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ABSTRACT
The problem of blind image deconvolution can be solved by
computing approximate greatest common divisors (GCD)
of polynomials. The bivariate polynomials corresponding to
the z-transforms of several blurred images have an approxi-
mate GCD corresponding to the z-transform of the original
image. Since blurring functions as cofactors have very low
degree in general, this GCD will be of high degree. On the
other hand, if we only have one blurred image and want to
identify the original scene, the blurred image can be par-
titioned such that each part completely contains the blur-
ring function, hence the blurring function becomes the GCD
which is of low degree. Therefore, we design a specialized al-
gorithm for computing GCDs of polynomials to recover true
images in two different cases. The new algorithm is based
on the fast GCD algorithm for univariate polynomials and
the Fast Fourier Transform (FFT) algorithm. The complex-
ity of our specialized algorithm for identifying both the true
image and the blurring functions from blurred images of size
n×n is O(n2 log(n)) in the case of blurring functions of very
low degree. The algorithm has been implemented in Maple
and can extract true images of hundreds by hundreds pixel
images from blurred images in a few seconds.
Categories and Subject Descriptors: G.1.6 [Numer-
ical Analysis]: Approximation; I.1.2 [Symbolic and Alge-
braic Manipulation]: Algorithms; I.4.4 [Image Processing
and Computer Vision]: Restoration
General Terms: algorithms, experimentation
Keywords: blind image deconvolution, approximate GCD,
Bezout matrix, Sylvester matrix, Fast Fourier Transform.

1. INTRODUCTION
A grey image can be represented by a matrix whose di-

mension is equal to the size of the image, and a color im-

∗
Zijia Li and Lihong Zhi are supported by the Chinese National Natu-

ral Science Foundation under Grants 60821002/F02, 60911130369 and
10871194. Zhengfeng Yang is supported by the Chinese National Nat-
ural Science Foundation under Grant 10901055 and Shanghai Natural
Science Foundation under Grant 09ZR1408800.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2010 25–28 July 2010, Munich, Germany.
Copyright 2010 ACM 978-1-4503-0150-3/10/0007 ...$5.00.

age includes three parameters (Red, Green, Blue), and can
be represented by three matrices respectively. Suppose the
original image matrix is P , the distorted and polluted image
matrix is F . The blurring function matrix and the additive
noise matrix of F are U and N respectively. Then we have
the following relation between the true image matrix and
the distorted image matrix:

F = P ∗ U + N. (1)

The measurement for noise in an image is the signal-to-noise
ratio, or SNR. In [17], it is defined as:

SNR = 10 log10

(

σ2
P∗U

σ2
N

)

, (2)

where σ2
P∗U and σ2

N are the variances of the blurred image
without noise and the additive noise respectively.

Blind image deconvolution is the process of identifying
both the true image and the blurring function from the
blurred images. Even if we assume the blurred picture is
noise-free, which means N is a zero matrix or a matrix with
very little entries (for example SNR ≥ 50), it is still very dif-
ficult and expensive to obtain P and U from F . For example,
the complexity of algorithms based on the approximate fac-
torization of polynomials for blind deconvolution is O(n8 )
for an n × n image [16, 28]. However, if we know multiple
blurred versions of the true image, or the blurred image can
be partitioned such that each part completely contains the
same blurring function, blind image deconvolution can be
transformed to computing approximate GCDs of polynomi-
als by using the z-transforms [35].

Definition 1. A two-dimensional z-transform maps the el-
ements of an m×n matrix P to the coefficients of a bivariate
polynomial p(x, y):

p(x, y) = xT · P · y, (3)

where x = [1, x, x2, . . . , xm−1]T , y = [1, y, y2, . . . , yn−1]T .

By the two-dimensional z-transform, we map the elements
of matrices to coefficients of bivariate polynomials. Hence,
(1) is transferred into

f(x, y) = p(x, y)u(x, y) + n(x, y), (4)

where f, p, u, n are z-transforms of F, P, U, N respectively.
Such a model is applicable in all scenarios where the dis-
tortion can be modeled as a linear filter acting on the orig-
inal image. For example, camera motion and intermediate
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medium in satellite photography can be modeled as (1) and
(4) [7].

Suppose the original image matrix is P , matrices of two
distorted images are F1, F2. The blurring functions and ad-
ditive noises of F1, F2 are U, V and N1, N2 respectively. So
we have the following relations between original images and
distorted images:

F1 = P ∗ U + N1, F2 = P ∗ V + N2. (5)

By the two-dimensional z-transform, (5) can be transferred
into polynomial forms:

f1(x, y) = p(x, y)u(x, y) + n1(x, y),
f2(x, y) = p(x, y)v(x, y) + n2(x, y),

}

(6)

where f1, p, u, n1, f2, v, n2 are z-transforms of F1, P, U, N1,
F2, V, N2 respectively. We can compute the approximate
GCD of bivariate polynomials f1(x, y) and f2(x, y) to re-
construct the true image. In practice, deg(u) and deg(v)
are very low compared with deg(p). Hence, the approxi-
mate GCD p(x, y) of f1(x, y) and f2(x, y) will be of high
degree.

If there is only one available blurred RGB image, we as-
sume that three channels have the same blurring function.
As well, we can get the matrix form corresponding to each
channel

F1 = P1 ∗U + N1, F2 = P2 ∗U + N2, F3 = P3 ∗U + N3,

where F1, F2, F3 are the blurring image matrices of each
channel, P1, P2, P3 are original image matrices respectively,
U is the blurring filter matrix and N1, N2, N3 are additive
noises. By z-transforms, we have:

f1(x, y) = p1(x, y)u(x, y) + n1(x, y),
f2(x, y) = p2(x, y)u(x, y) + n2(x, y),
f3(x, y) = p3(x, y)u(x, y) + n3(x, y).







(7)

Hence the blurring function u(x, y) is now the approximate
GCD of f1, f2, f3 which is of very low degree.

In [35], they described a fast algorithm for computing the
approximate GCD of bivariate polynomials based on the
Sylvester-type GCD algorithm for univariate polynomials
and the Discrete Fourier Transform (DFT) algorithm. Their
idea is to sample polynomials f1 and f2 in one variable at
the DFT points on the unit circle:

x = e−
2kπi

m , k = 0, 1, . . . , m − 1,

and

y = e−
2lπi

n , l = 0, 1, . . . , n − 1,

where i =
√
−1, m and n are the number of rows and

columns of the matrix of a blurred image. The GCD of
the resulting univariate polynomials is found by using the
Sylvester-type GCD method. These GCD polynomials are
again sampled at the DFT points, eventually generating two
matrices that are scaled versions of the two dimensional
DFT of the original image. They obtained an approxima-
tion of p(x, y) by equalizing these two matrices and taking
the two-dimensional inverse DFT. They assumed that DFT
points are free of these points which will change the degree
of the GCD or be the zeros of the GCD or the cofactors
[35]. For images of size n × n, the complexity of their al-
gorithm is O(n4 ), which is a substantial saving compared

with the direct generalized Sylvester-type procedures for bi-
variate polynomials [14, 23, 42], which require about O(n6 )
operations.

The computation of the approximate GCD of univariate
polynomials has been extensively studied with various ap-
proaches including the Euclidean method on the polynomial
remainder sequence [4, 20, 32, 36], the singular value decom-
position or QR decomposition of the Sylvester matrix [8,
9, 13], Padé approximation [34], iterative method [39] and
other optimization strategies [25, 26, 27, 31]. Fast GCD al-
gorithms for univariate polynomials based on displacement
structure of the Sylvester matrix have also been proposed in
[5, 29, 30, 41, 43].

It is well known that the Bezout matrix can also be used
to compute GCDs of univariate polynomials [1, 2, 3, 5, 10,
11, 15, 38]. Compared with the Sylvester matrix, the Be-
zout matrix has smaller size. For example, the size of the
Sylvester matrix of two polynomials with the same degree
n is 2n × 2n, while the size of the Bezout matrix is n × n.
Moreover, since the degree of the blurring function is usually
very low, the GCD polynomial p(x, y) has high degree. We
see below that, in this case (Example 1 and Example 2 in
Section 4), it is more appealing to use the Bezout matrix.
Because only a very small submatrix of the Bezout matrix
is constructed and used for computing approximate GCDs.

On the other hand, although the Bezout matrix has smaller
size, entries of the Bezout matrix are bilinear in the coef-
ficients of polynomials. For polynomials of degree m, the
cost to generate a full size Bezout matrix is already O(m2 ).
Hence, when the degree of the cofactor is high, for instance,
in recovering true images from one blurred grey or RGB im-
ages (Example 3 and Example 4 in Section 4), it becomes
more efficient to use the Sylvester matrix to compute the
GCD of univariate polynomials.

Section 2 is devoted to recall some notations and well-
known facts about the Bezout matrix and the Sylvester ma-
trix. We also present a fast algorithm for computing the
approximate GCD of univariate polynomials. In Section 3,
we describe an algorithm for computing the approximate
GCD of bivariate polynomials based on the univariate GCD
computation and FFT. We prove that the complexity of our
new algorithm for blind image deconvolution of size n × n
is O(n2 log(n)) in the case of blurring functions of very low
degree. Experiments are done in Section 4. Some remarks
for future work will be given in Section 5.

2. AN APPROXIMATE UNIVARIATE POLY-
NOMIAL GCD ALGORITHM

Suppose we are given two univariate polynomials f1, f2 ∈
C[x]\{0} with deg(f1) = m and deg(f2) = n, assume m ≥ n,

f1 = umxm + um−1x
m−1 + · · · + u1x + u0, um 6= 0,

f2 = vnxn + vn−1x
n−1 + · · · + v1x + v0, vn 6= 0.

}

(8)

The Bezout matrix B̂(f1, f2) = (b̂ij) is defined by

b̂ij = |u0vi+j−1| + |u1vi+j−2| + · · · + |ukvi+j−k−1|,

where |urvs| = usvr −urvs, k = min(i−1, j −1) and vr = 0

2



if r > n [3]. It satisfies that

f1(x)f2(y) − f1(y)f2(x)

x − y
=

[1, x, x2, . . . , xm−1]B̂(f1, f2)[1, y, y2, . . . , ym−1]T .

Notice that the Bezout matrix B(f1, f2) defined in Maple is
as follows:

B(f1, f2) = −JB̂(f1, f2)J, (9)

where J is an anti-diagonal matrix with 1 as its nonzero
entries.

Theorem 1. [3] Given univariate polynomials f1, f2 ∈ C[x]
with deg(f1) = m, deg(f2) = n, m ≥ n, then we have

dim NullSpace(B(f1, f2)) = deg(gcd(f1, f2)).

Theorem 2. [37] Given univariate polynomials f1(x), f2(x)
with deg(f1) = m, deg(f2) = n, m ≥ n. Let p(x) = gcd(f1, f2)
with deg(p) = r, then we have

1. rank(B(f1, f2)) = m − r, and det(B(f1, f2)k) 6= 0 for
k ≤ m− r, where B(f1, f2)k is the k × k leading prin-
cipal submatrix of B(f1, f2), but det(B(f1, f2)k) = 0
for k > m − r.

2. Suppose y = [y0, y1, . . . , ym−r−1]
T satisfies Cy = b,

where C = B(f1, f2)m−r and −b is a vector formed
from the first m−r entries of the m−r+1-th column of
B(f1, f2). Let u = (ui)i=0,...,m−r = (JB(f1, 1))m−r+1

·[y0, . . . , ym−r]
T , ym−r = 1, then f1(x) = p(x)u(x),

where u(x) =
∑m−r

i=0 uix
i.

According to Theorem 2, we can estimate efficently the de-
gree r of gcd(f1, f2) by checking whether the first 1× 1, 2×
2, 4×4, . . . , 2⌈log2(m−r+1)⌉×2⌈log2(m−r+1)⌉ leading principal
submatrices are singular. Suppose r = deg(gcd(f1, f2)), we
compute the cofactor u(x) by solving an (m − r) × (m − r)
linear system and the GCD can be found using the approx-
imate polynomial division based on FFT. It is clear that we
only need to form the first (m − r + 1) × (m − r + 1) sub-
matrix of B(f1, f2). This will save a lot of time and space
when m − r ≪ m. For example, since the blurring func-
tion has very low degree, the GCD problem arising from
reconstructing an image from distorted images will satisfy
m − r ≪ m.

We recall how to compute the unknown factor p(x) from
polynomials f(x) and u(x) by the DFT algorithm. The
associated convolution form of f(x) = p(x)u(x) is

f = p ∗ u,

where f , p,u ∈ C
m are coefficient vectors of polynomials

f, p, u respectively and m = deg(f) + 1. Evaluating of f(x)

and u(x) at xk = e−
2kπi

m , 0 ≤ k ≤ m − 1, we obtain the
evaluation vector

[p(x0), p(x1) . . . , p(xm−1)]
T ,

where p(xk) = f(xk)/u(xk), for 0 ≤ k ≤ m − 1. The coeffi-
cient vector p associated with p(x) is obtained by applying
inverse DFT to [p(x0), p(x1) . . . , p(xm−1)]

T . The complex-
ity of the polynomial division based on DFT for univariate
polynomials is O(m2 ). The complexity of the fast algo-
rithm using FFT for the univariate polynomial division is
O(m log(m)) [33, 34].

Now let us consider the general case, i.e., the condition
m − r ≪ m does not hold. It is well known that the dis-
placement rank of an m × m Bezout matrix is 2:

∇B = B − Z1BZT
0 , and rank(∇B) = 2, (10)

where Za is the unit a-circulant matrix [34],

Za =













0 a

1
. . .

. . .
. . .

1 0













.

Hence, it is also possible to apply fast algorithms to com-
pute the GCD of univariate polynomials. The complexity
of the fast algorithm given in [5] is O(m2 ). A more exten-
sive description about fast algorithms for matrices with low
displacement rank can be found in [21, 34].

Although we have a fast Bezout-type GCD algorithm, it
has been pointed out in Section 1, the cost to generate the
m × m matrix B(f1, f2) is O(m2 ), which will be expensive
if m is over hundreds. On the contrary, the Sylvester matrix
S(f1, f2) is:



































um um−1 · · · u1 u0

um um−1 · · ·
. . .

. . .

. . .
. . .

. . .
. . .

um um−1 · · · u1 u0

vn vn−1 · · · v1 v0

vn vn−1

. . .
. . .

. . .
. . .

. . .
. . .

vn vn−1 · · · v1 v0



































.

It costs almost nothing to generate the Sylvester matrix.
Moreover, we know that the Sylvester matrix S is a quasi-
Toeplitz matrix, i.e., the matrix S − Z0SZT

0 has rank at
most 2.

Fast GCD algorithms with complexity O(m2 ) have been
given in [5, 29, 30, 41, 43]. Hence, when the condition m −
r ≪ m does not hold, it would be more efficient to construct
the Sylvester matrix of f1 and f2 and use the fast Sylvester-
type GCD algorithms.

Algorithm Approximate Univariate Polynomial GCD

Input: ◮ f1(x), f2(x) ∈ C[x] with m = deg(f1), n =
deg(f2) and m ≥ n.

◮ ǫ ∈ R>0: the given tolerance.
Output: ◮ p(x) ∈ C[x]: an approximate GCD of f1 and

f2.
◮ u(x), v(x) ∈ C[x]: approximate cofactors cor-

responding to f1, f2.

Case 1: m − r ≪ m holds.

uh1 Estimate the degree r of gcd(f1, f2) for the given tol-
erance ǫ, and form C and b as shown in Theorem 2.

uh2 Obtain u(x) by solving Cy = b.

uh3 Compute p(x) and v(x) by applying the fast polynomial
division based on FFT to f1(x) and u(x); f2(x) and
p(x) respectively.

Case 2: m − r ≪ m does not hold.
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ul1 Compute u(x) via a fast GCD algorithm based on the
displacement structure of the Sylvester matrix.

ul2 Compute p(x) and v(x) by applying the fast polynomial
division based on FFT to f1(x) and u(x); f2(x) and
p(x) respectively.

2

Theorem 3. Given two univariate polynomials f1, f2 ∈ C[x]
with m = max(deg(f1), deg(f2)), r = deg(gcd(f1, f2)). In

Case 1, if m− r = O(m1/3 ), the total number of operations
for computing the approximate GCD of univariate polyno-
mials f1 and f2 based on the leading (m − r + 1) × (m −
r + 1) principal submatrix of the Bezout matrix and FFT
is O(m log(m)). In Case 2, using the fast GCD algorithms
based on the displacement structure of the Sylvester matrix,
the total number of operations for computing the GCD is
O(m2 ).

Proof.

• Case 1. According to Theorem 2, we need to check
whether the k × k leading principal submatrices are
singular for k ≤ m − r + 1. The number of opera-
tions involved in step uh1 is bounded by O((m − r +
1 )3 log(m − r + 1 )). It takes O((m − r + 1 )3 ) opera-
tions to solve the linear system in step uh2. The fast
polynomial divisions based on FFT in step uh3 cost
O(m log(m)). If m − r = O(m1/3 ), then the opera-
tions in all three steps are bounded by O(m log(m)).

• Case 2. The number of operations need in step ul1
is bounded by O(m2 ) since the Sylvester matrix has
displacement rank 2.

�

3. AN APPROXIMATE BIVARIATE POLY-
NOMIAL GCD ALGORITHM

Suppose f1(x, y) and f2(x, y) are given in (4). We assume
degx(f1) = degx(f2) = m and degy(f1) = degy(f2) = n. In
[35], they substituted

x = e−
2kπi

m , k = 0, 1, . . . , m − 1

into f1 and f2. For each k, this results in two univariate

polynomials f1(e
− 2kπi

m , y) and f2(e
− 2kπi

m , y), applying the
approximate GCD algorithm to these univariate polynomi-

als, they obtained scaled quantity c0(e
− 2kπi

m )p(e−
2kπi

m , y).
They proceeded further by substituting

y = e−
2lπi

n , l = 0, 1, . . . , n − 1

and formed a matrix of discrete Fourier transform elements,

A(k, l)a(k) = p(e−
2kπi

m , e−
2lπi

n ), (11)

where A(k, l) is the evaluation of the GCD of f1(e
− 2kπi

m , y)

and f2(e
− 2kπi

m , y). Carrying out similar operations by sub-

stituting y = e−
2lπi

n into f1 and f2, taking their univariate

GCD and further substituting x = e−
2kπi

m , they obtained
another matrix

B(k, l)b(l) = p(e−
2kπi

m , e−
2lπi

n ). (12)

The vectors a(k) and b(l) are obtained by solving the least
squares problem

A(k, l)a(k) − B(k, l)b(l) = 0, (13)

and therefore, p(x, y) = gcd(f1, f2) can be computed by
applying inverse DFT to

p(e−
2kπi

m , e−
2lπi

n ) =
1

2
(A(k, l)a(k) + B(k, l)b(l)). (14)

For images of size n × n, their algorithm requires O(n4 )
operations.

For polynomials arising from blurred images, as we have
mentioned in Section 1, the blurring function always has
very low degree. Hence the degrees in variables x and y of
the approximate GCD of f1(x, y) and f2(x, y) are almost as
large as m and n. It would be much cheaper if we interpolate
cofactor u(x, y) or v(x, y) by the above procedure, and then
compute the GCD p(x, y) by applying the fast polynomial
division to f1(x, y) or f2(x, y). The division of two bivariate
polynomials can also be done by the fast algorithm based
on FFT. Hence, we can reduce the cost of the algorithm to
O(n2 log(n)) for identifying both the true image and the
blurring functions from blurred images of size n × n when
the blurring functions have very low degree.

Algorithm Approximate Bivariate Polynomial GCD

Input: ◮ f1(x, y), f2(x, y) ∈ C[x, y] with degx(f1) =
degx(f2) = m and degy(f1) = degy(f2) = n.

◮ ǫ ∈ R>0: the given tolerance.
Output: ◮ p(x, y) ∈ C[x, y]: an approximate GCD of f1

and f2.
◮ u(x, y), v(x, y) ∈ C[x, y]: approximate cofac-

tors of f1 and f2 respectively.

I. Estimate r = degx(p) and s = degy(p) for the given
tolerance ǫ.

II. Case 1: m − r + n − s ≪ m + n.

bh1 Apply Algorithm Approximate Univariate Polynomial

GCD (Case 1) to compute the evaluation matrix
[

u(xk, yl)
]

∈ C
(m−r+1)×(n−s+1), where

xk = e−
2kπi

m−r+1 , 0 ≤ k ≤ m − r,

yl = e−
2lπi

n−s+1 , 0 ≤ l ≤ n − s.

bh2 Apply inverse FFT to
[

u(xk, yl)
]

to compute u(x, y).

bh3 Compute p(x, y) by applying the fast polynomial
division to f1(x, y) and u(x, y).

bh4 Compute v(x, y) by applying the fast polynomial
division to f2(x, y) and p(x, y).

Case 2: r + s ≪ m + n.

bl1 Apply Algorithm Approximate Univariate Polynomial

GCD (Case 2) to compute the evaluation matrix
[

p(xk, yl)
]

∈ C
(r+1)×(s+1), where

xk = e−
2kπi

r+1 , 0 ≤ k ≤ r,

yl = e−
2lπi

s+1 , 0 ≤ l ≤ s.

bl2 Apply inverse FFT to the matrix
[

p(xk, yl)
]

to get
p(x, y) = gcd(f1, f2).
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bl3 Compute u(x, y), v(x, y) by applying the fast poly-
nomial division to polynomials f1(x, y), p(x, y) and
f2(x, y), p(x, y) respectively.

Theorem 4. Given bivariate polynomials f1, f2 ∈ C[x, y],
we assume that n = degx(f1) = degx(f2) = degy(f1) =
degy(f2), r = degx(gcd(f1, f2)) = degy(gcd(f1, f2)). The
total number of operations for computing the approximate
GCD of polynomials f1 and f2 is bounded by O(n2 log(n))

when n−r = O(n1/2 ) or r = O(log(n)) which corresponding
to Case 1 and Case 2 respectively.

Proof.

• According to Theorem 3, the number of operations for
estimating r and s in step I is bounded by O(n2 ).

• Case 1. It takes O(n2 log(n)) operations to get the
evaluations of polynomials f1 and f2 at the DFT points.
We need O((n − r)4 ) operations to get the evalu-
ation matrix [u(xk, yl)] by step uh2 of Algorithm
Approximate Univariate Polynomial GCD (Case 1). If n −
r = O(n1/2), then the number of operations involved
in step bh1 is bounded by O(n2 log(n) + n2 ). More-
over, if we apply the fast polynomial division based on
FFT in steps bh2, bh3 and bh4, the total number of
operations involved in these three steps is bounded by
O(n2 log(n)).

• Case 2. We compute the evaluation matrix [p(xk, yl)]
via the fast GCD algorithm based on the displacement
structure of the Sylvester matrix. Hence, the com-
plexity of bl1 is bounded by O(rn2 + n2 log(n)). If
r = O(log(n)), then the complexity of bl1 is bounded
by O(n2 log(n)). The total number of operations of
steps bl2 and bl3 is bounded by O(n2 log(n)) if we
apply the fast polynomial division based on FFT.

�

4. EXPERIMENTS
The following examples come from literatures on image

deconvolution. We show that our new algorithm imple-
mented in Maple can reconstruct true images from blurred
images successfully in few seconds. The algorithm in [35]
has also been implemented in Maple. All experiments are
run on an Inter(R) Core(TM) 2 Quad Cpu at 2.40 GHz for
Digits=14 in Maple 13 under Windows.

Example 1. (Reconstructing Image From Three Distorted
Images)

In Figure 1, Figure 1.(a) is an image of size 250 × 250
scanned from [7]. Figure 1.(b) contains three distorted im-
ages built by convolving Figure 1.(a) with three 7 × 7 co-
prime distortion filters. Since we can not add white noise
in Maple directly, for simplicity, we add random noise with
SNR = 52dB.

Figure 1.(c) is the image reconstructed by running Algo-
rithm Approximate Bivariate Polynomial GCD (Case 1, 7 + 7 ≪
250+250) in about 1.10 seconds; whereas the time obtained
by running the algorithm [35] in Maple is 46.90 seconds.

Example 2. (Reconstructing RGB Image From Two Dis-
torted Images)

Three Grey Two RGB
Size Time(s)

(Bezout)
Time(s)
(Liang)

Time(s)
(Bezout)

Time(s)
(Liang)

256 × 256 1.23 49.34 1.66 152.40
512 × 512 5.72 317.15 7.66 982.96

1024 × 1024 28.63 2995.16 45.42 7914.44

Table 1: Algorithm performance on benchmark

In Figure 2, Figure 2.(a) is an image of size 128 × 170
scanned from [35]. Figure 2.(b) and Figure 2.(c) are two
distorted images built by convolving Figure 2.(a) with two
7 × 7 co-prime distortion filters and with the additive noise
SNR = 52dB.

Figure 2.(d) is the image reconstructed successfully by
running Algorithm Approximate Bivariate Polynomial GCD (Case
1, 7+7 ≪ 128+170) in about 0.73 seconds; whereas the time
obtained by running the algorithm in [35] is 47.26 seconds.

In Table 1, we show the performance of our algorithm for
recovering large images obtained by convolving three origi-
nal images downloaded from http://sipi.usc.edu/database/
with distortion filters of sizes 7×7,13×13,19×19 respectively.
The additive noises are the same: SNR = 63dB. Here Size
denote the size of the original images; Time(Bezout) and
Time(Liang) contain the timings to solve blind image de-
convolution problem by running our new algorithm based
on Bezout-type GCD algorithm and using the algorithm in
[35], respectively.

Remark 1. In [35], they also considered the case where
there was only one available grey image. They assumed
the blurring function is one dimension. By z-transforms,
the polynomial form of (1) can be written as :

f(x, y) = p(x, y)u(y) + n(x, y), (15)

where f, p, u, n are z-transforms of F, P, U, N respectively.
Suppose f(x, y) can be represented as follows:

f(x, y) =

m
∑

i=0

ai(y)xi,

where m = degx(f). Assuming p(x, y) is primitive with re-
spect to x, then u(y) is the common divisor of a0(y), . . .,
am(y). The GCD polynomial p(x, y) can be obtained by
performing the polynomial division of f(x, y) and u(y). In
the approximate case, we need to compute approximate uni-
variate GCDs of several polynomials (more than 2), which
can be solved by the following two options:

1. Choose random values s0, s1, . . . sm, t0, t1, . . . tm and
get two polynomials

f1 =

m
∑

i=0

siai(y), and f2 =

m
∑

i=0

tiai(y).

Compute the approximate GCD u′(y) of f1 and f2,
with high probability, we have u′(y) = gcd(a0, . . . , am).

2. Construct the generalized Bezout matrix B(a0, . . . , am)
or the generalized Sylvester matrix S(a0, . . . , am) to
compute the approximate GCD.

2
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(a) An original Image (b) Three Blurred Images (c) Reconstructed Image

Figure 1: Blind deblurring from three distorted and noisy (SNR = 52dB) images

Fig (a) An original Image Fig (b) Blurred Image 1 Fig (c) Blurred Image 2 Fig (d) Reconstructed Image

Figure 2: Blind deblurring from two distorted and noisy (SNR = 52dB) RGB images

Example 3. (One Blurred Grey Image)
In Figure 3, Figure 3.(a) is an image of size 337 × 77

scanned from [35]. Figure 3.(b) is an image of size 312 × 77
reconstructed in about 3.17 seconds by using the Sylvester-
type GCD algorithm for univariate polynomials and option
1. Notice that for this example, we need to generate a 336×
336 Bezout matrix. It takes already more than 5 seconds in
Maple to generate the matrix. Whereas the time obtained
by running the algorithm in [35] is 3.46 seconds.

Example 4. (Reconstructing RGB Image from One Blurred
Image)

Figure 4.(a) is an image of size 128×170 which is scanned
from [35]. The distorted image of Figure 4.(b) is built by
convolving Figure 4.(a) with a 7×7 distortion filter and with
the additive noise SNR = 53dB. Figure 4.(c) is the image
reconstructed by running Algorithm Approximate Bivariate

Polynomial GCD (Case 2, 7 + 7 ≪ 128 + 170) in about 5.85
seconds if we are using the Sylvester-type GCD algorithm
for univariate polynomials. Whereas the time obtained by
running the algorithm in [35] is 118.47 seconds. 2

5. CONCLUSION
In this paper, we present a specialized algorithm for com-

puting approximate GCDs of univariate or bivariate polyno-
mials arising from blind images deconvolution problem. To
recover images from the blurred ones of size n × n, we are
able to reduce the complexity to O(n2 log(n)) in the case of
blurring functions of very low degree.

We have implemented both Bezout-type and Sylvester-
type univariate GCD algorithms, the fast polynomial divi-
sion and interpolation based on FFT in Maple. We show
that our algorithm is efficient and quite robust. When the
additive noise satisfies SNR ≥ 50dB, i.e., the relative er-

rors of polynomials corresponding to the distorted images
are within 10−4, our new algorithm can recover successfully
true images from blurred and distorted images. However,
we also notice that when the additive noise is smaller than
50dB, it is still hard to use our algorithm to recover original
images from distorted ones. Moreover, although our new
algorithm is much faster than the one in [23] for computing
GCDs of bivariate polynomials, unfortunately, the backward
error becomes much bigger. We may have to sacrifice the
efficiency to have a more robust GCD algorithm. Some new
techniques in computing GCDs [5, 23, 25, 30, 39] of polyno-
mials and multivariate polynomial interpolation [18, 22, 24]
may be used to improve the efficiency and stability of our
algorithm.
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