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ABSTRACT
Algebraic boundaries of convex semi-algebraic sets are closely re-

lated to polynomial optimization problems. Building upon Rainer

Sinn’s work, we refine the stratification of iterated singular loci

to a Whitney (a) stratification, which gives a list of candidates of

varieties whose dual is an irreducible component of the algebraic

boundary of the dual convex body. We also present an algorithm

based on Teissier’s criterion to compute Whitney (a) stratifications,

which employs conormal spaces and prime decomposition.
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1 INTRODUCTION
Let 𝐾 be a convex semi-algebraic compact set with 0 in its interior.

Let 𝜕𝐾 be the Euclidean boundary of 𝐾 . The algebraic boundary of

𝐾 , denoted 𝜕𝑎𝐾 , is the Zariski closure of 𝜕𝐾 . The convex hull of a
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real algebraic variety has important applications in optimization

[1, 7, 8, 20, 31].

The algebraic boundary of the convex hull of a compact real

algebraic variety

𝑉 = {𝑥 ∈ R𝑛 | 𝑓𝑗 (𝑥) = 0, 𝑓𝑗 ∈ R[𝑥], 𝑗 = 1, . . . , 𝑟 }

has been studied by Ranestad, Rostalski, and Sturmfels [21, 22, 26].

If𝑉 is an irreducible and smooth compact variety, by [21, Theorem

1.1], the algebraic boundary of its convex hull can be computed by

biduality. Guo et al. extended this result to non-compact or non-

smooth real algebraic variety [9]. In [27], Sinn studied the algebraic

boundary of a convex semi-algebraic set. In [27, Corollary 3.4],

he proved that the dual of an irreducible component of Ex𝑎 (𝐾)
(the Zariski closure of extreme points of 𝐾 , see Definition 2.9) is an

irreducible component of 𝜕𝑎𝐾
o
(𝐾o

is the dual convex body of𝐾 , see

Definition 2.2). However, the converse may not hold. Namely, the

dual of an irreducible component of 𝜕𝑎𝐾
o
may not be an irreducible

component in Ex𝑎 (𝐾). In [27, Theorem 3.16], Sinn showed that the

iterated singular locus of 𝜕𝑎𝐾 gives a list of candidates of irreducible

subvarieties 𝑍 (the projective closure of 𝑍 , see Definition 2.7) of

Ex𝑎 (𝐾), whose dual variety𝑍
∗
is an irreducible component of 𝜕𝑎𝐾

o
.

There is a condition contained in [27, Theorem 3.16] that requires

every point on the boundary of the convex set to be regular on each

irreducible component of the algebraic boundary containing it, and

Sinn gave a counterexample [27, Example 3.20] when the condition

is removed.

Example 1.1. [27, Example 3.20] Let

𝑓 = (𝑧2+𝑦2−(𝑥+1) (𝑥−1)2) (𝑦−5(𝑥−1)) (𝑦+5(𝑥−1)) ∈ Q[𝑥,𝑦, 𝑧] .

The real variety of 𝐼 = ⟨𝑓 ⟩ is shown in Figure 1. The teardrop
defined by

𝐾 = {(𝑥,𝑦, 𝑧) ∈ R3 | 𝑧2 + 𝑦2 − (𝑥 + 1) (𝑥 − 1)2 ≤ 0, 𝑥 ≤ 1}

is a convex semi-algebraic set. The convexity of 𝐾 can be checked

by its Hessian matrix.

299

https://doi.org/10.1145/3666000.3669702
https://doi.org/10.1145/3666000.3669702
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3666000.3669702&domain=pdf&date_stamp=2024-07-16


ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Zihao Dai, Zijia Li, Zhi-Hong Yang, and Lihong Zhi

(a) The real variety of 𝑓 which
contains the algebraic boundary
of the teardrop 𝐾 .

(b) The dual convex body of
the teardrop 𝐾 .

Figure 1: Example 1.1.

Let 𝑔 = 𝑓 + 1

10
(𝑥 − 1)𝑦𝑧2 and V(𝑔) be the real variety defined

by the polynomial 𝑔. Then V(𝑔) is the algebraic boundary of a

perturbed teardrop 𝐾 ′
, that is, V(𝑔) = 𝜕𝑎𝐾 ′

. The singular locus of

𝜕𝑎𝐾
′
is the union of V(𝐼1),V(𝐼2),V(𝐼3) where

𝐼1 =⟨𝑦, 𝑥 − 1⟩,
𝐼2 =⟨𝑧,−115 + 𝑦, 𝑥 − 24⟩,
𝐼3 =⟨𝑧, 115 + 𝑦, 𝑥 − 24⟩.

The 2nd singular locus of V(𝑔) is an empty set. The extreme point

𝑝 = (1, 0, 0) of 𝐾 ′
lies on the line V(𝐼1), but 𝑝 is not contained in

any irreducible component of the iterated singular loci. On the

other hand, as pointed out by Sinn, the normal cone of the point

(1, 0, 0) relative to 𝐾 ′
is of dimension 3. The dual of 𝑍 = {(1, 0, 0)}

is the hyperplane V(𝑥 + 1), which is an irreducible component of

𝜕𝑎 (𝐾 ′)o [27, Corollary 3.9].

Sinn’s [27, Example 3.20] shows that the point (1, 0, 0) can be

discovered by checking Whitney’s condition (a) for the pair

(Reg(V(𝑔)),V(𝐼1)) .
Hence, it would be interesting to ask the following question:

Qusetion. [27, Remark 3.17(𝑏)] Is Whitney’s condition (a) suffi-

cient for discovering all subvarieties 𝑍 ⊆ 𝐸𝑥𝑎 (𝐾) whose dual is an
irreducible component in 𝜕𝑎𝐾

o
?

We give a positive answer to this question by proving the fol-

lowing theorem:

Theorem 1.2 (Theorem 4.2). Let 𝐾 ⊆ R𝑛 be a semi-algebraic
convex body with 0 ∈ int(𝐾). Let 𝑍 ⊆ Ex𝑎 (𝐾) be an irreducible
subvariety with 𝑍 ∩ Ex(𝐾) dense in 𝑍 such that 𝑍

∗
is an irreducible

component of 𝜕𝑎𝐾o. Then 𝑍 is an irreducible component of one of 𝐹𝑖 ,
which is defined by induction:

𝐹0 :=𝜕𝑎𝐾, 𝐹1 := Sing(𝐹0),

𝐹𝑖 :=Sing(𝐹𝑖−1) ∪
𝑖−2⋃
𝑗=0

𝑆
(
𝐹 𝑗 \ 𝐹 𝑗+1, Reg(𝐹𝑖−1)

)
,

where 𝑆 (𝑋,𝑌 ) is the set of points in which the pair (𝑋,𝑌 ) does not
satisfy Whitney’s condition (a) (see Definition 3.2 (a)).

The canonical Whitney stratification was introduced indepen-

dently by Teissier [28] and Henry and Merle [14]. The computation

of Whitney stratifications for affine varieties is a challenging prob-

lem in computational geometry. Quantifier Elimination can be used

to compute Whitney stratifications of complex algebraic sets in C𝑛

and semi-algebraic sets in R𝑛 [18, 23]. The algorithm introduced

in [15] represents Whitney’s condition (b) using new variables and

eliminates them to compute the stratifications. Another algorithm

in [12] focuses on computing Whitney (b) irregular points through

primary decomposition techniques. Since Theorem 1.3 only con-

cerns Whitney’s condition (a), we present an algorithm, based on

Teissier’s criterion in [5, Remark 4.11], to computeWhitney (a) strat-

ifications for equi-dimensional projective varieties using conormal

spaces and prime decomposition.

Structure of the paper. In Section 2, we introduce some basic

concepts in convex analysis and duality theory. In Section 3, we in-

troduce Whitney stratification of an algebraic variety. In Section 4,

we prove Theorem 4.2. In Section 5, we give algorithms based on

Teissier’s criterion to compute Whitney stratifications using conor-

mal spaces and prime decompositions. In Section 6, we illustrate

our main theorem with two examples: Xano and Teardrop.

2 DUALITY OF VARIETIES AND CONVEX SETS
In this section, we introduce some basic concepts in convex alge-

braic geometry, based on [24–27].

2.1 Conormal Spaces, Dual Varieties and
Duality of Convex Sets

Definition 2.1. Let 𝑋 ⊆ P𝑛 be a complex analytic space of pure
dimension. The conormal space 𝐶 (𝑋 ) of 𝑋 is the closure of

{(𝑥, 𝑙) ∈ P𝑛 × (P𝑛)∗ | 𝑥 ∈ Reg(𝑋 ), ⟨𝑙,𝑇𝑥𝑋 ⟩ = 0},

where ⟨𝑙,𝑇𝑥𝑋 ⟩ = 0 means that the linear operator 𝑙 maps all vectors
of 𝑇𝑥𝑋 to 0. Here, we use Reg(𝑋 ) to represent the regular (smooth)
points in 𝑋 and Sing(𝑋 ) := 𝑋 \ Reg(𝑋 ).

The projection of the conormal space 𝐶 (𝑋 ) onto the second factor
(P𝑛)∗ is called the dual variety of 𝑋 , denoted by 𝑋 ∗. More precisely,
𝑋 ∗ is the closure of

{𝑙 ∈ (P𝑛)∗ | ∃𝑥 ∈ Reg(𝑋 ), ⟨𝑙,𝑇𝑥𝑋 ⟩ = 0}.

We have the biduality theorem for projective varieties [6, The-

orem 1.1]: if 𝑋 ⊆ P𝑛 is an irreducible projective variety, then

(𝑋 ∗)∗ = 𝑋 .

Definition 2.2. A subset 𝐷 ⊆ R𝑛 is called convex if for all pairs
𝑥,𝑦 ∈ 𝐷 and 0 ≤ 𝜆 ≤ 1, 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐷 .

If 𝐷 ⊆ R𝑛 is a compact set of full dimension, that is, of dimension
𝑛, we call 𝐷 a convex body. If 0 ∈ int(𝐷) the Euclidean interior of 𝐷 ,
we define the dual convex body

𝐷o
:= {𝑙 ∈ (R𝑛)∗ | ∀𝑥 ∈ 𝐷, ⟨𝑙, 𝑥⟩ ≥ −1}.

For a point 𝑥 ∈ 𝜕𝐷 , a hyperplane 𝑙 ∈ 𝜕𝐷o satisfying ⟨𝑙, 𝑥⟩ = −1 is
called a supporting hyperplane of 𝑥 .

For a semi-algebraic convex body 𝐷 and a point 𝑥 on the bound-

ary, there is at least one hyperplane 𝑙 supporting 𝑥 by [24, Theo-

rem 18.7].

Definition 2.3. A subset 𝐶 ⊆ R𝑛+1 is called a cone if for all
𝜆 ≥ 0 and 𝑥 ∈ 𝐶 , 𝜆𝑥 ∈ 𝐶 . A closed cone is called pointed if it does
not contain a line, namely 𝐶 ∩ (−𝐶) = {0}.

300



Whitney Stratification of Algebraic Boundaries of Convex Semi-algebraic Sets ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

Let 𝐶 ⊆ R𝑛+1 be a full-dimensional closed pointed convex cone.
We define the dual convex cone

𝐶∨
:= {𝑙 ∈ (R𝑛+1)∗ | ∀𝑥 ∈ 𝐶, ⟨𝑙, 𝑥⟩ ≥ 0}.

The following remark shows that convex bodies and convex

cones can be converted into each other.

Remark 2.4. Let 𝐷 ⊆ R𝑛 be a convex set. Define co(𝐷) :=

{(𝜆, 𝜆𝑥) ∈ R𝑛+1 | 𝜆 ≥ 0, 𝑥 ∈ 𝐷}, which is a pointed convex cone

corresponded to 𝐷 . One can verify that if 0 ∈ int(𝐷), then we have

co(𝐷o) = co(𝐷)∨ .
In fact, for 𝜆, 𝜇 > 0, ⟨(𝜆, 𝜆𝑙), (𝜇, 𝜇𝑥)⟩ ≥ 0 ⇐⇒ 𝜆𝜇 (1 + ⟨𝑙, 𝑥⟩) ≥
0 ⇐⇒ ⟨𝑙, 𝑥⟩ ≥ −1.

If 𝐷 ⊆ R𝑛 is a convex body with 0 ∈ int(𝐷), then we have

(𝐷o)o = 𝐷.

If 𝐶 ⊆ R𝑛+1 is a full-dimensional closed pointed convex cone, then

we have

(𝐶∨)∨ = 𝐶.

2.2 Boundary of Convex Semi-Algebraic Sets
In this subsection, we introduce the notations of algebraic bound-

aries, normal cones, and some of their properties.

Definition 2.5. Let 𝑆 ⊆ R𝑛 be a semi-algebraic set and 𝜕𝑆 be the
Euclidean boundary of 𝑆 . The algebraic boundary of 𝑆 , denoted 𝜕𝑎𝑆 ,
is the Zariski closure of 𝜕𝑆 .

Proposition 2.6. [27, Corollary 2.1] Let 𝐾 ⊆ R𝑛 be a nonempty
semi-algebraic convex body. Then, each irreducible component of 𝜕𝑎𝐾
has codimension one in A𝑛 .

Definition 2.7. Let 𝑋 ⊆ A𝑛 be an affine variety. We define its
projective closure 𝑋 ∈ P𝑛 as the Zariski closure of the image of 𝑋
under the embedding

A𝑛 ↩→ P𝑛, (𝑥1, . . . , 𝑥𝑛) ↦−→ (1 : 𝑥1 : . . . : 𝑥𝑛). (1)

For convenience, we will briefly use the term “the dual 𝑋 ∗
to an

affine variety 𝑋 ” instead of “the dual 𝑋
∗
to the projective closure

𝑋 of an affine variety 𝑋 ”.

Proposition 2.8. [27, Proposition 2.12] Let 𝐾 ⊆ R𝑛 be a semi-
algebraic convex body with 0 ∈ int(𝐾), and let𝑀 := 𝜕𝐾 ∩ Reg(𝜕𝑎𝐾)
be the smooth points on the boundary. Then, for any 𝑥 ∈ 𝑀 , there is
exactly one hyperplane in 𝑙 ∈ 𝐾o supporting 𝑥 . Moreover, we have
⟨𝑙,𝑇𝑥𝑀⟩ = 0.

Definition 2.9. Let 𝐷 ⊆ R𝑛 be a convex set. A point 𝑥 ∈ 𝐷 is
called an extreme point if for any 𝑦, 𝑧 ∈ 𝐷 and 0 < 𝜆 < 1 with
𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧, it holds that 𝑥 = 𝑦 = 𝑧. The set of extreme points
is denoted by Ex(𝐷). We denote the Zariski closure of Ex(𝐷) in A𝑛
by Ex𝑎 (𝐷).

Let 𝐶 ⊆ R𝑛+1 be a pointed convex cone. A ray in 𝐶 is denoted by
R+𝑥 , and R+𝑥 = R+𝑦 if and only if 𝑥 = 𝜆𝑦 for some 𝜆 > 0. A ray
R+𝑥 ⊆ 𝐶 is called an extreme ray if for any 𝑦, 𝑧 ∈ 𝐶 and 0 < 𝜆 < 1

with 𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧, it holds that R+𝑥 = R+𝑦 = R+𝑧. The set of
extreme rays is denoted by Exr(𝐶). We denote the Zariski closure of
the union of all the extreme rays by Exr𝑎 (𝐶).

Lemma 2.10. Let 𝐾 ⊆ R𝑛 be a semi-algebraic convex body with
0 ∈ int(𝐾). Let 𝑙 ∈ Ex(𝐾o) be a supporting hyperplane to a point
𝑥 ∈ Ex(𝐾). Let {𝑙𝑖 } ⊆ 𝜕𝐾o be an infinite sequence converging to
𝑙 and 𝑥𝑖 ∈ 𝜕𝑎𝐾 be a point supported by 𝑙𝑖 . Then the sequence {𝑥𝑖 }
converges to 𝑥 .

Proof. By Definition 2.2, we have ⟨𝑙𝑖 , 𝑥𝑖 ⟩ = −1 and ⟨𝑙, 𝑥⟩ = −1.
If {𝑥𝑖 } does not converge to 𝑥 , by the assumption that 𝐾 is compact,

we can assume there is a subsequence of {𝑥𝑖 }, denoted by {𝑥𝑘𝑖 },
converging to 𝑥 ′ ∈ 𝐾 . So ⟨𝑙, 𝑥 ′⟩ = lim𝑖→∞⟨𝑙𝑘𝑖 , 𝑥𝑘𝑖 ⟩ = −1. This
shows that 𝑙 is a supporting hyperplane to 𝑥 ′. As

⟨𝑙, 𝑥⟩ = ⟨𝑙, 𝑥 ′⟩ = −1,

we conclude that 𝑥 and 𝑥 ′ are in the same face. By 𝑥 ∈ Ex(𝐾), we
have 𝑥 = 𝑥 ′. Hence, the sequence {𝑥𝑖 } converges to 𝑥 . □

Let 𝐷 ⊆ R𝑛 be a convex set, 𝑥 ∈ 𝜕𝐷 , we define

𝑁𝐷 (𝑥) = {𝑙 ∈ (R𝑛)∗ | ∀𝑦 ∈ 𝐷, ⟨𝑙, 𝑦 − 𝑥⟩ ≥ 0}

as the normal cone of 𝑥 .

3 STRATIFICATION ON VARIETIES
The idea of stratification in algebraic geometry comes from topol-

ogy, where an important approach is to divide the topological space

into smaller and simpler parts. In [32], Whitney proved that an alge-

braic variety can be decomposed into several smooth submanifolds.

In [33, 34], Whitney refined the stratification of iterated singular

loci into a stratification satisfying Whitney’s condition (a) or (b).

This section briefly introduces stratifications on varieties based on

[3, 23, 29, 30].

Definition 3.1. Let 𝐹 be an algebraic set of C𝑛 or R𝑛 . A stratifi-

cation of 𝐹 is a family of subsets {𝐹𝛼 } such that

(i) {𝐹𝛼 } are pairwise disjoint;
(ii) For each pair 𝐹𝛼 and 𝐹𝛽 , either 𝐹𝛽 ⊆ cls(𝐹𝛼 ) or cls(𝐹𝛼 )∩𝐹𝛽 =

∅, here cls(𝐹𝛼 ) means the Euclidean closure of 𝐹𝛼 ;
(iii) Each 𝐹𝛼 is smooth.

We call each 𝐹𝛼 a stratum.

Definition 3.2 (Whitney’s Conditions). [2, Definition 9.7.1]

Let 𝑋,𝑌 be two strata of a real algebraic set 𝐹 .

(i) The pair (𝑋,𝑌 ) satisfies Whitney’s Condition (a) at a point 𝑦 ∈
𝑌 if for every sequence {𝑥𝑖 }𝑖∈N with 𝑥𝑖 ∈ 𝑋 and lim𝑖→∞ 𝑥𝑖 = 𝑦,
it holds that 𝑇𝑦𝑌 ⊆ lim𝑖→∞𝑇𝑥𝑖𝑋 if the latter limit exists.

(ii) The pair (𝑋,𝑌 ) satisfies Whitney’s Condition (b) at a point
𝑦 ∈ 𝑌 if for every sequences {𝑥𝑖 }𝑖∈N ⊂ 𝑋 and {𝑦𝑖 }𝑖∈N ⊂ 𝑌 with
lim𝑖→∞ 𝑥𝑖 = lim𝑖→∞ 𝑦𝑖 = 𝑦, it holds that lim𝑖→∞ R(𝑥𝑖 −𝑦𝑖 ) ⊆
lim𝑖→∞𝑇𝑥𝑖𝑋 if these two limits both exist.

In fact, Whitney’s condition (b) implies condition (a), see e.g.

[17, Proposition 2.4]. We use the terminology from [15]: The pair

(𝑋,𝑌 ) is said to beWhitney (a) regular (resp. Whitney regular) if

(𝑋,𝑌 ) satisfies Whitney’s Condition (a) (resp. Whitney’s Condition

(b)) at every point of 𝑌 . The limit in Definition 3.2 is taken with

respect to the Euclidean topology of Grassmannians G𝑘𝑛 (R), which
is described in detail in [2, Section 9.7].
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Definition 3.3. Let 𝐹 ⊆ R𝑛 be an algebraic set. We define the
Whitney (a) stratification of 𝐹

𝐹 = 𝐹0 ⊋ 𝐹1 ⊋ 𝐹2 ⊋ · · · ⊋ 𝐹𝑟 ⊋ 𝐹𝑟+1 = ∅

where
(i) 𝐹1 := Sing(𝐹0).
(ii) For 𝑖 ≥ 2, let

𝐹𝑖 := Sing(𝐹𝑖−1) ∪
𝑖−2⋃
𝑗=0

𝑆
(
𝐹 𝑗 \ 𝐹 𝑗+1, Reg(𝐹𝑖−1)

)
where 𝑆 (𝑋,𝑌 ) is the set of points in which the pair (𝑋,𝑌 ) does
not satisfy Whitney’s condition (a).

(iii) 𝐹𝑟 ≠ ∅.

Let 𝐹
𝑗
𝑖
be the 𝑗-th connected component of 𝐹𝑖 \ 𝐹𝑖+1. One can

verify that by this definition, {𝐹 𝑗
𝑖
} forms a stratification for which

Whitney’s condition (a) is satisfied for every pair of strata. Note that

the stratification in Definiton 3.3 is the minimum of the ones that

satisfy Whitney’s condition (a). In practice, for two strata 𝑋 = 𝐹 𝑗1 \
𝐹 𝑗1+1 and𝑌 = 𝐹 𝑗2\𝐹 𝑗2+1 with𝑌 ⊊ 𝑋 , we compute the Zariski closure

of the set of the points where (𝑋,𝑌 ) does not satisfy Whitney’s

condition (a), denoted as Zar(𝑆 (𝑋,𝑌 )). Then (𝑋,𝑌 \ Zar(𝑆 (𝑋,𝑌 ))
is also Whitney (a) regular.

By [18, Section 3] and [2, Theorem 9.7.5], the set 𝑆 (𝑋,𝑌 ) has
dimension strictly less than 𝑌 . Therefore, dim(𝐹𝑖+1 < dim(𝐹𝑖 ) for
all 𝑖 ≥ 0, so the sequence (𝐹0, 𝐹1, . . . , 𝐹𝑟 ) has length no more than

dim(𝐹0) + 1.

4 STRATIFICATION OF ALGEBRAIC
BOUNDARIES OF CONVEX
SEMI-ALGEBRAIC SETS

A point 𝑥 on a real projective 𝑋 is called central if it is the limit

of a sequence of regular real points of 𝑋 [2, Definition 7.6.3]. Let

𝐾 ⊆ R𝑛 be a semi-algebraic convex body with 0 ∈ int(𝐾). For an
extreme point 𝑥 ∈ Ex(𝐾), the embedding image (1 : 𝑥) ∈ P𝑛 is

a central point of 𝑌
∗
which is the dual variety of an irreducible

component 𝑌 of 𝜕𝑎𝐾
o
[27, Corollary 3.14].

Lemma 4.1. Let 𝐾 ⊆ R𝑛 be a semi-algebraic convex body with
0 ∈ int(𝐾). Let 𝑍 ⊆ Ex𝑎 (𝐾) be an irreducible subvariety such that
𝑍
∗
is an irreducible component of 𝜕𝑎𝐾o, and 𝑍 ∩ Ex(𝐾) is dense in

𝑍 . Let 𝑥 ∈ 𝑍 be a general point and 𝑁𝐾 (𝑥) be its normal cone. Then
we have span(𝑁𝐾 (𝑥)) = (𝑇𝑥𝑍 )⊥.

Proof. Let 𝑥 ∈ 𝑍 ∩ Ex(𝐾). Considering 𝑥 as a supporting hy-

perplane of 𝐾o
, it has a nonempty intersection with Ex(𝐾o). There-

fore, there exists an 𝑙 ∈ Ex(𝐾o) with R+𝑙 ∈ Exr(𝑁𝐾 (𝑥)) and 𝑙
is a supporting hyperplane to 𝑥 , . By [27, Corrollary 3.14], there

exists an irreducible component 𝑋 of 𝜕𝑎𝐾 such that 𝑙 is a cen-

tral point of 𝑋 ∗
. Namely, there exists a sequence {𝑙𝑖 } ⊆ Reg(𝑋 ∗)

converging to 𝑙 . Let 𝑥𝑖 ∈ 𝑋 be the point supported by 𝑙𝑖 , then

𝑙𝑖 = (𝑇𝑥𝑖𝑋 )∗. By [2, Theorem 9.7.5], Whitney’s condition (a) is

satisfied for the pair (Reg(𝑋 ), 𝑍 ) for a general point 𝑥 ∈ 𝑍 , i.e.

𝑇𝑥𝑍 ⊆ lim𝑖→∞𝑇𝑥𝑖𝑋 . Hence we have 𝑙 = lim𝑖→∞ 𝑙𝑖 ∈ (𝑇𝑥𝑍 )∗. For
any ray R+𝑙 ∈ Exr(𝑁𝐾 (𝑥)),

R+𝑙 ⊆ R · (𝑇𝑥𝑍 )∗ = (𝑇𝑥𝑍 )⊥,

Then, we have 𝑁𝐾 (𝑥) ⊆ (𝑇𝑥𝑍 )⊥.
As 𝑍

∗
is an irreducible component of 𝜕𝑎𝐾

o
, according to [27,

Corollary 3.9], we get the following equations:

dim(𝑁𝐾 (𝑥)) = codim(𝑍 ) = codim(𝑇𝑥𝑍 ) = dim((𝑇𝑥𝑍 )⊥) .
Because 𝑁𝐾 (𝑥) ⊆ (𝑇𝑥𝑍 )⊥ and dim(𝑁𝐾 (𝑥)) = dim((𝑇𝑥𝑍 )⊥), we
conclude that span(𝑁𝐾 (𝑥)) = (𝑇𝑥𝑍 )⊥. □

Theorem 4.2. Let 𝐾 ⊆ R𝑛 be a semi-algebraic convex body with
0 ∈ int(𝐾). Let 𝑍 ⊆ Ex𝑎 (𝐾) be an irreducible subvariety with 𝑍 ∩
Ex(𝐾) dense in 𝑍 such that 𝑍

∗
is an irreducible component of 𝜕𝑎𝐾o.

Then 𝑍 is an irreducible component of one of 𝐹𝑖 , which is defined by
induction:

𝐹0 :=𝜕𝑎𝐾, 𝐹1 = Sing(𝐹0),

𝐹𝑖 :=Sing(𝐹𝑖−1) ∪
𝑖−2⋃
𝑗=0

𝑆
(
𝐹 𝑗 \ 𝐹 𝑗+1, Reg(𝐹𝑖−1)

)
,

where 𝑆 (𝑋,𝑌 ) is the set of points in which the pair (𝑋,𝑌 ) does not
satisfy Whitney’s condition (a).

The proof below follows the main idea in the proof of [27, Theo-

rem 3.16].

Proof. Let {𝐹𝑖 } be a stratification of 𝜕𝑎𝐾 satisfying Whitney’s

condition (a). Assume that

𝑍 ⊂ 𝐹𝑘 , 𝑍 ⊄ 𝐹𝑘+1 . (2)

Let 𝑌 be the irreducible component of 𝐹𝑘 that contains 𝑍 . We

assume that 𝑍 ≠ 𝑌 , i.e. 𝑍 ⊊ 𝑌 ⊆ 𝐹𝑘 .

Let 𝑥 ∈ 𝑍 ∩ 𝐸𝑥 (𝐾) be an extreme point of 𝐾 . For a general point

𝑥 ∈ Reg(𝑌 ), we have 𝑇𝑥𝑍 ⊊ 𝑇𝑥𝑌 . By Lemma 4.1, we have

(𝑇𝑥𝑌 )⊥ ⊊ (𝑇𝑥𝑍 )⊥ = span(𝑁𝐾 (𝑥)) .
Hence, there exists R+𝑙 ∈ 𝑁𝐾 (𝑥) with 𝑙 ∈ Ex(𝐾o) such that

⟨𝑙,𝑇𝑥𝑌 ⟩ ≠ 0.

Since 𝑙 is an extreme point of 𝐾o
, by [27, Corollary 3.14], there

exists an irreducible component of 𝜕𝑎𝐾 , denoted by 𝑋 , satisfying

that 𝑙 is a central point of its dual 𝑋 ∗
, i.e. there exists a sequence

𝑙𝑖 → 𝑙 with 𝑙𝑖 ∈ Reg(𝑋 ∗). By Lemma 2.10, there exists a sequence

𝑥𝑖 → 𝑥 with 𝑥𝑖 ∈ Reg(𝑋 ), and each 𝑙𝑖 is the supporting hyperplane
to 𝑥𝑖 . Then, by Proposition 2.8, we have ⟨𝑙𝑖 ,𝑇𝑥𝑖𝑋 ⟩ = 0. Therefore,

⟨𝑙, lim
𝑖→∞

𝑇𝑥𝑖𝑋 ⟩ = lim

𝑖→∞
⟨𝑙𝑖 ,𝑇𝑥𝑖𝑋 ⟩ = 0.

Because the Grassmannian G𝑘𝑛 is compact, without loss of general-

ity, we can assume that lim𝑖→∞𝑇𝑥𝑖𝑋 exists. Since ⟨𝑙,𝑇𝑥𝑌 ⟩ ≠ 0, we

have

𝑇𝑥𝑌 ⊄ lim

𝑖→∞
𝑇𝑥𝑖𝑋 .

This implies that for any 𝑥 ∈ 𝑍 ∩ Ex(𝐾), we have
𝑥 ∈ 𝑆 (Reg(𝑋 ), Reg(𝑌 )).

Since 𝑍 ∩ Ex(𝐾) is dense in 𝑍 and 𝑆 (Reg(𝑋 ), Reg(𝑌 )) is closed, we
conclude that

𝑍 ⊂ Sing(𝑌 ) ∪ ©­«
⋃

𝑋 ∈irr(𝜕𝑎𝐾 )
𝑆 (Reg (𝑋 ) , Reg(𝑌 ))ª®¬ ⊂ 𝐹𝑘+1,

which is a contradiction to the assumption (2). □
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5 COMPUTINGWHITNEY (A)
STRATIFICATIONS VIA CONORMAL SPACES

In this section, we fix P𝑛 as the 𝑛-dimensional projective space over

the complex number field C. We show that the algorithm originally

proposed to compute Whitney (b) stratification by Helmer and

Nanda in [11], which was subsequently found to contain an error

in regards to the output satisfying condition (b) and corrected

by Helmer and Nanda in [12], does in fact correctly compute a

Whitney (a) stratification. Along with a proof of correctness relative

to condition (a) we present a slightly altered version of the algorithm

of [11] which is better suited to our application. The algorithm is

based on an algebraic description of Whitney’s conditions given in

[5].

Definition 5.1. Let 𝑋 ⊆ P𝑛 be a complex analytic space of pure
dimension. Let 𝐶 (𝑋 ) be the conormal space of 𝑋 . The conormal map

𝜅𝑋 is defined as
𝜅𝑋 : 𝐶 (𝑋 ) → 𝑋

(𝑥, 𝑙) ↦→ 𝑥 .
(3)

The conormal space 𝐶 (𝑋 ) is closed and reduced (see e.g. [28,

Proposition 4.1] or [5, Proposition 2.9]), therefore, the sheaf of

ideals I𝐶 (𝑋 ) defining 𝐶 (𝑋 ) corresponds to the vanishing ideal of
𝐶 (𝑋 ). The computation of I𝐶 (𝑋 ) is also given in the proof [28,

Proposition 4.1].

In this section, all ideals are homogeneous since we only consider

projective varieties. Although “homogeneous ideal” is more precise

in this context, we will simply use “ideal” for brevity.

Lemma 5.2. [5, Remark 4.11] Let 𝑋 be an irreducible variety in P𝑛

and let 𝑌 be a smooth irreducible subvariety of 𝑋 . Let I𝐶 (𝑋 )∩𝐶 (𝑌 ) =
I𝐶 (𝑋 ) + I𝐶 (𝑌 ) be the sheaf of ideals defining 𝐶 (𝑋 ) ∩ 𝐶 (𝑌 ), and
I𝜅−1

𝑋
(𝑌 ) = I𝐶 (𝑋 ) + I𝑌 be the sheaf of ideals defining 𝜅−1

𝑋
(𝑌 ). Then

(Reg(𝑋 ), 𝑌 ) satisfies Whitney’s condition (a) if and only if

I𝜅−1
𝑋

(𝑌 ) ⊂ I𝐶 (𝑋 )∩𝐶 (𝑌 ) ⊂
√︃
I𝜅−1

𝑋
(𝑌 ) , (4)

and (Reg(𝑋 ), 𝑌 ) satisfies Whitney’s condition (b) if and only if

I𝜅−1
𝑋

(𝑌 ) ⊂ I𝐶 (𝑋 )∩𝐶 (𝑌 ) ⊂ I𝜅−1
𝑋

(𝑌 ) , (5)

where I𝜅−1
𝑋

(𝑌 ) is the integral closure of I𝜅−1
𝑋

(𝑌 ) .

In Lemma 5.2, 𝑌 is closed as it is a subvariety of 𝑋 . We observe

that the closedness of 𝑌 is necessary: if 𝑌 is not closed, then the

first inclusion in (4) and (5) may not hold as shown in Example 5.3,

and the second inclusion in (5) may not hold either [16, Example

3.2].

Example 5.3. Let 𝑓 = 𝑥2𝑡2 − 𝑦2𝑧2 + 𝑧3𝑡 ∈ C[𝑥,𝑦, 𝑧, 𝑡] be a homo-

geneous polynomial. Let

𝑋 = VC (𝑓 ) ⊂ P3 and 𝑌 = VC (𝑥, 𝑧) \ VC (𝑦) ⊂ Sing(𝑋 ) .

Although (Reg(𝑋 ), 𝑌 ) isWhitney (a) regular,I𝜅−1
𝑋

(𝑌 ) ⊄ I𝐶 (𝑋 )∩𝐶 (𝑌 ) .
Here the ideal I𝜅−1

𝑋
(𝑌 ) is computed by [12, Eq. (5)], which is a result

of the remarks below [19, Theorem 3.12].

Nonetheless, we show that the second inclusion of (4) still holds

even if 𝑌 is Zariski open.

Corollary 5.4. Let 𝑋 be an irreducible variety in P𝑛 and 𝑌 be an
irreducible (not necessarily smooth) subvariety of 𝑋 . Let Reg(𝑋 ) =
𝑋 \ Sing(𝑋 ), and 𝑈 ⊂ 𝑌 \ Sing(𝑌 ) be a Zariski open subset of 𝑌 .
Let I𝐶 (𝑋 )∩𝐶 (𝑈 ) be the sheaf of ideals defining 𝐶 (𝑋 ) ∩ 𝐶 (𝑈 ) and
I𝜅−1

𝑋
(𝑈 ) be the sheaf of ideals defining 𝜅

−1
𝑋

(𝑈 ). Then (Reg(𝑋 ),𝑈 )
satisfies Whitney’s condition (a) if and only if√︃

I𝐶 (𝑋 )∩𝐶 (𝑈 ) ⊂
√︃
I𝜅−1

𝑋
(𝑈 ) . (6)

Proof. By Hilbert Nullstellensatz, the condition (6) is equivalent

to

Zariski closure of

(
𝜅−1𝑋 (𝑈 )

)
⊂ 𝐶 (𝑋 ) ∩𝐶 (𝑈 ). (7)

Since 𝐶 (𝑋 ) ∩𝐶 (𝑈 ) is Zariski closed and

𝜅−1𝑋 (𝑈 ) = 𝐶 (𝑋 ) ∩
(
𝑈 × (P𝑛)∗

)
,

the inclusion in (7) is equivalent to

𝐶 (𝑋 ) ∩
(
𝑈 × (P𝑛)∗

)
⊂ 𝐶 (𝑋 ) ∩𝐶 (𝑈 ) . (8)

In the following, we prove that (Reg(𝑋 ),𝑈 ) is Whitney (a) regular

if and only if (8) holds.

First, we show that (8) leads to (Reg(𝑋 ),𝑈 ) being Whitney (a)

regular. Let 𝑦 ∈ 𝑈 , and let (𝑥 (𝑘 ) ) be a sequence in Reg(𝑋 ) such
that 𝑥 (𝑘 ) → 𝑦 and 𝑇𝑥 (𝑘 )Reg(𝑋 ) → 𝑇 as 𝑘 → ∞. Then (8) implies

that

∀𝑙 ∈ (P𝑛)∗ : ⟨𝑙,𝑇 ⟩ = 0 =⇒ ⟨𝑙,𝑇𝑦𝑈 ⟩ = 0,

which concludes 𝑇𝑦𝑈 ⊂ 𝑇 .
Conversely, we show that (8) holds if (Reg(𝑋 ),𝑈 ) is Whitney (a)

regular. Let (𝑦, 𝑙) be a point in 𝐶 (𝑋 ) ∩ (𝑈 × (P𝑛)∗). Since 𝐶 (𝑋 ) is
the closure of the following set:

{(𝑥, 𝑙) ∈ P𝑛 × (P𝑛)∗ | 𝑥 ∈ Reg(𝑋 ), ⟨𝑙,𝑇𝑥𝑋 ⟩ = 0},

there exists a sequence (𝑥 (𝑘 ) , 𝑙 (𝑘 ) ) ∈ Reg(𝑋 ) × (P𝑛)∗ such that

(𝑥 (𝑘 ) , 𝑙 (𝑘 ) ) → (𝑦, 𝑙) as 𝑘 → ∞.
Then the compactness of P𝑛 implies that (𝑇𝑥 (𝑘 )Reg(𝑋 )) has a con-
vergent subsequence (𝑇𝑥 (𝑘𝑖 )Reg(𝑋 )), and let 𝑇 ⊂ P𝑛 be the limit

of 𝑇𝑥 (𝑘𝑖 )Reg(𝑋 ). Consequently, ⟨𝑙,𝑇 ⟩ = 0 due to the continuity of

the inner product. As (Reg(𝑋 ),𝑈 ) is Whitney (a) regular, we have

𝑇𝑦𝑈 ⊂ 𝑇 , which leads to ⟨𝑙,𝑇𝑦𝑈 ⟩ = 0, and hence (𝑦, 𝑙) ∈ 𝐶 (𝑈 ). □

With the notation in Corollary 5.4, if

I𝜅−1
𝑋

(𝑈 ) ⊄
√︃
I𝐶 (𝑋 )∩𝐶 (𝑈 ) ⊊

√︃
I𝜅−1

𝑋
(𝑈 ) , (9)

then there is some subvariety𝑊 of 𝑌 such that (Reg(𝑋 ),𝑈 ∪𝑊 ) is
also Whitney (a) regular. In other words, if we are trying to stratify

𝑋 and we get a relation as (9), then we know that we have removed

too many points from 𝑌 while getting𝑈 .

Lemma 5.5. Let 𝑋 ⊂ P𝑛 be an irreducible variety and 𝑌 ⊊ 𝑋 be
an irreducible subvariety of 𝑋 .

Let 𝑄 = I𝜅−1
𝑋

(𝑌 ) : I∞
𝐶 (𝑋 )∩𝐶 (𝑌 ) and 𝑈 = Reg(𝑌 ) \ 𝜅𝑋 (VC (𝑄)).

Then √︃
I𝐶 (𝑋 )∩𝐶 (𝑈 ) ⊂

√︃
I𝜅−1

𝑋
(𝑈 ) , (10)

where 𝜅𝑋 : 𝐶 (𝑋 ) → 𝑋 is the conormal map from𝐶 (𝑋 ), the conormal
space of 𝑋 , to 𝑋 . Moreover, (Reg(𝑋 ),𝑈 ) satisfies Whitney’s condi-
tion (a).

303



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Zihao Dai, Zijia Li, Zhi-Hong Yang, and Lihong Zhi

Proof. By Hilbert Nullstellensatz, it is equivalent to prove

𝜅−1𝑋 (𝑈 ) ⊂ 𝐶 (𝑋 ) ∩𝐶 (𝑈 ) . (11)

According to [11, Lemma 4.2],𝑈 is Zariski dense in𝑌 . Consequently,

𝐶 (𝑈 ) = 𝐶 (𝑌 ) by [11, Proposition 2.2]. Then the inclusion (11)

follows from

𝜅−1𝑋 (𝑈 ) ⊂ 𝜅−1𝑋 (𝑌 ) \ VC (𝑄) ⊂ 𝐶 (𝑋 ) ∩𝐶 (𝑌 ) = 𝐶 (𝑋 ) ∩𝐶 (𝑈 ),
where the second inclusion holds because VC (𝑄) is equal to the

Zariski closure of

(
𝜅−1
𝑋

(𝑌 ) \𝐶 (𝑋 ) ∩𝐶 (𝑌 )
)
(see e.g. [4, Chapter 4, §4,

Theorem 10 (𝑖𝑖𝑖)]). We conclude that (Reg(𝑋 ),𝑈 ) satisfies Whit-

ney’s condition (a) by Corollary 5.4. □

Given two irreducible projective varieties 𝑋 and 𝑌 , where 𝑌 is

contained in the singular locus of 𝑋 , we present Algorithm 1, based

on Corollary 5.4 Lemma 5.5, to compute a subvariety𝑊 of Reg(𝑌 )
such that (Reg(𝑋 ), Reg(𝑌 ) \𝑊 ) satisfies Whitney’s condition (a),

i.e.,𝑊 = 𝑆 (Reg(𝑋 ), Reg(𝑌 )) as in Definition 3.3. Next, we utilize

Algorithm 1 as a subroutine to compute Whitney (a) stratifications

of projective varieties.

The algorithms in [12, 15] are for computing Whitney (b) irregu-

lar points of (𝑋,𝑌 ), which can also be used for computing Whitney

(a) irregular points because Whitney’s condition (b) implies condi-

tion (a). However, with the sufficient and necessary condition in

Corollary 5.4 and the fact that Whitney’s condition (a) is weaker

than condition (b), our Algorithm 1 is simpler and should run faster

than the algorithms in [12, 15].

Algorithm 1: Compute Whitney (a) irregular points

Input: Two prime homogeneous ideals

𝐼 , 𝐽 ⊂ C[𝑥0, 𝑥1, . . . , 𝑥𝑛] such that 𝑌 := VC (𝐽 ) is
contained in the singular locus of 𝑋 := VC (𝐼 ).

Output: A list of homogeneous prime ideals

𝐿𝑎 = {𝑃1, . . . , 𝑃𝑘 } such that𝑊 =
⋃𝑘
𝑖=1 VC (𝑃𝑖 )

contains the points in Reg(𝑌 ) where
(Reg(𝑋 ), Reg(𝑌 )) does not satisfy Whitney’s

condition (a).

1. Compute the vanishing ideals I𝐶 (𝑋 ) and I𝐶 (𝑌 ) of 𝐶 (𝑋 ) and
𝐶 (𝑌 ) respectively.

2. Let I𝐶 (𝑋 )∩𝐶 (𝑌 ) = I𝐶 (𝑋 ) + I𝐶 (𝑌 ) and let I𝜅−1
𝑋

(𝑌 ) = I𝐶 (𝑋 ) + 𝐽
by considering 𝐽 as an ideal in the ring of I𝐶 (𝑋 ) . Compute the

saturation 𝑄𝑊 =
√︃
I𝜅−1

𝑋
(𝑌 ) : I∞

𝐶 (𝑋 )∩𝐶 (𝑌 ) .

3. Compute the minimal primes {𝑄1, . . . , 𝑄ℓ } of 𝑄𝑊 .

4. For 𝑖 = 1, . . . , ℓ , compute the elimination ideal

𝑃𝑖 = 𝑄𝑖 ∩ C[𝑥0, 𝑥1, . . . , 𝑥𝑛], and put 𝑃𝑖 into the list 𝐿𝑎 .

5. Remove the redundant ideals from 𝐿𝑎 so that the ideals in 𝐿𝑎
are distinct and the corresponding varieties are not empty sets;

return 𝐿𝑎 .

Theorem 5.6. Algorithm 2 terminates in finite steps and outputs
a list of prime ideals satisfying the output specifications.

Proof. Algorithm 2 terminates in finite steps because every ideal

concerned in the algorithm is finite-dimensional and has finitely

many minimal primes.

Algorithm 2: Compute Whitney (a) stratification of a pro-

jective variety.

Input: A homogeneous radical ideal 𝐼 ⊂ C[𝑥0, 𝑥1, . . . , 𝑥𝑛]
with 𝑋 := VC (𝐼 ).

Output: A list 𝐿 = {𝐿0, 𝐿1, . . . , 𝐿𝑟 } such that

• 𝐿𝑖 is a list of prime ideals {𝑃𝑖,1, . . . , 𝑃𝑖,𝑘𝑖 } for 𝑖 = 0, 1, . . . , 𝑟 ;

• ⋂
𝑠 𝑃𝑖,𝑠 ⊂

⋂
𝑡 𝑃𝑖+1,𝑡 for all 𝑖 = 0, . . . , 𝑟 − 1;

• 𝑋 =
⊔𝑟
𝑖=0

⊔𝑘𝑖
𝑗=1

Reg(𝑋𝑖, 𝑗 ) is a Whitney (a) stratification of

the variety 𝑋 , where 𝑋𝑖, 𝑗 = VC (𝑃𝑖, 𝑗 ) and 𝑃𝑖, 𝑗 ∈ 𝐿𝑖 .
1. Compute prime decomposition 𝐼 = 𝑃0,1 ∩ · · · ∩ 𝑃

0,𝑘0 and set

𝐿0 = {𝑃0,1, . . . , 𝑃0,𝑘0 };
2. Compute the vanishing ideal of Sing(𝑋 ) using the Jacobian

criterion, denoted 𝐼sing. Compute prime decomposition

𝐼sing = 𝑃1,1 ∩ · · · ∩ 𝑃
1,𝑘1 and set 𝐿1 = {𝑃1,1, . . . , 𝑃1,𝑘1 };

3. For 1 ≤ 𝑗 ≤ dim𝑋

(a) compute the minimal primes of the vanishing ideal of the

singular locus of the variety

⋃
𝑃 𝑗,𝜇 ∈𝐿𝑗 VC (𝑃 𝑗,𝜇 ); add the

computed prime ideals to the list 𝐿𝑗+1.
(b) for 𝑖 = 0, . . . , 𝑗 − 1 and for all 𝑃𝑖,ℓ𝑖 ∈ 𝐿𝑖 and 𝑃 𝑗,ℓ𝑗 ∈ 𝐿𝑗 with

𝑃𝑖,ℓ𝑖 ⊊ 𝑃 𝑗,ℓ𝑗 , call Algorithm 1 on (𝑃𝑖,ℓ𝑖 , 𝑃 𝑗,ℓ𝑗 ), add the output

to the list 𝐿𝑗+1; remove the redundant ideals from 𝐿𝑗+1 such
that the ideals in 𝐿𝑗+1 are distinct and the corresponding

varieties are not empty.

4. Return 𝐿.

The correctness of Algorithm 2 follows from the correctness of

Algorithm 1, which is established by Lemma 5.5. □

The main cost of our algorithm is the computation of the vanish-

ing ideals of conormal spaces and prime decomposition of ideals;

we refer to [11, Theorem 8.4] for the detailed complexity estimate

for the algorithm “WhitStrat”.

For a real algebraic set 𝑋 ⊂ R𝑛 , let 𝑋 (C) be the complexification

of 𝑋 . According to [13, Theorem 3.3], one can obtain a Whitney

stratification of 𝑋 by intersecting each stratum (𝐹𝑖 ) of the Whitney

stratification of 𝑋 (C) with R𝑛 .

6 EXAMPLES
We compute two examples to support Theorem 4.2. Each example

contains an extreme point whose dual variety is an irreducible

component of the algebraic boundary of the dual convex body, and

this point can be discovered by Whitney (a) stratification but can

not be identified by computing iterated singular loci. We utilized

Macaulay2 and Maple2023 for the computation.

6.1 Xano
Example 6.1. The variety V(𝑥4 + 𝑧3 − 𝑦𝑧2) is called Xano from

the famous illustration of Hauser [10]. One can verify that Xano is

locally convex by computing the Hessian matrix of 𝑦 = 𝑧 + 𝑥4

𝑧2
:

𝐻𝑥,𝑧 (𝑦) =
(

12𝑥2

𝑧2
− 8𝑥3

𝑧3

− 8𝑥3

𝑧3
6𝑥4

𝑧4

)
,

which is a positive semidefinite matrix. After changing the coordi-

nates of Xano, we have a convex semi-algebraic set, which contains
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the origin as an interior point, defined by

𝐾 = {(𝑥,𝑦, 𝑧) ∈ R3 | 𝑓 ≤ 0, 𝑦 ≤ 1, −1 ≤ 𝑧},
where 𝑓 = (𝑥4 + (𝑧 + 1)3 − (𝑦 + 2) (𝑧 + 1)2) ∈ Q[𝑥,𝑦, 𝑧]. The real

Figure 2: Shifted Xano defined by 𝑓 = (𝑥4 + (𝑧 + 1)3 − (𝑦 +
2) (𝑧 +1)2) (𝑦−1), and its dual defined by 𝑓 ∗ = (2𝑣1 +𝑣2−1) (𝑣4

0
+

128𝑣4
1
+ 320𝑣3

1
𝑣2 + 256𝑣2

1
𝑣2
2
+ 64𝑣1𝑣

3

2
− 64𝑣3

1
− 128𝑣2

1
𝑣2 − 64𝑣1𝑣

2

2
).

variety of a shifted Xano𝑋 = V(𝑓 ) with a plane defined by V(𝑦 − 1)
is as Figure 2. The algebraic boundary 𝜕𝑎𝐾 is V(𝑓 ). The singular
locus of 𝜕𝑎𝐾 is the union of V(𝐼1),V(𝐼2) where

𝐼1 =⟨𝑧 + 1, 𝑥⟩,
𝐼2 =⟨𝑦 − 1, 𝑥4 + 𝑧3 − 3𝑧 − 2⟩.

The 2nd singular locus of V(𝑓 ) is V(𝐼3) where
𝐼3 =⟨𝑥,𝑦 − 1, 𝑧 + 1⟩.

The extreme point 𝑝 = (0,−2,−1) of 𝐾 lies on the line defined

by 𝐼1, but 𝑝 is not contained in any irreducible component the

iterated singular loci. The dual of 𝑝 is the hyperplane V(2𝑣1+𝑣2+1),
which is an irreducible component of 𝜕𝑎 (𝐾)o [27, Corollary 3.9].

Let 𝑋 be the projective closure of 𝑋 . We have 𝑋 = V(𝑔) with
𝑔 = (𝑥4 + (𝑧 +𝑤)3𝑤 − (𝑦 + 2𝑤) (𝑧 +𝑤)2𝑤) (𝑦 −𝑤) ∈ Q[𝑥,𝑦, 𝑧,𝑤].
We follow the steps of Algorithm 2 for computing the Whitney (a)

stratification of the shifted Xano defined by 𝑔.

1-2. Using the prime decomposition, we obtain

𝐼 =⟨𝑔⟩ = {⟨𝑦 −𝑤⟩ ∩ ⟨𝑥4 + (𝑧 +𝑤)3𝑤 − (𝑦 + 2𝑤) (𝑧 +𝑤)2𝑤⟩,
𝐼sing = ⟨𝑧 +𝑤, 𝑥⟩ ∩ ⟨𝑦 −𝑤, 𝑥4 + 𝑧3𝑤 − 3𝑧𝑤3 − 2𝑤4⟩ ∩ ⟨𝑤,𝑦 − 𝑧, 𝑥⟩.
Then we have 𝐿 = {𝐿0, 𝐿1}, with

𝐿0 = {⟨𝑦 −𝑤⟩, ⟨𝑥4 + (𝑧 +𝑤)3𝑤 − (𝑦 + 2𝑤) (𝑧 +𝑤)2𝑤⟩},
𝐿1 = {⟨𝑧 +𝑤, 𝑥⟩, ⟨𝑦 −𝑤, 𝑥4 + 𝑧3𝑤 − 3𝑧𝑤3 − 2𝑤4⟩, ⟨𝑤,𝑦 − 𝑧, 𝑥⟩}.
3. By iterating and calling Algorithm 1, we have

𝐿2 = {⟨𝑧 +𝑤,𝑦 −𝑤, 𝑥⟩, ⟨𝑤, 𝑧, 𝑥⟩, ⟨𝑧 +𝑤,𝑦 + 2𝑤, 𝑥⟩}}.
4. Return

𝐿 ={{⟨𝑦 −𝑤⟩, ⟨𝑥4 + (𝑧 +𝑤)3𝑤 − (𝑦 + 2𝑤) (𝑧 +𝑤)2𝑤⟩},
{⟨𝑧 +𝑤, 𝑥⟩, ⟨𝑦 −𝑤, 𝑥4 + 𝑧3𝑤 − 3𝑧𝑤3 − 2𝑤4⟩, ⟨𝑤,𝑦 − 𝑧, 𝑥⟩},
{⟨𝑧 +𝑤,𝑦 −𝑤, 𝑥⟩, ⟨𝑤, 𝑧, 𝑥⟩, ⟨𝑧 +𝑤,𝑦 + 2𝑤, 𝑥⟩}}

Finally, taking𝑤 = 1, we get a Whitney (a) stratification of V(𝑓 ):

(1). 𝐹0 = V(𝑓 ),
(2). 𝐹1 = V(𝑥, 𝑧 + 1) ∪ V(𝑦 − 1, 𝑥4 + 𝑧3 − 3𝑧 − 2),
(3). 𝐹2 = {(0, 1,−1), (0,−2,−1)}.
The extreme point 𝑝 = (0,−2,−1) is in 𝐹2.

6.2 Teardrop
Example 6.2. Let 𝑓 = (𝑧2 +𝑦2 − (𝑥 + 1) (𝑥 − 1)2) (𝑦 − 5(𝑥 − 1)) (𝑦 +
5(𝑥−1))+ 1

10
(𝑥−1)𝑦𝑧2 ∈ Q[𝑥,𝑦, 𝑧], 𝐼 = ⟨𝑓 ⟩,𝑋 = V(𝐼 ) and𝑋 = V(𝑔),

with 𝑔 = (𝑧2𝑤 + 𝑦2𝑤 − (𝑥 +𝑤) (𝑥 −𝑤)2) (𝑦 − 5(𝑥 −𝑤)) (𝑦 + 5(𝑥 −
𝑤)) + 1

10
𝑤 (𝑥 −𝑤)𝑦𝑧2 ∈ Q[𝑥,𝑦, 𝑧,𝑤].

The following convex set 𝐾 ′
is a perturbation of the teardrop:

𝐾 ′ = {(𝑥,𝑦, 𝑧) ∈ R3 | 𝑓 ≤ 0, 5(𝑥 − 1) ≤ 𝑦 ≤ −5(𝑥 − 1)}.

The algebraic boundary of 𝐾 ′
is V(𝑓 ). The singular locus of 𝜕𝑎𝐾 ′

is the union of V(𝐼1),V(𝐼2),V(𝐼3) where

𝐼1 =⟨𝑦, 𝑥 − 1⟩,
𝐼2 =⟨𝑧,−115 + 𝑦, 𝑥 − 24⟩,
𝐼3 =⟨𝑧, 115 + 𝑦, 𝑥 − 24⟩.

The 2nd singular locus of V(𝑓 ) is an empty set. The extreme point

𝑝 = (1, 0, 0) lies on the line defined by 𝐼1, but 𝑝 is not contained in

any irreducible component of the iterated singular loci. The dual of

𝑝 is the hyperplane V(𝑥 + 1), which is an irreducible component of

𝜕𝑎 (𝐾)o [27, Corollary 3.9]. For this example, computing the ideal of

𝐶 (𝑋 ) suffers from coefficient swell, we use Macaulay2 and Maple to

compute a Whitney (a) stratification of 𝑋 . Here are the compuation

results:

1-2. Using the prime decomposition, we obtain

𝐼 = ⟨𝑔⟩,
𝐼sing = ⟨𝑦, 𝑥 −𝑤⟩ ∩ ⟨𝑤, 𝑥,𝑦2 + 𝑧2⟩

∩ ⟨𝑧,𝑦 − 115𝑤, 𝑥 − 24𝑤⟩ ∩ ⟨𝑧,𝑦 + 115𝑤, 𝑥 − 24𝑤⟩

Then we have 𝐿 = {𝐿0, 𝐿1}, with

𝐿0 = {⟨𝑔⟩},
𝐿1 = {⟨𝑦, 𝑥 −𝑤⟩, ⟨𝑤, 𝑥,𝑦2 + 𝑧2⟩,

⟨𝑧,𝑦 − 115𝑤, 𝑥 − 24𝑤⟩, ⟨𝑧,𝑦 + 115𝑤, 𝑥 − 24𝑤⟩}.

3. By iterating and calling Algorithm 1, we have

𝐿2 = {⟨𝑤 − 𝑥,𝑦, 𝑧⟩, ⟨𝑤,𝑦, 𝑥⟩}}.

4. Return

𝐿 ={{⟨𝑔⟩},
{⟨𝑦, 𝑥 −𝑤⟩, ⟨𝑤, 𝑥,𝑦2 + 𝑧2⟩, ⟨𝑧,𝑦 − 115𝑤, 𝑥 − 24𝑤⟩,
⟨𝑧,𝑦 + 115𝑤, 𝑥 − 24𝑤⟩},
{⟨𝑤 − 𝑥,𝑦, 𝑧⟩, ⟨𝑤,𝑦, 𝑥⟩}}

Finally, taking𝑤 = 1, we get a Whitney (a) stratification of V(𝑓 ):
(1). 𝐹0 = V(𝑓 ),
(2). 𝐹1 = V(𝑥 − 1, 𝑦) ∪ {(24, 115, 0)} ∪ {(24,−115, 0)},
(3). 𝐹2 = {(1, 0, 0)}.
The extreme point 𝑝 = (1, 0, 0) is in 𝐹2.
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