
3
i (t) can be defined as follows

b0 = p0, b1 = b0+α0T0, b2 = b3−α3T3, b3 = p1

with α0, α1 6= 0. Furthermore, for any given

ω there exists a unique value of α0 = sα̃0 and

α3 = (2 − s)α̃3 with s expressed as (6) or (7)

to minimize the bending energy
∫ 1

0
‖gv

′(t)‖2dt or
∫ 1

0
‖gv

′′(t)‖2dt.

From the construction of gv(t) and the proper-

ties of Bézier curves, it can be verified that

Lemma 3.3 gv[p0,n0,p1,n1](t) =

gv[p1,n1,p0,n0](1− t).

Figure 4 shows the boundary curves for the sam-

pling points from a torus and a sphere.

Figure 4: Boundary curves

3.2 Normal Vector Construction

The normal vector is to be given in a quadratic

form in this subsection. It can be obtained by

solving a system of linear equations, but with such

methods it is difficult to control the variation of

the resulted normal vectors from n0 to n1. The

normal vector in our algorithm will be constructed

8

geometrically according to two cases: n0 = n1 and

n0 6= n1.

When n0 = n1, the curve gv[p0,n0,p1,n1](t) is

contained in a plane with the normal vector n. The

normal vector gn(t) is defined as follows:

gn[p0,n0,p1,n1](t) =
n× g′v(t)‖g′v(t)‖

.
(8)

When n0 6= n1, we define gn(t) in the following

rational quadratic form

gn[p0,n0,p1,n1](t) = (1− κ(t))n0 + κ(t)n1, (9)

where κ(t) is a rational quadratic function as fol-

lows

κ(t) =
n0 · g′v(t)

(n0 − n1) · g′v(t)
.

Lemma 3.4 Equation (8) and (9) define the nor-

mal vector gn(t).

Proof: When n0 = n1, since g′v(0) = α0T0 and

T0 = n0 × n, we have

n0 = n×T0 =
n× g′v(0)

α0

=
n× g′v(0)

‖g′v(0)‖ = gn(0).

It can be verified in a similar way that gn(1) = n1.

Furthermore we have

gn(t) · gv
′(t) =

n× g′v(t)

‖g′v(t)‖ · gv
′(t) = 0.

When n0 6= n1, since gv
′(0) ·n0 = 0 and gv

′(1) ·
n1 = 0, we get κ(0) = 0 and κ(1) = 1 and then

gn(0) = (1− κ(0))n0 + κ(0)n1 = n0,

gn(1) = (1− κ(1))n0 + κ(1)n1 = n1.

Substitute κ(t) into gn(t)

gn(t) · gv
′(t) = ((1− κ(t))n0 + κn1(t)) · gv

′(t)

=
(n0 · gv

′(t)) n1 − (n1 · gv
′(t)) n0

(n0 − n1) · g′v(t)
· gv

′(t) = 0.

The construction of gn(t) will always succeed

except for a particular case that n0 6= n1 and

n0 ·T3 = 0, where T3 is expressed in (5). We

have the following lemmas for that case.

Lemma 3.5 When n0 ·T3 = 0 and n0 6= n1, the

cubic Bézier curve gv[p0,n0,p1,n1](t) will be con-

tained in a plane. Furthermore the case will arise

if and only if n0 · n1 = 0, that is n0 is perpendicu-

lar to the plane passing through p0p1 with normal

direction n1.

Proof: From the construction of T0, it is evident

that n0 ·T0 = 0. Additionally since n0 ·T3 = 0

we have that both T0 and T3 are parallel to the

tangent plane going through p0 with its normal

vector parallel to n0. Write this plane as F0. We

have that p0, b̃1, b̃2 and p1 lie in F0, so does

the curve gv[p0,n0,p1,n1]. Furthermore since

b̃2 = p0 + (p1−p0)·n1

‖n1‖2 n1 and (b̃2 − p0) · n0, so we

have n1 · n0 = 0.

n1n0

p1p0

n1
n0

p1p0

n1n0

p1p0

Figure 5: Normal of general cases

n1

n0

p1p0

n1

n0

p1p0

n1n0 p1p0

Figure 6: Normal of special cases

Lemma 3.6 When n0 ·T3 = 0, n0 6= n1, there

might exist no quadratic normal vector gn(t) for

its corresponding boundary curve gv(t).

9

Proof: From the definition of gn(t), a quadratic

gn(t) can be written in the form gn(t) =

n00B
2
0(t) + n01B

2
1(t) + n02B

2
2(t), where n00 =

c0n0, n02 = c2n1 are nonzero constants. From

Theorem 2.1, gn(t) · g′v(t) = 0 if and only if

d0 · n01 + d1 · n00 = 0,

d0 · n02 + 4d1 · n01 + d2 · n00 = 0,

d1 · n02 + d2 · n01 = 0,

(10)

with gv(t) =
∑3

i=0 biB
3
i (t) and di = ∆bi =

bi+1 − bi, i = 0, 1, 2. Since

λ2 = d2 · n01 = −d1 · n02,

λ1 = d1 · n01 = −d0·n02+d2·n00

4
,

we have

n01 = µ2d2 + µ1d1 + αd2 × d1 (11)

for arbitrary α with

µ2 = λ1d2·d1−λ2‖d1‖2
(d2·d1)2−‖d2‖2‖d1‖2 ,

µ1 = λ2d2·d1−λ1‖d2‖2
(d2·d1)2−‖d2‖2‖d1‖2 .

Substitute (11) into the last equation of (10) and

note that d0 × d1 · d2 = 0 and d1 · n00 = 0.

It must be satisfied that d0 · n01 = µ2d0 · d2 +

µ1d0 · d1 = 0. However this is not always true.

From the above lemma, a proper cubic curve

gv(t) must be reset to avoid this unexpected case

so that when n0 6= n1 we will not end with a plane

curve gv(t). We reset T0 = 3
4
T0 + 1

4
n1 and we

have that T0 · n0 = (3
4
T0 + 1

4
n1) ·T0 = 0 and

T0 · n1 = (3
4
T0 + 1

4
n1) · n1 = 1

4
6= 0.

Since the essence of the normal vector is its direc-

tion, we can take gn(t) in the following quadratic

form throughout this paper.

gn(t) =

{
n× gv

′(t) n0 = n1,

(n0 · gv
′(t)) n1 − (n1 · gv

′(t)) n0 n0 6= n1.

We have the following lemma

Lemma 3.7 We have gn[p0,n0,p1,n1](t) =

gn[p1,n1,p0,n0](1− t).

Figures 5 and 6 show the figures of the curves

g(t) = gv(t) + gn(t)
‖gn(t)‖ for the curve gv(t) as shown

in Figures 1 and 2. You can get a unit normal vec-

tor locating at gv(t) with a vector starting from

gv(t) and ending at g(t). Figure 7 shows boundary

curves gv(t) with the normal vectors gn(t) varying

along with them for a quadrilateral face and a tri-

angular face.

p0

p1

p3

p2

p0

p2

p1

Figure 7: Boundary constructions

4 Surface Interpolants

In this section, we will illustrate the construction

of the surface interpolants including a quadrilat-

eral and a triangular interpolant. Before that

construction the control curve will be first con-

structed.

10

4.1 Control Curve

Control Curve: Suppose (p0,n0), (p1,n1) ∈
[P ,N] are given. Find a control curve

gc : [P,N]2 × [0, 1] → R3,

(p0,n0,p1,n1, t) → gc[p0,n0,p1,n1](t),

such that

(gc(t)− gv(t)) · gn(t) = 0

where gv(t) and gn(t) are given is section 3. With-

out confusion, we denote gc[p0,n0,p1,n1](t) by

gc(t). In fact gc(t) is a space curve with the prop-

erty that the vector from gv(t) to gc(t) is perpen-

dicular to gn(t). See Figure 8.

The control curve is to be constructed in a sym-

bolic form with minimum bending energy. Sup-

pose gv(t),gn(t) and gc(t) are given in the follow-

ing forms with di, i = 0, 1, 2, 3, to be determined,

gv(t) =
∑3

i=0 biB
3
i (t),

gn(t) =
∑2

i=0 n0iB
2
i (t), gc(t) =

∑3
i=0 diB

3
i (t).

It is clear that

b0 = p0,b3 = p1, n00 = c0n0,n02 = c1n1,

where c0 and c1 are constant parameters.

From Theorem 2.1 and (gc(t)−gv(t))·gn(t) = 0,

we have

∑

i+j=k

Ci
3C

j
2

Ck
5

(di − bi) · n0j = 0, 0 ≤ k ≤ 5. (12)

Fix d0 and d3 by the following constraints which

come from (12) by setting k = 0 and 5,

(d0 − p0) · n0 = 0, (d3 − p1) · n1 = 0. (13)

We rewrite gc[p0,n0,p1,n1](t) as

gc[p0,n0,p1,n1,d0,d3](t) to show its depen-

dence on d0 and d3 when needed. Specific

values for d0 and d3 will be given for some

requirements, which will be shown in the con-

structions of the pre-inerpolants in section 4.

Write fi = di − bi, i = 0, 1, 2, 3, and we get from

(12) the following equations

2f0 · n01 + 3f1 · n00 = 0,

f0 · n02 + 6f1 · n01 + 3f2 · n00 = 0,

3f1 · n02 + 6f2 · n01 + f3 · n00 = 0,

3f2 · n02 + 2f3 · n01 = 0.

(14)

A symbolic expression for d1 and d2 will be ob-

tained from (14) according to the three cases be-

low:

(1) When n00 × n02 · n01 6= 0, we get from (14)

that

λ10 = f1 · n00 = −2f0·n01

3
,

λ11 = f1 · n02 = − f3·n00+6α2

3
,

λ20 = f2 · n00 = − f0·n02+6α1

3
,

λ21 = f2 · n02 = −2f3·n01

3
,

where αi are free parameters with geometrical

meanings that αi = fi · n01, i = 1, 2.

From Lemma 4, we have

(n00 × n02 · n01)fi = (fi · n00)(n02 × n01) +

(fi · n02)(n01 × n00) + (fi · n01)(n00 × n02),

so

di = bi+

λi0(n02×n01)+λi1(n01×n00)+αi(n00×n02)
n00×n02·n01

,
(15)

where i = 1, 2. Select values for α1 and α2 to min-

imize the bending energy
∫ 1

0
‖gc

′′(t)‖2dt, we have

α1 = −η(3b1−2d0−d3)+3λ10N21+3λ11N10)·N02

3 ,

α2 = −η(3b2−2d3−d0)+3λ20N21+3λ21N10)·N02

3 ,

11

where N21 = n02 × n01, N10 = n01 × n00,

N02 = n00 × n02 and η = n00 × n02 · n01.

In fact, we always have n00 × n02 · n01 = 0 for

gn(t) constructed in Section 2, which can be seen

from the following two cases:

(2) When n0 = n1, from gn(t) = n× g′v(t)

we have n00 = n02. It is evident that

n00 × n02 · n01 = 0. From (14), it is easy to get

λ10 = f1 · n00 = −2f0·n01

3
,

λ11 = f1 · n01 = 2f3·n01−f0·n00

6
,

λ20 = f2 · n00 = −2f3·n01

3
,

λ21 = f2 · n01 = 2f0·n01−f3·n00

6
,

so

di = bi + µi0n00 + µi1n01 + βi(n00 × n01), (16)

where

µi0 =
λi1n00 · n01 − λi0‖n01‖2

(n00 · n01)2 − (‖n00‖‖n01‖)2
,

µi1 =
λi0n00 · n01 − λi1‖n00‖2

(n00 · n01)2 − (‖n00‖‖n01‖)2
,

and βi are free parameters with geometrical rep-

resentation: βi = n00×n01·fi
‖n00×n01‖2 , i = 1, 2. Set βi to

minimize the bending energy
∫ 1

0
‖gc

′′(t)‖2dt and

we get

β1 =
(2d0 + d3 − 3b1) · (n00 × n01)

3‖n00 × n01‖2
,

β2 =
(d0 + 2d3 − 3b2) · (n00 × n01)

3‖n00 × n01‖2
.

(3) Case n0 6= n1. Since

n00 = gn(0) = −(n1 · g′v(0))n0,

n02 = gn(1) = (n0 · g′v(1))n1,

n01 = gn
′(0)
2

+ n00 = λ0n00 + λ2n02,

with

λ0 = 1 +
n1 · g′′v(0)

2n1 · g′v(0)
, λ2 =

n0 · g′′v(0)

2n0 · g′v(1)
,

it can be seen that n00 × n02 · n01 = 0.

Substituting n01 = λ0n00 + λ2n02 into (14), we

get

λ10 = f1 · n00 = −2f0·n01

3
,

λ12 = f1 · n02 =
f3·n00+(8λ2

0f0−4λ2f3)·n01−2λ0f0·n02

3(4λ0λ2−1)
,

λ20 = f2 · n00 =
f0·n02+(8λ2

2f3−4λ0f0)·n01−2λ2f3·n00

3(4λ0λ2−1)
,

λ22 = f2 · n02 = −2f3·n01

3
.

When 4λ0λ2 = 1, it can be seen from (13) that

f3 · n00 + (8λ2
0f0 − 4λ2f3) · n01 − 2λ0f0 · n02

=
32λ5

2f3·n02−f0·n00

8λ3
2

= 0,

f0 · n02 + (8λ2
2f3 − 4λ0f0) · n01 − 2λ2f3 · n00

=
32λ5

0f0·n00−f3·n02

8λ3
0

= 0.

We can see that (14) is satisfied for any value of

λ12, λ20. We set λ12 = λ20 = 0 in this case.

Similar to case (2), we get

di = bi + µi0n00 + µi2n02 + γi(n00 × n02), (17)

where

µi0 =
λi2n00 · n02 − λi0‖n02‖2

(n00 · n02)2 − (‖n00‖‖n02‖)2
,

µi2 =
λi0n00 · n02 − λi2‖n00‖2

(n00 · n02)2 − (‖n00‖‖n02‖)2
,

and γi are free parameters with geometrical rep-

resentation γi = fi·(n00×n02)
‖n00×n02‖2 , i = 1, 2. Find-

ing values for γi to minimize the bending energy
∫ 1

0
‖gc

′′(t)‖2dt, we get

γ1 =
(2d0 + d3 − 3b1) · (n00 × n02)

3‖n00 × n02‖2
,

γ2 =
(d0 + 2d3 − 3b2) · (n00 × n02)

3‖n00 × n02‖2
.

12

Lemma 4.1 See Figure 8. Let d0 and d3

be two fixed points satisfying (d0 − p0) · n0 =

0, (d3 − p1) · n1 = 0. Then there exists a unique

cubic control curve

gc[p0,n0,p1,n1,d0,d3](t) =
∑3

i=0 diB
3
i (t) with

minimum bending energy with d1 and d2 expressed

as (16) when n0 = n1 or d1 and d2 expressed as

(17) when n0 6= n1.

n1
gn

n0p1 gv

p0
gc

d0

d1

Figure 8: Control curve

4.2 Quadrilateral Interpolant

Without loss of generality suppose that four points

(pi,ni) ∈ [P ,N], 0 ≤ i ≤ 3. Let (s, t), 0 ≤ s, t ≤
1, be the local coordinate for a point with respect

to the quadrilateral p0p1p2p3 (Figure 9).

t=0

s=0

t=1

s=1

(0,1)

(1,1)(1,0)

(0,0)

Figure 9: Quadrilateral

domain

3c (t)

2c (s)

1c (t)

0c (s)

3p

2pp1

0p

Figure 10: Quadrilat-

eral boundary curves

Set up the boundary curves ci(s) or ci(t) and the
normal fields ni(s) or ni(t) as follows (Figure 10):

c0(s) = gv[p0,n0,p1,n1](s), n0(s) = gn[p0,n0,p1,n1](s),

c2(s) = gv[p3,n3,p2,n2](s), n2(s) = gn[p3,n3,p2,n2](s),

c1(t) = gv[p1,n1,p2,n2](t), n1(t) = gn[p1,n1,p2,n2](t),

c3(t) = gv[p0,n0,p3,n3](t), n3(t) = gn[p0,n0,p3,n3](t).

We will first create a pre-interpolant Ss such that

it interpolates the boundary curves ci(s), i =

0, 2, ci(t), i = 1, 3 and interpolates the normal

fields n1(t) and n3(t) along c1(t) and c3(t) re-

spectively. The problem of the quadrilateral pre-

interpolant is formulated as follows:

Quadrilateral pre-interpolant: Let ci(t),

ci(s), ni(t), ni(s) be stated as above. Find a

quadrilateral surface interpolant Ss(s, t) such that

1. Ss(s, t) interpolates the boundary curves:

Ss(s, 0) = c0(s), Ss(s, 1) = c2(s),

Ss(0, t) = c3(t), Ss(1, t) = c1(t).

2. The tangent field determined by ∂Ss(s,t)
∂s

and
∂Ss(s,t)

∂t
are orthogonal to n1(t) and n3(t) along

c1(t) and c3(t):

∂Ss(0,t)
∂µ

· n3(t) = 0,
∂Ss(1,t)

∂µ
· n1(t) = 0, µ = s, t.

p0

(0,t)

p3
Ss(s,t)

p1(1,t)
p2

Figure 11: Pre-interpolant construction

We can fill the interior of Ss(s, t) by passing from

every points on c3(t) to points on c1(t) with a

curve gv(s, t). See also Figure 11.

Theorem 4.2 A quadrilateral pre-interpolant can

be constructed as follows:

Ss(s, t) = gv[c3(t),n3(t), c1(t),n1(t)](s).

Proof:

13

1. The boundary interpolation is verified as fol-
lows:

Ss(s, 0) = gv[c3(0),n3(0), c1(0),n1(0)](s)

= gv[p0,n0,p1,n1](s) = c0(s),

Ss(s, 1) = gv[c3(1),n3(1), c1(1),n1(1)](s)

= gv[p3,n3,p2,n2](s) = c2(s),

Ss(0, t) = gv[c3(t),n3(t), c1(t),n1(t)](0) = c3(t),

Ss(1, t) = gv[c3(t),n3(t), c1(t),n1(t)](1) = c1(t).

2. The interpolation of the normal fields at t = 0

and t = 1 is verified as follows:

∂Ss(0,t)
∂s · n3(t) =

g′v[c3(t),n3(t), c1(t),n1(t)](0) · n3(t) = 0,

∂Ss(0,t)
∂t · n3(t) =

gv[c′3(t),n′3(t), c′1(t),n′1(t)](0) · n3(t)

= c′3(t) · n3(t) = 0.

It can be verified in a similar way that

∂Ss(1,t)
∂s

· n1(t) = 0, ∂Ss(1,t)
∂t

· n1(t) = 0.

From the theorem, it can be seen that the pre-

interpolant Ss(s, t) can be obtained just as the

construction of an interpolation curve from two

points. In fact we can get any point on Ss(s, t)

with the de Casteljau algorithm [25]. The theorem

above is therefore very attractive for a numerical

generation of an interpolation surface. St(s, t) can

be defined in a similar way. On the other hand,

since gv[c3(t),n3(t), c1(t),n1(t)] involves some op-

erations such as point projection, the resulted sur-

face Ss(s, t) will have a complex expression in t.

Treating the loci of the control points as con-

trol curves, we now give a new quadrilateral pre-

interpolant with gc(t).

Theorem 4.3 Suppose the control points of ci(s)

or ci(t) are cij, 0 ≤ i ≤ 3, 0 ≤ j ≤ 3 (Figure 12.)

and let

b0(t) = c3(t),b1(t) = gc[p0,n0,p3,n3, c01, c21](t),

b3(t) = c1(t),b2(t) = gc[p1,n1,p2,n2, c02, c22](t).

A quadrilateral pre-interpolant Ss(s, t) can be

given in the following bicubic form:

Ss(s, t) =
3∑

i=0

bi(t)B
3
i (s).

Proof:

1. The boundary interpolation is verified as fol-

lows:

Ss(s, 0) =
∑3

i=0 bi(0)B3
i (s)

= p0B3
0(t) + c01B3

1(t) + c02B3
2(t) + p1B3

3(t)

= c0(s),

Ss(s, 1) =
∑3

i=0 bi(1)B3
i (s)

= p3B3
0(t) + c21B3

1(t) + c22B3
2(t) + p2B3

3(t)

= c2(s),

Ss(0, t) = b0(t) = c3(t),

Ss(1, t) = b3(t) = c1(t).

2. The interpolation of the normal fields at t = 0

and t = 1 is verified as follows:

∂Ss(0,t)
∂s · n3(t) = 3(

∑2
i=0 ∆bi(t)B2

i (0)) · n3(t)

= 3(b1(t)− b0(t)) · n3(t) = 0,

∂Ss(0,t)
∂t · n3(t) = (

∑3
i=0 b′i(t)B

3
i (0)) · n3(t)

= b′0(t) · n3(t) = c′3(t) · n3(t)

= 0.

It can be verified in a similar way that

∂Ss(1,t)
∂s

· n1(t) = 0, ∂Ss(1,t)
∂t

· n1(t) = 0.

14

A pre-interpolant St(s, t) can be given in a similar
way such that it interpolates the boundary curves
ci(s) or ci(t), 0 ≤ i ≤ 3, and interpolates the nor-
mal fields n1(t) and n3(t) along c1(t) and c3(t).
Let

b0(s) = c0(s), b1(s) = gc[p0,n0,p1,n1, c31, c11](s),

b3(s) = c2(s), b2(s) = gc[p3,n3,p2,n2, c32, c12](s).

and define

St(s, t) =
3∑

i=0

bi(s)B
3
i (t).

p3

p2

p1

p0

b0(t)
b1(t)

b2(t)
b3(t)

Figure 12: Quadrilat-

eral pre-interpolant

Figure 13: Quadrilat-

eral interpolant

Theorem 4.4 The quadrilateral interpolant (Fig-

ure 13)

Sq =
s(1− s)Ss + t(1− t)St

s(1− s) + t(1− t)
.

interpolates all the boundary curves ci(s) and ci(t),

and interpolates the normal fields ni(s) or ni(t)

along ci(s) or ci(t), 0 ≤ i ≤ 3.

Proof: Both Ss and St interpolate the boundary

curves, so does their convex combination Sq. Fur-

thermore, Ss or St interpolates the normal fields

n1(t),n3(t) along c1(t), c3(t) or n0(s),n2(s) along

c0(s), c2(s) respectively. When s = 0 we have

∂Sq

∂s
=

∂St

∂s
+

(1− 2s)
t(1− t)

(Ss − St) =
∂St

∂s
,

∂Sq

∂t
=

∂St

∂t
.

Since St interpolates the normal fields n3(t) along

c3(t) so does Sq. The other cases can be proved

similarly and Sq is a quadrilateral interpolant we

need.

Theorem 4.5

lim
s→0+,t→0+

Sq = p0, lim
s→1−,t→0+

Sq = p1,

lim
s→1−,t→1−

Sq = p2, lim
s→0+,t→1−

Sq = p3.

Proof: We will give a proof only for

lims→0+,t→0+ Sq = p0. Write

ω(s, t) =
s(1− s)

s(1− s) + t(1− t)
.

It can be seen that 0 < ω(s, t) < 1 when 0 < s, t <

1. Since Ss(0, 0) = p0 and St(0, 0) = p0, it is

evident that

lim
s→0+,t→0+

Ss = p0, lim
s→0+,t→0+

St = p0.

For any given ε > 0, there exists a δ > 0 such that

‖Ss(s, t) − p0‖ < ε and ‖St(s, t) − p0‖ < ε when
√

s2 + t2 < δ and 0 < s, t < 1. Then

‖Sq − p0‖ =

‖ω(s, t)(Ss − p0) + (1− ω(s, t))(St − p0)‖
≤ ω(s, t)‖Ss − p0‖+ (1− ω(s, t))‖St − p0‖
< ω(s, t)ε + (1− ω(s, t))ε

= ε.

The other cases can be proved similarly.

Figure 14 shows three quadrilateral interpolants

for the sampling points from a torus with the

weights ω in gv(t) being 0.15, 0.3 and 0.45 re-

spectively.

4.3 Triangular Interpolant

A triangular interpolant will be given in a similar

way as the construction of a quadrilateral inter-

polant. Suppose the boundary curves ci(t) with

15

Figure 14: Quadrilateral interpolant

the normal fields ni(t), i = 0, 1, 2, are given over a

triangular domain with vertices pi, i = 0, 1, 2. The

barycentric coordinate of a point is set with respect

to the triangle p0p1p2 (Figures 15 and 16). Since

variable t in ci(t) and ni(t) may be changed into

(1− t), we may assume, without of loss of general-

ity, that t increases from (1, 0, 0) to (0, 1, 0), from

(0, 1, 0) to (0, 0, 1), and from (0, 0, 1) to (1, 0, 0).

Hence the variable of c0 and n0 is w, c1 and n1 is

u, c2 and n2 is v, with the following expressions:

c0(w) = gv[p1,n1,p2,n2](w),

c1(u) = gv[p2,n2,p0,n0](u),

c2(v) = gv[p0,n0,p1,n1](v),

n0(w) = gn[p1,n1,p2,n2](w),

n1(u) = gn[p2,n2,p0,n0](u),

n2(v) = gn[p0,n0,p1,n1](v).

Similar to the construction of a quadrilateral in-

terpolant, we will create a pre-interpolant corre-

sponding to each vertex such that it interpolates

the three boundary curves and the normal fields

along two of the three ones. In fact, the trian-

gular pre-interpolant can be regarded as a degen-

erated case for the quadrilateral pre-interpolant.

We formulate the problem of the triangular pre-

interpolant as follows:

Triangular pre-interpolant: Let

ci(t),ni(t), i = 0, 1, 2, be stated as above.

u = 0

v = 0w = 0

(0,0,1)

(1,0,0)

(0,1,0)

w

u

v

Figure 15: Triangular

domain

0c (w)

1c (u)2c (v)

2
p

p
0

1
p

Figure 16: Triangular

boundary curves

Find a triangular interpolant Su(u, v, w) such that

1. Su(u, v, w) interpolates the boundary curves:

Su(0, 1− w, w) = c0(w),

Su(u, 0, 1− u) = c1(u),

Su(1− v, v, 0) = c2(v).

2. The tangent field determined by the span of
(∂Su

∂u
, ∂Su

∂v
) are orthogonal to both n1(u) and

n2(v) along the curves c1(u) and c2(v) respec-
tively:

∂Su(u,0,1−u)
∂µ

· n1(u) = 0,
∂Su(1−v,v,0)

∂µ
· n2(v) = 0,

where µ = u, v.

Let

c̃2(u) = gv[p1,n1,p0,n0](u),

ñ2(u) = gn[p1,n1,p0,n0](u).

Noting that u = 1−v and from lemmas 3.3 and 3.7,

it is known that c̃2(u) = c2(v) and ñ2(u) = n2(v).

In a similar way, we can also fill the interior of

Su(u, v, w) with a curve passing from every points

on c̃2(u) to points on c1(u) (Figure 17). Noting

that w is changing from 0 to 1 − u, we get the

following lemma.

Theorem 4.6 A triangular pre-interpolant

Su(u, v, w) can be set as follows:

Su(u, v, w) = gv[c̃2(u), ñ2(u), c1(u),n1(u)](
w

1− u
).

16

p1
p0 (u,1-u,0)

(u,0,1-u)

p2

Figure 17: Pre-interpolant construction

Proof:

1. The boundary interpolation is verified as fol-
lows:

Su(0, 1− w, w) = gv[c̃2(0), ñ2(0), c1(0),n1(0)](w)

= gv[p1,n1,p2,n2](w) = c0(w),

Su(u, 0, 1− u) = gv[c̃2(u), ñ2(u), c1(u),n1(u)](1)

= c1(u),

Su(1− v, v, 0) = gv[c̃2(u), ñ2(u), c1(u),n1(u)](0)

= c̃2(u) = c2(v).

2. The interpolation of the normal fields at v =
0, w = 0 is verified as follows: From

∂Su
∂v

(u, v, w)

= −1
1−u

g′v[c̃2(u), ñ2(u), c1(u),n1(u)](w
1−u

),

∂Su
∂u

(u, v, w) = gv[c̃′2(u), ñ′2(u), c′1(u),n′1(u)](w
1−u

)

+ v
(1−u)

∂Su
∂v

(u, v, w),

when v = 0, we get

∂Su(u,0,1−u)
∂v · n1(u)

= −1
1−ug′v[c̃2(u), ñ2(u), c1(u),n1(u)](1) · n1(u)

= 0,

∂Su(u,0,1−u)
∂u · n1(u)

= (gv[c̃′2(u), ñ′2(u), c′1(u),n′1(u)](1)+
∂Su(u,0,1−u)

∂v) · n1(u)

= c′1(u) · n1(u) = 0.

when w = 0, we get

∂Su(1−v,v,0)
∂v

· n2(v)

= −1
1−u

g′v[c̃2(u), ñ2(u), c1(u),n1(u)](0) · n2(v)

= −1
1−u

g′v[c̃2(u), ñ2(u), c1(u),n1(u)](0) · ñ2(u)

= 0,

∂Su(1−v,v,0)
∂u

· n2(v)

= (gv[c̃′2(u), ñ′2(u), c′1(u),n′1(u)](0)+

∂Su(1−v,v,0)
∂v

) · n2(v)

= gv[c̃′2(u), ñ′2(u), c′1(u),n′1(u)](0) · ñ2(u)

= c̃′2(u) · ñ2(u)

= 0.

We can also give the following triangular pre-

interpolant from the control curves gc(u).

c02

c01

c0(w)

b3(u)

b2(u)

b1(u)

b0(u)
p2

p1

p0

Figure 18: Pre-

interpolant

p2

p1

p0

Figure 19: Triangu-

lar interpolant

Theorem 4.7 Suppose c00, c01, c02 and c03 are

the control points of c0(w) (Figure 18.) and let

b0(u) = c̃2(u) = gv[p1,n1,p0,n0](u),

b1(u) = gc[p1,n1,p0,n0, c01,p0](u),

b3(u) = c1(u) = gc[p2,n2,p0,n0](u),

b2(u) = gc[p2,n2,p0,n0, c02,p0](u).

A triangular pre-interpolant Su can be defined as

follows

Su(u, v, w) =
3∑

i=0

bi(u)B3
i (

w

1− u
).

Proof:

1. The proof of the boundary interpolation can

be done similarly to that of Theorem 4.6.

2. The interpolation of the normal fields at v =
0, w = 0 is verified as follows: From

∂Su

∂v
(u, v, w) =

−3

1− u

2X

i=0

∆bi(u)B2
i (

w

1− u
),

∂Su

∂u
(u, v, w) =

3X

i=0

b′i(u)B3
i (

w

1− u
) +

v

1− u

∂Su

∂v
(u, v, w),

17

when v = 0, it can be verified that

∂Su(u,0,1−u)
∂v

· n1(u)

= −3
1−u

(b3(u)− b2(u)) · n1(u)

= 3
1−u

((gc − gv) · gn)[p2,n2,p0,n0](u)

= 0,

∂Su(u,0,1−u)
∂u

· n1(u)

= b′3(u) · n1(u) = c′1(u) · n1(u) = 0;

when w = 0, it can be verified that

∂Su(1−v,v,0)
∂v · n2(v)

= −3
1−u(b̃1(u)− b0(u)) · ñ2(u)

= −3
1−u((gc − gv) · gn)[p1,n1,p0,n0](u)

= 0
∂Su(1−v,v,0)

∂u · n2(v)

= b′0(u) · n2(v) = c′2(v) · n2(v) = 0.

Theorem 4.8 limu→1−,v→0+,w→0+ Su(u, v, w) =

p0.

Proof: We first have that when 0 < u, v, w < 1,

0 < B3
i (

w

1− u
) < 1,

3∑
i=1

B3
i (

w

1− u
) = 1.

Since bi(1) = p0, it is evident that

limu→1− bi(u) = p0. For any given ε > 0,

there exists a δ > 0 such that ‖bi(u) − p0‖ < ε

when 1− δ < u < 1 for 0 ≤ i ≤ 3. Then

‖Su(u, v, w)− p0‖
= ‖∑3

i=0 bi(u)B3
i (

w
1−u

)− p0‖
= ‖∑3

i=0(bi(u)− p0)B
3
i (

w
1−u

)‖
≤ ∑3

i=0(‖(bi(u)− p0)‖B3
i (

w
1−u

))

< ε
∑3

i=0 B3
i (

w
1−u

)

= ε.

Constructing Sv(u, v, w) and Sw(u, v, w) in a

similar way as Theorem 4.7, we can now give a

triangular interpolant.

Theorem 4.9 Figure 19. A triangular inter-

polant SI can be written as their convex combina-

tion as follows:

SI = uSu + vSv + wSw

Proof: Since SI is a convex combination of Su,Sv

and Sw and all of them interpolate the three

boundary curves, so does SI.

When u = 0, since both Sv and Sw interpolate

the normal field n0(w) along c0(w) and

∂SI(0, v, w)
∂u

= Su + u
∂Su

∂u
+ v

∂Sv

∂u
− Sw + w

∂Sw

∂u

= v
∂Sv

∂u
+ w

∂Sw

∂u
,

∂SI(0, v, w)
∂v

= Sv + u
∂Su

∂v
+ v

∂Sv

∂v
− Sw + w

∂Sw

∂v

= v
∂Sv

∂v
+ w

∂Sw

∂v
,

it can be seen that SI interpolates the normal field

n0(w) along c0(w).

The case of w = 0 and v = 0 can be proved in a

similar way. .

5 DISM: A Dynamic Inter-

polation Solid Modelling

Software Package

As compared with previous interpolation algo-

rithms, our algorithm has the following characters.

1. Fast generation of interpolation surfaces.

Since a complete symbolic and parametric

representation is given for the interpolation

surface, each point on the surface can then be

18

generated in a fast way. In fact, any surface

point can be generated with the de Casteljau

algorithm of Bézier curves.

2. A general modelling method. In the method,

a surface can be generated dynamically from

a moving Bézier curve under some additional

geometric constraints. This general method

can be used to construct an interpolation sur-

face, to convert a polygonal model into a para-

metric surface, to deform a 3D object, to form

blends between objects and to fill N-sided

hole. Some details of these applications will

be illustrated in our later works.

3. Fine shape: Both the boundary curves and

the control curves are constructed with mini-

mum bending energy, so an interpolation sur-

face with fine shape can be given. A fine shape

will be definitely ensured if we take the pre-

interpolant from Theorem 4.2 or 4.6.

4. Applicable for arbitrary scattered data over a

triangle or quadrilateral decomposition.

5. Easy shape control: Since a free parameter

ω with obvious geometrical meaning is left in

gv(t), we can control the shape of the bound-

ary curves and therefore the final interpola-

tion surface easily.

Based on the algorithm, a 3D dynamic interpo-

lation solid modelling software package DIMS is

implemented (Figure 20), which can be used to

generate and manipulate 3D objects in an interac-

tive way. It has the following features.

Figure 20: Software interface

1. 3D points and vectors at points could be gen-

erated in an interactive way from dialog in-

puts or mouse inputs.

2. After a triangle or quadrilateral decomposi-

tion is given by the user, the interpolation

surface can be generated automatically. We

plan to add the triangle or quadrilateral de-

composition algorithms later.

3. When the user changes the points or the vec-

tors, the interpolation surfaces will change lo-

cally and continuously. With this feature we

can change one object to another object by

changing certain points, which provides a con-

venient tools for object deformation.

Figure 21: One point changed

Figure 21 shows different shapes of one object

with two controlling points being changed.

Figure 22 shows the deformation process from

a sphere to a dumbbell by dragging several

19

Figure 22: From sphere to dumbbell

Figure 23: Objects from a sphere

points and normal vectors on them. Fig-

ure 23 shows several shapes obtained from a

sphere by dragging the controlling points on

the sphere.

4. When the weight ω in gv is changed, the

resulted surface will change correspondingly.

Figure 24 shows four different results with

ω = 0.15, 0.3, 0.4 and 0.5 respectively for

a teapot model. In fact, we can change the

weight ω for one boundary curve locally and

keep the weights of the others unchanged,

which can then be used to generate a bump

for an object.

Figure 24: Different weights

5. Since the interpolants can be generated in real

time, we may moving control points continu-

ously along certain loci and generate the in-

terpolation surfaces for each position of the

moving points. In this way, we may generate

the effect of animation.

6. With this algorithm, we also provide a method

to compress objects. Specifically, when we

want to save a free-form object, all we need

to save is the scattered data with its corre-

sponding triangulation. The object can then

be generated from the interpolation algorithm

in a fast way.

Two more complicated examples generated by

our programm are shown below. Figure 25 shows

the triangulation, the boundary curves, and the fi-

nal result for the sampling points from a teapot

model with 695 vertices. Figures 26 shows the re-

sult of the sampling points from a human head

model with 1528 vertices.

Figure 25: Teapot

20

Figure 26: Human head

6 Conclusion

The purpose of this paper is to introduce a tool

to generate and to manipulate solid models in an

interactive way. In order to achieve real time defor-

mation, we introduce a triangular interpolant and

a quadrilateral interpolant with a general method

to generate surface with sweeping curves. These

interplants are in complete symbolic parametric

forms, leading to a fast computation. Another idea

of the dynamic tool: free dragging of points and

other geometric objects, comes from dynamic ge-

ometry [26, 27]. By dragging the control points

on a solid object, we may deform one object to

another in a continuous way.

The method to construct the interpolants in-

troduced in this paper could have other applica-

tions such as to convert a polygonal model into

a parametric surface, to deform a 3D object, to

form blends between objects and to fill N-sided

hole. Further study on this problem should be

done. For instance, we may ask how to obtain in-

terpolants with lower degree. In our case, since

the quadrilateral interpolant involves less

patches and a degenerated bicubic surface

will not appear in its construction, a quadri-

lateral decomposition is preferred to a tri-

angle one.

References

[1] I. Amidror, Scattered Data Interpolation

Methods for Electronic Imaging Systems: a

survey. Journal of Electronic Imaging, 11(2),

157-176, 2002.

[2] H. Biermann, A. Levin and D. Zorin, Piece-

wise Smooth Subdivision Surface with Nor-

mal Control. Proceedings of ACM SIG-

GRAPH 2000, 113-120, 2000.

[3] G. Li and H. Li, Vertex and Normal Inter-

polation of Surfaces Based on Control Net

Generated by Mixed Subdivisions, Journal of

Computer-Aided Design & Computer Graph-

ics 13, 6, 537-544, 2001.

[4] A. Nasri, Surface Interpolation on Irregular

Networks with Normal Conditions. Computer

Aided Geometric Design, 8, 89-96, 1991.

[5] D. Zorin, P. Schröder and W. Sweldens, In-

terpolating Subdivision for Meshes with Ar-

bitrary Topology. Proceedings of ACM SIG-

GRAPH 1996, 189-192, 1996.

[6] W. Dahmen, Smooth Piecewise Quadric

Surfaces. Mathematical Methods in Com-

21

puter Aided Geometirc Design, T. Lyche

and L. Schumaker (editors), Academic Press,

Boston, 181-193, 1989.

[7] C. Bajaj, J. Chen and G. Xu, Modelling with

Cubic A-Patches. ACM Trans. on Graphics

14, 2, 103-133, 1995.

[8] W. Dahmen and T. Thamm-Schaar, Cubi-

coids: Modelling and Visualization. Computer

Aided Geometric Design 10, 89-108, 1993.

[9] B. Guo, Quadric and Cubic Bitetrahedral

Patches. The Visual Computer, 11, 253-262,

1995.

[10] W. Wang and K. Qin, On the existence

and computation of rational quartic spherical

curves for Hermite Interpolation. The Visual

Computer, vol. 16, no. 3/4, (2000), 187-196.

[11] G. Xu, H. Huang and C. Bajaj, C1 Mod-

elling with A-patches from Rational Trivari-

ate Functions. Computer Aided Geometric

Design 18, 221-243, 2001.

[12] X. Gao and M. Li, Construct Piecewise

Hermite Interpolation Surface with Blending

Methods. Proceedings of Geometric Modeling

and Processing: Theory and Applications, H.

Suzuki and R. Martin (eds), IEEE Computer

Society, 53-59, 2002.

[13] G. Turk and J. O’ Brien, Modelling with Im-

plicit Surfaces that Interpolate. ACM Trans-

actions on Graphics, 21(4), 855-873, 2002.

[14] H. Qin and Ying He, Surface Reconstruction

with Triangular B-splines, Proceedings of Ge-

ometric Modeling and Processing, 13-15 April,

2004, Beijing.

[15] P. Alfeld, Scattered Data Interpolation in

Three or More Variables. Mathematical Meth-

ods in Computer Aided Geometric Design,

T. Lyche, L. Schumaker (editors), Academic

Press, 1-35, 1989.

[16] M. Lounsberry, S. Mann and T. DeRose,

Parametric Surface Interpolation. IEEE

Comp. Graphics Appl., 12, 45-52, 1992.

[17] S. Mann, C. Loop, M. Lounsberry, D. Meyers,

J. Painter, T. DeRose and K. Sloan, A Survey

of Parametric Scattered Data Fitting Using

Triangular Interpolants. Curve and Surface

Design, H. Hagen (editor), Springer-Verlag,

1992.

[18] G. Herron, Smooth Closed Surfaces with

Discrete Triangular Interpolants. Computer

Aided Geometric Design, 2, 297-306, 1985.

[19] G. Nielson, A Transfiniite, Visually Continu-

ous, Triangular Interpolant. Geometric Mod-

elling: Algorithms and New Trends, G. Farin

(editor), 235-246, SIAM, Philadelphia, 1987.

[20] C. Loop, Smooth Spline Surfaces over Irregu-

lar Meshes. Proceedings of ACM SIGGRAPH

1994, 303-309, 1994.

[21] H. Pottmann, S. Leopoldseder and M. Hofer,

Approximation with Active B-spline Curve

22

and Surfaces, Proceedings of Pacific Graphics

2002,9-11 October 2002, Beijing.

[22] G. Fasshauer and L. Schumaker, Minimal En-

ergy Surfaces Using Parametric Splines, Com-

puter Aided Geometric Design, 13, 45-79,

1996.

[23] C. Bajaj and G. Xu, Spline Approximation of

Real Algebraic Surfaces. Journal of Symbolic

Computation, 23, 315-333, 1997.

[24] A. Wiltsche, C1- and C2-continuous Spline-

interpolation of a Regular Triangular Net of

Points. Computers & Graphics, Artical in

Press.

[25] G. Farin, Curves and Surfaces for Computer

Aided Geometric Design: A Practical Guide,

4th edition, Academic Press, 1997.

[26] J.M. Laborde, GABRI Geometry II, Texas In-

struments, Dallas, 1994.

[27] X. Gao, J.Z. Zhang and S.C. Chou, Geome-

try Expert (in Chinese), Nine Chapter Pub.,

Taipai, Taiwan, 1998.

23

