
Complete Numerical Isolation of Real Zeros
in Zero-dimensional Triangular Systems

Jin-San Cheng1 Xiao-Shan Gao1 Chee-Keng Yap2,3

1 KLMM, Institute of Systems Science, AMSS, Academia Sinica, Beijing 100080, China
2 Courant Institute of Mathematical Sciences, New York University, New York NY 10012, USA

3 Korea Institute for Advanced Study, Seoul, Korea

ABSTRACT
We present a complete numerical algorithm of isolating all
the real zeros of a zero-dimensional triangular polynomial
system Fn ⊆ Z[x1, . . . , xn]. Our system Fn is general, with
no further assumptions. In particular, our algorithm suc-
cessfully treat multiple zeros directly in such systems. A key
idea is to introduce evaluation bounds and sleeve bounds.
We implemented our algorithm and promising experimental
results are shown.

Categories and Subject Descriptors
G.1.5 [Mathematics of Computing]: Roots of Nonlinear
Equations - system of equations

General Terms
Algorithms, Theory

Keywords
Triangular system, real zero isolation, sleeve bound, evalu-
ation bound

1. INTRODUCTION
Many problems in the computational sciences and engi-

neering can be reduced to the solving of polynomial equa-
tions. There are two basic approaches to solving such poly-
nomial systems – numerically or algebraically. Usually, the
numerical methods have no global guarantees of correctness.
Algebraic methods for solving polynomial systems include
Gröbner bases, characteristic sets, CAD, and resultants (see
[3, 4, 5, 7, 16, 18, 20, 25, 26]). One general idea in polyno-
mial equation solving is to reduce the original system into
a triangular system. Zero-dimensional polynomial systems
are among the most important cases to solve. This paper
considers zero-dimensional triangular systems only.

A zero-dimensional triangular system has the form Fn =
{f1, . . . , fn}, where each fi ∈ Z[x1, . . . , xi] (i = 1, . . . , n)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

and xi is a variable of fi. We are interested in real zeros of
Fn. A real zero of Fn is ξ = (ξ1, . . . , ξn) ∈ Rn such that

f1(ξ1) = f2(ξ1, ξ2) = · · · = fn(ξ1, . . . , ξn) = 0. (1)

The standard idea here is to first solve for f1(x1) = 0, and for
each solution x1 = ξ1 of f1, we find the solutions of x2 = ξ2

of f2(ξ1, x2) = 0, etc. The problem is reduced to solving
univariate polynomials of the form fi(ξ1, . . . , ξi−1, xi) = 0.
Such polynomials have algebraic number coefficients. We
could isolate roots of such polynomials by using standard
root isolation algorithms (such as Sturm sequence method),
but using algebraic number arithmetic. But even for n = 2
or 3, such algorithms are too slow. The numerical approach
is to replace the ξi’s by approximations, and thus reduce
the problem to isolating roots of such numerical polynomi-
als. The challenge is how to guarantee completeness of such
numerical algorithms.

We will provide a numerical algorithm that solves such
triangular systems completely in the following precise sense:
given an n-dimensional box R = J1 × · · · × Jn ⊆ Rn where
Ji are intervals, and any precision ε > 0, it will isolate the
real zeros of Fn in R to precision ε.

Our solution places no restriction on Fn. The reason why
we consider general zero-dimensional triangular systems is
that the triangular systems derived in cylinder algebraic de-
composition or topology determination [8] are generally with
multiple roots and even non regular (for definition see [25]).

Our goal is to deal with such triangular systems directly
without factorization or gcd computation over algebraic num-
ber fields. It is well known that these computations are
expensive.

Many algorithms that seek to provide “exact numerical”
solution assume computation over the rational numbers Q.
But this is much less efficient than using dyadic numbers:
let D :=Z[1

2
] = {m2n : m, n ∈ Z} denote the set of dyadic

numbers (or bigfloats)[28]. Most current fast algorithms for
bigfloats can be derived from Brent’s work [6]. In the fol-
lowing, we use the symbol F to denote either D or with Q.
We use intervals to isolate real numbers: let F denote the
set of intervals of the form [a, b] where a ≤ b ∈ F.

Given a polynomial f ∈ R[X] and an interval I = [a, b] ∈
F, we construct two polynomials fu, fd ∈ F[X] such that

fu > f > fd holds in I. We call (fu, fd) a sleeve of f over
I and SBI(f

u, fd) := sup{fu(x)− fd(x) : x ∈ I} the sleeve
bound. Note that the coefficients of fufd are in F, but f
have real coefficients which can be arbitrarily approximated.
The key idea in this paper is the introduction of evaluation
bounds. For a differentiable function f : R → R and a

subset I ⊆ R, let its evaluation bound be

EBI(f) := inf{|f(x)| : f ′(x) = 0, f(x) 6= 0, x ∈ I}. (2)

If the following sleeve-evaluation inequality

SBI(f
u, fd) < EBI(f) (3)

holds, we show that the isolating intervals of fufd can be
used to define isolating intervals of f . The use of evaluation
bounds appear to be new. It is the ability to compute lower
estimates on EBI(f) that allows us to detect zeros of even
multiplicities.

As a consequence of the above analysis, the real roots
isolation for f is reduced to real roots isolation for fd and
fu. Univariate root isolation is a well-developed subject in
its own right, with many efficient solutions known (see [1,
9, 11, 13, 15, 21, 23]). We can use any of these solutions in
our algorithm.

The idea of using a sleeve to solve equations was used
by [22] and [17]. Lu et al [17] proposed an algorithm to
isolate the real roots of triangular systems. Their method
could solve many problems in practice, but is not complete
and cannot handle multiple zeros. Collins et al [10] con-
sidered the problem with interval arithmetic methods and
Descartes’ method using floating point computation. Again,
they pointed out that if a real coefficient is implicitly zero,
the method will fail. Xia and Yang [27] consider real root
isolation of a semi-algebraic set. They ultimately consid-
ered the regular and square-free triangular systems. Their
method can be viewed as a generalization of the Uspensky
algorithm. They mentioned that the method is not com-
plete and will fail in some cases. Eigenwillig et al con-
sidered root-isolation for real polynomials with bitstream
coefficients [12]. Their algorithm requires f to be square-
free. Our evaluation bound is similar to the curve separa-
tion bound in [29]. It seems difficult to define sleeves for
non-triangular systems, because the variables appear simul-
taneously. Interesting work on general polynomial systems
was done by Hong and Stahl [14].

In Section 2, we describe the basic technique of using
sleeves and evaluation bounds of f . We next exploit a special
property of sleeves called monotonicity. This leads to an ef-
fective criteria for isolating zeros of even multiplicity. Using
these tools, we provide an algorithm to isolate the real roots
of univariate polynomials with real coefficients. In Section
3, we give methods to compute evaluation bounds. We also
show how to construct sleeves and derive a sleeve bound for
a triangular system. In Section 4, we present the root isola-
tion algorithm for triangular systems. Experimental results
are also presented. We conclude in Section 5.

2. ROOT ISOLATION FOR REAL
UNIVARIATE POLYNOMIALS

We give a framework for isolating the real roots of a uni-
variate polynomial equation with real coefficients.

2.1 Evaluation and Sleeve Bounds
Let Q be the field of rational numbers, R the field of real

numbers, D :=Z[1
2
] = {m2n : m, n ∈ Z} the set of dyadic

numbers, and F denote either D or Q. In this section, we fix
f, fu, fd to be C1 functions, and I ∈ F.

We call (I, fu, fd) a sleeve for f if, for all x ∈ I, we have
fu(x) > f(x) > fd(x).

For any real function f , let ZeroI(f) denote the set of
distinct real zeros of f in the interval I. If I = R, then we
simply write Zero(f). If #(ZeroI(f)) = 1, we call I an iso-
lating interval of f . Sometimes, we need to count the zeros
up to the parity (i.e., evenness or oddness) of their multiplic-
ity. Call a zero ξ ∈ Zero(f) an even zero if its multiplicity
is even, and odd zero if its multiplicity is odd. Define
the multiset ZEROI(f) whose underlying set is ZeroI(f) and
where the multiplicity of ξ ∈ ZEROI(f) is 1 (resp., 2) if ξ is
an odd (resp., even) zero of f .

To avoid special treatment near the endpoints of an inter-
val, we enforce the following conditions.

|f(a)| ≥ EBI(f), fu(b)fd(b) > 0. (4)

We say that the sleeve (I, fu, fd) is faithful for f if (4)
and (3) are both satisfied. We can easily see that |f(a)| ≥
EBI(f) implies fu(a)fd(a) > 0, using (3). An appendix
will treat the case of non-faithful sleeves.

Intuitively, f is nicely behaved when if we restrict f to
a neighborhood of a zero ξ where |f | < EB(f). This is
illustrated in Figure 1.

bξ

ξ

ξ bξaξ

(a) (b)

Aξ Bξ
Iξ

aξ

ff

y = −EB(f)

y = 0

y = EB(f)

Figure 1: Neighborhood of ξ: Iξ = Aξ ∪ {ξ} ∪Bξ.

Given f and I, define the polynomials

bf(X) := f(X)− EBI(f), f(X) := f(X) + EBI(f).

If ξ ∈ ZeroI(f), we define the points aξ, bξ as follows:

aξ := max{{a} ∪ Zero(bf · f) ∩ (−∞, ξ)}, (5)

bξ := min{{b} ∪ Zero(bf · f) ∩ (ξ, +∞)}. (6)

Then define the open intervals (see Figure 1):

Aξ :=(aξ, ξ), Bξ :=(ξ, bξ) and Iξ :=(aξ, bξ). (7)

Basic properties of these intervals are captured below.
The proofs are omitted.

Lemma 1. Let (I, fu, fd) be a faithful sleeve for f . For
all ξ, ζ ∈ ZeroI(f), we have:
(i) If ξ 6= ζ then Iξ and Iζ are disjoint.
(ii) ZeroI(f

ufd) ⊆ Sξ Iξ.

(iii-a) Aξ∩Zero(fu) is empty iff Aξ∩Zero(fd) is non-empty.
(iii-b) Bξ∩Zero(fu) is empty iff Bξ∩Zero(fd) is non-empty.
(iv) The derivative f ′ has a constant sign in Aξ or Bξ for
any ξ ∈ ZeroI(f).

If s, t ∈ ZeroI(f
ufd) such that s < t and (s, t)∩ZeroI(f

ufd)
is empty, then we call (s, t) a sleeve interval of (I, fu, fd).
The following is immediate from the preceding lemma (iii):

Corollary 2. Each zero of ZeroI(f) is isolated by some
sleeve interval of (I, fu, fd).

Lemma 3. Let (I, fu, fd) be a faithful sleeve. For all
ξ ∈ ZeroI(f), the multiset ZEROBξ (fu · fd) has odd size.

Similarly, the multiset ZEROAξ (fu · fd) has odd size.

It follows from the preceding lemma that for each zero ξ
of f , the multiset ZEROIξ (fufd) has even size. Hence the

multiset ZEROI(f
ufd) has even size, say 2m. So we may

denote the sorted list of zeros of ZEROI(f
ufd) by

(t0, t1, . . . , t2m−1). (8)

where t0 ≤ t1 ≤ · · · ≤ t2m−1. Note that ti = ti+1 iff ti is
an even zero of fufd. Intervals of the form Ji :=[t2i, t2i+1]
where t2i < t2i+1 are called candidate intervals of the
sleeve. We immediately obtain:

Corollary 4. Each ξ ∈ ZeroI(f) is contained in some
candidate interval of a faithful sleeve (I, fu, fd).

Which of these candidate intervals actually contain zeros
of f? To do this, we classify a candidate interval [t2j , t2j+1]
in (8) into two types:

(Odd): t2j ∈ Zero(fd) iff t2j+1 ∈ Zero(fu)
(Even): t2j ∈ Zero(fd) iff t2j+1 ∈ Zero(fd)

ff
(9)

We call a candidate interval J an odd or even candi-
date interval if it satisfies (9)(Odd) or (9)(Even). We now
treat the easy case of deciding which candidate intervals are
isolating intervals of f :

Lemma 5 (Odd Zero). Let J be a candidate interval.
The following are equivalent:
(i) J is an odd candidate interval.
(ii) J contains a unique zero ξ of f . Moreover ξ is an odd
zero of f .

Proof. Let J = [t, t′].
(i) implies (ii): Without loss of generality, let fu(t) = 0 and
fd(t′) = 0. Thus, f(t) < 0 and f(t′) > 0. Thus f has an odd
zero in J . By Corollary 2, we know that candidate intervals
contain at most one distinct zero.
(ii) implies (i): Since ξ is an odd zero, we see that f must
be monotone over J . Without loss of generality, assume f
is increasing. This implies fd(t) < 0 and hence fu(t) = 0.
Similarly, fu(t′) > 0 and hence fd(t′) = 0. Hence J is an
odd candidate. Q.E.D.

Isolating zeros of even multiplicity is more subtle and will
be dealt with in the next section. To do this we need to look
at the sign of ∂fu

∂X
and ∂fd

∂X
. We make a first observation

along this line:

Lemma 6. Let ti ∈ ZERO(fufd).

(a) If ti is a zero of fu, then i is even implies ∂fu

∂X
(ti) ≥ 0,

and i is odd implies ∂fu

∂X
(ti) ≤ 0.

(b) If ti is a zero of fd, then i is even implies ∂fd

∂X
(ti) ≤ 0.

and i is odd implies ∂fd

∂X
(ti) ≥ 0.

2.2 Monotonicity Property
We will exploit a special property of (I, fu, fd) for f :

∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
holds in I (10)

We call this the monotonicity property. In this subsec-
tion, we assume (10) and the faithfulness of the sleeve. We
now strengthen one half of Lemma 3 above.

Lemma 7. For any ξ ∈ ZeroI(f), there is a unique zero
of odd multiplicity of fu · fd in Aξ = (aξ, ξ).

aξ

ξ

z1z0

f(z0)
f(z1)

y = EB(f)

y = 0

y = −EB(f)

Figure 2: Aξ has a unique zero of fu · fd: CASE of
fu(z0) = fu(z1) = 0.

Corollary 8. If t2j is an even zero of fufd, then Jj =
[t2j , t2j+1] contains no zero of f .

If t2j is an even zero we have either t2j = t2j+1 or t2j =
t2j−1. But for the former case, (t2j , t2j+1) clearly has no
zeros of f . The next result is a consequence of monotonicity
and faithfulness:

Lemma 9. The interval J0 = [t0, t1] is a candidate inter-
val and it isolates a zero of f .

In Lemma 5, we showed that (9)(Odd) holds iff Jj isolates
an odd zero of f . The next result shows what condition
must be added to (9)(Even) in order to to characterize the
isolation of even zeros.

(b)

t2j−1 t2j t2j+1

ξ

f

fd

(a)

t2j−1 t2j t2j+1

ξζ

f

y = −EB(f)

y = 0

y = EB(f)

BξAξ Bξ

Figure 3: Detection of even zero when t2j , t2j+1 ∈
ZeroI(f

d): (a) even zero, (b) no zero

Lemma 10 (Even Zero). Let Jj = [t2j , t2j+1] (j > 0)
be an even candidate interval. Then Jj isolates an even

zero ξ of f iff (i) fd(t2j) = 0 and ∂fu

∂X
has real zero in

(t2j−1, t2j+1), or (ii) fu(t2j) = 0 and ∂fd

∂X
has real zero in

(t2j−1, t2j+1).

Note: Since j > 0, then t2j−1 is a zero of fd iff t2j is a
zero of fd.

Proof. Let t2j be a zero of fd. So fd(t2j+1) = 0 and
t2j+1 ∈ Bξ for a zero ξ of f . This means ∂f

∂X
is positive in

(ξ, t2j+1). There are two cases: (a) t2j < ξ < t2j+1 or (b)
ξ < t2j < t2j+1. If (a), then t2j−1 ∈ Bζ for some zero ζ of f
and ζ 6= ξ(see Figure 3(a)). By (3), we have 0 < fu(t2j−1) <
EB(f), 0 < fu(t2j) < EB(f). Since t2j−1 ∈ Bζ , t2j ∈ Aξ

and ζ 6= ξ, there exists a point η ∈ (t2j−1, t2j) such that
f(η) ≥ EB(f). So fu(η) > EB(f). That means there is an
extremum point of fu in (t2j−1, t2j). That is, there exists

a zero of ∂fu

∂X
in (t2j−1, t2j) ⊂ (t2j−1, t2j+1). If (b), then

∂fu

∂X
(x) > 0 for all x ∈ (t2j−1, t2j+1) since ∂f

∂X
has constant

sign in Bξ (see Figure 3(b)). We finish the proof. Q.E.D.

2.3 Effective Root Isolation of f

So far, we have been treating the roots tj of fufd exactly.
But in our algorithms, we only have numbers in F. We now
want to replace tj by their isolating intervals [aj , bj]. As
usual, we assume that (I, fu, fd) is faithful and satisfies the
monotonicity property (10). Let ZEROI(f

ufd) be the sorted
list given in (8), and [ai, bi] an isolating interval of ti, where
any two distinct intervals [ai, bi] and [aj , bj] are disjoint. Let

SLf,I = ([a0, b0], [a1, b1], . . . , [a2m−1, b2m−1]) (11)

be the isolating intervals for roots of fufd in ZEROI(f
ufd).

Assume that [ai, bi] = [aj , bj] iff ti = tj . Note that ti = tj

implies |i− j| ≤ 1. Let Ki :=[a2i, b2i+1].
By Corollary 8, Ji is not an isolating interval if t2i is

an even zero. Hence, we call Ki an effective candidate
iff t2i < t2i+1 and t2i is an odd zero. Thus, Ki contains
the candidate interval Ji = [t2i, t2i+1]. Furthermore, Ki is
called an effective even candidate (resp., effective odd
candidate) if Ji is an even (resp., odd) candidate interval
(cf. (9)).

Our next theorem characterizes when Ki is an isolating
interval of f . This is the “effective version” of Lemma 5 and
Lemma 10. But before this theorem, we provide a useful
partial criterion:

Lemma 11. Let Ki = [a2i, b2i+1] be an effective even can-
didate. Then Ki isolates an even zero provided one of the
following conditions hold:
(E’)d: t2i ∈ Zero(fd) and ∂fu

∂X
is negative at a2i or b2i,

(E’)u: t2i ∈ Zero(fu) and ∂fd

∂X
is positive at a2i or b2i.

For the even effective candidates, we shall need a con-
stant sign property:

Let t2j , t2j+1(j ≥ 1) all be real zeros of fu or fd.

If t2j , t2j+1 ∈ Zero(fd) then ∂fu

∂X
is positive

in [a2j−1, b2j−1] and [a2j+1, b2j+1].

If t2j , t2j+1 ∈ Zero(fu) then ∂fd

∂X
is negative

in [a2j−1, b2j−1] and [a2j+1, b2j+1].

9
>>>>=
>>>>;

(12)

Note that t2j−1 ∈ Bζ , t2j+1 ∈ Bξ for some ζ, ξ ∈ ZeroI(f).

And we know ∂fu

∂X
(x) > 0 (∂fd

∂X
(x) < 0) for all x ∈ Bη(η =

ξ, ζ) when t ∈ ZeroI(f
d)(t = t2j−1, t2j+1) (t ∈ ZeroI(f

u)).
So the constant sign can be reached. We strengthen this to
a necessary and sufficient criterion:

Theorem 12 (Effective Isolation Criteria). Let
Ki = [a2i, b2i+1] be an effective candidate. If Ki is an even
effective candidate, further assume that constant sign prop-
erty holds. Then Ki is an isolating interval of f iff one of
the following conditions hold:
(O) Ki is an effective odd candidate.
(E): Ki is an effective even candidate and, i = 0 or i > 0

and ∂fu

∂X
(resp., ∂fd

∂X
) has some zero in [b2i−1, b2i+1] if fd

(resp., fu) has two distinct zeros in Ki.

Proof. As a preliminary remark, we note that Ki contains
at most one zero of f .

(⇐) We first show that (O) or (E) implies that Ki is an
isolating interval. Suppose (O) holds. We may assume that
fu has a zero in [a2i, b2i] and fd has a zero in [a2i+1, b2i+1].
Thus [a2i, b2i+1] contains a candidate interval Ji = [t2i, t2i+1]
satisfying the conditions of Lemma 5, and Ji has an odd zero
of f . Suppose (E) holds. Without loss of generality, assume
fu has two distinct zeros in Ki. If i = 0, then clearly, Ki has
a zero of f . Otherwise, these zeros must be t2i and t2i+1.

By assumption, ∂fd

∂X
has some zero in [b2i−1, b2i+1]; but in

fact this zero lies in [b2i−1, t2i+1] ⊆ Ji because [a2i+1, b2i+1]
satisfies the constant sign property (12). Now Lemma 10
implies f has some zero in Ji ⊆ Ki.

(⇒) Suppose f has some zero in Ki. We must show that
either (O) or (E) holds. From the definition of Ki, we know
there are two distinct roots of fufd in Ki. If fu(t2i) = 0 iff
fd(t2i+1) = 0, then clearly (O) holds. Otherwise, fd(t2i) =
0 iff fd(t2i+1) = 0. If i = 0, it is clear. If i ≥ 1, without
loss of generality, assume that t2i, t2i+1 are zeros of fd. We
must show that ∂fu

∂X
has some zero z in [b2i−1, b2i+1]. By

Lemma 10, ∂fu

∂X
has some zero z in [t2i−1, t2i+1]. So it is

enough to show that z cannot lie in [t2i−1, b2i−1]. But this
is a consequence of the constant sign property.

Q.E.D.

We can use Sturm theorem to check whether a polynomial

(∂fu(X)
∂X

or ∂fd(X)
∂X

) has real root in a given interval. In most
cases, we need not to use this since Lemma 11 holds for
almost all the cases in practice.

3. BOUNDS OF TRIANGULAR SYSTEM
Consider a triangular polynomial system Fn:

Fn = {f1(x1), f2(x1, x2), . . . , fn(x1, . . . , xn)} (13)

where fi ∈ Z[x1, . . . , xi]. Generalizing our univariate nota-
tion, if B ⊆ Rn, let ZeroB(Fn) denote the set of real zeros
of Fn restricted to B.

Let B = I1×· · ·×In be an n-dimensional box, Ii = [ai, bi],
and ξ = (ξ1, . . . , ξn−1) ∈ ξ = I1 × · · · × In−1 be a real zero
of Fn−1 = {f1, . . . , fn−1} = 0. Consider

f(X) := fn(ξ1, . . . , ξn−1, X). (14)

We have a three-fold goal in this section:
1. Compute lower estimates on EBIn(f).
2. Compute a sleeve (In, fu, fd) for f .
3. Compute an upper estimate on SBIn(fu, fd).

3.1 Lower Estimate on Evaluation Bounds
We give two methods to compute lower estimates of EBIn(f).

The first method is based on a general result about multi-
variate zero bounds in [28]; another is based on resultant
computation.

Let Σ = {p1, . . . , pn} ⊆ Z[x1, . . . , xn] be a zero dimen-
sional equation system. Let (ξ1, . . . , ξn) ∈ Cn be one of these
zeros. Suppose di = deg(pi) and K := max{√n + 1, ‖p1‖2,
. . . , ‖pn‖2} where ‖p‖2 is the 2-norm of p. Then we have
the following result [28, p. 341]:

Proposition 13. Let (ξ1, . . . , ξn) be a complex zero of Σ.
For any i = 1, . . . , n, if |ξi| 6= 0 then

|ξi| > MRB(Σ) :=(23/2NK)−D 2−(n+1)d1···dn . (15)

where N :=
`1+Pn

i=1 di
n

´
, D :=(1 +

Pn
i=1

1
di

)
Qn

i=1 di.

Note that this proposition defines a numerical value MRB(Σ)
(the multivariate root bound) for Σ. Given Fn as in (13),
consider the polynomial set

bFn :={f1, . . . , fn−1,
∂fn

∂X
, Y − fn} (16)

in Z[x1, . . . , xn−1, X, Y], where fn = fn(x1, . . . , xn−1, X).

Lemma 14. Use the notations in (14). Let (ξ1, . . . , ξn−1)
be a zero of Fn−1. Then the evaluation bound EBIn(f) of

f(X) ∈ R[X] satisfies EBIn(f) > MRB(bFn).

It is instructive to directly define the evaluation bound
of a triangular system Fn: for B ⊆ Rn, let B′ = B × R.
Then define EBB(Fn) to be

min{|y| : (x1, . . . , xn−1, x, y) ∈ ZeroB′ (bFn), y 6= 0}, (17)

assuming min{} = ∞. Observe that (17) is a generalization
of the corresponding univariate evaluation bound (2). For
i = 2, . . . , n, we similarly have evaluation bounds EBBi(Fi)
for Fi, where Fi = {f1, . . . , fi}.

This multivariate evaluation bound is a lower bound on
the univariate one: with f given by (14). Since MRB(bFn)

is easily computed, our algorithm can use MRB(bFn) as the
lower bound on EB(Fn).

In general, MRB(bFn) is not a good estimation (see Ex-
amples in Section 5). We propose a computational way to

compute such a lower estimate via resultants. Consider bFn

defined by (16). Let

ei =

resX(Y − fn, ∂fn

∂X
) i = n,

resxi(ei+1, fi) i = n− 1, . . . , 1
(18)

where resx(p, q) is the resultant of p and q relative to x.
Thus e1 ∈ F[Y]. If e1 6≡ 0, define

R(Fn) := min{|z| : e1(z) = 0, z 6= 0}.
If e1 has no real roots, let R(Fn) = ∞.

Lemma 15. If e1 6≡ 0, EB(Fn) ≥ R(Fn), and we can use
R(Fn) as the evaluation bound.

Therefore, we may isolate the real roots of e1(Y) = 0 and
take min{l1,−r2} as the evaluation bound for Fn, where
(l1, r1) and (l2, r2) are the isolating intervals for the smallest
positive root and the largest negative root of e1(Y) = 0
respectively.

In fact, the multiresultant can be used to optimize our
computation of evaluation bounds (see [3]).

3.2 Sleeve and Sleeve Bound
We assume a positive sign in Ii, that is, Ii > 0 for i =

1, . . . , n and will show how to treat other cases in Section 4.
Given a polynomial g ∈ R[x1, . . . , xn], we may decompose

it uniquely as g = g+ − g−, where g+, g− ∈ R[x1, . . . , xn]
each has only positive coefficients, and the support of g+ and
g− are both minimum. Here, the support of a polynomial g
is the set of power products with non-zero coefficients in g.

Given f as in (14) and an isolating box ξ ∈ Fn−1 for ξ,
following [17, 22], we define

fu(X) = fu
n (ξ; X) = f+

n (bn−1, X)− f−n (an−1, X),

fd(X) = fd
n(ξ; X) = f+

n (an−1, X)− f−n (bn−1, X), (19)

where fn = f+
n − f−n , ai = (a1, . . . , ai), bi = (b1, . . . , bi),

and ξ = [a1, b1]× · · · × [an−1, bn−1].

The bounding functions of the interval function of f(X)
are similar to our sleeve polynomials (see [10, 14]). The
functions in [27] are not a sleeve but in some special interval,
they may have the some properties of our sleeve polynomials.

From the construction, it is clear that fu ≥ f ≥ fd. More-
over, both inequalities are strict if ai = ξi = bi does not hold
for any i = 1, . . . , n−1. Hence (In, fu(X), fd(X) is a sleeve
for f(X) [17, 22]. We further have:

Lemma 16. Over any In = [l, r] > 0, we have:

(i) (Monotonicity) ∂fu

∂X
≥ ∂f

∂X
≥ ∂fd

∂X
.

(ii) fu(X)− fd(X) is monotonously increasing over In.

As an immediate corollary, we have

Corollary 17. SBIn(fu, fd) ≤ fu(r)− fd(r).

Our next goal is to give an upper bound on fu(r)− fd(r)
as a function of b :=max{b1, . . . , bn}, w :=max{w1 , . . . , wn}
where wi = bi − ai. Also let w = (w1, . . . , wn). For f ∈
R[x1, . . . , xn], write f =

P
α cαpα(x1, . . . , xn) where α =

(α1, . . . , αn) ∈ Nn, and pα(x1, . . . , xn) denotes the mono-
mial xα1

1 · · ·xαn
n . Let ‖f‖1 :=Σα|cα| denote its 1-norm.

The inner product of two vectors, say w and α, is de-
noted 〈w, α〉 =

Pn
i=1 wiαi. Let ai = (a1, . . . , ai), bi =

(b1, . . . , bi). We have the following result.

Theorem 18. Let (In, fu, fd) be a sleeve as in (19), and

n−1ξ = I1×· · ·×In−1 an isolating box for ξ ∈ Rn−1, where
Ii = [ai, bi] > 0, In = [l, r] > 0, and w = maxn−1

i=1 {bi − ai}.
Then

SBI(f
u, fd) ≤ wm‖fn‖1bm−1,

where m = deg(fn), b = max{b1, . . . , bn−1, r}.
Proof. Let f(X) =

Pm
i=0 Ci(ξ1, . . . , ξn−1)X

i where Ci ∈
Z[x1, . . . , xn−1] has degree ≤ m − i, Ci = C+

i − C−i , a =
(a1, . . . , an−1), and b = (b1, . . . , bn−1). We have fu(X) =Pm

i=0(C
+
i (b)−C−i (a))Xi, fd(X) =

Pm
i=0(C

+
i (a)−C−i (b))Xi.

For x ∈ In, we have

f
u
(x)− f

d
(x)

=
mX

i=0

(C
+
i (b)− C

+
i (a) + C

−
i (b)− C

−
i (a))x

i

≤
mX

i=0

w(m− i)b
m−i−1

(‖C+
i ‖1 + ‖C−i ‖1)bi

< wmb
m−1

mX

i=0

‖Ci‖1 = wmb
m−1‖fn‖1.

Q.E.D.

We give two corollaries to the above theorem.

Corollary 19. For a fixed Fn and In, when w → 0,
SBIn(fu, fd) → 0.

So when w → 0, fu → f and fd → f , which implies that,
with sufficient refinement, the sleeve-evaluation inequality
(3) will eventually hold. The next corollary gives an explicit
condition to guarantee this:

Corollary 20. The sleeve-evaluation inequality (3) holds
if

w <
EBIn(f)

m‖fn‖1bm−1
.

4. THE MAIN ALGORITHM
In this section, we present our isolation algorithm: given

Fn as in (13), to isolate the real zeros of Fn in a given n-
dimensional box B = I1 × · · · × In.

4.1 Refinement of Isolating Box
Refining an isolation box is a basic subroutine in our al-

gorithm. Let nξ = n−1ξ × [c, d] > 0 be an isolating
box for a zero ξ = (ξ1, . . . , ξn) of Fn=0, ([c, d], fd, fu) a
sleeve associated with nξ satisfying (3) and (10), ′

n−1ξ an
isolating box of Fn−1 satisfying ′

n−1ξ n−1ξ, f(X) =
fn(ξ1, . . . , ξn−1, X), and f̄u(X) = fu

n (′
n−1ξ, X), f̄d(X) =

fd
n(′

n−1ξ, X) (for definition, see (19)).

Lemma 21. Let t0, t1 be the real roots of fufd = 0 in [c, d]
and t′0 < t′1 the two smallest real roots of f̄uf̄d = 0 in [c, d].
If ′

n−1 6= [ξ1, ξ1] × · · · × [ξn−1, ξn−1], then [t′0, t
′
1] ⊂ [t0, t1]

and ξ ∈ ′
n−1ξ × [t′0, t

′
1].

The lemma tells us how to refine an isolating box K = I1×
· · ·×In of a triangular system Fn without using Theorem 12.
The following algorithm is to refine K of Fn to K̂ = Î1 ×
· · · × În under the precision ε.

Refine(Fn, K, ε)
Input: Fn, K, ε.

Output: K̂ = Î1 × · · · × În with w = maxn
j=1{|Îj |} ≤ ε.

1. If n = 1, subdivide In until |In| < ε and return In.
2. Let Kn−1 = I1 × · · · × In−1, w = maxn

j=1{|Ij |}.
If w ≤ ε, return K. Else, δ = ε.

3. while w > ε, do
3.1. δ = δ/2.
3.2. Kn−1 := Refine(Fn−1, Kn−1, δ).
3.3. If Kn−1 is a point, f(X) = fn(ξ1, . . . , ξn−1, X)

∈ F[X]. Isolate its roots under ε, return them.
3.4. Compute the sleeve:

fu(X) := fu
n (Kn−1, X), fd(X) := fd

n(Kn−1, X).
3.5. Isolate the roots of fufd in In with precision δ.
3.6. Denote the first two intervals as [c1, d1], [c2, d2].
3.7. w := d2 − c1.

4. Return K̂ := Kn−1 × [c1, d2].

4.2 Verifying Zeros
Let α = (α1, . . . , αk) be a real root of the triangular sys-

tem Σk = {h1, . . . , hk}, B = I1×· · ·× Ik an isolating box of
α, and g(x1, . . . , xk) ∈ Z[x1, . . . , xk]. We show how to check
whether g(α1, . . . , αk) = 0.

We call ρ = min{|g(α)| : g(α) 6= 0, ∀α ∈ ZeroB(Σk)} the
zero bound of g on Σk. Let

ΣB = {h1, . . . , hk, Y − g}. (20)

We have two methods to compute the zero bound. First,
by Proposition 13, MRB(ΣB) can be taken as the zero
bound. Second, we may compute the zero bound by re-
sultant computation. Let rk+1 = Y − g(x1, . . . , xk) and
ri = res(hi, ri+1, xi) for i = k, . . . , 1. Then r1(Y) is a uni-
variate polynomial in Y . If r1 6≡ 0, chose a lower bound ρ
for all the absolute values of the nonzero real roots of r1.
It is clear that ρ is smaller than the absolute value of any
nonzero root of r1(Y) = 0.

We give the following algorithm.

ZeroTest(Σn, B, g(x1, . . . , xn))
Input: Σn, B = I1 × · · · × In, g(x1, . . . , xn).
Output: True if g(α) = 0 or FALSE otherwise.
1. δ = maxn

j=1{|Ij |}.
2. Compute bound ρ similar to a sleeve of g:

gu = g+(b1, . . . , bn)− g−(a1, . . . , an),
gd = g+(a1, . . . , an)− g−(b1, . . . , bn).

3. If gd = gu, then g = gd = gu.
If gd = 0 return TRUE; else return FALSE. end

4. If gugd ≥ 0, then g 6= 0 and return FALSE. end
5. Compute the zero bound ρ if it does not exist.
6. If |gu| < ρ, and |gd| < ρ, then g < ρ and

hence g = 0 and return TRUE. end
7. δ = δ/2, B = Refine(Σn, B, δ), and goto step 2.

4.3 Isolation Algorithm
We now give the real root isolation algorithm RootIsol for

a triangular system.

RootIsol
Input: Fn,Bn =

Qn
i=1 Ii(Ii = [li, ri] > 0), ε > 0.

Output: An isolating set ZeroBn (Fn).

1. Compute ZeroB1 (F1) for F1 to precision ε.
Result := ZeroB1 (F1). New := ∅.
If Result = ∅, return Result, end

2. For i from 2 to n, do
2.1. Compute EBi :=EB(Fi) for Fi.
2.2. δ := ε.
2.3. while Result 6= ∅, do

2.3.1. Choose an element i−1ξ from Result.
Result := Result \ { i−1ξ}.

2.3.2. f(X) = fi(x1, . . . , xi−1, X) =
P

k ckXk.
If ZeroTest(Fi−1, i−1ξ, ck) =TRUE for all
ck then Fn is nonzero dimensional. end

2.3.3. Compute the sleeve:
fu(X) = fu

i (i−1ξ, X),
fd(X) = fd

i (i−1ξ, X).
2.3.4. While fu(ri)− fd(ri) ≥ EBi,

δ := δ/2.

i−1ξ := Refine(Fi−1, i−1ξ, δ).
Recompute fu(X) and fu(X).

2.3.5. Isolate the real roots of fufd in Ii.
2.3.6. Compute the parity of these roots.
2.3.7. Construct the effective candidate intervals.
2.3.8. for each effective candidate interval K,

2.3.8.1. Check whether K is isolating.
If K is odd, K is isolating;
If K is even:

If Lemma 11 holds, K is isolating;
Else, ensure (12). K is isolating

iff Theorem 12 (E) holds.
2.3.8.2. If K is isolating, then

K := Refine(Fi, K, ε).
New := New

S{ i−1ξ ×K}.
2.4. If New = ∅, return New, end
2.5. Result := New. New := ∅.

3. return Result.

Remarks: Algorithm RootIsol can be improved or made
more complete in the following ways.

• The assumption Bn > 0 is reasonable. If we want to
obtain the real roots of f in the interval I = (a, b) <
0, we may consider g(X) = f(−X) in the interval
(−b,−a). If 0 ∈ (a, b), we can consider the two parts,
(a, 0) and (0, b) respectively, since we can check if 0 is
a root of f(X) = 0.

• If we want to find all real roots of f , we first isolate
the real roots of f in (0, 1), then isolate the real roots

of g(X) = Xn ∗ f(1/X) in (0, 1), and check whether
1 is a root of f . As a result, we can find all the roots
of f(X) = 0 in (0, +∞). We can find the roots of
f(X) = 0 in (−∞, 0) by isolating the roots of f(−X) =
0 in (0, +∞). Finally, check whether 0 is a root of
f(X) = 0.

• Theorem 12 assumes that the sleeves are faithful (see
(4)). In fact, if we replace EBI(f) with

ETI(f) :=min{|f(z)| : z ∈ ZeroI(f
′)∪{a, b}\ZeroI(f)},

(21)
then almost all the sleeve (I, fu, fd) is faithful except
for the cases f(a) = 0 or f(b) = 0. If f(a) = 0 or
f(b) = 0, we can ignore the first or last element in
SLf,I to form effective candidate intervals of f . When
f(a) = 0, the first effective candidate interval may
or may not be the isolating interval of f , we need to
check it by Theorem 12. And we need to use the first
isolating interval in SLf,I to decide whether the first
effective candidate interval is isolating if the first three
elements in SLf,I are all isolating intervals of fu (or
fd).

Although we can simply solve the non-faithful problem
as mentioned above, when f(a) or f(b) is very close but
not equal to 0, ETI(f) is very small. It is expensive
to construct (I, fu, fd) in order to satisfy the sleeve-
evaluation inequality (3). In order to avoid this case,
we just use EBI(f) directly and deal with the non-
faithful sleeve case as in the appendix.

4.4 Examples and Experimental Results
We first gave two working examples. The timings are

collected on a PC with a 3.2G CPU, 512M memory, and
Windows OS.
Example 1: Consider the system F2 = {f1, f2} where

f1 = x
4 − 3 x

2 − x
3 + 2 x + 2,

f2 = y
4 + xy

3 + 3 y
2 − 6 x

2
y
2 + 4 x y + 2 xy

2 − 4 x
2

y + 4 x + 2.

Set the precision to be 2−4. Isolating the real roots of f1

to precision 2−4, we obtain the following isolating intervals:
[[−23

16
, −11

8
], [−5

8
, −9

16
], [11

8
, 23

16
], [25

16
, 13

8
]]. Next consider 1ξ =

[11
8

, 23
16

], where ξ ∈ Zero(f1). We will isolate the real roots
of f2(ξ, y) = 0 in [0, 2].

We derive EB2 = 1
2

by resultant computation. The sleeve
computed using the interval 1ξ is

f
u(y) = −

175

32
y
2 −

29

16
y + y

4 +
23

16
y
3 +

31

4
,

f
d(y) = −

851

128
y
2 −

177

64
y + y

4 +
11

8
y
3 +

15

2
.

The sleeve bound of ([0, 2], fu, fd) is SB = fu(2)− fd(2) =
59
8

. Since the sleeve-evaluation inequality (3) does not hold,

we refine 1ξ. Let 1ξ = Refine(f1, 1ξ,
1
28) = [181

128
, 363

256
].

We have the new sleeve

f
u(y) = −

50475

8192
y
2 −

9529

4096
y + y

4 +
363

256
y
3 +

491

64
,

f
d(y) = −

204331

32768
y
2 −

39097

16384
y + y

4 +
181

128
y
3 +

245

32

with sleeve bound SB = fu(2)− fd(2) = 949
2048

< 1
2

= EB2.

The sleeve ([0, 2], fu, fd) is faithful (4) since fu(0) = 491
64

>
1
2
, fd(0) = 245

32
> 1

2
, fu(2) = 2927

512
> 1

2
, fd(2) =

10759
2048

> 1
2
. Isolating fufd in [0, 2] to precision 2−8, we obtain

SLf2,[0,2]: [[165
128

, 331
256

], [395
256

, 99
64

]] both with parities 1. These

intervals are both isolating intervals of fd. It forms an iso-
lating interval of f2(ξ, y) by Lemma 9. So there is an even
root of f2(ξ, y) in [0, 2] by Theorem 12. It is in [165

128
, 99

64
]. So

[11
8

, 23
16

] × [165
128

, 99
64

] is an isolating box of triangular system
F2.

The isolating box does not satisfy our output precision
requirement. Refine the isolating box with Refine, we obtain
[181
128

, 5793
4096

]× [1423
1024

, 2947
2048

].
Eventually, we obtain all the isolating boxes for F2 = 0

in 0.141s with RootIsol. If using Proposition 13 to compute
MRB(F2), we have MRB(F2) > 1

2289 and the computing
time is 9.282s.
Example 2: Consider the following system from [10].

f1 = −12z
2 − 3yz + xz − 27z − 4y

2 − 11xy − 5y + 29x
2 + 11x − 27;

f2 = −25z
2 − 23yz + 23xz + 4z + 2y

2 + 7xy + 21y + 4x
2 − 15x − 30;

f3 = −14z
2 + 27yz − 29xz + 11z + 4y

2 − 31xy + 22y − 12x
2 − 28x − 9.

We first transform the system to a triangular system with
WSolve package ([24]) in 0.141s. The isolating time for the
roots of the triangular system under the precision 2−20 is
0.406s. The C program in [10] uses 0.62s on a SUN4 with a
400 MHz CPU and 2GB of memory.

We implemented RootIsol in Maple 10 and tested our
program with three sets of examples. The coefficients of
the polynomials are within −100 to 100. The precision is
1

210 . We use the method mentioned in the Remarks for
RootIsol to compute all the real solutions. We estimate
the evaluation bounds by resultant computation. The most
time-consuming parts are the computation of the evaluation
bounds and the refinement for the isolating boxes.

The first set of examples are sparse polynomials and the
results are given in Table 1. The type of a triangular system
Fn = {f1, . . . , fn} is a list (d1, . . . , dn) where di = degxi

(fi).
The column started with TYPE is the type of the tested tri-
angular systems. TIME is the average running time for each
triangular system in seconds. NS is the average number of
real solutions for each triangular system. NT is the number
of tested triangular systems. NE is the number of terms in
each polynomial.

TYPE TIME NS NT NE
(3, 3) 0.04862 2.04 100 (4, 10)
(9, 7) 0.52717 3.99 100 (10, 10)

(21, 21) 108.9115 5.45 20 (10, 10)
(3, 3, 3) 0.15783 3.48 100 (4, 10, 10)
(9, 7, 5) 16.20573 8.36 100 (10, 10, 10)

(3, 3, 3, 3) 1.69115 5.64 100 (4, 10, 10, 10)
(3, 3, 3, 3, 3) 159.1199 8.0 10 (4, 10, 10, 10, 10)

Table 1: Timings for sparse triangular systems

The second set of examples are dense polynomials and the
results are in Table 2. A triangular system Fn = {f1, . . . , fn}
of type (d1, . . . , dn) is called dense if fi =

Pdi
k=0 ckxk

i and
degxj

(ck) = dj − 1 for all k and i > j.

TYPE TIME NS NT NE
(3, 3) 0.05355 1.91 100 (3.99, 8.02)
(9, 8) 1.87486 4.26 100 (9.94, 43.98)

(11, 11) 8.782 4.5 80 (11.975, 72.5)
(16, 14) 50.22 6.0 100 (16.9, 127.13)
(21, 15) 164.23 6.22 100 (21.91, 176.8)
(3, 3, 3) 0.387 2.91 100 (3.99, 7.77, 13.01)
(5, 4, 4) 2.97 4.88 100 (5.99, 14.72, 24.24)
(5, 5, 5) 33.22 5.61 80 (5.9, 17.7, 42.1)
(8, 7, 6) 592.18 7.6 10 (8.9, 36.0, 79.8)

(3, 3, 3, 3) 119.94 6.96 50 (4.0, 8.1, 12.8, 20.9)
(5, 5, 5, 3) 551.44 3.4 10 (6.0, 32.1, 42.3, 21.5)

Table 2: Timings for dense triangular systems

The third set of examples are triangular systems with mul-

tiple roots and the results are given in Table 3. A triangular
system of type (d1, . . . , dn) is generated as follows: f1 is
a random polynomial in x1 and with degree d1 in x1 and

fi = a2
i (bixi + ci)

b di+1
2 c−b di

2 c for i = 2, . . . , n, where ai is a
random polynomial in x1, . . . , xi and with degree bdi/2c in
xi, bi, ci are random polynomials in x1, . . . , xi−1, and bdc is
the maximal integer which is less than d. In Table 3, NM is
the average number of multiple roots for the tested systems.

TYPE TIME NS NM NT NE
(5, 5) 0.712 3.71 1.57 100 (5.9, 34.4)
(9, 8) 0.604 3.1 3.1 100 (9.9, 18.9)

(13, 11) 32.44 6.55 3.92 100 (13.9, 107.6)
(23, 21) 466.0 6.15 3.75 20 (24.0, 183.4)
(3, 3, 3) 3.213 5.59 3.24 100 (3.9, 13.0, 31.7)
(9, 7, 5) 425.9 12.95 8.15 20 (9.9, 60.8, 100.3)

(3, 3, 3, 3) 130.6 11.15 6.1 20 (4.0, 12.2, 33.7, 62.9)

Table 3: Timings for dense triangular systems

From the above experimental results, we could conclude
that our algorithm is capable of handling quite large trian-
gular systems.

5. CONCLUSION
This paper provides a complete numerical algorithm of

isolating the real roots for arbitrary zero-dimensional trian-
gular systems. The key idea is to use a sleeve satisfying
the the sleeve-evaluation inequality to isolate the roots for
a univariate polynomial with algebraic number coefficients.
Even with our current simple implementation, the algorithm
is shown to be quite effective. To solve larger problems,
the bottle neck of the algorithm is the computation of the
evaluation bound. It is worth exploring sharper evaluation
bounds or new methods that use alternative bounds.

Acknowledgment. The work is supported in part by NSF
Grant No. 043086 and NKBRPC 2004CB318000.

6. REFERENCES
[1] A. Akritas, A new method for polynomial real root

isolation. Proc. of the 16th Annual Southeast Regional
Conference, 39-43, 1978.

[2] A. Akritas, A. Strzeboński, and P. Vigklas.
Implementations of a new theorem for computing
bounds for positive roots of polynomials. Computing,
78(4): 355-367, 2006.

[3] E.L. Allgower, K. Georg, and R. Miranda, The method
of resultants for computing real solutions of
polynomial systems. SIAM Journal on Numerical
Analysis, 29: 831-844, 1992.

[4] D.S. Arnon, G.E. Collins, and S. McCallum,
Cylindrical algebraic decomposition. QECAD∗,
Springer, Wien, 136-151, 1998

[5] P. Aubry, D. Lazard, and M. Moreno Maza. On the
theories of triangular sets. JSC, 28(1-2): 105-124,
1999.

[6] R.P. Brent, Fast multiple-precision evaluation of
elementary functions. JACM, 23: 242-251, 1976.

[7] B. Buchberger, An algorithm for finding a basis for
the residue class of zero-dimension polynomial idea.
Aequationes Math, 374-383, 1970.

[8] J.S. Cheng, X.S. Gao, and M. Li, Determine the
topology of real algebraic surfaces. Mathematics of
Surfaces XI, LNCS3604, Springer, 121-146, 2005.

[9] G.E. Collins and A.G. Akritas. Polynomial real root
isolation using Descartes’ rule of signs. Proc.
ISSAC’76, 272-275, 1976.

[10] G.E. Collins, J.R. Johnson, and W. Krandick, Interval
arithmetic in cylindrical algebraic decomposition. JSC,
34: 145-157, 2002.

[11] Z. Du, V. Sharma, and C.K. Yap, Amortized bound for
root isolation via Sturm sequences. in Proc. SNC’05,
81-93, 2005.

[12] A. Eigenwillig, L. Kettner, W. Krandick, K.
Mehlhorn, S. Schmitt, and N. Wolpert, A descartes
algorithm for polynomials with bit stream coefficients.
CASC 2005, LNCS 3718, Springer, 138-149, 2005.

[13] L. González-Vega, T. Recio, H. Lombardi and M.F.
Roy, Sturm-Habicht sequences, determinants and real
roots of univariate polynomials. QECAD∗, Springer,
Wien, 300-316, 1998

[14] H. Hong and V. Stahl. Safe start region by fixed points
and tightening. Computing, 53(3-4): 323-335, 1994.

[15] J.R. Johnson, Algorithms for polynomial real root
isolation. QECAD∗, Springer, Wien, 269-299, 1998.

[16] D. Lazard. Solving zero-dimensional algebraic systems.
Journal of Symbolic Computation. 13(2): 117-131,
February 1992.

[17] Z. Lu, B. He, Y. Luo and L. Pan, An algorithm of real
root isolation for polynomial systems. Proc. SNC’05,
94-107, 2005.

[18] B. Mourrain, Computing the isolated roots by matrix
methods. JSC, 26: 715-738, 1998.

[19] R. Rioboo. Real algebraic closure of an ordered field,
implementation in axiom. Proc. ISSAC’92: 206-215,
ACM Press, 1992.

[20] F. Rouillier. Solving zero-dimensional systems through
the rational univariate representation. AAECC, 9:
433-461, 1999.

[21] F. Rouillier and P. Zimmermann. Efficient isolation of
polynomial real roots. J. of Comp. and App. Math.,
162(1): 33-50, 2003.

[22] C.B. Soh and C.S. Berger, Strict aperiodic -property of
polynomials with perturbed coefficients. IEEE T AC,
34: 546-548, 1989.

[23] J. Uspensky, Theory of Equations, McGraw-Hill Book
Company, New York, 1948.

[24] D.K. Wang, Zero Decomposition for System of
Polynomial Equations. Proc. ASCM 2000: 67-70.

[25] D.M. Wang. Elimination Methods. Springer, Wein,
New York, 2000.

[26] W.T. Wu, Mathematics Mechanization, Science
Press/Kluwer, Beijing, 2000.

[27] B. Xia and L. Yang, An algorithm for isolating the
real solutions of semi-algebraic systems. JSC, 34:
461-477, 2002.

[28] C.K. Yap, Fundamental problems of algorithmic
algebra, Oxford Press, 2000.

[29] C.K. Yap, Complete subdivision algorithms, I:
intersection of Bezier curves. Proc. ACM SCG’06,
217-226, 2006.

∗ QECAD means Quantifier Elimination and Cylindrical
Algebraic Decomposition.

The appendix is omitted in this abstract.

