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Abstract We revisit the problem of computing the topology and geometry of a real algebraic plane curve. The
topology is of prime interest but geometric information, such as the position of singular and critical points, is also
relevant. A challenge is to compute efficiently this information for the given coordinate system even if the curve
is not in generic position. Previous methods based on the cylindrical algebraic decomposition use sub-resultant
sequences and computations with polynomials with algebraic coefficients. A novelty of our approach is to replace
these tools by Gröbner basis computations and isolation with rational univariate representations. This has the
advantage of avoiding computations with polynomials with algebraic coefficients, even in non-generic positions.
Our algorithm isolates critical points in boxes and computes a decomposition of the plane by rectangular boxes. This
decomposition also induces a new approach for computing an arrangement of polylines isotopic to the input curve.
We also present an analysis of the complexity of our algorithm. An implementation of our algorithm demonstrates
its efficiency, in particular on high-degree non-generic curves.
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Fig. 1 a Curve of equation 16x5 − 20x3 + 5x − 4y3 + 3y = 0 plotted in maple, b its isotopic graph computed by isotop, and c their
overlay

1 Introduction

Let C be a real algebraic plane curve defined in a Cartesian coordinate system by a bivariate polynomial f with
rational coefficients, i.e., C = {(x, y) ∈ R

2 | f (x, y) = 0} with f ∈ Q[x, y]. We consider the problem of computing
the topology of C with additional geometric information associated to the given coordinate system. By computing
the topology of C, we mean to compute an arrangement of polylines G, that is topologically equivalent to C (see
Fig. 1). Note that this arrangement of polylines G is often identified to a graph embedded in the plane, where the
vertices can be place at infinity and the edges are straight line segments. We first define formally what we mean by
topologically equivalent, before discussing the additional geometric information we consider and their relevance.

Two curves C and G of the Euclidean plane are said to be (ambient) isotopic if there exists a continuous map
F : R

2 × [0, 1] −→ R
2, such that Ft = F(·, t) is a homeomorphism for any t ∈ [0, 1], F0 is the identity of R

2

and F1(C) = G. This notion formalizes the idea that one can deform one curve to the other by a deformation of
the whole plane. Isotopy is stronger than homeomorphy, for instance, (i) two nested loops and (ii) two non-nested
loops are not isotopic.1

We now discuss the relevance of adding geometric information to the graph G. From the topological point of view,
the graph G must contain vertices that correspond to self-intersections and isolated points of the curve. However,
in order to avoid separating such relevant points from other singularities (e.g., cusps), all singular points of C, that
is, points at which the tangent is not well defined, are chosen to be vertices of the graph.

While singular points are needed for computing the topology of a curve, the extreme points of a curve are also
very important for representing its geometry. Precisely, the extreme points of C for a particular direction, say the
direction of the x-axis, are the non-singular points of C at which the tangent line is vertical (i.e., parallel to the
y-axis); the extreme points in the direction of the x-axis are called x-extreme. These extreme points are crucial for
various applications and, in particular, for computing arrangements of curves by a standard sweep-line approach
[20]. Of course, one can theoretically compute an arrangement of algebraic curves by computing the topology of
their product. However, this approach is obviously highly inefficient compared to computing the topology of each
input curve and, only then, computing the arrangement of all the curves with a sweep-line algorithm. Note that the
x-extreme and singular points of C form together the x-critical points of the curve (the x-coordinates of these points
are exactly the positions of a vertical sweep line at which there may be a change in the number of intersection points
with C).

It is thus useful to require that all the x-critical points of C are vertices of the graph we want to compute. To our
knowledge, almost all methods for computing the topology of a curve compute the critical points of the curve and
associate corresponding vertices in the graph. (Refer to [4,12] for recent subdivision methods that avoid the com-
putation of non-singular critical points.) However, it should be stressed that almost all methods do not necessarily

1 Note that in two dimensions, the notion of ambient isotopy is equivalent to the notion of ambient homeomorphy, that is, to the existence
of an orientation preserving homeomorphism of R

2 that maps C onto G [7, Thm. 4.4, p. 161].
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compute the critical points for the specified x-direction. Indeed, when the curve is not in generic position, that is,
if two x-critical points have the same x-coordinate or if the curve admits a vertical asymptote, most algorithms
shear the curve so that the resulting curve is in generic position. This is, however, an issue for several reasons. First,
determining whether a curve is in generic position is not a trivial task and it is time consuming [30,47]. Second,
if one wants to compute arrangements of algebraic curves with a sweep-line approach, the extreme points of all
the curves have to be computed for the same direction. Finally, if the coordinate system is sheared, the polynomial
of the initial curve is transformed into a dense polynomial, which slows down, in practice, the computation of the
critical points.

In this paper, given a curve C which is not necessarily in generic position, we aim at computing efficiently its
topology, including all the critical points for the specified x-direction. In other words, we want to compute an
arrangement of polylines that is isotopic to C and whose vertices include the x-critical points of C. In terms of
efficiency, our primary goal is the practical efficiency rather than worst-case complexity. In particular, we want to
avoid computations with non-rational algebraic numbers or, equivalently in this context, algebraic computations
such as Sturm sequences, Sturm–Habicht sequences (which are a generalization of Sturm sequences, with better
specialization properties [31]), and sub-resultant sequences.

We review below previous work on the problem and then present our contributions.

Previous Work There have been many papers addressing the problem of computing the topology of algebraic
plane curves (or closely related problems) defined by a bivariate polynomial with rational coefficients [1,3,4,8,10,
18,19,22,26,30,32,33,40,41,46,48]. Most of the algorithms assume generic position for the input curve. As men-
tioned above, this is without loss of generality since we can always shear a curve into generic position [30,47] but
this has a substantial negative impact on the time computation. All these algorithms perform the following phases.
(1) Project the x-critical points of the curve on the x-axis using sub-resultants sequences, and isolate the real roots
of the resulting univariate polynomial in x . This gives the x-coordinates of all the x-critical points. (2) For each
such value xi , compute the intersection points between the curve C and the vertical line x = xi . (3) Through each
of these points, determine the number of branches of C coming from the left and going to the right. (4) Connect all
these points appropriately.

The main difficulty in all these algorithms is to compute efficiently all the critical points in Phase 2 because the
x-critical values in Phase 1 are, a priori, non-rational thus computing the corresponding y-coordinates in Phase 2
amounts, in general, to solving a univariate polynomial with non-rational coefficients and at least a multiple root
(corresponding to the critical point). To this end, most algorithms [1,3,8,18,26,30,32,33,41,46,48] rely heavily on
computations with real algebraic numbers, Sturm sequences or sub-resultant sequences.

An approach using a variant of sub-resultant sequences for computing the critical points in Phase 2 was proposed
by Hong [33]. He computed this way (xy-parallel) boxes with rational endpoints and separating the critical points.
Counting the branches in Phase 3 can then be done by intersecting the boundary of the boxes with the curve which
only involves univariate polynomials with rational coefficients. This approach, see also [1,10,40] and the software
package Cad2D,2 does not assume that the curve is in generic position.

In a more recent paper, González-Vega and Necula [32] use Sturm–Habicht sequences which allow them to
express the y-coordinate of the each critical point as a rational function of its x-coordinate. They implemented their
algorithm in maple with symbolic methods modulo the fact that the algebraic coefficients of the polynomials in
Phase 2 are approximated in fixed-precision arithmetic. The algorithm takes as a parameter the initial precision for
the floating-point arithmetic and recursively increases the precision. This approach is however not certified in the
case where the curve is not in generic position because the algorithm checks for the equality of pairs of polynomials
whose coefficients are evaluated (incorrect results have been reported in [49]). Note that there exists one variant of
González-Vega and Necula algorithm that handles, without shearing, curves that are not in generic position [41].
This approach, however, requires substantial additional time-consuming symbolic computations such as computing
Sturm sequences.

2 http://www.cs.usna.edu/~qepcad/B/user/cad2d.html.

http://www.cs.usna.edu/~qepcad/B/user/cad2d.html
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Recently, Seidel and Wolpert [49] presented an alternate approach for computing the critical points avoiding
most costly algebraic computations but to the expense of computing several projections of the critical points.
They project, in Phase 1, the x-critical points on both x and y-axes and also on a third random axis. After
isolating the roots on each axis, they can recover (xy-parallel) boxes with rational endpoints that contain each
exactly one critical point. From there, all computations only involve rational numbers but they, however, still
need to compute Sturm–Habicht sequences for refining the boxes containing the singular points until each box
interests only the branches of the curve incident to the singular point. Their approach assumes that the curve
is in generic position by a pre-processing phase in which the curve is sheared if needed. They also present a
maple implementation, insulate, which is an implementation of a certified algorithm for curves in arbitrary posi-
tions. Note that their implementation does not report x-extreme points in the original system when the curved is
sheared.

Even more recently, Eigenwillig et al. [22] (see also [34]) presented a variant of González-Vega and Necu-
la approach, in which the roots of the polynomials with non-rational coefficients are efficiently isolated using
an implementation of a variant of an interval-based Descartes algorithm [21]. This variant, as [32], does not
assume that the curve is in generic position but detects such configurations online. More precisely, if the bit-stream
Descartes algorithm is in, a sense, unlucky then, rather than refining down to a separation bound (e.g., [5,38]), the
algorithm shears the input curve and starts again. Note that this approach still computes Sturm–Habicht sequences
for determining the polynomials appearing in Phase 2 and the multiplicity of its multiple root. Also, if the curve
is sheared to a (x ′, y′) coordinate system, they compute extreme points both for the x ′-direction and the direction
corresponding to the x-axis. This approach has been implemented in C++ and is an implementation of a certified
algorithm that handles curves that are not necessarily in generic positions and that reports x-extreme points for the
original coordinate system.

Note finally that another approach that avoids expensive algebraic computations is to compute the critical or
singular points using subdivision methods [4,12]. The major drawback of these methods is that, in order to certify
the results, the subdivision has, in general, to reach a separation bound (certification can also be achieved by solving
algebraic systems by other means). It follows that, if no certification is required, these methods are very fast in
practice, however, they can become very slow on difficult instances, if certification is required. To our knowledge,
no implementation of such certified algorithm is available.

As for the complexity of the problem, the best known bound so far is ˜O(N 12) [19], where N is essentially the
maximum of the degree of f and of the maximum number of bits needed for representing the input coefficients and
the notation ˜O denotes that the poly-logarithmic factors are omitted. This assumes that the real algebraic numbers are
represented by isolating intervals. This complexity is based on theoretically fast computations with Sturm-Habicht
sequences and algorithms for univariate real root isolation.

Our Contributions We present an algorithm for computing the topology of an algebraic plane curve which is
possibly in non-generic position. The algorithm handles curves in non-generic positions in the Cartesian coordinate
system in which they are defined. In particular, the algorithm never shears the coordinate system, which avoids the
associated extra costs discussed above.

Another specificity of our approach is that we succeed to avoid, in all cases, the computation of sub-resultant
sequences and computations with algebraic numbers. Instead, we compute, in particular, Gröbner bases [13]. One
can argue that these are just two different tool sets, and this is true from a theoretical point of view, but we show in the
experiments the benefit of our choice when computing with non-generic curves. Furthermore, the philosophy of our
approach is to avoid, as much as possible, computations that are time consuming in practice. This leads to various
algorithmic choices such as avoiding the computation of y-critical points and allowing the curve to intersect the
top and bottom sides of boxes isolating x-extreme points (which avoids substantial subdivisions since the tangent
at an extreme point is vertical).

The novelty of our algorithm mainly relies upon the use of three new ingredients for this problem. First, we
use some of the state-of-the-art techniques to isolate the roots of bivariate systems, i.e., we use (i) Gröbner basis
computations [25], (ii) Rational Univariate Representations (RUR) [43] which represent the roots of the system as
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Fig. 2 a Example of rectangle decomposition of the plane induced by the isolating boxes (critical and asymptotes). There are boxes
for the asymptote, the singular point, and the three extreme points, two of them with even multiplicities and one with odd multiplicity.
b Possible connections involving extreme points depending on their multiplicities

rational functions of the roots of a univariate polynomial, and (iii) a subdivision technique based on Descartes’ rule
of signs (and filtered with interval arithmetic for efficiency) for isolating the roots of the univariate polynomials
[23,24,45]. Even though this approach is well known for system solving, it was not used before for computing the
topology of algebraic curves.

Second, we compute and use the multiplicities in fibers (see Definition 1) of critical points to compute the
topology at singular points and to determine the connections at extreme points. For extreme points, we get these
multiplicities by the RUR and a special case of a formula of Teissier [50]. For singular points, we solve the system of
singular points with additional constraints. Note that the overall method to compute the topology at critical points is
not new, it is described in full details in [49], see also for example [1,4,10,33,40,41] for closely related approaches
for curves in non-generic position. The novelty appears in the way we compute multiplicities in this context; once
again we avoid computing sub-resultant sequences.

Third, we present a variant of the standard combinatorial part of the algorithm for computing the topology. We
compute a decomposition of the plane (which is not a cylindrical algebraic decomposition) by rectangular boxes
containing at most one critical point. Since we allow crossings on the top and bottom of extreme point boxes to
avoid costly refinement of boxes, the connection is not always straightforward. To achieve the connection near such
points, we use the multiplicities in fibers of extreme points. Note that one advantage of this variant is that, even
when the curve is in generic position, the algorithm does not require to refine these boxes until they do not overlap
in x .

With these tools, our algorithm for computing an arrangement of polylines G isotopic to a curve C can be
summarized as follows (see Sect. 3 for details). (1) Isolate the x-critical points in two dimensional rectangles,
called critical boxes, using algebraic tools (Gröbner bases, RUR and Descartes’ algorithm). Compute also the
multiplicity of the critical points in their fibers. Refine the critical boxes until the restriction of C to each crit-
ical box is guaranteed to be a set of non-crossing arcs connecting the critical point to a point on the boundary
of the box. (2) Compute a rectangular decomposition of the plane by extending the vertical sides of the critical
boxes either to infinity or to the first encountered critical box (see Fig. 2a). (Note that, for visualization purposes,
a geometrically accurate picture of C can be easily obtained by further subdividing vertically the non-critical
rectangles of the decomposition.) For every edge of this decomposition, determine its intersection with C, that is,
determine separating intervals each containing exactly one intersection point. (3) The vertices of G consist of the
x-critical points of C and intersections of C with the edges of the rectangular decomposition. For every critical
box of G, connect (with a straight line segment) the critical vertex to the vertices on the boundary of the box.
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For every other rectangle of the decomposition, connect the vertices on its boundary using, if needed, the multi-
plicity of the extreme points in the neighboring rectangles combined with a greedy approach. The output of the
algorithm is an arrangement of polylines represented by the embedded graph G. The vertices of G hence represent
points whose coordinates are, in general, non-rational. Associated to each vertex, the algorithm also computes a
box containing the represented point (the critical box for a critical point or the separating interval determined in
Step 2 for an intersection between the curve and a wall of the rectangular decomposition). These boxes can be
refined, and any choice of point (for instance, with rational coordinates) in these boxes gives a graph isotopic to the
curve.

We also analyze the worst-case bit complexity of our algorithm. To the best of our knowledge, this is, for the
problem considered here, the first time that the complexity of a (certified) algorithm based on refinements and
approximations is analyzed. Our technique, even though not novel, could presumably also be used to analyze the
complexity of the algorithms in [22,32,33,49].

Finally, we ran large scale benchmarks on over a thousand of curves during several weeks for comparing the
different state-of-the-art available implementations.

The rest of the paper is organized as follows. First, we recall in Sect. 2 some basic material, in particular, on
the multiplicity of the intersection of two curves and on Rational Univariate Representations of the roots of system
of (algebraic) equations. We present our algorithm in Sect. 3 and its complexity in Sect. 4. Finally, we present in
Sect. 5 extensive experiments comparing various implementations.

2 Preliminaries

Let C, also denoted C f , be a real algebraic plane curve defined by a bivariate polynomial f in Q[x, y]. Since the
geometry of the curve is not modified by taking the square-free part of f , we can assume without loss of generality
that f is square-free. Note that C may consist of several algebraic components, that is, f is not necessarily irreduc-
ible in R[x, y]. The algebraic components of the curve that are vertical lines (i.e., lines parallel to the y-axis) can
be easily computed since their abscissa correspond to the real roots of the polynomial in x obtained as the gcd of
the coefficients of f seen as a polynomial in y.

Partial derivatives are denoted with subscripts: for instance, fx denotes the derivative of f with respect to x
and fyk (sometimes also fk) denotes the kth derivative with respect to y. A point p = (α, β) ∈ C

2 is called
x-critical if f (p) = fy(p) = 0, singular if f (p) = fx (p) = fy(p) = 0, and x-extreme if f (p) = fy(p) = 0 and
fx (p) �= 0 (i.e., it is x-critical and non-singular). Similarly are defined y-critical and y-extreme points. As x-critical
and x-extreme points are more often used in the following, we often simply refer to them as critical and extreme
points.

The ideal generated by polynomials P1, . . . , Pi is denoted I(P1, . . . Pi ). In the following, we often identify the
ideal and the system of equations {P1 = 0, . . . , Pi = 0} (or any equivalent system induced by a set of generators
of the ideal). We consider, in particular, the ideals Ic = I( f, fy) and Is = I( f, fx , fy); their roots are, respectively,
the x-critical and singular points of C.

Multiplicities We now recall the notion of multiplicity of the roots of an ideal, then we state two lemmas using
this notion for studying the local topology at critical points. Geometrically, the notion of multiplicity of intersection
of two regular curves is intuitive. If the intersection is transverse, the multiplicity is one; otherwise, it is greater than
one and it measures the level of degeneracy of the tangential contact between the curves. Defining the multiplicity
of the intersection of two curves at a point that is singular for one of them (or possibly both) is more involved and
an abstract and general concept of multiplicity in an ideal is needed.

Definition 1 [16, §4.2] Let I be an ideal of Q[x, y] and denote Q the algebraic closure of Q. To each zero (α, β)

of I corresponds a local ring (Q[x, y]/I )(α,β) obtained by localizing the ring Q[x, y]/I at the maximal ideal
I(x − α, y − β). When this local ring is finite dimensional as Q-vector space, we say that (α, β) is an isolated zero
of I and this dimension is called the multiplicity of (α, β) as a zero of I.
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Let f, g ∈ Q[x, y] be such that the intersection of C f and Cg in C
2 contains a zero-dimensional component equal

to point p = (α, β). Then (α, β) is an isolated zero of I( f, g) and its multiplicity, denoted by I nt ( f, g, p), is called
the intersection multiplicity of the two curves at this point.

We call a fiber a vertical line of equation x = α. For a point p = (α, β) on the curve C f , we call the multiplicity
of β in the univariate polynomial f (α, y) the multiplicity of p in its fiber and denote it as mult ( f (α, y), β).

The next lemma, due to Teissier [50], relates the multiplicity of a point in a fiber with the multiplicity in the
critical ideal. We will use it to deduce the multiplicity in the fiber knowing multiplicity in the ideal. More precisely,
we will use the multiplicity in fibers of extreme points during the connection step of our algorithm.

Lemma 2 [9, Lemma D.3.4, p. 314, 50] For an x-extreme point p = (α, β) of f one has

mult ( f (α, y), β) = I nt ( f, fy, p) + 1. (1)

To compute the local topology of the curve at a singular point, we aim at isolating the singular point in a box
so that the intersection of its border and the curve determines the topology. Indeed for a small enough box, the
topology is given by the connection of the singular point with all the intersections on the border. So the box shall
avoid parts of the curve not connected to the singular point. Knowing the multiplicity of the singular point in the
fiber enables to isolate the singular point from other crossings of the curve in this fiber. Requiring in addition that
intersections with the curve only occur on the left or right sides of the box leads to the following.3

Lemma 3 [49] Let p = (α, β) be a real singular point of the curve C f of multiplicity k in its fiber. Let B be a box
satisfying (i) B contains p and no other x-critical point, (ii) the function fyk does not vanish on B, and (iii) the
curve C f crosses the border of B only on the left or the right sides. Then the topology of the curve in B is given by
connecting the singular point with all the intersections on the border.

We finally describe the algebraic tools we use for isolating the roots of univariate and bivariate ideals.

Univariate Root Isolation We need to count and isolate the real roots of univariate polynomials, possibly in a
given interval. This is, in particular, needed for computing the intersections between C and the sides of the boxes
isolating the critical points. Only polynomials with rational coefficients will be considered. The square-free part of
the considered polynomials is first computed. The real roots are then isolated using recursive subdivision and the
Descartes’ rule of signs (see [23,24,45] for details and [45] for the way interval arithmetic can be used to speed up
computations). In our implementation, we use the RS software [44].

Rational Univariate Representation [43] In our algorithm, we need to represent solutions of zero-dimensional
ideals depending on two variables by boxes containing them. We use the so-called rational univariate representation
(RUR) of the roots, which can be viewed as a univariate equivalent to the studied ideal. The key feature of this RUR
is the ability to isolate solutions in easily refinable boxes and to compute multiplicities.

Given a zero-dimensional ideal I = I(P1, . . . , Ps) where the Pi ∈ Q[x1, . . . , xn], a Rational Univariate Rep-
resentation of the solutions V(I ) is given by F(t) = 0, x1 = G1(t)

G0(t)
, . . . , xn = Gn(t)

G0(t)
, where F, G0, . . . , Gn are

univariate polynomials in Q[t] (where t is a new variable). All these univariate polynomials, and thus the RUR,
are uniquely defined with respect to a given polynomial γ ∈ Q[x1, . . . , xn] which is injective on V (I ); γ is called
the separating polynomial of the RUR.4 Note that a random degree-one polynomial in x1, . . . , xn is a separating
polynomial with probability one. The RUR defines a bijection between the (complex and real) roots of the ideal I
and those of F . Furthermore, this bijection preserves the multiplicities and the real roots. Computing a box for a
solution of the system is done by isolating the corresponding root of the univariate polynomial F and evaluating

3 The proof is based on a recursive application of the mean value theorem stating that the roots of the derivative of a polynomial P lie
between those of P .
4 The polynomial F is the characteristic polynomial the multiplication operator by the polynomial γ , in Q[x1, . . . , xn]/I .
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the coordinate functions with interval arithmetic (see Sect. 4 for details on interval analysis). To refine a box, one
just needs to refine the corresponding root of F and evaluate the coordinates again.

There exists several ways for computing a RUR. One can use the strategy from [43] which consists of computing
a Gröbner basis of I and then to perform linear algebra operations to compute a separating element as well as the
full expression of the RUR. The Gröbner basis computation can also be replaced by the generalized normal form
from [42]. There exists more or less certified alternatives such as the Geometrical resolution [28] (it is probabilistic
since the separating element is randomly chosen and its validity is not checked, one also loses the multiplicities
of the roots) or resultant based strategies such as [35]. In our implementation, we use the strategy from [43] and
compute Gröbner bases using the algorithm F4 [25].

3 Algorithm

Our algorithm neither our implementation require assumptions about the existence of vertical lines, but the process-
ing of vertical lines is rather technical and, for clarity, we first describe our algorithm for curves without vertical
lines and postpone the treatment of vertical lines to Sect. 3.2. A proof of correctness of the algorithm is presented
in Sect. 3.3 and the algorithm is illustrated on an example in Sect. 3.4.

3.1 Curve Without Vertical Lines

As discussed in Sect. 2, we consider, as input, a curve C without vertical lines and defined by a square-free polynomial
f ∈ Q[x, y]. In a few words, the algorithm first focuses on critical points, their rational univariate representations
enable to compute multiplicities and boxes isolating each point with known topology inside the box. Then a sweep
method computes a rectangular decomposition of the plane induced by the boxes of critical points. Eventually the
connection is processed in all rectangles with a greedy method using multiplicities in fibers for extreme points. We
describe more precisely our algorithm in six steps.

Step 1: Isolating boxes of the singular points and of the x-extreme points As a general practical rule, the smaller
the number of solutions of a system, the easier it is to work with. Hence we split the system of critical points into
the system of singular points and the system of extreme points. The system of singular points is the one of critical
with in addition the equation fx = 0. The system of extreme points, denoted Ie, is computed by saturation. Indeed,
the extreme points are critical for which fx �= 0, thus we add to the critical system the equation 1 − u fx = 0 with
a new variable u that we eliminate afterwards. We then compute the RURs of these systems Is and Ie and isolating
boxes for the solutions (see Sect. 4 for details on interval analysis). We may need to refine the boxes of extreme and
singular points to avoid overlaps.

Step 2: Multiplicities of critical points in fibers For extreme points, we use the Teissier formula: the multiplicity of
an extreme point in Ic is the same than in Ie because precisely fx does not vanish at these points. The multiplicity in
Ie is given by the RUR, and hence the multiplicity of an extreme point in its fiber is this number plus one according
to the equation of Lemma 2.

For singular points, we use the definition of univariate multiplicity, namely the smallest integer k such that the
kth derivative no longer vanishes. Let Is,k be the system of singular points with in addition the equations fyi = 0
for i from 2 to k. Hence we solve, for k increasing from 2, the systems Is,k until it has no solutions. At each step, a
singular point which was a solution of Is,k−1 but is no longer solution of Is,k has its multiplicity in fiber equal to k.5

Note that the data of the systems Is,k will not be used later, they are only useful for the multiplicity computation.

5 We also refer the interested reader to a more elegant way to compute the multiplicity in fibers with the Teissier formula [17]. Experi-
mentally, it appears that this alternative was less efficient because even if it usually needs to work with less systems, these systems are
larger (i.e., with more solutions).
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Theoretically, the complexity of solving these systems is analyzed in Sect. 4.2. In practice, as k increases, the
systems have less and less solutions and hence tend to be easier to solve. Note also that the number of systems to
solve is the highest multiplicity of the singular points of the curve.

Step 3: Refinement of the isolating boxes of the x-extreme points. Consider each such box, B, in turn. For each
vertical or horizontal side of B, isolate its intersections with C and refine the box until there are two intersection
points. We further refine until there is at most one crossing on the top (resp. bottom) side of B. Note that, unlike
comparable algorithms, we do not require that C intersects the boundary of B on its vertical sides. This is important
in practice because, since the curve has a vertical tangent at an x-extreme point, refining until the curve intersects
the vertical side is time consuming.

Step 4: Refinement of the isolating boxes of the singular points We refine these boxes exactly as in [49] (see Lemma 3)
except for the way the multiplicity k of each singular point in its fiber is computed. In [49], k is computed using
Sturm–Habicht sequences under the assumption of generic position while we deduce k as explained in Step 2. Then,
as in [49], every box is refined until the evaluation of fyk with interval arithmetic does not contain 0 (see Sect. 4 for
details on interval analysis). Further refine the x-coordinates of the box until C only intersects the vertical boundary
of the box.

Step 5: Vertical asymptotes To determine the topology of a curve, it is required to know how many branches are
going to infinity. However, it is not required, in general, to know which branch is related to which asymptote.
Nevertheless, for our next connection step, we need to determine for each vertical asymptote which branches are
related to it and if they are on its left or its right.

The x-coordinates of vertical asymptotes are the roots of the leading coefficient Va(x) of the polynomial f (x, y)

considered as a polynomial in y. To deal with an asymptote x = α, the idea is, informally, to isolate the point (α,∞)

in a box [a, b]×[M, . . . ∞ . . . ,−M] whose vertical sides do not intersect the curve C. Moreover, we want that every
branch that intersects a horizontal side of the box is a branch going to ±∞ with this asymptote (see Fig. 2a). First,
compute an upper bound My on the absolute value of the y-coordinates of the y-critical points (this is of course done
without computing these critical points, but only the discriminant with respect to y and an upper bound of the roots
of this univariate polynomial). Compute also a bound Mx on the absolute value of the y-coordinates of the x-critical
points (for which we have already computed boxes). Isolate the roots of the polynomial Va , hence each root α has an
isolating interval [a, b]. Substitute x = a (resp. x = b) in f and deduce an upper bound, M1, on the absolute value
of the y-coordinates of the intersection of C and x = a (resp. x = b). Set M = max(M1, Mx , My). Then, a branch
crossing the segment ]a, b[×M (resp. ]a, b[× − M) goes to +∞ (resp. −∞) with asymptote x = α. Finally, we
determine whether a given branch is to the left or to the right of the asymptote by comparing the x-coordinates of
the asymptote and the crossing point.

Step 6: Connections For simplicity, all the boxes computed above are called critical boxes and the points at infinity
on vertical asymptotes are also called critical. First compute, with a sweep-line algorithm, the vertical rectangular
decomposition obtained by extending the vertical sides of the critical boxes either to infinity or to the first encoun-
tered critical box (see Fig. 2a). On each of the edges of the decomposition, isolate the intersections with C.6 Create
vertices in the graph corresponding to these intersection points and to the critical points. For describing the arcs con-
necting these vertices in the graph, we assimilate, for simplicity, the points and the graph vertices. In each critical box
the topology is simple: the critical point is connected to each of the intersection points on the boundary of the box.

There are several approaches to do the connections in the other rectangles of the decomposition. The usual and
conceptually simplest is to refine boxes of extreme points so as to avoid top and bottom crossings; then, the number

6 For simplicity, we ensure, thanks to refinements, that the curve never intersects an endpoint of an edge, that is, a corner of a rectangle.
Note also that the intersections are already isolated on the sides of the critical boxes; an isolating interval may, however, need to be
refined if it contains a vertex of the rectangle decomposition.



122 J. Cheng et al.

of left and right crossings in rectangles always match and the connection is one-to-one. Since we allow top/bottom
crossings for efficiency (see above), this straightforward method does not apply. Another approach (see [4,46]) is
to compute the sign of the slope of the tangent to the curve at the top/bottom crossings (this yields whether the
top/bottom crossing should be connected to vertex to the right or to the left of its rectangle). We however want to
avoid such additional computations.

For computing the connections in the non-critical rectangles of the decomposition, we use the multiplicities in
fibers of the extreme points and a greedy algorithm. The geometric meaning of the parity of this multiplicity is the
following: if it is even, the curve makes a U-turn at the extreme point, else it is odd and the curve is x-monotone
in the neighborhood of the extreme point. Still, there are some difficulties for connecting the vertices, as illustrated
on Fig. 2b: on the left is the information we may have on the crossings for two extreme points with x-overlapping
boxes; the second and third drawings are two possible connections in the middle rectangle for different parities of
the multiplicities. To distinguish between these two situations we compute the connections in rectangles starting
from the top such that the connections in a rectangle below a critical box are computed once the connections in all
the rectangles above the box are done.

The connections can easily be computed as follows. First, if there are vertical asymptotes, we have already
determined in Step 5 whether a point that lies on the boundary of an asymptote box belongs to a branch that lies
to the left or to the right of its asymptote; recall that such a point lies on a horizontal side of the box. Consider a
rectangle R of the decomposition that is adjacent to an asymptote box, say below it (the case where it is above is
similar); note that the top wall of R is a subset of the bottom wall of the asymptote box. The vertices on the top wall
of R split into kl vertices that are left of the asymptote and kr vertices that are right of it. Each of the kl vertices
necessarily connects to a vertex on the left or bottom side of R. Moreover, among these kl vertices, the i th vertex
starting from the left, connects to the i th vertex on the left-bottom sides of R starting from the top. Similarly, among
these kr vertices, the i th vertex starting from the right, connects to the i th vertex on the right-bottom sides of R
starting from the top (see Fig. 2a).

Once these connections for asymptotes are done, due to requirements on extreme point boxes, there is at most
one, not already connected, vertex on the top or bottom of any rectangle. The problem now is to determine if
such a vertex should be connected to a vertex on the right or on the left side of the rectangle. The connections
in the unbounded rectangles above critical boxes are straightforward: the ones between the vertices on the two
vertical sides are in one-to-one correspondence, starting from infinity, and if a vertex remains on a vertical side,
then there is a vertex on the horizontal side which it has to be connected with. Now, once all the connections
have been computed in the rectangle(s) above the box of an extreme point, these connections and the multiplic-
ity of the extreme point allows us to compute the connections in the rectangle(s) below, see Fig. 2b. Indeed, if
there is a vertex on the bottom side of the critical box, then it lies on the top side of a rectangle. Inside this
rectangle, the vertex is connected to the topmost vertex on the left or on the right side, depending on the multi-
plicity of the extreme point and on the side of the connection of the branch above the extreme point. The other
connections in this rectangle and in the other rectangles below the critical box, if any, are performed similarly
as for unbounded rectangles. Note that the two unbounded rectangles (the leftmost and the rightmost) that are
vertical half-planes are treated separately: for each vertex on the vertical side we associate an arc that goes to
infinity.

Output A graph isotopic to the curve is output. In addition, x-extreme points, singular points and vertical asymp-
totes are identified and their position is approximated by boxes, hence refinable to any desired precision.

3.2 Curve With Vertical Lines

We assumed in the previous section that the curve C has no vertical line. In order to generalize the algorithm, we
explain how to calculate the topology of a curve CF defined by a rational bivariate polynomial F(x, y) = 0, which
has vertical lines. The idea is first to process the curve without its vertical lines, then study the intersections of this
curve with the vertical lines. Technically, these two processings are intertwined:
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• The vertical lines have as x-coordinates the roots of Vl , the gcd of the coefficients of F seen as a polynomial in
y. Vl is an univariate polynomial in x , its roots are isolated (vertical lines can be thought of as vertical stripes).
The curve C f with f = F

Vl
which has no vertical line, is processed as explained before, until Step 4 included.

• Intersections between C f and the vertical lines generically occur on non-critical points of C f . Nevertheless, this
may not always be the case and we need to identify critical points of C f that also are on vertical lines. Solving
the singular and extreme ideals of C f with the additional polynomial Vl enable to identify which critical point
of C f is on which vertical line. Note that these points are singular for CF .

• Next additional boxes are created to witness the new relevant points of CF and refinement is processed to meet
the criteria of the connection step of the former algorithm. In more details, the x-intervals of critical points of
C f and vertical line stripes are refined until a vertical line stripe overlaps a critical box if and only if this critical
point is on the line. We create new boxes, called vertical, that contain every point that is an intersection between
a vertical line and C f and that is not a critical point of C f . We refine the extreme point boxes of C f and vertical
boxes until there is at most one crossing with CF on top (and bottom).

• Then Step 5 for vertical asymptotes of the previous algorithm is performed with the following modifications: For
the computation of the bound Mx , we consider all vertical boxes in addition to critical boxes. We identify which
vertical lines are also asymptotes by computing gcd(Vl , Va). We refine vertical lines stripes and asymptote
boxes so that a vertical line stripe, whose line is not an asymptote, does not overlap any asymptote box. We add
crossing points on asymptote boxes whose asymptote is also a vertical line.

• Finally, Step 6 for connection of the previous algorithm computes a graph isotopic to the curve CF .

3.3 Correctness of the Algorithm

All algebraic computations are certified, hence the only thing that has to be proved is that the output graph G is
isotopic to the input curve C. Our proof is constructive and elementary, we define the ambient isotopy F as follows.
On the skeleton of the rectangle decomposition Ft is chosen to be the identity for any t . It remains to define F on
each rectangle. In a rectangle that is not a critical box, C is a set of x-monotone non-crossing arcs and G is a set of
straight line segments connecting the same pairs of points on the rectangle’s boundary, as C does. F1 is defined on
each section x = α by mapping the points of C to that of G so that their ordering on x = α is preserved, and by
linear interpolation on the other points. Ft is then defined by linear interpolation Ft = t I d + (1 − t)F1. To handle
critical boxes, note that once cut vertically at the critical point, they behave like other rectangles (by Lemma 3).

3.4 Example

In this section, we show an example to illustrate the algorithm. We choose the curve f (x, y) = y4 − 6y2x + x2 −
4y2x2 + 24x3, as in [32].

Before starting, one has to eliminate from the curve the vertical components. These vertical components are the
gcd of the coefficients of f seen as a univariate polynomial in y. This gcd is 1: the curve has no vertical components
and the algorithm will behave as in Sect. 3.1.

Step 1 of the algorithm calculates boxes for the critical points of the curve f . First, the system of singular points
Is is solved.

Is = I( f, fy, fx )

= I(y4 − 6y2x + x2 − 4y2x2 + 24x3, 4y3 − 12xy − 8yx2, −6y2 + 2x − 8y2x + 72x2).

The Gröbner basis of the system Is with respect to the lexicographic ordering is calculated, giving (3y2 −
x, xy, x2). The RUR of this basis is the following; recall that the solutions of the system are (x = G1(t)

G0(t) , y = G2(t)
G0(t)

)

for t solution of F(t) = 0.

F(t) = t3, G0(t) = 3, G1(t) = 0, G2(t) = 3t.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 a Critical boxes of f . The small square at the origin contains the only singular point, p1. Each other rectangles contains one of
the x-extreme points p2, . . . , p6. b Rectangular decomposition of the plane induced by the critical boxes. c Topology inside the critical
boxes. d Graph isotopic to the curve. e Graph drawn with a finer refinement. f Detail of the graph near the origin

As F has only one root, t = 0, the system Is of singular points has only one solution p1 = (0, 0). Accordingly, our
implementation reports that Is has only one root in the box [0, 0] × [0, 0].

The system Ie of extreme points is given by Ie = I( f, fy, 1 − u fx ); here the new variable u is added, ensuring
that fx �= 0 for any solution of the system (indeed if fx = 0 then 1 − u fx = 1 for any u in C). The system Ie is
then

Ie = I(y4 − 6y2x + x2 − 4y2x2 + 24x3, 4y3 − 12xy − 8yx2, 1 − u(−6y2 + 2x − 8y2x + 72x2)).

To solve this system, we compute a Gröbner basis eliminating u and with lexicographical ordering on the other
variables, giving (72x2 + 4 − 35y2 + 99x, y3 − 9xy + 4y, 3y2x + 2 − 13y2 + 48x). The associated RUR is

F(t) = t5 − 19t3 + 70t, G0(t) = 1680 + 120t4 − 1368t2,

G1(t) = −70 + 143t4 − 1133t2, G2(t) = 912t3 − 6720t.

F has five real roots, and each one of them maps to a root of the system Ie. The software reports (small) boxes
containing each one of these extreme points p2, . . . , p6. For clarity of the exposition, we consider enlarged versions
of these critical boxes, as shown in Fig. 3a.

At this point, the isolating boxes of the extreme points are pairwise disjoint (and similarly for the singular boxes
if there were more than one) but nothing ensures that the extreme boxes do not overlap with the singular boxes. The
algorithm thus refine the boxes (by refining the isolating intervals of the roots of polynomials F(t) in the RURs of
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Ie and Is , and using interval arithmetic to obtain the refined 2D boxes) until all the boxes are pairwise disjoint. In
this example, no refinement is needed because the boxes do not overlap.

The fact that the solver found exact coordinates for some points, here p1, is actually a difficulty because, for
instance, the number of intersection points of the curve with the boundary of a singular box does not yield the number
of branches that are incident to the singular point. Point boxes are thus enlarged, initially to [− 1

128 , 1
128 ]×[− 1

128 , 1
128 ],

and refined until they intersect no other critical boxes. This yields a box for p1 which is [− 1
4096 , 1

4096 ]×[− 1
4096 , 1

4096 ].
In Step 2, the algorithm calculates the multiplicities of the critical points in fibers. For the singular point p1, it

calculates the smallest integer k such that the kth derivative does not vanish. This is done by considering the systems
Is,k obtained by adding fyk to the system Is,k−1 with Is,1 = Is (for efficiency purpose, we actually add fyk to the
Gröbner basis of Is,k−1 which has already been computed when considering Is,k).

Starting from k = 2, the solutions of Is,k are computed via a Gröbner and RUR calculations. Note that the
solutions of Is,k are also solutions of Is,k−1. The isolating boxes of the solutions of Is,k−1 and Is,k are then refined
until every box of each system intersects at most one box of the other system. This ensures that two intersecting
boxes necessarily correspond to the same root of the two systems. We can thus easily decide whether a root of Is,1

is also a root of Is,2, Is,3, . . . In our example the situation is quite simpler because Is,1 has only one root, and thus
any root of Is,k is necessarily that one. Still, computing the solutions of Is,k starting from k = 2, yields that the
solution p1 of Is,1 is a solution of Is,2 and Is,3, but not of Is,4. Hence, p1 has multiplicity 4 in its fiber. Here, the
systems Is,k and their Gröbner bases Gb_Is,k are:

Is,1 = Is Gb_Is,1 = {3y2 − x, xy, x2}
Is,2 = I (3y2 − x, xy, x2, 12y2 − 12x − 8x2) Gb_Is,2 = {x, y2}
Is,3 = I (x, y2, 24y) Gb_Is,3 = {y, x}
Is,4 = I (y, x, 24) Gb_Is,4 = {1}

On the other hand, the multiplicities of the five x-extreme points are computed using Teissier formula (see
Lemma 2): the multiplicity of each point in its fiber is the multiplicity of the corresponding roots in the RUR of Ie

plus one. In this case, p2, . . . , p6 have multiplicity one in the RUR, which implies that they all have multiplicity 2
in their fibers.

Step 3 of the algorithm deals with the refinement of the boxes containing x-extreme points, that is, the boxes
containing p2, . . . , p6. The goal of this step is to obtain boxes such that the curve intersects every box’s boundary
at most twice, with at most one intersection on the top (resp. bottom) of the box. Each box is treated independently.

The intervals defining the box enclosing p2 computed during the first step of the algorithm are x p2 =
[ 4611611823926328587

2305843009213693952 , 461176103935218815
2305843009213693952 ] and yp2 = [− 8627721659600529273

2305843009213693952 ,− 8627594605412894855
2305843009213693952 ]. The algorithm

isolates the roots on the vertical walls, f (x p2,le f t , y) and f (x p2,right , y) in the interval yp2 , and similarly for the
horizontal walls. Two intersection points are found, one on the top wall, the other on the bottom wall. This means
that the box containing p2 does not need to be refined.

The situation is identical for the boxes containing p3, p5 and p6. The box containing p4 has also two intersections
with the curve, here both on the left wall, which again does not require further refinement.

In Step 4, the algorithm refines the boxes enclosing singular points. The method uses the multiplicity k of each
singular point (in this case, the only singular point is p1) and the kth derivative of the curve with respect to y (both
were calculated in Step 2). Every singular point is treated independently; here with have only one.

We use interval arithmetic to ensure that fyk does not vanish in a box: computing with interval arithmetic, if the
image of the box by fyk does not contain zero, then fyk does not vanish in the box (the converse is not true). We
thus refine the box until its image by fyk does not contain zero.

We then refine the box in x until the curve C intersects neither the top nor the bottom of the box. Actually, before
doing this last refinement, for efficiency purposes, we actually enlarge the box in y as much as we can, under the
two constraints that it should continue to avoid the curve fyk and all the other critical boxes. The final resulting box

of p1 is [− 1
4096 , 1

4096 ] × [− 1
4 , 1

4 ] and it was not necessary to refine the box in x .
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Step 5 deals with vertical asymptotes. Their x-coordinates are the roots of the leading coefficient of f (x, y) view
as a polynomial in y. The leading term of f is y4, and the leading coefficient is 1, that is, the curve f has no vertical
asymptotes.

Step 6 is the last stage of the algorithm, in which the graph isotopic to the input curve C is computed. The boxes
containing critical points induce a subdivision of the plane in rectangles, as shown in Fig. 3b, and the intersection
points between C and every wall of this subdivision are computed. As explained in Sect. 3.1, we connect vertices
in a straightforward manner inside the critical boxes (see Fig. 3c). In this example, the connections in the other
rectangles of the subdivision are also straightforward (see Fig. 3d) and we do not need to use the multiplicity of
the extreme points nor to use a greedy approach. Figure 3e shows the same graph, using finer refinements, which
is computed in 0.3 s on a standard PC.

Program Output

The curve used as example of our algorithm is introduced as input of our maple worksheet. The example is ran on
a MacBook Pro, Intel Core 2 Duo, 2.6 GHz with 4 Gb RAM. The printout is slightly modified for readability.

# set the verbosity level:
verbose:=2:
# Optional but provides a smoother curve: set the precision for root

isolations
# (2ˆ{-precision}) and the number of additional vertical subdivisions of the
# non-critical rectangles of the decomposition.
precision:=10: visualize:=true: visualize_split:=10:

f := yˆ4 - 6*yˆ2*x + xˆ2 - 4*yˆ2*xˆ2 + 24*xˆ3:
isotop(f);

The program produces the following output with the graph shown in Fig. 3e, f shows the details near the origin.
The singular point is marked by a (red) diamond, and the extreme points are marked by (green) squares.

1. Compute boxes:
Vertical asymptotes (0 found) and vertical lines (0 found) computed in

0.000000 seconds
Extreme Gröbner basis obtained in 0.013000 seconds
RUR calculated in 0.001000 seconds
Univariate isolation done in 0.004000 seconds
Singular Gröbner basis obtained in 0.015000 seconds
RUR calculated in 0.001000 seconds
Univariate isolation done in 0.004000 seconds
Computed 1 singular and 5 x-extreme points in 0.039000 seconds
Boxes of critical points refined to avoid overlap in 0.001000 seconds
Compute singular points of multiplicity k in the fiber for k=2
Compute singular points of multiplicity k in the fiber for k=3
Compute singular points of multiplicity k in the fiber for k=4
Multiplicities of singular points in fibers computed in 0.052000 seconds
Multiplicities of singular points in fibers are: [4]
Boxes of extreme points refined for topology in 0.032000 seconds
Boxes of singular points refined for topology in 0.003000 seconds
Total time for computing the boxes of critical points (1 singular and

5 extreme) = 0.129000 seconds (including 0.091000 seconds for Gb/RS)
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2. Sweep:
Partitionned the plane into 49 rectangles in 0.096000 seconds
Elapsed total computation time: 0.225000 seconds

3. Construct graph: done in 0.001000 seconds
Total computation time: 0.226000 seconds

4 Complexity Analysis

This section details the proof of the following theorem stating the bit complexity of our algorithm for the com-
putation of the topology of a curve. We consider the Turing machine model of computation and ˜OB denotes the
bit complexity where poly-logarithmic factors are omitted. Let an algebraic curve C be given by a square-free
polynomial f ∈ Z[x, y] of total degree bounded by d and coefficients of bitsize bounded by τ . Let R be the number
of critical points of the curve.

Theorem 4 The bit complexity of our algorithm for the computation of the topology of the curve C is ˜OB(R d22 τ 2),
which is ˜OB(N 26), where N = max{d, τ }.

Definitions and Notation The bitsize of a rational number is defined as the maximum bitsize of its numerator and
denominator. The bitsize of a polynomial is the maximum bitsize of its coefficients. In order to simplify notation,
we assume in the sequel that d = O(τ ). However, we still express complexities in terms of d and τ when it is
simple enough since in practice d may be much smaller than τ . We may also assume that the univariate polynomials
that we compute with, are square free. This assumption does not change the complexity since the computation of
their square-free part and computations with their square-free part, is of no extra cost. Indeed, for a polynomial of
degree d and bitsize τ , its square-free part has degree O(d) and bitsize O(d + τ) = O(τ ) and it can be computed
in ˜OB(d2τ) [39]. We use the notion of separation bound of a polynomial (or of a zero-dimensional system of poly-
nomial equations) which is the minimum distance between its (complex) roots. We call the bitsize of a separation
bound s the minimum integer σ � 0 such that s > 2−σ . For simplicity, we do not consider poly-logarithmic factors
in the complexity bounds that we denote ˜O.

Isolations of roots of systems via a RUR require some machinery from interval analysis, we briefly recall the
basics and refer to [2] for additional details. For an interval A = [a1, a2], let its width be w(A) = a2 − a1 and its
absolute value be |A| = max(|a1|, |a2|). For a two-dimensional box A× B, let w(A× B) = max(w(A), w(B)) and
|A × B| = max(|A|, |B|). We denote by I (Rn) the set of products of n real intervals. A polynomial has a natural
extension to a function over I (Rn) by a process we call evaluation with interval arithmetic. More precisely, for a
polynomial f , we denote by the bold letter f the corresponding interval function defined over I (Rn) by replacing
the usual operations +,−,× by interval operations (note that the order in which the operations are processed can
change the result, but this issue is irrelevant for our computations). In the sequel, we bound the number of times we
refine the isolating intervals of the roots of the univariate polynomial of the RUR. We assume that every refinement
divides by at least two the interval width.

Overview of the Section In order to derive the bit complexity of the algorithm presented in Sect. 3 we analyze the
complexity of each step. The first two steps consists of computing the isolating boxes of the critical points and
multiplicities. The analysis of these steps is presented in Sect. 4.2. In the third step, we refine the isolating boxes
of the x-extreme points. The complexity of this step is bounded by the complexity of the next one, so we do not
consider it explicitly. During the first part of the fourth step we refine the isolating boxes of the singular points with
respect to their isolating curve. The analysis of this step is done in Sect. 4.3. During the second part, we refine the
isolating boxes of the singular points, until the curve does not intersect them on the top and on the bottom. The
analysis of this operation is done in Sect. 4.4. We conclude the proof of Theorem 4 in Sect. 4.5. Some technical
details are postponed to Sect. 4.6.
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4.1 Preliminaries

Before analyzing each step of the algorithm, we state the bitsize complexity of some recurrent basic computations.
Let f be a univariate integer polynomial of degree d and bitsize τ , and x be a rational of bitsize σ .

Lemma 5 [52] The bitsize of the separation bound of f is in O(dτ). Similarly, the bitsize of the endpoints of
isolating intervals of the roots of f is in O(dτ). Moreover, the absolute value of the roots of f is in O(2τ ).

We omit the proof of the following lemma which is straightforward.

Lemma 6 The evaluation of f over x has complexity ˜OB(d(τ +dσ)), while the number f (x) has bitsize O(τ +dσ).

Since the interval evaluation of the operations +,−,× are a constant time more expansive that their usual
counterparts we obtain the corollary:

Corollary 7 The evaluation of f using interval arithmetic over an interval I with end points of the same bitsize as
x, i.e., the computation of f(I ), has complexity ˜OB(d(τ + dσ)), while the interval f(I ) has end points with bitsize
O(τ + dσ).

We postpone to Sect. 4.6 the proof of the following lemma bounding the increase of the width of an interval by
evaluation by interval arithmetic of a polynomial.

Lemma 8 Let P be a univariate rational polynomial of degree d and bitsize τ , and A be an interval such that
|A| � 2σ with σ � 0; then

w(P(A)) � 2τ+dσ d2w(A).

Let Q be a bivariate rational polynomial of total degree d and bitsize τ , and B be an interval such that |B| � 2σ

with σ � 0; then

w(Q(A, B)) � 2τ+dσ+1d3w(A × B).

4.2 Computation of the Isolating Boxes

The first step of the algorithm is the computation of the isolating boxes of the singular and the extreme points. For the
complexity of this step it suffices to compute the complexity of solving the system of critical points Ic = I( f, fy).

The steps for solving the system are the followings. We compute the Gröbner basis of Ic and the RUR of the
system. We solve the univariate polynomial of the RUR and, using the isolating intervals of its real roots, we
compute boxes that contain the real solutions of the systems. Finally, we refine the boxes until they are all disjoint.

Gröbner Basis and RUR We compute the Gröbner basis of Ic with the degree reverse lexicographic order in
˜OB(d8τ) [37]. Next we compute the RUR representation of the solution of the system and multiplicities in ˜OB(d13τ),
the reader may refer to [43] for more details. Besides Ic we have to solve the systems Is,k , for 1 � k � d, to determine
the multiplicities of the singular points. We may assume that each of them could be solved in ˜OB(d13τ), as in the
case of Ic, since the polynomials have degrees bounded by d and the bitsize of the coefficient is bounded by ˜O(τ ).
Hence the total complexity is ˜OB(d14τ). However, this is an overestimation since the systems are over-determined
and thus the Gröbner bases could be computed faster [6] and in practice we don’t need to solve all d of them.

The RUR representation has the following form: h(T ) = 0, x = gx (T )
g0(T )

, y = gy(T )

g0(T )
, where h, g0, gx , gy ∈ Q[T ].

The polynomial h(T ) is actually the so called u-resultant [14]. It has degree O(d2) and bitsize O(d2+dτ) = O(dτ).
One way to see this is to consider a curve (and thus the system Ic) in generic position, this is without loss of gener-
ality since shearing the curve in generic position does not increase the bitsizes more than by a factor in O(lg(d)).
In this case we can consider as the polynomial h(T ) the projection of the system on the x-axis or, in other words,
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the resultant of the system with respect to y. Under this notion, g0 and gx , respectively g0 and gy could be seen as
the coefficients of the first non-vanishing sub-resultant of f and fy , with respect to y, respectively with respect to
x . Thus, the degree of these polynomials is O(d2) and their bitsize is O(dτ).

We can simplify the expressions of x and y, if we take into account that h(T ) and g0(T ) are relative prime.
Indeed, we can compute a polynomial g(T ) such that g · g0 = 1 mod h and thus express the coordinates of the
solutions as x = hx (T ) = gx (T ) g(T ) and y = hy(T ) = gy(T ) g(T ). The degree of g is O(d2) and its bitsize is
O(d3τ), as g is a Bézout coefficient of the extended Euclidean division of g0 and h [51]. The same bounds hold
for hx (T ) and hy(T ).

Computation of the Boxes In order to solve the system, it suffices to compute the isolating intervals of the real
roots of h, and substitute them in hx and hy using interval arithmetic. This gives isolating boxes that contain the
real roots of the system. Finally, we refine these boxes until they become disjoint.

Lemma 9 To ensure that the boxes of the critical points are disjoint, it is sufficient to refine O(d3τ) times each
isolating interval of the corresponding root of the univariate polynomial of the RUR of the critical points.

Proof One needs to refine the isolating intervals of the real roots of h until the corresponding boxes of the system,
computed by interval evaluation with hx and hy , become disjoint. In other words, the isolating boxes should have
width smaller than 2−sc , where sc is the separation bound of the system of critical points. If 2−μ is a lower bound
on the width of the isolating intervals of h, Lemma 8 yields a value μ, so that the evaluations by hx and hy give
intervals of width at most 2−sc . We consider only the polynomial hx , since the computation is similar for hy .
Lemma 8 applied with hx of bitsize O(d3τ) and degree O(d2) evaluated at the roots of h of absolute value O(2dτ )

(by Lemma 5) yields:

2O(d3τ)+O(d2)O(dτ)d22−μ � 2−sc .

Thus, it suffices to consider μ in O(sc + d3τ).
On the other hand, the separation bound of the critical points is larger than the separation bounds of the x (or y)

coordinates of these points. The coordinates are roots of the resultant of f and fy with respect to y (or x), which
is a polynomial of degree O(d2) and bitsize O(dτ). Hence the separation bound of the coordinates is of bitsize
O(d3τ) (by Lemma 5). This is also a bound for the separation bound of the critical points thus sc is in O(d3τ) and
O(sc + d3τ) is also in O(d3τ).

By Lemma 5, the isolating intervals of h have initial width O(2dτ ). Thus, to reduce them to the width 2−μ, it
suffices to perform O(dτ + d3τ) = O(d3τ) refinements, provided that the refinements divide the interval widths
by at least two. ��

4.3 Refinement With Respect to the Isolating Curve

We require that the isolating boxes of singular points avoid their associated curve fk = ∂k f/∂yk . This is ensured
by refining the isolating boxes of the singular points so that the evaluation of fk , using interval arithmetic, results
an interval that does not contain zero.

Lemma 10 To ensure that the boxes of singular points do not overlap their associated curve fk , it is sufficient to
refine ˜O(d4τ) times the corresponding roots of the univariate polynomial of the RUR.

Proof Consider a box B = I × J that isolates a singular point p. Assume, without loss of generality, that the
width of B is 2−μ. Let k be such that fk is the isolating curve for p. We need to ensure that the evaluation of
fk over B does not contain 0. A sufficient condition is that w(fk(B)) < δ with δ < | fk(p)|. Defining sv as
the maximum bitsize of the values of fk at the singular points of f (more precisely sv = maxs∈N∗{| fk(p)| >

2−s, p singular point of f and fk(p) �= 0}), we can choose δ = 2−sv .
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fk is of degree O(d) and bitsize ˜O(dτ) (by Stirling formula). The absolute value of a box of a singular point is
O(2dτ ) since the x or y coordinates of a box are roots of the resultant of f and fy with respect to y or x , and such a
resultant has bitsize O(dτ) (Lemma 5). Lemma 8 applied for the evaluation of fk over a singular point box yields:

2
˜O(dτ)+O(d)O(dτ)+1d32−μ � 2−sv .

Thus, it suffices to consider μ in O(sv + d2τ).
On the other hand, Lemma 13 gives that sv is in ˜O(d4τ), hence μ is in ˜O(d4τ).
Let 2−ν be the width of the isolating interval of h that corresponds to the singular point via the RUR. Then ν

should be such that the box computed via the RUR has width 2−μ. Applying Lemma 8 again, for the evaluation of
hx of degree O(d2) and bitsize O(d3τ) over this isolating interval of absolute value O(2dτ ), ν should satisfy:

2O(d3τ)+O(d2)O(dτ)d22−ν � 2−μ.

Thus, it suffices to consider ν in ˜O(d4τ).
We conclude, as in the proof of Lemma 9, that it suffices to perform ˜O(d4τ) refinements. ��

4.4 Refinement of the Singular Points to Avoid Top/Bottom Crossings

The last step that we need to consider is the analysis of the refinement of the isolating boxes of the singular points,
until there is no intersection between the curve and their top and bottom sides.

Lemma 11 To avoid top/bottom intersection between the curve and the boxes of singular points, it is sufficient to
refine ˜O(d9τ) times the corresponding roots of the univariate polynomial of the RUR.

Proof Consider a singular point and its isolating box refined according to Lemmas 9 and 10. We further refine
the x-coordinate of the box until the top (or equivalently the bottom) side does not intersect the curve. The line
supporting the top side is of the form y = c, for some constant c. Hence, the x-coordinates of the intersections of
the curve with the top side are among the roots of f (x, c). Consider the polynomial P whose roots are the roots of
f (x, c) and the x-coordinates of the critical points. A sufficient condition to avoid intersection on the top side is to
ensure that the x-width of the box is smaller than the separating bound of P .

The bitsize of c is the same as that of the evaluation of hx over an end-point a of an isolating interval of a root
of h. From Lemmas 9 and 10, the bitsize of a is in ˜O(d4τ). Since hx is of degree O(d2) and bitsize O(d3τ), c has
bitsize ˜O(d6τ) (Lemma 6). Hence f (x, c) is a polynomial of degree O(d) and bitsize ˜O(d7τ). The polynomial P
is the product of f (x, c) and the resultant with respect to y of f and fy , thus its degree is in O(d2) and its bitsize
is in ˜O(d7τ). The bitsize of the separation bound of P is thus δ in ˜O(d9τ)

Let 2−μ be the width of the isolating intervals of h corresponding to the singular point by the RUR. Lemma 8
applied with hx of bitsize O(d3τ) and degree O(d2) yields:

2O(d3τ)+O(d2)O(dτ)d22−μ � 2−δ

Thus, it suffices to consider μ in ˜O(d9τ).
We conclude, as in the proof of Lemma 9, that it suffices to perform ˜O(d9τ) refinements. ��

4.5 Overall Complexity

Combining the results from Sects. 4.2, 4.3 and 4.4 we can now prove Theorem 4.

Proof of Theorem 4 Combining the results of Lemmas 9, 10, and 11, we prove that the algorithm performs ˜O(d9τ)

refinements. Each refinement consists of an evaluation of h, hx and hy over a rational number of bitsize ˜O(d9τ).
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Using Horner’s rule, each evaluation of these polynomials of degree O(d2) and bitsize O(d3τ) has complex-
ity ˜OB(d2(d3τ + d2d9τ)) = ˜OB(d13τ) (Lemma 6). The complexity of the ˜O(d9τ) refinements is thus in
˜OB(d13τd9τ) = ˜OB(d22τ 2). If there are R singular points the total cost is thus ˜OB(Rd22τ 2).

Note that the costs of Gröbner and RUR computations are dominated. Finally, the complexity of dealing with
vertical asymptotes (Step 5), vertical lines and the connection part of the algorithm (Step 6) is dominated by the
complexity of the other steps.

Finally, if N = max{d, τ }, note that R is in O(d2) = O(N 2), and so the total complexity of the algorithm is
˜OB(N 26). ��

4.6 Technical Details

4.6.1 Interval Arithmetic

In our algorithm, we need, several times, to evaluate univariate and bivariate polynomials over intervals. This is
done using classical interval arithmetic operations. Theoretically, we need to control how large an interval becomes
when a polynomial operation is performed. We prove here Lemma 8, which we recall for convenience.

Let P be a univariate rational polynomial of degree d and bitsize τ , and A be an interval such that |A| � 2σ

with σ � 0; then w(P(A)) � 2τ+dσ d2w(A).

Let Q be a bivariate rational polynomial of total degree d and bitsize τ , and B be an interval such that
|B| � 2σ with σ � 0; then w(Q(A, B)) � 2τ+dσ+1d3 max(w(A), w(B)).

Proof of Lemma 8 We apply the basic formulas for the sum and the product of intervals [2, Theorem 9, p.15], which
are for any real number a and integer n � 1:

w(A ± B) = w(A) + w(B), w(a A) = |a|w(A),

w(AB) � w(A)|B| + |A|w(B), w(An) � n|A|n−1w(A).

Let P(x) = ∑d
i=0 ci xi with |ci | � 2τ and Q(x, y) = ∑i+ j�d

i, j�0 ci j xi y j with |ci j | � 2τ . We have:

w(P(A)) =
d

∑

i=0

|ci |w(Ai ) � 2τ
d

∑

i=0

i |A|i−1w(A) � 2τw(A)d
d

∑

i=1

|A|i−1

� 2τw(A)d2 max(1, |A|d−1) � 2τw(A)d22dσ � 2τ+dσ d2w(A).

w(Q(A, B)) =
∑

|ci j |w(Ai B j ) � 2τ
∑

w(Ai )|B| j + w(B j )|A|i

� 2τ
∑

iw(A)|A|i−1|B| j + jw(B)|A|i |B| j−1

� 2τ d32w(A × B) max(1, 2σ(d−1)) � 2τ+dσ+1d3w(A × B).

��

4.6.2 Separation Bounds

In this section, we compute the separation bound needed for the proof of Lemma 10. We first need a refinement,
due to Yap [52], of Gap theorem [14].

Theorem 12 [52, Gap theorem 11.45] Let 
 = {A1, . . . , An} ⊆ Z[x1, . . . , xn] be a system of n polynomials, not
necessarily homogeneous. Suppose that 
 has finitely many complex zeros and (ξ1, . . . , ξn) is one of these zeros.
Assume di = deg(Ai ) and

K := max{√n + 1, max{‖Ai‖2 | 1 � i � n}},
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where ‖Ai‖2 is the usual Euclidean norm of the vector of coefficients of the polynomial Ai . If |ξi | �= 0, i = 1, . . . , n,
then

|ξi | > (22/3 N K )−D2−(n+1)d1···dn ,

where

N :=
(

1 + ∑n
i=1 di

n

)

, D :=
(

1 +
n

∑

i=1

1

di

)

n
∏

i=1

di .

We now prove, following closely [53], the lemma we use in the proof of Lemma 10.

Lemma 13 Let p be a critical point of a curve C f , without vertical lines, defined by a square-free polynomial f of
degree d and bitsize τ . Let fk = ∂k f/∂ yk , where 2 � k � d. If p is not a point on fk , then | fk(p)| > 2−sv with sv

in ˜O(d4τ).

Proof We consider the following system for k ∈ {2, . . . , d}
A1 : f (p) = 0,

A2 : fy(p) = 0,

A3 : h − fk(p) = 0.

The system is zero-dimensional because the number of critical point is finite, and we can apply Theorem 12, where

d1 = d, d2 = d − 1, d3 � 2(d − k),

N �
(

4d − 2k

3

)

� 16d3, D � (d + 2)(d − 1)(2d − 1) � 4d3.

The bitsize of the norm of a polynomial is the bitsize if the polynomial itself. Since the bitsize of f and fy is in
O(τ ) and that of fk is in ˜O(dτ), we conclude that the bitsize of K is in ˜O(dτ). The factor that gives the bitsize in
the lower bound of Theorem 12 is thus K −D and h is bounded by a value of bitsize in ˜O(d4τ). ��

5 Experiments

We implemented our algorithm, isotop, in maple using the Gb/RS maple package [27,44], implemented in C, for
computing Gröbner bases, RURs and isolating roots. We believe that comparing maple and C/C++ implementations
is fair for our problem when the running time is not too small because then, most of the time is usually spent on
algebraic computations which are coded in C/C++ (possibly in the kernel of maple). When the running time is too
small, the maple part of the code is not negligible and comparing maple and C/C++ implementations becomes
meaningless. This is why we focused our tests on examples for which the running time exceeds 1 s. We measure
the running time for computing the isotopic graph, but not the drawing. All the experiments were performed using
2.6 GHz single-core Pentium 4 with 1.5 Gb of RAM and 512 kb of cache, running 32-bit linux.

We compared our code, isotop, with two C++ implementations Alcix [22] and Cad2d [11] and two maple
implementations, Top [32] and Insulate [49]. Another promising software is Axel, [4] but no implementation of the
certified subdivision algorithm is currently available.

Alcix is a C++ code, part of the CGAL library [15].7 Cad2d is a stand-alone C++ code which can also be compiled
in combination with the Singular library [29] (used for polynomial factorization). In our tests, Cad2d appears to be
much more efficient when ran with Singular (and we report these tests). Finally, recall that Top requires an initial
precision, which we set to 50.

7 Following the recommendation of M. Kerber, we ran two versions of the code with the flag CGAL_ACK_RESULTANT_FIRST_
STRATEGY set to 1 and 0. One being optimized for generic cases, while the other is optimized for singular curves. We always compare
to the better running time.
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Fig. 4 Distributions of a degrees and b number of critical points in our 650 examples

As discussed in Sect. 1, the various implementations do not compute exactly the same thing and comparisons
should thus be taken with care. Recall that when the curve is not in generic position, Top and Insulate do not compute
the critical points (and, in particular, the x-extreme points) in the original coordinate system. isotop, Alcix and
Cad2d always output the critical points in the original coordinate system.

We ran large scale benchmarks on over a thousand of curves during several weeks. In particular, we considered
curves suggested in [11,32,36] and several classes of non-generic curves.8 We considered about 1,300 curves from
[36], which are classified in 18 challenges covering a large variety of interesting cases such as isolated points, high
multiplicity of tangency at singularities, large number of branches at singularities or many singularities. This set
contains curves of degree up to 90 that are both in generic and non-generic position. As suggested in [11], typical
curves in generic position can be generated (i) as a random bivariate polynomial (which usually do not have singular
points) or (ii) as resultants of two random trivariate polynomials (which usually have singular points, including
isolated points). In both cases, we considered random polynomials with 50% non-zero coefficients of bitsize 32
in Case (i) and initial bitsize 8 in Case (ii). We generated such curves with degrees up to 25. We also generated
classes of curves in non-generic position in two different ways. First, we considered products of a curve with one or
several of its vertical translates. Second, we considered curves of the type g = f 2(x, y) + f 2(x,−y); such curves
are usually irreducible and consist of isolated points which are the intersections of the curve C f with its symmetric
with respect to the x-axis. We generated such curves with degrees up to 24.

We set in our experiments a limit of 30 min for the computation of the topology of one curve. We report as time
out instances that exceed this running time. Also, Cad2d which uses Singular for modular arithmetic, often reports
on difficult instances that the table of primes has been exhausted, which results in an interruption of computation;
this is reported in the tables as aborted.

In summary, we ran our benchmarks on a total of 1,500 curves. As mentioned above, it is not significant to
compare C++ and maple implementations when the running time is too small. We thus only report experiments on
650 curves whose running times exceeded 1 s for isotop. The distribution of degrees and number of critical points
of these 650 curves is shown in Fig. 4.

Figure 5 shows the ratio of running times between each of the competing implementations and isotop over
our set of 650 curves. It appears difficult to analyze the benchmarks globally because there are always particular
examples that are processed faster by a given implementation. We note, however, that Insulate is almost always
slower than isotop, except for random curves with no singular points. In addition, Insulate and Top reached the time
limit on more than half of the examples and, in particular, on difficult examples. We can, nevertheless, comment on
the general behavior of the different approaches depending on the classes of examples.

To illustrate the behavior on curves in generic positions, we report the running times for random curves in Table 1
and for resultants of surfaces in Table 2. Random curves have no singular points and few extreme points. In this case,

8 The logs are available at http://vegas.loria.fr/isotop/benchmarks.

http://vegas.loria.fr/isotop/benchmarks
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Fig. 5 Distributions of running time ratios for a Cad2d, b Alcix, c Top, and d Insulate over isotop. Timeout means that the limit of
30 min was reached

Table 1 Running times in seconds (averaged over five runs) for random bivariate polynomials with 50% non-zero coefficients of
bitsize 32

Degree Bitsize isotop Alcix Cad2d Top Insulate Alcix
isotop

Cad2d
isotop

Top
isotop

Insulate
isotop

10 32 3.8 0.42 1.6 1.4 4.3 0.1 0.4 0.4 1.1

12 32 9.7 2.2 2.3 4.8 8.1 0.2 0.2 0.5 0.8

14 32 22 3.7 4.3 15 26 0.2 0.2 0.7 1.2

16 32 72 4.5 6.1 38 39 0.1 0.1 0.5 0.5

18 32 160 16 12 94 98 0.1 0.1 0.6 0.6

20 32 320 31 25 210 120 0.1 0.1 0.7 0.4

Table 2 Running times (averaged over five runs) in seconds for resultants of two random trivariate polynomials, both of total degree
4 or 5, with 50% non-zero coefficients of bitsize 8

Degree Bitsize isotop Alcix Cad2d Top Insulate Alcix
isotop

Cad2d
isotop

Top
isotop

Insulate
isotop

16 64 29 14 Aborted 52 >600 0.5 – 1.8 >20

25 80 590 410 Aborted >1,800 >1,800 0.7 – >4.3 >3

we observe that isotop is the least efficient implementation. This can be explained by the fact that isotop computes
the Gröbner basis of a large system without multiplicities, which is the worst case in practice. On the other hand,
the other implementations benefit from interval arithmetic filters in the lifting phase, which speed up computations
by avoiding expensive symbolic computations, see for example [11]. Generic curves generated as resultants have
many singularities and extreme points. isotop benefits from splitting the critical system in two smaller (singular
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Table 3 Running times (averaged over five runs) in seconds for non-generic curves generated by the product of a curve f with two of
its translates f (x, y + 1) and f (x, y + 2)

Degree τ Isot. Alcix Cad2d Top Insulate Alcix
isotop

Cad2d
isotop

Top
isotop

Insulate
isotop

12 96 4.1 6.5 1.6 9 or >600 >600 1.6 0.4 2.2 or >92 >140

15 96 15 38 10 40 or >600 >600 2.5 0.7 2.7 or >16 >40

18 96 49 120 66 >600 >600 2.4 1.3 >12 >12

21 96 140 510 510 >1,200 >1,200 3.5 3.6 >8.6 >9

The curve f is chosen randomly with degree between 4 and 7 and 50% non-zero coefficients of bitsize 32, resulting in curves of bitsize
τ . The running-time discrepancy of Top is large and is not averaged

Table 4 Running times (averaged over five runs) in seconds for non-generic curves generated by the product of a curve f with its
translate f (x, y + 1)

d1 d2 Degree τ Isot. Alcix Cad2d Top Insulate Alcix
isotop

Cad2d
isotop

Top
isotop

Insulate
isotop

3 3 18 96 26 93 160 >600 >600 3.6 6.3 >20 >20

3 4 24 112 250 510 or Abort. >1,800 >1,800 2 or – >20 >20

>1,800 >7

The curve f is the resultant of two random trivariate polynomials of total degree d1 and d2 and 50% non-zero coefficients of bitsize 8.
The running-time discrepancy of Alcix is large for degree 24 and is not averaged

Table 5 Running times (averaged over five runs) in seconds for polynomials of the form g = f 2(x, y) + f 2(x,−y)

Degree Bitsize isotop Alcix Cad2d Top Insulate Alcix
isotop

Cad2d
isotop

Top
isotop

Insulate
isotop

10 64 39 180 25 >600 >600 4.5 0.6 >15 >15

12 64 240 300 Aborted >1,800 >1,800 1.2 – >7 >7

14 64 350 >1,800 Aborted >1,800 >1,800 > 5 – >5 >5

The random polynomials f have bitsize 32, term density 50% and degrees varying between 5 and 7

and extreme) systems and hence it performs relatively better than in the completely random case. We observe that
isotop is typically a bit slower than Alcix but faster than Top, and that Cad2d aborts.

To illustrate the behavior on curves in non-generic position, we consider different classes of curves. The first
class of non-generic curves are constructed with one curve multiplied by one or several of its vertical translates.
The initial curve is taken either randomly, in Table 3, or it is a resultant of two surfaces, in Table 4. Table 5 reports
results on the second class of non-generic curves of the type f 2(x, y) + f 2(x,−y) for random polynomials f . For
these non-generic curves, isotop is typically faster than other implementations.

As a general rule, we observe that, except for random curves, that is, curves in generic position and without
singular point, the ratio of the running times between other implementations and isotop is increasing with the
degree of the curve. In other words, except for random curves, isotop tends to perform better, compared to others,
when the degree increases.

6 Conclusion

We presented a new algorithm and implementation for computing the topology of plane algebraic curves. Instead
of a CAD (cylindrical algebraic decomposition) based method, our algorithm relies upon Gröbner bases, Rational
Univariate Representations and hence avoids computations with algebraic numbers even in non-generic cases. A
strength of our approach is to be insensitive to the non-genericity of the curve. As demonstrated by the experiments,
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our implementation is competitive with state-of-the-art C/C++ implementations in the case of generic curves and
faster for high-degree non-generic ones. Future work includes taking advantage of the possible decomposition of
the curve into factors. We already decompose the system of critical points into systems of extreme and singular
points. One natural step further would be to consider the primary decompositions of the ideals and thus work with
systems of lower complexity.
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