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Abstract. An algorithm is proposed to determine the topology of an
implicit real algebraic surface in R3. The algorithm consists of three steps:
surface projection, projection curve topology determination and surface
patches composition. The algorithm provides a curvilinear wireframe of
the surface and the surface patches of the surface determined by the
curvilinear wireframe, which have the same topology as the surface. Most
of the surface patches are curvilinear polygons. Some examples are used
to show that our algorithm is effective.

1 Introduction

An implicit real algebraic surface (or curve, or hypersurface) S in Ru with degree
d is defined by f(x1, x2, · · · , xu) = 0 where f(x1, x2, · · · , xu) ∈ Q[x1, x2, · · ·, xu]
is a polynomial of degree d, and R and Q are the fields of real and rational
numbers, respectively. Determining the topology of an algebraic surface is not
only an interesting mathematical problem, but also a key issue in computer
graphics and CAGD [4, 5, 20, 22].

When u = 1, S is a set of discrete points on a line. When u = 2, S is a
plane algebraic curve. Topology determination for plane algebraic curves has
been studied thoroughly [1, 3, 6, 7, 9, 12, 13, 14, 16, 21]. Algorithms to determine
the topology of spatial algebraic curves are also proposed in the following papers
[4, 6, 9, 10]. When u = 3, the problem is more complex. The topology of S with
d = 2 is well known. They are quadratic surfaces. But when d ≥ 3, there are
only some special surfaces whose topology can be efficiently determined [11, 12].
Fortuna et al presented an algorithm to determine the topology of non-singular,
orientable real algebraic surfaces in the projective space [8]. Morse theory is used
to represent an implicit algebraic surface by polyhedra in theory by Hart et al [15,
20, 22]. Theoretically, the CAD (Cylindrical Algebraic Decomposition) method
proposed by Collins can be used to provide information about the topology
of an algebraic surface [2, 3]. But in the general case, there exist no complete
algorithms to determine the topology of an implicit algebraic surface.

In this paper, we present an algorithm to determine the topology of S for u =
3, d ≥ 3. In the rest of this paper, we replace f(x1, x2, x3) = 0 with f(x, y, z) = 0.

R. Martin, H. Bez, M. Sabin (Eds.): Mathematics of Surfaces 2005, LNCS 3604, pp. 121–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



122 J.-S. Cheng, X.-S. Gao, and M. Li

We obtain a curvilinear wireframe of the surface. The surface patches of the
surface are determined by the curvilinear wireframe. Most of the surface patches
are curvilinear polygons. The wireframe and the surface patches have the same
topology as the surface. If needed, we can easily modify our algorithm to ensure
that all the surface patches are curvilinear triangles.

The basic idea of our algorithm is as follows. We first ensure that the surface
is a normal surface by performing certain transformations. We then project S :
f(x, y, z) = 0 to a proper plane and obtain a plane algebraic curve C: g(x, y) = 0.
Thirdly, we analyze the topology of C in a finite box, by finding its singularities,
dividing the curve into plane curve segments, and dividing the box in the plane
into cells. At the fourth step, we divide the spatial curve defined by {f(x, y, z) =
0, g(x, y) = 0} into spatial curve segments and compute the number of surface
patches connected with each spatial curve segment. This is the key step of the
algorithm. In order to determine the number of curve segments connected with
a singular point and the number of surface patches connected with a curve
segment, we introduced certain minimal circles and find these numbers from the
information of the intersections of the circle with the surface. The main steps
of the algorithm are similar to Collins’ CAD method. But, the purpose of our
algorithm is different from that of the CAD method, and many aspects of the
algorithm are totally new. Main parts of the algorithm are implemented in Maple
and nontrivial examples are used to show that the algorithm is effective.

This paper is divided into six sections. The aim of the second section is to
obtain projection curve of the surface. The third section presents an algorithm to
determine the topology of the plane projection curve. Space curve segmentation,
surface patch composition and the surface topology representation are discussed
in the fourth section. The fifth section presents the main algorithm to obtain
the topology of a given algebraic surface. Then we draw a conclusion in the last
section.

2 Projection Curve of a Surface

In the following, we always assume S is an algebraic surface: f(x, y, z) = 0,
where f(x, y, z) ∈ Q[x, y, z]. Suppose that

f(x, y, z) = f1(x, y, z)m1 · · · fn(x, y, z)mn , (1)

where fi(x, y, z) ∈ Q[x, y, z](i = 1, · · · , n) are irreducible polynomials. If a com-
ponent contains variable z only, it represents some parallel planes. We can
delete this kind of components before we compute the projection curve and
add these planes into the topology structure and compute the intersection curve
with other components after we finish the analysis. So we suppose that there
does not exist this kind of components. It is clear that f(x, y, z) = 0 and
f1(x, y, z) · · · fn(x, y, z) = 0 have the same topology. We still denote

f(x, y, z) = f1(x, y, z) · · · fn(x, y, z). (2)
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Let

g(x, y) = Res(f(x, y, z),
∂f(x, y, z)

∂z
, z), (3)

where Res(f(x, y, z), ∂f(x,y,z)
∂z , z) is the Sylvester resultant [26] of f(x, y, z) and

∂f(x,y,z)
∂z with respect to z. Suppose g(x, y) = g1(x, y)n1 · · · gm(x, y)nm , where

gi(x, y)(i = 1, · · · ,m) are irreducible polynomials. Still denote

g(x, y) = g1(x, y) · · · gm(x, y). (4)

Then the projection curve of the surface S : f(x, y, z) = 0 is a plane curve defined
by g(x, y) = 0. In this section, we will prove some properties of the projection
curve of a given surface S.

In order to determine the topology of S effectively and efficiently, we assume
that

C1. There exist no points P0(x0, y0) satisfying f(x0, y0, z) ≡ 0.
C2.

∑
i+j+k=d ai,j,k ·xi ·yj ·zk has no factors like T (x, y), where d is the total

degree of f(x, y, z), ai,j,k is the coefficient of the term xi · yj · zk in f(x, y, z).
T (x, y) is a bivariate polynomial.

A normal surface is an algebraic surface defined by a square-free polynomial
(the multiple of the irreducible factors of the polynomial is no more than 1)
satisfying conditions C1 and C2.

If condition C1 does not hold, represent f(x, y, z) as follows.

f(x, y, z) = ck(x, y) · zk + ck−1(x, y) · zk−1 + · · · + c0(x, y), (5)

where ci(x, y) ∈ Q[x, y](i = 1, · · · , k) and ck(x, y) is a nonzero polynomial. Then,
the variety {c0(x, y) = 0, c1(x, y) = 0, · · · , ck(x, y) = 0} has real roots, and the
line {x = x0, y = y0} is on the surface S. In this case, it is difficult to analyze
the topology of the surface near this line. Here is an example.

f(x, y, z) = x2 · y2 + z2 · y2 + x2 · z2 − 7/2 · x · y · z. (6)

We have f(0, 0, z) ≡ 0 and {x = 0, y = 0} is a line on the surface.
Represent f(x, y, z) as follows.

f(x, y, z) = Ld(x, y, z) + Ld−1(x, y, z) + · · · + L0, (7)

where Lt(x, y, z) =
∑

i+j+k=t ai,j,k · xi · yj · zk(t = 0, · · · , d). It is clear that
all the asymptotic surfaces are contained in the surface defined by the equation
Ld(x, y, z) = 0. If condition C2 does not hold, there exists an asymptotic surface
of f(x, y, z) = 0 of the form T (x, y) = 0, which is vertical to XY-plane. For
example, the surface f(x, y, z) = x · y · z − 1 = 0 does not satisfy condition C2,
because x = 0, y = 0 are asymptotic planes of it.

Lemma 1. If a surface is not normal, we can find a coordinate transformation
like (8) such that the surface obtained with this transformation has the same
topology as the original one and is normal.⎛

⎝
x
y
z

⎞
⎠ =

⎛
⎝

1 0 a
0 1 b
0 0 1

⎞
⎠

⎛
⎝

X
Y
Z

⎞
⎠ , (8)
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where (X,Y,Z) and (x, y, z) are points in the new and old coordinate systems,
respectively, and a, b are rational numbers.

Proof. Taking the coordinate transformation as (8) and representing f(x, y, z)
as (7), we have

F (X,Y,Z)
= f(X + a · Z, Y + b · Z,Z)
= Ld(X + a · Z, Y + b · Z,Z) + Ld−1(X + a · Z, Y + b · Z,Z) + · · · + L0

= Ld(a, b, 1) · Zd + Cd−1(X,Y )Zd−1 + · · · + C0,

where Ci(X,Y ), i = 0, 1, · · · , d − 1 is the coefficients of F (X,Y,Z) in variable
Z. We can find rational numbers a0, b0, such that, Ld(a0, b0, 1) �= 0. Denote the
corresponding F (X,Y,Z) as F0(X,Y,Z). We will show that F0 = 0 is a normal
surface. Since L(a0, b0, 1) is a nonzero constant, F0 = 0 satisfies condition C1. It
is clear that all the asymptotic surface of F0 = 0 are hidden in Ld(X +a0 ·Z, Y +
b0 ·Z,Z) = 0. There is a term Ld(a, b, 1) ·Zd in Ld(X + a0 ·Z, Y + b0 ·Z,Z), so
there are no factors like T (X,Y ) hidden in it. F0 = 0 satisfies condition C2. So
F0 = 0 is a normal surface. ��

For the non-normal surface f(x, y, z) = x·y ·z−1 = 0, we choose a = 1, b = 1.
The new surface is F (X,Y,Z) = Z3 + (Y + X) · Z2 + X · Y · Z − 1 = 0. It is a
normal surface.

For the surface defined by (6), we can choose (a, b) = (1, 1). The new surface
is F (X,Y,Z) = 3·Z4+4·Y ·Z3+4·X ·Z3−7/2·Z3+2·Y 2 ·Z2+2·X2 ·Z2−7/2·Y ·
Z2−7/2·X ·Z2+4·X ·Y ·Z2−7/2·X ·Y ·Z+2·X ·Y 2 ·Z+2·X2 ·Y ·Z+X2 ·Y 2 = 0.
It is a normal surface.

Following the discussion above, we can derive the following algorithm to
obtain a normal projection curve (the projection curve of a normal surface) for
a given irreducible surface f(x, y, z) = 0.

Algorithm 1. The input is an irreducible polynomial f(x, y, z). The output is
a normal projection curve g(x, y) = 0 of the surface f(x, y, z) = 0.

1. Represent f(x, y, z) as (5) and check whether the variety {ck(x, y), ck−1(x, y),
· · · , c0(x, y)} has a real solution. If it has, go to 3.

2. Represent f(x, y, z) as (7) and check whether Ld(x, y, z) has a factor which
does not involve variable z. If it does not have this kind of factors, go to 4.

3. Apply the transformation (8), choose a rational number pair (a, b) such that
(a, b) is not a point on curve Ld(x, y, 1) = 0, where Ld(x, y, z) is the sum
of terms whose degrees equal the total degree of f(x, y, z), and compute the
corresponding new surface F (X,Y,Z) = 0 in the new coordinate system.
Still denote F (X,Y,Z) as f(x, y, z).

4. Compute g(x, y) = Res(f(x, y, z), ∂f(x,y,z)
∂z , z).

5. If g(x, y) is irreducible, return g(x, y) = 0. Else, factor it as g(x, y) =
g1(x, y)m1 ·g2(x, y)m2 ·· · ··gt(x, y)mt , where gi(x, y) is irreducible. Still denote
g(x, y) = g1(x, y) · g2(x, y) · · · · · gt(x, y) and return g(x, y) = 0.
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When f(x, y, z) is reducible as (2), the problem is more complex. We can use
Algorithm 1 to compute its projection curve, but the computation takes much
time. We can check whether each component fi(x, y, z) is a normal surface. If
all components are normal surfaces, we can compute the projection curve of
f(x, y, z) = 0 as follows.

Lemma 2. Let S : f(x, y, z) = 0, where f(x, y, z) is defined by (2), n ≥ 2. The
projection curve of S is the curve defined by the square-free part of the following
polynomial.

g(x, y) =
∏

1≤i≤j≤n

Ti,j(x, y), (9)

where Ti,i(x, y) = Res(fi(x, y, z), ∂fi(x,y,z)
∂z , z), Ti,j(x, y) = Res(fi(x, y, z), fj(x,

y, z), z), i, j = 1, · · · , n, i �= j.

Proof. By (3) and the property of resultant [25], we can derive that

Res(f(x, y, z),
∂f(x, y, z)

∂z
, z))

= Res(
∏

1≤j≤n

fj(x, y, z),
n∑

i=1

f(x, y, z)

fi(x, y, z)
· ∂fi(x, y, z)

∂z
, z)

=
∏

1≤j≤n

Res(fj(x, y, z),
n∑

i=1

f(x, y, z)

fi(x, y, z)
· ∂fi(x, y, z)

∂z
, z)

= c ·
∏

1≤j≤n

Res(fj(x, y, z),
f(x, y, z)

fj(x, y, z)
· ∂fj(x, y, z)

∂z
, z)

= c ·
∏

1≤j≤n

(Res(fj(x, y, z),
∂fj(x, y, z)

∂z
, z) ·

∏
1≤i≤n,i�=j

Res(fi(x, y, z), fj(x, y, z), z))

= c ·
∏

1≤i≤n

Ti,i(x, y) ·
∏

1≤i,j≤n,i�=j

Ti,j(x, y),

where c is a constant. It is clear that g(x, y) is a factor of Res(f(x, y, z), ∂f(x,y,z)
∂z

, z)

and any irreducible factor of Res(f(x, y, z), ∂f(x,y,z)
∂z

, z) is contained in g(x, y).
So the projection curve of S is defined by the square-free polynomial whose
components are all the irreducible components of g(x, y). So the lemma holds.

��
If there exists any component which is not a normal surface, take a trans-

formation of coordinate system as (8) to insure that all components are normal
surfaces in the new coordinate system. Then compute the projection curve of the
new surface with the method mentioned above. For any surface f(x, y, z) = 0,
we present the following algorithm to compute its projection curve.

Algorithm 2. The input is a polynomial f(x, y, z). The output is a square-
free polynomial g(x, y), where C: g(x, y) = 0 is the normal projection curve of
f(x, y, z).
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Fig. 1. An irreducible surface

1. Factor f(x, y, z). Suppose f(x, y, z) has a representation as (1), still denote
f(x, y, z) as (2).

2. If n = 1, compute the projection curve of S by Algorithm 1 and return it.
3. Else (n > 1), do

(a) Check whether fi(x, y, z) is a normal surface for all i. If there exists a
component which is not a normal surface, it is clear that we can find a
transformation as (8), such that each component is a normal surface in
the new coordinate system. Still denote the surface as f(x, y, z) = 0.

(b) Compute the projection curve of f(x, y, z) by Lemma 2 and return its
square-free part.

Example 1. Let us consider the following surface.

f(x, y, z) = (y2 + z2 − x2 + 1/2 · x3 − 4)2 − 16 · x2 + 8 · x3 = 0. (10)

It is irreducible and normal. As is shown in Fig. . We can compute its projection
curve by Algorithm 1.

Res(f(x, y, z),
∂f(x, y, z)

∂z
, z) = 4096 · g1(x, y)4 · g2(x, y)2 · g3(x, y) · g4(x, y),

1
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where g1(x, y) = x, g2(x, y) = x − 2, g3(x, y) = 2 · y2 + 8 · y − 2 · x2 + x3 + 8,
g4(x, y) = 2 · y2 − 8 · y − 2 · x2 + x3 + 8. So we can derive its projection curve as
follows.

g(x, y) = g1(x, y) · g2(x, y) · g3(x, y) · g4(x, y). (11)

3 Projection Curve Topology Determination

In this section, we will present algorithms to determine the topology of the nor-
mal projection curve obtained in the preceding section. Such algorithms already
exist([14, 16]). But their outputs do not satisfy the requirement of our algorithm
for the surface topology determination. Also, our algorithm gives an intrinsic
representation for the topology of the given curve.

3.1 Notations

Definition 1. A point P0(x0, y0) is said to be a singularity of an implicit al-
gebraic curve C: g(x, y) = 0 if g(x0, y0) = gx(x0, y0) = gy(x0, y0) = 0, where
g(x, y) is square-free [23].

Let C : g(x, y) = 0 be the normal projection curve. We will consider the part of
C inside a bounding box

B = {(x, y)|xl ≤ x ≤ xr, yb ≤ y ≤ yu}
to be determined later. The intersection points of C and the boundary of B are
called boundary points of C. The part of C inside B (including the boundaries of
B) is denoted as CB.

Definition 2. A plane algebraic curve segment in a finite box is said to be a
complete curve segment(CCS) if it is one of the following cases:

1. An isolated singularity Pi of C : g(x, y) = 0, denoted as CPi
.

2. A continuous curve segment from a singularity or a boundary point to a
singularity or a boundary point, such that there is no singularities of C on
the curve segment between the two endpoints. Denote Ck

i,j to be the k-th
curve segment from the singularity Pi to the singularity Pj; or Ci,j: the
curve segment from the singularity Pi to the boundary point Bj; or B−1

i,j : the
curve segment from the boundary point Bi to the boundary point Bj. Note
that Ck

i,j = Ck
j,i, B−1

i,j = B−1
j,i , Ci,j �= Cj,i.

3. A closed continuous curve without singularities, denoted as CQ, where Q is
a point on the curve.

Definition 3. A cell of a plane curve in a bounding box is a closed region whose
boundaries are CCSes or part of the boundaries of the box.

Definition 4. A curve segment sequence of a singularity of a plane curve is an
ordered sequence of CCSes originating from the singularity. They are listed from
left-up in the counter-clockwise order.
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Definition 5. The topological representation of a plane algebraic curve within
a bounding box consists of the following information.

A bounding box: B = {(x, y)|xl ≤ x ≤ xr, yb ≤ y ≤ yu};
Boundary points: {Bi(xBi

, yBi
)(bi)[Bi,j1 , Cj,i( or B−1

i,j ), Bi,j2 ], i ∈ IB};
Singularities: {Pi(xPi

, yPi
)(ri)[ Curve segment sequence of Pi], i ∈ IS};

CCSes: {Ck
i,j(Cc1 , Cc2), c1, c2 ∈ IC};

Cells: {Ck[ The ordered boundaries of the cell], k ∈ IC}.
Here (xBi

, yBi
), (xPi

, yPi
) are coordinates of points Bi, Pi, respectively; IS , IB , IC

are indexes of singularities, boundary points and cells, respectively; ri(bi) is the
discriminate distance (a positive number which will be defined below) of singu-
larity Pi(Bi); Cc1 , Cc2 are two cells beside the CCS Ck

i,j, here Ck
i,j can also be

CCS B−1
i,j , Ci,j , CPi

or CQ.

3.2 Topology Determination

If the normal projection curve C : g(x, y) = 0 of S : f(x, y, z) = 0 is irreducible,
then we use the following plane curve topology determination algorithm to com-
pute the topology of C, which is based on the algorithms in [9, 16].

Algorithm 3 (Irreducible algebraic curve topology determination). The
input is an irreducible plane algebraic curve C : g(x, y) = 0. The output is the
topological representation of CB.

1. Compute the discriminant D(y) =
∑m

i=0 diy
i of g(x, y) with respect to x

and let yu be a rational number which is larger than max{|d0|,··· ,|dm−1|}
|dm| .

Then by Cauchy’s inequality, all the roots of D(y) = 0 are in the interval
(yb = −yu, yu).

2. Compute the discriminant D̄(x) of g(x, y) with respect to y and determine its
real roots: α1 < . . . < αs−1. Select two rational numbers xl and xr such that
xl < α1 and xr > αs−1 and let α0 = xl, αs = xr. Now we have determined
the bounding box B. Then all the finite singularities of the curve are in the
box.

3. Compute the real intersection points of g(x, y) = 0 and the lines x− α0 = 0
and x − αs = 0 in the interval [yb, yu] and compute the real intersection
points of g(x, y) = 0 and the lines y − yb = 0 and y − yu = 0 in the interval
(xl, xr). The four vertexes of the box are (xl, yu), (xl, yb), (xr, yu), (xr, yb).
Denote these points in order as Bi, i ∈ IB . Insure that the four endpoints
are not on C. If Bi is between its two adjacent boundary points Bi1 , Bi2 , then
the discriminate distance of Bi is bi = min{‖ BiBi1 ‖, ‖ BiBi2 ‖}. Compute
the discriminate distance for each Bi (not including the vertexes).

4. For every αi(i = 1, · · · , s − 1), do
(a) Compute within B the real roots of g(αi, y), βi,0 < . . . < βi,ti

.
(b) For each point Pi,j = (αi, βi,j), do

i. Count the numbers of branches of C in B to the left and to the right.
Denote Pi,j as Pl(l ∈ IS) in order if gx(αi, βi,j) = gy(αi, βi,j) = 0,
label rl = min{αi−αi−1, αi+1−αi, βi,j−βi,j−1, βi,j+1−βi,j}(βi,−1 =
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2,0P

5C

3C
4C

1C

0C

2C
5B

4B3B2B

1B 0B

0P

Fig. 2. Determine the topology of an

irreducible curve

2C
1C 0C

0
0,0C

0,0C

0,3C

5B

4B3B2B

1B 0B

0P

Fig. 3. The final topological figure of

an irreducible plane curve

yb, βi,ti+1 = yu) and record an ordered sequence of branches origi-
nating from the singularity from left-up to right-up in the counter-
clockwise order, transform the branches to corresponding CCSes in
the end.

ii. Label each cell in Di = (αi−1, αi)× (yb, yu); combine the two closed
regions sharing the line segment Pi−1,jPi−1,j+1 and relabel the closed
region. If any closed region is a cell, denote it as Ck(k ∈ IC) in order.

iii. Label each curve segment in the interval Di and record the cells
besides it, combine two curve segments(one in Di−1, the other in
Di) if their unique common point Pi,j is non-singular; relabel the
new curve segment and record the cell(s) besides it. Now, we can
obtain a set of CCSes and the corresponding cell(s) besides them.

5. Return corresponding information.

Example 2. Let us consider a component of the projection curve C defined by
(11). Its equation is g3(x, y) = 2 · y2 − 8 · y − 2 · x2 + x3 + 8 (Fig. ).

Following Algorithm 3, we can obtain a finite box B = [−5, 5] × [−5, 5]. The
boundary points are B0, B3 and four endpoints of the box are B1, B2, B4, B5.
We can obtain b0 = 5 + a1, b3 = 5 + a2 (where a1, a2 will be defined in Example
3). And α0 = −5, α1 = 0, α2 = 2, α3 = 5.

Solve g(α1, y) = 0. We obtain one real root y1,0 = 0. The point P0 = (α1, y1,0)
is a singularity of the curve. There are two branches originating from it on
the left side and right side, respectively. The discriminate distance for P0 is 2
(min{α1−α0, α2−α1, yu−y1,0, y1,0−yd}). The closed region in D1 are C0, C1, C2

as shown in Fig. 2. We can check that C1 is a cell.
Solving g(α2, y) = 0, we obtain one point P2,0. It is not a singularity. There

are two branches originating from it on its left side and no branches originating
from it on its right side. There is no boundary points in D2. Therefore we can

2
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connect the branches in order in D2. And the two curve segments from P0 to
P2,0 compose a CCS of the given curve. Denote it as C0

0,0. The closed region in
D2 are C3, C4, C5. C0 and C3, C2 and C5 share common line segments, and we
can combine them as C0, C2, respectively. Since there is no boundary point on
the boundary of D3, and there is no branches originating from P2,0 in D3, the
curve has no points in D3. C0, C2 share common line segments with D3 and we
can combine them as C0. In the end, we obtain the decomposition of the curve
in Fig. 3.

The outputs about the topological representation of the curve are as follows.
The bounding box: B = {(x, y)| − 5 ≤ x ≤ 5,−5 ≤ y ≤ 5}.
Boundary points: {B0(a1, 5)(5 + a1)[B0,1, C0,0, B0,5], B1(−5, 5), B2(−5,−5),
B3(a2,−5)(5 + a2)[B3,2, C0,3, B3,4], B4(5,−5), B5(5, 5)}.
Singularities: {P0(0, 2)(2)[C0,0, C0,3, C

0
0,0, C

0
0,0]}.

CCSes: {C0,0(C0, C1), C0,3(C0, C1), C0
0,0(C0, C2)}.

Cells: {C0[B3,4, B4,5, B5,0, C0,0, C
0
0,0, C0,3], C1[B0,1, B1,2, B2,3, C0,3, C0,0],

C2[C0
0,0]}.

The following algorithm is to determine the topology of any square-free algebraic
curve.

Algorithm 4 (Plane curve topology determination). The input is C :
g(x, y) = 0. The output is the same as Algorithm 3.
1. If g(x, y) is irreducible, determine the topology of C by Algorithm 3.
2. Else (g(x, y) is reducible), suppose g(x, y) has a representation as (4).

(a) Compute a bounding box for each component gi(x, y)(i = 1, · · · ,m);
Compute the intersection points of any two components gi(x, y), gj(x, y)
(i, j = 1, · · · ,m, i �= j). Choose a box which contains all boxes and
intersection points as the bounding box of g(x, y) = 0. Compute the
boundary points of g(x, y) = 0. Compute the discriminate distance for
each boundary points.

(b) Separate the vertical lines which have a form as A·x+B = 0 from g(x, y)
if they exist. Of course, we can denote them as Lt(x, y) = x−ct = 0 (t =
0, · · · , L). Denote all the remainder components of g(x, y) as g0(x, y).
Suppose it is g0(x, y) = g1(x, y) · · · gs(x, y), where s = m − L.

(c) Solve Res(gi(x, y), ∂gi(x,y)
∂y , y) = 0 and Res(gi(x, y), gj(x, y), y) = 0 for

all i, j = 0, · · · ,mL(i �= j). Put their roots and ct(t = 0, · · · , L) together
and rewrite them as αk(k = 1, · · · , l−1, αk < αk+1). Let α0 = xl, αl = xr

be rational numbers such that α0 ≤ α1, αl ≥ αl−1.
(d) For every αk, to g0(x, y), we can do the same work as Algorithm 3 in

step 4. Note that when αk = ct(t = 0, · · · , L), all the real intersection
points of g0(x, y) = 0 and the line x − αk = 0 in the interval (yb, yu),
denoted as Pk,j(j = 0, · · · , tk), are singularities of g(x, y) = 0, and line
segments Pk,jPk,j+1(j = 0, · · · , tk − 1),Bk,0Pk,0, Pk,tk

Bk,1 are CCSes of
g(x, y) = 0, where Bk,0, Bk,1 are intersection points of the line x−αk = 0
and the boundary of the box. We obtain the topology information of
g(x, y) = 0 in the end.

3. Return the corresponding topological information of C.
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Fig. 5. The topology of a curve

Remark. If C has no critical points (the points which satisfy g(x, y)=gy(x, y)=0)
on C, we can solve g(0, y) = 0. If g(0, y) = 0 has no real roots, solve f(0, 0, z) = 0.
The surface S has no real parts if it has no real roots. And S is topologically
equivalent to n parallel planes if the equation f(0, 0, z) = 0 has n real roots. If
g(0, y) = 0 has real roots y0, · · · , ym, let the finite box be B = [−1, 1] × [y0 −
1, ym + 1], we can obtain the boundary points Bi(i = 0, · · · , 2m + 1) and CCSes
B−1

0,2m+1, B
−1
1,2m, · · · , B−1

m,m+1 of C.

Example 3. Consider the projection curve defined by (11) as an example of a
reducible curve.

Following Algorithm 4, here g1(x, y) and g2(x, y) are vertical lines, we remove
them from g(x, y).

Res(g3(x, y), ∂g3(x,y)
∂y , y) = 16 · x3 − 32 · x2 = 0, whose real roots are 2, 0.

Res(g4(x, y), ∂g4(x,y)
∂y , y) = 16 · x3 − 32 · x2 = 0, whose real roots are also 2,

0. Res(g3(x, y), g4(x, y), y) = −2 · x2 + x3 + 8 = 0, whose real root is x3,4 =
− 1

3 · 3
√

100 + 12 · √69 − 4

3· 3
√

100+12·√69
+ 2

3 . So we have α0 = −5, α1 = x3,4,

α2 = 0, α3 = 2, α4 = 5.
Then we can obtain the bounding box B = [−5, 5]× [−5, 5] and the boundary

points: B0(2, 5), B1(0, 5), B2(a1, 5), B3(a2, 5), B6(a2,−5), B7(a1,−5), B8(0,−5),
B9(2,−5). Add the endpoints B4(−5, 5), B5(−5,−5), B10(5,−5), B11(5, 5) in
the boundary point list. And b0 = 2, b1 = 2, b2 = a1 − a2, b3 = 5 + a2, b6 =

5+a2, b7 = a1−a2, b8 = 2, b9 = 2. Here a1 = −
3
√

235+9·√681
3 − 4

3· 3
√

235+9·√681
+ 2

3 ,

a2 = −
3
√

1315+21·√3921
3 − 4

3· 3
√

1315+21·√3921
+ 2

3 .
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Solving g3(α1, y) · g4(α1, y) = 0, we can get y = −4, 0, 4. They correspond to
P1,0, P1,1, P1,2 in Fig. 4. We can easily find that only point P1,1 is a singularity.
We rename it as P0. Its corresponding positive number is min{4−0, 0−(−4), α2−
α1, α1 − α0} = −α1. We can show that the curve segments in D1 = [α0, α1] ×
[yb, yu] are P̃1,0B7, P̃1,1B6, P̃1,1B3, P̃1,2B2. And C0,6 = P̃1,1B6, C0,3 = P̃1,1B3 are
CCSes of the given curve. The regions in the interval D1 are C6, C1, C0, C2, C9.
Their boundaries are as shown in Fig. 4. And only C0 is a cell. Its boundaries
are C0,3, B3,4, B4,5, B5,6, C0,6.

Solve g3(α2, y) · g4(α2, y) = 0. Its real roots are −2, 2. We can find two sin-
gularities P2,0, P2,1, whose corresponding positive numbers are −α1. We rename
them as P1, P2. In the interval D2 = [α1, α2]×[yb, yu], the curve segments and re-
gions are shown in Fig. 4. We can combine curve segment P̃1,0B7 in D1 and curve
segment ˜P2,0P1,0 in D2 as a CCS C1,7 = P̃2,0B7 and combine regions C3, C6 as
C3. Combine C1, C7 as C1. Combine C2, C8 as C2, and combine C5, C9 as C5.
Since x − α2 is g1(x, y), the line segments P2,0B6, P2,0P2,1, P2,1B1 are CCSes
C1,6, C

0
1,2, C2,1 of g(x, y) = 0. C4 is a cell. The real roots of g3(α3, y)·g4(α3, y) = 0

are -2, 2. And x−α3 is g2(x, y). Following Algorithm 4, we can derive the topol-
ogy of g(x, y) = 0 as Fig. 5. The positive numbers of the five singularities are
−α1,−α1,−α1, 2 and 2 respectively.

The output are as follows.
The bounding box: B = [−5, 5] × [−5, 5].
Boundary points: {B0(2, 5)(2)[B0,1, C4,0, B0,11], B1(0, 5)(2)[B1,2, C2,1, B1,0],

B2(a1, 5)(a1 − a2)[B2,3, C2,2, B2,1], B3(a2, 5)(5 + a2)[B3,4, C0,3, B3,2], B4(−5, 5),
B5(−5,−5), B6(a2,−5)(5 + a2)[B6,5, B6,7, C0,6], B7(a1,−5)(a1 − a2)[B7,6, B7,8,
C1,7], B8(0,−5)(2)[B8,7, B8,9, C3,9], B9(2,−5)(2)[B8,9, B8,10, C3,9], B10(5,−5),
B11(5, 5)}. B4, B5, B10, B11 are vertexes of the box.

Singularities: {P0(α1, 0)(−α1)[C0,3, C0,6, C
0
0,1, C

0
0,2], P1(0,−2)(−α1)[C0

0,1,
C1,7, C1,8, C

0
1,3, C

1
1,3, C

0
1,2], P2(0, 2)(−α1)[C2,2, C

0
0,2, C

0
1,2, C

0
2,4, C

1
2,4, C2,1],

P3(2,−2)(2)[C1
1,3, C

0
1,3, C3,9, C

0
3,4], P4(2, 2)(2)[C1

2,4, C
0
2,4, C

0
3,4, C4,0]}.

CCSes: {C0,6(C1, C0), C0,3(C0, C2), C1,7(C1, C3), C0
0,2(C2, C4), C0

0,1(C4, C1),
C2,2(C2, C5),C1,8(C3, C6),C0

1,2(C4, C8),C2,1(C5, C10), C0
1,3(C6, C7), C1

1,3(C7, C8),
C0

2,4(C8, C9), C1
2,4(C9, C10), C3,9(C6, C11), C0

3,4(C8, C11), C4,0(C10, C11)}.
Cells: {C0[B3,4, B4,5, B5,6, C0,6, C0,3], C1[B6,7, C1,7, C

0
0,1, C0,6], C2[C0,3, C

0
0,2,

C2,2, B2,3], C3[B7,8, C1,8, C1,7], C4[C0
0,2, C

0
0,1, C

0
1,2], C5[C2,2, C2,1, B1,2], C6[B8,9,

C3,9, C
0
1,3, C1,8], C7[C0

1,3, C
1
1,3], C8[C1

1,3, C
0
3,4, C

0
2,4, C

0
1,2], C9[C0

2,4, C
1
2,4], C10[C1

2,4,
C4,0, B0,1, C2,1], C11[B9,10, B10,11, B11,0, C4,0, C

0
3,4, C3,9]}.

4 Space Curve Segmentation and Surface Patch
Composition

In this section, we will determine the position of each space curve segment and
each surface patch of S. The algorithm works as follows:

First, we need to determine the points of S on each line lifted from a boundary
point Bi(x̄i, ȳi)(i ∈ IB) or a singularity Pi(xi, yi)(i ∈ IS) of C: g(x, y) = 0.



Determining the Topology of Real Algebraic Surfaces 133

These points are the endpoints of the space curve segments. Second, we need to
determine how many space curve segments originating from each endpoint. Then
we can determine all space curve segments of S. Third, we need to compute the
number of surface patches originating from each space curve segment. Finally, we
can determine the surface patches in each region from bottom to top by pointing
out their boundaries.

4.1 Notations

In order to describe our algorithm clearly, we present the following definitions.
Let us assume that we have already obtained a topological representation for
the projection curve of S.

Definition 6. A complete cylindrical patch (CCP) SCk
i,j is a cylindrical patch

lifted from a CCS Ck
i,j obtained in section 3. Then SCk

i,j = Ck
i,j × [−N,N ],

where N is a positive number that will be defined later. SCi,j, SBi,j, SB−1
i,j ,

SCPi
, SCQi

can be defined similarly.

Definition 7. A cell body is a body lifted from a cell obtained in section 3. We
can denote it as CCi, where Ci is a cell of the projection curve. Two cell bodies
share a CCP as a boundary. When a CCS is an isolated singularity, there is only
one cell body beside the CCP corresponding to the CCS.

Definition 8. A complete space curve segment (CSCS) of S: f(x, y, z) = 0 is a
space curve segment which is an intersection of a CCP and S. We denote it as
Ck,l

i,j (C−1,l
i,j , Bl

i,j , B
−1,l
i,j , Vi,l, C

l
Qi

) if its corresponding CCS in the plane is
Ck

i,j(Ci,j , Bi,j , B
−1
i,j , CPi

, CQi
), where l is an index starting from bottom to up.

Definition 9. A complete surface patch (CSP) of S: f(x, y, z) = 0 is a surface
patch which is part of S, and its boundaries are several CSCSes. We can denote
it as Sl

i if it is the l-th surface patch in cell body CCi from bottom to up.

Definition 10. A critical curve of a surface is a space curve satisfying
f(x, y, z) = fz(x, y, z) = 0, where (x, y, z) is any point on the curve.

Definition 11. A singular curve of a surface is a space curve, which satisfies
f(x, y, z) = fx(x, y, z) = fy(x, y, z) = fz(x, y, z) = 0 for any point (x, y, z) on
the curve.

Let S be the surface, C the projection curve of S, B the bounding box of C, CB
part of the projection curve within B, Vi,j(or V 0

i,j)(j = 0, · · · , ti) the points of S
on the line lifted from a singularity Pi (or a boundary point Bi)

Definition 12. The topological information of a surface include the following
information:

The point lists: {Vi,j (or V 0
i,j)(j = 0, · · · , ti, i ∈ IS (or i ∈ IB))}, which are

corresponding to certain singularities (or boundary points) of CB. For example,
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Bi[V 0
i,0, · · · , V 0

i,ti
], Pj [Vj,0, · · · , Vj,tj

] are point lists corresponding to a boundary
point and a singularity.

The CSCS lists: {The CSCS list corresponding to each line segment Bi,j

and each CCS of CB}. For instance, Bi,j [B0
i,j(V

0
i,0, V

0
j,0), · · · , Bp

i,j(V
0
i,i1

, V 0
j,j1

)],
Ck

i,j [C
k,0
i,j (Vi,0, Vj,0), · · · , Ck,l

i,j (Vi,i2 , Vj,j2)], where the two points for each CSCS
are their endpoints.

The CSP lists: {The CSPs (including their boundary CSCSes) correspond-
ing to each cell}. For instance, Ci(n){S0

i [The ordered boundary CSCSes of the
surface patch], · · · , Sn−1

i [The ordered boundary CSCSes of the surface patch]}.
The CSCSes lists form a curvilinear wireframe of the surface. The boundaries

of the CSPs in the CSP lists are the CSCSes in the CSCS lists. So they are
determined by the curvilinear wireframe.

4.2 Basic Theorems and Algorithms

Theorem 1. Let S : f(x, y, z) = 0 be a normal surface, C : g(x, y) = 0 the
projection curve computed by Algorithm 2, B the finite box obtained in Algorithm
4 for g(x, y). For any point (x0, y0) inside B, the real roots of f(x0, y0, z) = 0
are finite, that is, there exists a positive number N such that for any real root z0

of f(x0, y0, z) = 0, −N < z0 < N .

Proof. It is clear that there is no surface patch of S which is approaching to
infinity inside B. This is guaranteed by conditions C1 and C2. So the theorem
holds. ��

In fact, we can compute the number N . We can compute the maximum
and minimum of the z-coordinate inside B (including its boundary). We use
equation (10) as an example. As we know, B = [xl, xr]×[yb, yf ] = [−5, 5]×[−5, 5].
Compute the maximum and minimum in z-direction of f(x, y, z) = 0 for (x, y) ∈
[−5, 5] × [−5, 5]. We can use Wu’s finite kernel method([24]). The number with
the largest absolute value is 2 + 5/2 · √14. Choose N to be a rational number
which is larger than the absolute value of the computed number. Here we can
choose N = 12.

Theorem 2. All the notations are with the same meaning as Theorem 1. S and
the part of S in the cube B = B × [−N,N ] have the same topology.

Proof. Denote the part of S inside the cube B as SB. Let B1 be a cube containing
B strictly. We will show that the part of S inside B and the part of S inside B1

have the same topology. This is because, the part of S between B and B1 can be
seen as surfaces (or lines) lifted from the intersection of S and B without adding
new intersections. Topologically, they are the same with cylindrical surfaces.
Hence, adding these surfaces does not change the topology of SB. So the theorem
holds. ��

We further assume that there is no singularities on the CCP lifted from any
CCS of C. In fact, we can find a new coordinate system such that the isolated
singularities and the intersection points of the critical curves of the surface are
projected onto the singularities of the projection curve.
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Definition 13. Given a univariate function P (x), let P0(x) = P (x), P1(x) =
P ′(x) and define the Sturm functions by

Pi(x) = −(Pi−2(x) − Pi−1(x)[
Pi−2(x)
Pi−1(x)

]),

where [Pi−2(x)
Pi−1(x) ] is a polynomial quotient. The chain is terminated when Pn(x) is

a constant. Then P0(x), P1(x), · · · , Pn(x) is the Sturm functions (more details
can be found in [17, 26]) of P (x).

Definition 14. Sign-changing number of Sturm functions of P (x) at point x =
a is the number of sign changes on the Sturm functions of P (x) evaluated at
point x = a. That is, the number of sign changes of P0(a), P1(a), · · · , Pn(a).

The following algorithm is to isolate the real roots of a polynomial T (x) ∈ R[x].
The difference between the algorithm and general algorithm is that the isolated
points of our algorithm is not a root of T (x). For more detail, one can see
[17, 18, 26].

Algorithm 5. (Real Root-Isolating) The input are Sturm functions of a polyno-
mial T (x) and an interval (a, b)(where a, b are rational numbers,T (a) �= 0, T (b) �=
0, T (x) ∈ R[x]). The output is a series of ordered rational numbers in (a, b), such
that there is a real root of T (x) = 0 between each pair of adjacent numbers.

1. Compute the sign-changing numbers V (a), V (b) of the Sturm functions of
T (x) at x = a, x = b, respectively. V (a) − V (b) is the number of real roots
between (a, b) by Sturm theorem. Let the rational number set be Ns :=
{a, b}. If V (a) − V (b) = 0, return ∅. If V (a) − V (b) = 1, return Ns.

2. When V (a) − V (b) > 1, if T (a+b
2 ) �= 0, let c = a+b

2 , else choose another
rational number c near a+b

2 in (a, b) insuring that T (c) �= 0.
(a) If V (a)−V (c) > 1 and V (c)−V (b) > 1, Ns := Ns

⋃{c}; let i. a = a, b = c,
respectively, ii. a = c, b = b, respectively, go to 2.

(b) Else if V (a) − V (c) = 1 and V (c) − V (b) > 1, Ns := Ns

⋃{c}; let
a = c, b = b, respectively, go to 2.

(c) Else if V (a) − V (c) > 1 and V (c) − V (b) = 1, Ns := Ns

⋃{c}; let
a = a, b = c, respectively, go to 2.

(d) Else if V (a) − V (c) = 0 and V (c) − V (b) > 1, let a = c, b = b, go to 2.
(e) Else if V (a) − V (c) > 1 and V (c) − V (b) = 0, let a = a, b = c, go to 2.

3. Return the ordered rational numbers Ns.

Example 4. Continuing from Example 3, we want to isolate the points on the
line lifted from P3(2,−2) in Fig. 5. Here the input are f(2,−2, z) = z4 and
(a, b) = (−12, 12). The equation has only one real root z = 0. We can obtain
its isolated points W3,0(2,−2,−12),W3,1(2,−2, 12). There is a point V3,0 of the
surface on the line segment ˜W3,0W3,1 between W3,0,W3,1.
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Given a point, a positive number and a plane curve (the point can be on the
curve or not on the curve), the following algorithm is to find the circle whose
center is the point, which is the minimal circle among the circles tangent to the
curve.

Algorithm 6. The inputs are a plane algebraic curve T (x, y) = 0, a positive
number r and a point P0(x0, y0). The output is a positive number which is equal
to half of the minimal of the extremum distance rmin from P0 to the curve
T (x, y) = 0 and r.

1. Let L(x, y, λ) = (x − x0)2 + (y − y0)2 + λT (x, y).
2. Eliminating x and λ from {2(x−x0)+λTx(x, y), 2(y−y0)+λTy(x, y), T (x, y)}

in the order {λ � x � y}, we can obtained a univariate polynomial P (y).
3. Solve P (y) in the interval (y0−r, y0+r). If there is no real root in the interval,

return r/2; Else, get corresponding xi,j for each real root yi in the interval
(x0 − r, x0 + r). If there is no real roots in the interval, return r/2; else, let
R = mini,j

√
(x − xi,j)2 + (y0 − yi), if R ≤ r, return R/2, else, return r/2.

Remark. The step 2 of this algorithm is based on a method of Wu to find
extremal values. One can find more details in [24].

Example 5. Continuing from Example 4, let g(x, y) be the curve defined by (11),
P3 = (2,−2). The input is g(x, y) and the positive number 2 corresponding to
P3. With this algorithm, we can find that the minimal positive extremum from
P3 to g(x, y) is 2. So the output is 1.

4.3 Compute the Space Curve Segments

To each singularity Pi(xi, yi)(i ∈ IS) (or boundary point Bi(xi, yi)(i ∈ IB))of
g(x, y) = 0, there is a sequence of CCSes Ck1

i,j1
, · · · , Ckt

i,jt
originating from it. Here

the CCSes in the sequence can also be Ci,j or boundary line segments Bi,j (for Bi

only). Lifting them up, we can obtain a sequence of CCPs SCk1
i,j1

, · · · , SCkt
i,jt

. The
point Pi(xi, yi) corresponds to a vertical line {x = xi, y = yi}. There are some
points Vi,j(j = 0, · · · , si) of S on the line. There are some CSCSes Ckl,m

i,jl
(m =

0, · · · , ti,j,k) on each CCP SCkl
i,jl

(l = 1, 2, · · · , t) originating from Vi,j . We need
to determine the CSCSes originating from each Vi,j on each CCP. The following
algorithm is to do this.

Algorithm 7. The inputs are a real algebraic surface S : f(x, y, z) = 0, its pro-
jection curve C : g(x, y) = 0, a point Pi(xi, yi) on C, the discriminate distance
ri of Pi and a sequence of CCSes {Ck1

i,j1
, · · · , Ckt

i,jt
} originating from Pi. The

outputs are a sequence of points Vi,j(j = 0, · · · , si) of S on the line lifted from
Pi, a set of sequences of CSCSes {Ckl,m

i,jl
,m = 0, · · · , ti,j,k} for each Ckl

i,jl
. Note

that we only know one endpoint of the CSCSes. But we can compute the corre-
sponding information for the other endpoint by this algorithm, then the CSCS is
determined.
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1. Isolate the real roots of f(xi, yi, z) = 0 by Algorithm 5 and obtain the
isolating values zi,0, zi,1, · · · , zi,si

. Denote (xi, yi, zi,j) as Wi,j . There exists
a point of S, Vi,j , which is on the line {x = xi, y = yi} and between points
Wi,j and Wi,j+1. For an instance, please see Fig. 6.

2. From ri, Pi, g(x, y) = 0, we can obtain a positive number Ri by Algorithm
6. It is clear that the number of intersection points of the circle (x − xi)2 +
(y− yi)2 = r2(0 < r ≤ Ri) and C is equal to the number of the CCSes in the
input sequence.

3. In plane z = zi,j(j = 0, 1, · · · , si), from ri, Pi, f(x, y, zi,j) = 0, we can ob-
tain a positive number ri,j by Algorithm 6. Still denote the minimal among
{Ri, ri,0, · · · , ri,si

} as ri(ri ≤ Ri).
4. Compute the real intersection points of the equations {(x−xi)2 +(y−yi)2 =

r2
i , g(x, y) = 0}. We can determine a point P kl

i,jl
on Ckl

i,jl
, l = 1, · · · , t. Denote

them as {P k1
i,j1

, P k2
i,j2

, · · · , P kt
i,jt

}.
5. For each P kl

i,jl
(xi,jl,kl

, yi,jl,kl
)(l = 1, · · · , t), compute the number of real roots

of f(xi,jl,kl
, yi,jl,kl

, z) = 0 in the interval (zi,j , zi,j+1)(j = 0, 1, · · · , si − 1). It
is the number of CSCSes originating from Vi,j on the CCP SCkl

i,jl
. So we can

determine the CSCSes on each CCP: one of their two endpoints is on the
line lifted from Pi. Their order on the CCPs is from bottom to top. Denote
them as Ckl,m

i,jl
. If there does not exist a real root in the interval (zi,0, zi,si

),
delete the CCS from the topology information and combine the cells divided
by it.

6. Return the corresponding information.

Remark. In Algorithm 7, if the singularity is an isolated point of C, we need not
to compute it by this algorithm. If the input sequence of CCSes may include CCS
like Ci,j (the endpoints are a singularity and a boundary point), the algorithm
is also valid. The CSCSes on the CCP SCi,j are determined by computing Pi

with this algorithm. For a boundary point, the algorithm is also valid. Since the
numbers of CSCSes originating from the points of S on the line lifted from Pi, Pj

are the same, we can determine all the CSCSes on SCk
i,j after we compute Pi, Pj

for the surface with this algorithm.

Theorem 3. Algorithm 7 provides the correct output.

Proof. We will prove that we can obtain what we want from Algorithm 7. From
step 2 and step 3, it is clear that there is no other critical curves of S in the
cylindrical body D = {(x, y, z)|(x − xi)2 + (y − yi)2 ≤ r2

i ,−N < z < N},
which can be projected onto the XY-plane except {Ck1

i,j1
, · · · , Ckt

i,jt
}. And the

discs {(x, y, zi,j)|(x − xi)2 + (y − yi)2 ≤ r2
i }(j = 0, · · · , si) isolate the CSCSes

originating from each V i, j(j = 0, · · · , si − 1) on each CCP SCkl
i,jl

(l = 1, · · · , t)
in D. Then we will prove that the number of CSCSes originating from Vi,j(j =
0, · · · , si−1) on the CCP SCkl

i,jl
(l = 1, · · · , t) is equal to the number of real roots

of equation f(xi,jl,kl
, yi,jl,kl

, z) = 0 in the interval (zi,j , zi,j+1)(j = 0, 1, · · · , si −
1). Since the total number of CSCSes originating from Vi,j for each j is equal
to the number of CSCSes originating from the points of S on the line lifted
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1
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1,1
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3P

1P

3P

1P

Fig. 6. Compute P3 with Algorithm 7

form Pjl
, each CSCS originating from Vi,j should connect one point on the line

lifted from Pjl
. So if the conclusion is not right, there must exist a point on

one CSCS originating from Vi,j in D, which is also a point on a critical curve
of S. Projecting the critical curve onto the XY-plane, it must share a singular
point with CCS Ckl

i,jl
. This is in contradiction with the given condition. So the

algorithm is valid. ��

Example 6. Continuing from Example 5, let us consider P3 with this algorithm.
The inputs are f(x, y, z) = 0, g(x, y) = 0, P3(2,−2)(2)[C1

1,3, C
0
1,3, C3,9, C

0
3,4]. We

have known that there is only one real point V3,0 of the surface on the line lifted
from P3 and R3 equals 1. Its isolated points are W3,0(2,−2,−12),W3,1(2,−2, 12)
(Fig. 6). In step 3, we can obtain 1 by Algorithm 6 if the input is 2 and
f(x, y,−12)(or f(x, y, 12)). So r3 = 1. In order to illustrate our method simply,
we choose the discriminate distance as a number less than 1:

√
13/4. Solving

the equations {(x − 2)2 + (y + 2)2 − 13/16 = 0, g(x, y) = 0}, we can obtain the
following points: (3

2 ,− 5
4 ), (3

2 ,− 11
4 ), (2,−2 −

√
13
4 ) and (2,−2 +

√
13
4 ). Compar-

ing their coordinates and the curve segment sequence of P3, we can find that
they correspond to the CCSes C1

1,3, C
0
1,3, C3,9, C

0
3,4, respectively. Denote them as

P 1
1,3, P

0
1,3, P

−1
3,9 , P 0

3,4. Then compute the number of real roots of f( 3
2 ,− 5

4 , z) = 0,

f( 3
2 ,− 11

4 , z) = 0, f(2,−2−
√

13
4 , z) = 0 and f(2,−2 +

√
13
4 , z) = 0 in the interval

(−12, 12). They are 3, 1, 0, 2, respectively. This is shown in the left part of Fig.
6. That means the numbers of the CSCSes originating from V3,0 on the CCPs
SC1

1,3, SC0
1,3, SC3,9, SC0

3,4 are 3, 1, 0, 2, respectively. There is no real points of
the surface on the line lifted from the point P−1

3,9 which is on the CCS C3,9. So we
need to delete the boundary point B9, CCS C3,9 from the topology information of
C : g(x, y) = 0 and combine the cells C6 and C11 as C6. V3,0 is one endpoint of the
CSCSes C1,0

1,3 , C1,1
1,3 , C1,2

1,3 , C0,0
1,3 , C0,0

3,4 , C0,1
3,4 . As is shown in the right part of Fig. 6.
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Fig. 7. Topology determination of the projection curve of a surface

The output is {V3,0{C1
1,3(P

1
1,3(

3
2 ,− 5

4 ))[C1,0
1,3 , C1,1

1,3 , C1,2
1,3 ], C0

1,3(P
0
1,3(

3
2 ,− 11

4 ))[C0,0
1,3 ],

C0
3,4(P

0
3,4(2,−2 −

√
13
4 ))[C0,0

3,4 , C0,1
3,4 ]}}.

After computing all boundary points and singularities of C by Algorithm 7,
we can determine the position of all CSCSes of S. And the projection curve of
the surface is simplified as Fig. 7.

4.4 Compute the Surface Patches

Now, we need to compute the numbers of CSPs originating from each CSCS in
the two cell bodies connected with the CCP which the CSCS lies on respectively.
The following algorithm is for the purpose.

Algorithm 8. The inputs are a real algebraic surface S : f(x, y, z) = 0, the
projection curve C : g(x, y) = 0 of S, a CCS Ck

i,j (or Ci,j) on C and two cells
beside it: Ck1 , Ck2 , a non-singular point on the CCS: P k

i,j (or P−1
i,j )(x0, y0) and

a sequence of CSCSes {Ck,m
i,j ,m = 0, · · · , li,j,k − 1} on the CCP lifted from the

CCS. The output are two ordered number lists of CSPs originating from each
CSCS of the sequence in the two cell bodies from bottom to top respectively.

1. Compute the tangent line of C at point P k
i,j ; compute the vertical line of the

tangent line at P k
i,j and parameterize it as (ta + x0, tb + y0).

2. Compute the real roots of the equation g(ta + x0, tb + y0) = 0. Record the
root whose absolute value is the minimal among the nonzero real root(s). If
the root does not exist, denote r as a constant, such as 1, else denote r as
the absolute value of the root with minimal absolute value.
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3. Isolate the real roots of f(x0, y0, z) = 0 by Algorithm 5, to obtain a sequence
of rational number {z0, z1, · · · , zli,j,k

}.
4. Compute the real roots of the equation f(ta + x0, tb + y0, zi) = 0 for each

i = 0, 1, · · · , li,j,k. Record the root whose absolute value is the minimal
among the real root(s). Denote the absolute value of the root as ri. Let
R = min{r, r0, r1, · · · , rli,j,k

}/2.
5. Compute the number of real roots of f(Ra+x0, Rb+y0, z) = 0 and f(−Ra+

x0,−Rb + y0, z) = 0 in the interval (zm, zm+1)(m = 0, · · · , li,j,k − 1) respec-
tively. They are the numbers of CSPs originating from the CSCS Ck,m

i,j in
the cell bodies CCk1 , CCk2 .

6. Return the corresponding information.

Remark. If the CCS is an isolated singularity of C, we need only to lift the point
up, isolate the real roots of S on the line obtained in Algorithm 5, and find a line
segment (its direction is parallel to XY-plane) which passes through the point
as Algorithm 8. Then we can easily determine the number of CSPs originating
from the points of S on the lifted line. If the CCS is a closed curve, Q is a point
on the CCS, we can also easily compute the number of CSPs originating from
the CSCSes on the CCP lifted from the CCS like Algorithm 8.

Theorem 4. Algorithm 8 provides the correct output.

Proof. The proof for this algorithm is same to the one for Algorithm 7 and is
much easier. In this algorithm, we just replace the discs in Algorithm 7 with line
segments. ��

Example 7. Continuing from Example 6, we will compute the number of CSPs
originating from the CSCSes on the CCP SC0,3 as an example for this algo-
rithm. The inputs are g(x, y) = 0, f(x, y, z) = 0, C0,3(C0, C2)[C

−1,0
0,3 (V0,0, V

0
3,0),

C−1,1
0,3 (V0,1, V

0
3,1), C−1,2

0,3 (V0,2, V
0
3,2)], P−1

0,3 (−2,−2 + 2 · √2). In step 1, we can ob-
tain the line (5 · t− 2, 2 · √2 · t− 2 + 2 · √2). Isolating f(−2,−2 + 2 · √2, z) = 0,
we can obtain −12,−2, 5, 12. We can find that R is a positive number more than
1
20 . In order to simplify our illustration, here we choose 1

20 as R. Computing the
number of real roots of f( 1

20a + x0,
1
20b + y0, z) = 0 and f(− 1

20a + x0,− 1
20b +

y0, z) = 0 in the interval (−12,−2), (−2, 5), (5, 12), respectively, we can obtain
{1, 0, 1}, {1, 2, 1}. It means that there are 1, 0, 1(1,2,1) CSP(s) originating from
the CSCSes C−1,0

0,3 , C−1,1
0,3 , C−1,2

0,3 in the cell body lifted from C2(C0), respectively.
As is shown in Fig. 8. The output is C0,3(C

−1,0
0,3 , C−1,1

0,3 , C−1,2
0,3 ){C0[1, 2, 1], C2[1, 0, 1]}.

Computing all the CSCSes of S with Algorithm 8, we can determine all the
CSCSes and the number of CSPs originating from each CSCS in the two cell
bodies beside it. Then we can form the CSPs of S.

For each cell body lifted from a cell of C, because the number of CSPs origi-
nating from all the CSCSes on each CCPs of the cell body is the same, we can
determine each CSP in the cell body by pointing out its boundaries: CSCSes.

The following algorithm is to determine the CSPs of S by the topology in-
formation of C obtained by Algorithm 4.
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–1,1
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–1,2

Fig. 8. Compute the CCS C0,3 with Algorithm 8

Algorithm 9. The inputs are S: f(x, y, z) = 0 and the output of Algorithm 4.
The output is the topological information of S.

1. Compute all the singularities and boundary points of C by Algorithm 7;
determine all the CSCSes on each CCP lifted from the CCS of C.

2. Compute the number of CSPs originating from each CSCS in two cell bodies
beside it by Algorithm 8.

3. For each cell body lifted from a cell of C, since the number of CSPs originating
from the CSCSes on each CCP of the cell body is the same, we can determine
each CSP by point out its boundaries–CSCSes.

4. Return the corresponding information of S.

Example 8. Continuing from Example 7, we have determined all the CSPs of
S. The set of CSPs of S obtained by Algorithm 9 has the same topology as
S : f(x, y, z) = 0.

For the same example above, the outputs of the surface with Algorithm 9 are
as follows. The figure of this surface is in Fig. 2. The figure of its real projection
curve is as Fig. 7.

Points:
{{B2[V 0

2,0], B3[V 0
3,0, V

0
3,1, V

0
3,2], B4[V 0

4,0, V
0
4,1, V

0
4,2, V

0
4,3], B5[V 0

5,0, V
0
5,1, V

0
5,2, V

0
5,3],
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B6[V 0
6,0, V

0
6,1, V

0
6,2], B7[V 0

7,0], B10[ ], B11[ ]}, {P0[V0,0, V0,1, V0,2], P1[V1,0], P2[V2,0],
P3[V3,0], P4[V4,0]}}.

For example, B3[V 0
3,0, V

0
3,1, V

0
3,2] means that there are three points of S on the

line lifted from B3. They are V 0
3,0, V

0
3,1, V

0
3,2, from bottom to top, respectively.

CSCSes:
{{B2,3[B0

2,3(V
0
2,0, V

0
3,0), B

1
2,3(V

0
2,0, V

0
3,2)],

B3,4[B0
3,4(V

0
3,0, V

0
4,0), B

1
3,4(V

0
3,1, V

0
4,1), B

2
3,4(V

1
3,1, V

2
4,2), B

3
3,4(V

0
3,2, V

3
4,3)],

B4,5[B0
4,5(V

0
4,0, V

0
5,0), B

1
4,5(V

0
4,1, V

0
5,1), B

2
4,5(V

0
4,2, V

0
5,2), B

3
4,5(V

0
4,3, V

3
5,3)],

B5,6[B0
5,6(V

0
5,0, V

0
6,0), B

1
5,6(V

0
5,1, V

0
6,1), B

2
5,6(V

0
5,2, V

0
6,1), B

3
5,6(V

0
5,3, V

2
6,2)],

B6,7[B0
6,7(V

0
6,0, V

0
7,0), B

1
6,7(V

0
6,2, V

0
7,0)],

B7,10[ ],
B10,11[ ],
B11,2[ ]},
{C0,3[C

−1,0
0,3 (V0,0, V

0
3,0), C

−1,1
0,3 (V0,1, V

0
3,1), C

−1,2
0,3 (V0,2, V

0
3,2)],

C0
0,1[C

0,0
0,1 (V0,0, V1,0), C

0,1
0,1 (V0,1, V1,0), C

0,2
0,1 (V0,2, V1,0)],

C0,6[C
−1,0
0,6 (V0,0, V

0
6,0), C

−1,1
0,6 (V0,1, V

0
6,1), C

−1,2
0,6 (V0,2, V

0
6,2)],

C0
0,2[C

0,0
0,2 (V0,0, V2,0), C

0,1
0,2 (V0,1, V2,0), C

0,2
0,2 (V0,2, V2,0)],

C1,7[C
−1,0
1,7 (V1,0, V

0
7,0)],

C2,2[C
−1,0
2,2 (V2,0, V

0
2,0)],

C0
1,2[C

0,0
1,2 (V1,0, V2,0), C

0,1
1,2 (V1,0, V2,0)],

C0
3,4[C

0,0
3,4 (V3,0, V4,0), C

0,1
3,4 (V3,0, V4,0)],

C0
1,3[C

0,0
1,3 (V1,0, V3,0)],

C1
1,3[C

1,0
1,3 (V1,0, V3,0), C

1,1
1,3 (V1,0, V3,0), C

1,2
1,3 (V1,0, V3,0)],

C0
2,4[C

0,0
2,4 (V2,0, V4,0)],

C1
2,4[C

1,0
2,4 (V2,0, V4,0), C

1,1
2,4 (V2,0, V4,0), C

1,2
2,4 (V2,0, V4,0)]}}.

For example, B2,3[B0
2,3(V

0
2,0, V

0
3,0), B

1
2,3(V

0
2,0, V

0
3,2)] means that there are two

CSCSes on the CCP SB2,3: B1
2,3, whose endpoints are V 0

2,0, V
0
3,0 and B1

2,3, whose
endpoints are V 0

2,0, V
0
3,2.

CSPs:
{C0(4){S0

0 [C−1,0
0,3 , B0

3,4, B
0
4,5, B

0
5,6, C

−1,0
0,6 ], S1

0 [C−1,1
0,3 , B1

3,4, B
1
4,5, B

1
5,6, C

−1,1
0,6 ],

S2
0 [C−1,1

0,3 , B2
3,4, B

2
4,5, B

2
5,6, C

−1,1
0,6 ], S3

0 [C−1,2
0,3 , B3

3,4, B
3
4,5, B

3
5,6, C

−1,2
0,6 ]},

C1(2){S0
1 [C−1,0

0,6 , B0
6,7, C

−1,0
1,7 , C0,0

0,1 ], S1
1 [C−1,2

0,6 , B1
6,7, C

−1,0
1,7 , C0,2

0,1 ]},
C2(2){S0

2 [C−1,0
0,3 , C0,0

0,2 , C−1,0
2,2 , B0

2,3], S1
2 [C−1,2

0,3 , C0,2
0,2 , C−1,0

2,2 , B1
2,3]},

C3(0){ },
C4(4){S0

4 [C0,0
0,2 , C0,0

0,1 , C0,0
1,2 ], S1

4 [C0,1
0,2 , C0,1

0,1 , C0,0
1,2 ],

S2
4 [C0,1

0,2 , C0,1
0,1 , C0,1

1,2 ], S3
4 [C0,2

0,2 , C0,2
0,1 , C0,1

1,2 ]},
C7(2){S0

7 [C0,0
1,3 , C1,0

1,3 ], S1
7 [C0,0

1,3 , C1,2
1,3 ]},

C8(4){S0
8 [C0,0

2,4 , C0,0
1,2 , C1,0

1,3 , C0,0
3,4 ], S1

8 [C0,1
2,4 , C0,0

1,2 , C1,1
1,3 , C0,0

3,4 ],
S2

8 [C0,1
2,4 , C0,1

1,2 , C1,1
1,3 , C0,1

3,4 ], S3
8 [C0,2

2,4 , C0,1
1,2 , C1,2

1,3 , C0,1
3,4 ]},

C9(2){S0
9 [C0,0

2,4 , C1,0
2,4 ], S1

9 [C0,2
2,4 , C1,0

2,4 ]}}.
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B40,0W C0

B6
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0,0V0

0,0V
0,1W
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0,2W

0,2V

0,2V0
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Fig. 9. The CSPs in the cell body lifted from C0

For example, C0(4){S0
0 [C−1,0

0,3 , B0
3,4, B

0
4,5, B

0
5,6, C

−1,0
0,6 ], S1

0 [C−1,1
0,3 , B1

3,4, B
1
4,5,

B1
5,6, C

−1,1
0,6 ], S2

0 [C−1,1
0,3 , B2

3,4, B
2
4,5, B

2
5,6, C

−1,1
0,6 ], S3

0 [C−1,2
0,3 , B3

3,4, B
3
4,5, B

3
5,6, C

−1,2
0,6 ]}

means that there are four CSPs, S0
0 , S1

0 , S2
0 , S3

0 in the cell body CC0 from
bottom to up. [C−1,0

0,3 , B0
3,4, B0

4,5, B
0
5,6, C

−1,0
0,6 ], [C−1,1

0,3 , B1
3,4, B

1
4,5, B

1
5,6, C

−1,1
0,6 ],

[C−1,1
0,3 , B2

3,4, B
2
4,5, B

2
5,6, C

−1,1
0,6 ], [C−1,2

0,3 , B3
3,4, B

3
4,5, B

3
5,6, C

−1,2
0,6 ] are the boundaries

of S0
0 , S1

0 , S2
0 , S3

0 , respectively. The CSPs in the cell body CC0 are shown in Fig.
9.

5 Main Algorithm

By the discussion in the previous sections, we can present the main algorithm
to determine the topology of an implicit algebraic surface.

Algorithm 10. The input is an implicit algebraic surface S : f(x, y, z) = 0. The
output is a set of surface patches which have the same topology as the original
surface S.

1. Compute the projection curve C: g(x, y) = 0 of S by Algorithm 2.
2. Determine the topology of C by Algorithm 4.
3. Space curve and surface patch segmentation of S by Algorithm 9.
4. Return the corresponding topology information of S.

Example 9. We will illustrate the algorithm with another example defined by

f(x, y, z) = f1(x, y, z) · f2(x, y, z),
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Fig. 10. A reducible surface
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0P

5B
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0B

Fig. 11. Topology determination of the

projection curve of a reducible surface

where f1(x, y, z) = y2 + (z − 11)2 − 5 · x, f2(x, y, z) = x2 + y2 + (z − 4)2 − 25.
Its figure is in Fig. 10.

Since f1(x, y, z), f2(x, y, z) are normal surfaces, we can derive the projection
curve of S by Algorithm 2.

g(x, y) =
∏

1≤i≤j≤2

Ti,j(x, y)

where T1,1(x, y) = 4 · (y2 − 5 · x), T1,2(x, y) = 73 · x2 + 196 · y2 + 576− 740 · x +
10 · x3 + x4, T2,2(x, y) = 4 · (x2 + y2 − 25).

With Algorithm 4, we can get the topological information of the projection
curve as Fig. 11. We can derive the following information by Algorithm 9.
Points:

{{B0[ ], B1[ ], B2[ ], B3[V 0
3,0], B4[V 0

4,0], B5[ ]}, {P0[V0,0, V0,1], P1[V1,0, V1,1]}}.
CSCSes:

{{B0,1[ ], B1,2[ ], B2,3[ ], B3,4[B0
3,4(V

0
3,0, V

0
4,0), B

1
3,4(V

0
3,0, V

0
4,0)], B4,5[ ], B5,0[ ]},

{C0
0,1[C

0,0
0,1 (V0,0, V1,0)], C1

0,1[C
1,0
0,1 (V0,0, V1,0), C

0,1
0,1 (V0,0, V1,0), C

0,2
0,1 (V0,1, V1,1)],

C2
0,1[C

2,0
0,1 (V0,0, V1,0), C

2,1
0,1 (V0,1, V1,1), C

2,2
0,1 (V0,1, V1,1)], C1,4[C

−1,0
1,4 (V1,1, V

0
4,0)],

C0,3[C
−1,0
0,3 (V0,1, V

0
3,0)], CQ[C0

Q, C1
Q, C2

Q]}}.
CSPs:

{C0(0){ },
C1(2){S0

1 [C0,0
0,1 , C1,0

0,1 ], S0
1 [C0,0

0,1 , C1,1
0,1 ]},

C2(4){S0
2 [[C1,0

0,1 , C2,0
0,1 ], [C0

Q]], S1
2 [[C1,1

0,1 , C2,0
0,1 ], [C1

Q]],
S2

2 [[C1,2
0,1 , C2,1

0,1 ], [C1
Q]], S3

2 [[C1,2
0,1 , C2,2

0,1 ], [C2
Q]]},
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C3(4){S0
3 [C0

Q], S1
3 [C1

Q], S2
3 [C1

Q], S3
3 [C2

Q]},
C4(2){S0

4 [C2,0
0,1 , C−1,0

0,3 , B0
3,4, C

−1,0
1,4 ], S1

4 [C2,1
0,1 , C−1,0

0,3 , B1
3,4, C

−1,0
1,4 ]}}.

According to our experiments, the topology determination of the projection
curve is the most time-consuming phase of the algorithm.

6 Conclusion

In this paper, we present an algorithm, which can be used to give a representa-
tion for the topology of an implicit algebraic surface f(x, y, z) = 0. We give a
curvilinear wireframe of the surface and the surface patches of the surface de-
termined by the curvilinear wireframe, which present the same topology as the
surface. Most of the surface patches are curvilinear polygons. If needed, we can
easily modify our algorithm to give a polyhedron which has the same topology
as the surface.

The algorithm mainly involves computation of resultants, determination of
the topology of plane curves, computation of singularities of surfaces and curves,
isolating real roots of univariate equations. Many aspect of the algorithm could
be further improved. This will be done in our later work.
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