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1. Introduction

1.1. Finite-dimensional marginals problems

Let μ be a probability measure on the discrete space Ω = [m] × [n], where m, n

are positive integers and [m] = {1, . . . , m}. A probability measure on Ω is a non-
negative m × n matrix A = [aij ] ∈ R

m×n
+ , such that the sum of its entries is 1.

Let 1m = (1, . . . , 1)� ∈ Rm. Then the marginals: μ1 = A1n and μ2 = A�1m are
the probability measures on [m] and [n], respectively. The support of μ, denoted
as supp μ, is the following bipartite graph G = (V, E), where V = [m] ∪ [n] and
E = {(i, j), i ∈ [m], j ∈ [n], aij > 0}. The following inverse problem is natural:

Problem 1.1. Given probability measures μ1 and μ2 on [m] and [n] respectively,
find necessary and sufficient conditions for existence of a probability measure μ on
[m] × [n], whose support is contained in a given bipartite graph G = ([m] ∪ [n], E)
and whose marginals are μ1 and μ2.

This problem is a classical problem in combinatorial optimization,8 and can be
solved using the standard flow theory.11 See Ref. 16. Strassen25 gave a solution of
Problem 1.1 to a measure on the Borel σ-algebra of the product of two compact
metric spaces. (Strassen did not bother to state the finite space case. Actually,
Strassen considered a more general ε ≥ 0 version of Problem 1.1.)

We now consider the analog of Problem 1.1 in the quantum setting: Let H be a
finite-dimensional inner product space of dimension n over the complex numbers C.
We identify H with C

n with the standard inner product 〈x,y〉 = y∗x. Then B(H),
the set of linear operators A : H → H, is the algebra of n × n matrices Cn×n.
The set of selfadjoint operators S(H) is the real space of n×n Hermitian matrices.
Then S+(H) ⊃ S+,1(H) is the cone of positive semidefinite matrices in S(H) and the
convex set of positive semidefinite matrices of trace 1. On S(H) we have a partial
order A 	 B if A−B ∈ S+(H). The set S+,1(H), which is called the space of density
matrices, is the analog of the set of probability measure in quantum physics. For
ρ ∈ S(H) the support of ρ, denoted as suppρ, is ρ(H), i.e. the subspace spanned
by the eigenvectors of ρ corresponding to nonzero eigenvalues, which is the range
of ρ. A density matrix ρ ∈ S+,1(H) is called pure state, it is rank one matrix, i.e. it
has one positive eigenvalue equal to 1. Equivalently, dim sup ρ = 1.

Let H1 ≡ Cm,H2 ≡ Cn. Then H = H1 ⊗ H2 ≡ Cm ⊗ Cn ≡ Cm×n is called
the bipartite space. The space B(H) can be viewed as (mn) × (mn) matrices T =
[t(i,p)(j,q)] ∈ C(mn)×(mn), where i, j ∈ [m], p, q ∈ [n]. There are two natural maps,
which are called partial traces:

Tr2 : B(H) → B(H1); Tr2 T =

[
n∑

p=1

t(i,p)(j,p)

]
, i, j ∈ [m],

Tr1 : B(H) → B(H2); Tr1 T =

[
m∑

i=1

t(i,p)(i,q)

]
, p, q ∈ [n].

2050020-2



December 30, 2020 12:11 WSPC/S0219-0257 102-IDAQPRT 2050020

Quantum Strassen’s theorem

A density matrix ρ ∈ S+,1(H) is an analog of a probability measure μ on [m]×[n].
Clearly ρ1 = Tr2 ρ ∈ S+,1(H1) and ρ2 = Tr1 ρ ∈ S+,1(H2) are the analogs of
marginals μ1 and μ2. Hence the analog of Problem 1.1 is the quantum marginals
and coupling problems:3–5,27

Problem 1.2. Let H = H1 ⊗ H2, where H1 and H2 are finite-dimensional inner
product spaces. Let X ⊆ H be a closed subspace. Given ρi ∈ S+,1(Hi), i = 1, 2, what
are necessary and sufficient conditions for the existence of ρ ∈ S+,1(H), supp ρ ⊆ X ,
such that ρ1, ρ2 are its partial traces?

This problem is a variation of the classical 2-representability problem: Given
ρi ∈ S+,1(Hi) for i ∈ [2], does there exists a pure state ρ ∈ S+,1(H1⊗H2) such that
ρ1, ρ2 are its partial traces? This problem was solved by Klyachko in Ref. 17 for a
more general case: Namely the spectrum of the mixed bipartite state is prescribed.
The N -representation problem9,6,18 was considered to be in mid 90’s one of 10 most
prominent research challenges in quantum chemistry.24 Recently, some aspects of
the three partite quantum marginals problem were discussed in Ref. 4.

Problem 1.2 can be stated in terms of semidefinite problem (SDP): Let PX be
the projection on the X . Consider the maximum problem

max{TrXPX , X ∈ S+(H), Trj X = ρi ∈ S+,1(H), i, j ∈ [2]}.
Then Problem 1.2 is solvable if and only if the above maximum is 1. It is possible
to convert this problem to an equivalent SDP problem where the admissible set
is bounded and has an interior in S+(H), see Sec. 4.1. Thus, one can use interior
methods to find the maximum within a given precision ε > 0 in polynomial time
in the given data and ε.

Zhou et al.29 gave necessary and sufficient conditions for the solution of Prob-
lem 1.2. These conditions are analogous to the conditions for the solution of Prob-
lem 1.1.16 They pointed out that quantum coupling can be used to extend quantum
Hoare logic26 for proving relational properties between quantum programs and fur-
ther for verifying quantum cryptographic protocols and differential privacy in quan-
tum computation.28 The second named author generalized some of the results of
Ref. 29 in Ref. 15.

1.2. Quantum marginals problem in the infinite-dimensional case

The aim of this paper is to answer Problem 1.2 in the case when at least one of the
Hilbert spaces is an infinite-dimensional separable Hilbert space. The most challeng-
ing and interesting parts of this paper are tackling the weak operator convergence
in the trace class operators on the tensor product of two Hilbert spaces, (bipartite
space), under the partial trace mapping. As shown in Example 2.4 the weak oper-
ator convergence is not preserved under the partial trace. This paper offers some
tools and approaches for the quantum marginals problem. We hope that our results
will be useful to other problems on trace class operators with partial traces.

2050020-3



December 30, 2020 12:11 WSPC/S0219-0257 102-IDAQPRT 2050020

S. Friedland, J. Ge & L. Zhi

Our main idea to solve Problem 1.2 is by stating a countable number of necessary
conditions on finite-dimensional Hilbert spaces. Then to show that these conditions
are sufficient using compactness arguments. This was a successful approach in find-
ing infinite-dimensional generalizations of Choi’s theorem for characterization of
quantum channels.13

It turns out that the most difficult case is when H1,H2,X are infinite-
dimensional separable spaces. We now outline briefly our main result in this case.

Let H be an infinite-dimensional separable Hilbert space. Denote by B(H) ⊃
K(H) the space of bounded linear operators, with the operator norm ‖ · ‖, and
the ideal of compact operators, respectively. Let S(H) ⊃ S+(H) be the subspace
of selfadjoint operators and the cone of positive semidefinite operators in B(H).
Assume that A ∈ K(H). Recall that A has the Schmidt decomposition, which is
the singular value decomposition for the finite-dimensional H, with a nonnegative
nonincreasing sequence of singular values ‖A‖ = σ1(A) ≥ · · · ≥ σi(A) ≥ · · · ≥ 0,
which converges to 0. For A ∈ S+(H) ∩ K(H) the Schmidt decomposition is the
spectral decomposition. For p ∈ [1,∞), denote by Tp(H) ⊂ K(H) the Banach space
of all compact operators with the p-Schatten norm ‖A‖p = (

∑∞
i=1 σi(A)p)1/p. The

Banach space T1(H) is the space of trace class operators, which will be abbreviated
to T(H). For A ∈ T(H) the trace Tr A is a bounded linear functional A �→ Tr A

satisfying |TrA| ≤ ‖A‖1. For A ∈ T(H)∩S(H), Tr A is the sum of the eigenvalues of
A. The cone of positive semidefinite operators in trace class is denoted as T+(H) =
T(H) ∩ S+(H). Note that ‖A‖1 = Tr A if and only if A ∈ T+(H). (See Appendix
A in Ref. 14.) Denote by S+,1(H) ⊂ T+(H) the convex set of positive semidefinite
trace class operators with trace 1, i.e. the density operators.

Assume that H = H1 ⊗ H2, where H1 and H2 are separable Hilbert spaces.
Suppose that ρ ∈ T(H). Then there are two partial trace maps: Tr1 : T(H) →
T(H2) and Tr2 : T(H) → T(H1) which are both contractions: ‖Tri(A)‖1 ≤ ‖A‖1

for i = 1, 2, see Sec. 2. Denote

Φ : T(H) → T(H1) ⊕ T(H2), Φ(ρ) = (Tr2 ρ, Tr1 ρ). (1.1)

Then ‖Φ‖ ≤ 2. Let Σ = Φ(T+(H)). Then

Σ = {(ρ1, ρ2) | ρ1 ∈ T+(H1), ρ2 ∈ T+(H2), Tr ρ1 = Tr ρ2}. (1.2)

For (ρ1, ρ2) ∈ Σ, let

M(ρ1, ρ2) = Φ−1(ρ1, ρ2) ∩ T+(H). (1.3)

Thus if ρ1, ρ2 are density operators then M(ρ1, ρ2) is the convex set of bipartite
density operates with marginals ρ1, ρ2. Observe that T+(H) fibers over Σ: T+(H) =
∪(ρ1,ρ2)M(ρ1, ρ2).

1.3. Summary of the main results

Theorem 1.3. Suppose that H1 and H2 are infinite-dimensional separable Hilbert
spaces. Assume that ρi ∈ S+,1(Hi) for i = 1, 2. Let H = H1 ⊗H2. Define on T(H)
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the following Lipschitz convex function with respect to ‖ · ‖1 :

f(X) = ‖Tr2 X − ρ1‖1 + ‖Tr1 X − ρ2‖1. (1.4)

Suppose that X ⊂ H is infinite-dimensional closed subspace, with an orthonormal
basis xi, i ∈ N. Let Xn be the subspace spanned by x1, . . . ,xn for n ∈ N. Consider
the minimization problem

μn(ρ1, ρ2) = inf{f(X), X ∈ S+(Xn)}, (1.5)

for n ∈ N. This infimum is attained for some Xn ∈ Xn which satisfies ‖Xn‖ ≤ 2.
Then there exists ρ ∈ S+,1(H), supp ρ ⊆ X such that Tr2 ρ = ρ1, Tr1 ρ = ρ2 if and
only if

lim
n→∞μn(ρ1, ρ2) = 0. (1.6)

We now comment on the above theorem. The Lipschitz and convexity proper-
ties of f on T(H) follows straightforward from the triangle inequality for norms
and the fact that the partial traces are contractions. Since Xn has dimension n

the minimum μn(ρ1, ρ2) can be computed efficiently. Furthermore, the sequence
μn(ρ1, ρ2) is decreasing. It is also straightforward to show that if there exists
ρ ∈ T1(H), supp ρ ⊆ X such that Tr1 ρ = ρ2 and Tr2 ρ = ρ1 then (1.6) holds.
The nontrivial part of the above theorem is that the condition (1.6) yields the
existence of ρ. This part follows from the following nontrivial interesting result:

Theorem 1.4. Assume that H1 and H2 are infinite-dimensional separable Hilbert
spaces. Suppose that ρi ∈ T+(Hi) for i = 1, 2. Assume that the sequence ρ(n) ∈
T+(H), n ∈ N converges in the weak operator topology to ρ ∈ T+(H). Suppose
furthermore that

lim
n→∞ ‖Tr1 ρ(n) − ρ2‖1 + ‖Tr2 ρ(n) − ρ1‖1 = 0. (1.7)

Then

lim
n→∞ ‖ρ(n) − ρ‖1 = 0. (1.8)

In particular Tr ρ = Tr ρ1 = Tr ρ2. Hence ρ is a density operator if and only if ρ1

and ρ2 are density operators.

Our proof is long and computational.
The above theorem implies the following results. First, M(ρ1, ρ2) is a compact

metric space with the distance induced by the norm ‖ · ‖1 on T+(H1 ⊗ H2). Sec-
ond, Theorem 5.2 shows that this Hausdorff distance hd(M(ρ1, ρ2),M(σ1, σ2)) is
a complete metric on the fibers M(ρ1, ρ2).
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1.4. Survey of the content of the paper

In this paper, we use many standard and known results for compact operators, trace
class operators and Hilbert–Schmidt operators (T2(H)), on a separable Hilbert
space. In our arXiv preprint,14 we elaborated explicitly with full details the proofs
of the results on operators we use. In this paper, we stated explicitly the lemmas
and other results that we use. For known results we give the appropriate references,
and sketch the ideas of proofs of results, which are less known. The full details are
given in Ref. 14.

We now survey briefly the content of this paper. In Sec. 2, we discuss some basic
results on operators on separable Hilbert spaces. We recall the Schmidt decompo-
sition of compact operators and its properties. We discuss in detail the trace class
operators T(H), the Hilbert–Schmidt operators T2(H) and relations between these
Banach spaces. Next we consider these classes of operators for bipartite Hilbert
space H = H1 ⊗ H2. We discuss in detail the partial trace operators and their
properties under the weak operator convergence.

In Sec. 3, we give proofs to Theorems 1.4 and 1.3. Most of this section is devoted
to the proof of Theorem 1.4, which is long and computational. The proof of Theo-
rem 1.3 follows quite simply from Theorem 1.4.

Section 4 discusses a simpler case of quantum marginals problem, where the
support of ρ is contained in a finite-dimensional subspace X of the bipartite space
H. In this case, we can replace the minimum problem (1.5), which boils down to
the minimum of Lipschitz convex function on a finite-dimensional compact convex
set, to a maximum problem in semidefinite programming (SDP), on a bounded
compact set of positive semidefinite matrices, which has an interior. In Sec. 4.1,
we discuss a more general SDP problem than the one considered in Ref. 29, and
its dual problem. Most of Sec. 4.2 is devoted to the case where H1 and H2 are
separable infinite-dimensional. The main result of this subsection is Theorem 4.5,
which is an analog of Theorem 1.3, where μn(ρ1, ρ2) is replaced by μn(ρ1, ρ2,X ),
which is the maximum of an appropriate SDP problem.

In Sec. 5, we prove that the Hausdorff metric on the space of fibers M(ρ1, ρ2)
over Σ is a compact metric space with respect to the Hausdorff metric.

2. Preliminary Results on Operators in Hilbert Spaces

We now recall some results needed in this paper on operators in a separable Hilbert
space H. Our main references are Refs. 2,7,19,21–23. We will follow closely the
notions in Ref. 13. The elements of H are denoted by lower bold letters as x. We
denote the inner product in H by 〈x,y〉, which is linear in x and antilinear in y.
The norm ‖x‖ is equal to

√〈x,x〉. We denote by H∨ the dual space of the linear
functional on H. Recall that a linear functional f ∈ H∨ represented by y ∈ H:
f(x) = 〈x,y〉 for all x ∈ H. We denote this f by y∨. Note

(a1y1 + a2y2)∨ = ā1y∨
1 + ā2y∨

2 .

2050020-6
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Denote by N the set of positive integers. For n ∈ N we denote [n] = {1, . . . , n},
and let [∞] = N. Recall that H is separable if it has an orthonormal basis ei for
i ∈ [N ], where N ∈ N ∪ {∞}. In this paper, we assume that H is separable. Then
dimH = N . Thus H is finite-dimensional if N ∈ N.

We denote by B(H) the space of bounded linear operators L : H → H. The
bounded linear operators are denoted by the capital letters. The operator norm of
L is given by ‖L‖ = sup{‖Lx‖, ‖x‖ ≤ 1}. The adjoint operator of L is denoted
by L∨ and is given by the equality 〈Lx,y〉 = 〈x, L∨y〉. L is called a selfadjoint
operator if L∨ = L. Denote by S(H) ⊂ B(H) the real space of selfadjoint operators.
L ∈ S(H) is called nonnegative (positive) if 〈Lx,x〉 ≥ 0 (〈Lx,x〉 > 0) for all x �= 0.
Denote by S++(H) ⊂ S+(H) the open set of positive and nonnegative (selfadjoint
bounded) operators. So S+(H) is a closed cone and S++(H) its interior. Recall that
L ∈ S+(H) has a unique root L1/2 ∈ S+(H). If L is positive then L1/2 is positive.
For L ∈ B(H) we have that L∨L, LL∨ ∈ S+(H), and |L| = (L∨L)1/2 ∈ S+(H). For
A, B ∈ S(H) we denote A 	 B(A � B) if A − B ∈ S+(H)(A − B ∈ S++(H)).

L is called rank one operator if L = xy∨, where x,y �= 0. Thus L(z) = 〈z,y〉x.
L is selfadjoint if and only if y = ax for some a ∈ R. L ∈ S+(H) if and only if
a ≥ 0.

Assume that dimH = ∞. Denote by K(H) the closed ideal (left and right) of
compact operators. The operator L is in K(H) if and only if L has singular value
decomposition (SVD), (or Schmidt decomposition):

L =
∞∑

i=1

σi(L)gif∨i ,

‖L‖ = σ1(L) ≥ · · · ≥ σn(L) ≥ · · · ≥ 0, lim
i→∞

σi(L) = 0. (2.1)

Here {g1, . . . ,gn, . . .}, {f1, . . . , fn, . . .} are two orthonormal sets of vectors of H. The
nth singular value of L denoted by σn(L), and gn, fn are called left and right nth
singular vectors of L. L is selfadjoint if and only if fi = εigi, εi ∈ {−1, 1} for all
i ∈ N. Then (2.1) is the spectral decomposition of L where εiσi(L) is the eigenvalue
of L with the corresponding eigenvector gi. Furthermore L ∈ S+(H)∩K(H) if and
only if fi = gi for all i ∈ N. Hence all positive σi(L)2 are the positive eigenvalues
of compact operators LL∨, L∨L ∈ S+(H) ∩ K(H). Note that

‖L −
n∑

i=1

σi(L)gif∨i ‖ = σn+1(L), n ∈ N.

Recall that if A ∈ B(H) and L ∈ K(H) then AL, LA ∈ K(H). Furthermore, one
has the inequalities

σi(AL), σi(LA) ≤ σi(L)‖A‖, i ∈ N (2.2)

(see Appendix A in Ref. 14.) The above inequalities on singular values yield that if
L ∈ T(H) then AL, LA ∈ T(H). Furthermore, ‖AL‖1, ‖LA‖1 ≤ ‖L‖1‖A‖, see 1.11
Theorem in Ref. 7.
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If L ∈ T(H), then for each orthonormal basis ei, i ∈ N, we have the inequality∑∞
i=1 |〈Lei, ei〉| ≤ ‖L‖1. (See Lemma A.3 in Ref. 14, or Proof of 1.9 Proposition in

Ref. 7.) Furthermore the value of the sum
∑∞

i=1〈Lei, ei〉 is independent of a choice
of the basis, is denoted as the trace of L. Thus, the SVD decomposition (2.1) of
L ∈ T(H) yields that

TrL =
∞∑

i=1

σi(L)〈gi, fi〉. (2.3)

Thus, |TrL| ≤ ‖L‖1 and equality holds if and only of zL ∈ T+(H) for some
z ∈ C, |z| = 1. Note that if L ∈ S(H) ∩ T(H) then the trace of L is the sum of the
eigenvalues of L. (See Appendix A in Ref. 14, or 1.11 Theorem in Ref. 7.)

Next we recall the following known result that we need later:

Tr LA = Tr AL = TrA1/2LA1/2 ≥ 0 if L ∈ T+(H) and A ∈ S+(H).

Recall that Tp(H) ⊂ Tq(H) for 1 ≤ p < q < ∞. (Usually T∞(H) is identified
with B(H).) In particular, T(H) ⊂ T2(H). The space T2(H) is the Hilbert–Schmidt
space of compact operators. Fix an orthonormal basis {ei}, i ∈ N. Then A1, A2 ∈
T2(H) have representations

Al =
∞∑

i=j=1

aij,leie∨j , ‖Al‖2 = (
∞∑

i=j=1

|aij,l|2)1/2, l ∈ [2].

Thus T2(H) is a Hilbert space with the inner product

〈A1, A2〉 =
∞∑

i=j=1

aij,1āij,2.

It is well known that if A1, A2 ∈ T2(H) then A1A2 ∈ T(H):

A1A2 =
∞∑

i=j=1

(
∞∑

k=1

aik,1akj,2)eie∨j .

Furthermore

〈A1, A2〉 = TrA1A
∨
2 , ‖A1A2‖1 ≤ ‖A1‖2‖‖A2‖2,

A1A
∨
1 ∈ T+(H), ‖A1A

∨
1 ‖1 = ‖A1‖2

2 = TrA1A
∨
1 .

See Lemma A.4 in Ref. 14, or 1.8 Proposition in Ref. 7.
We next discuss the tensor product H1 ⊗ H2 of two separable Hilbert spaces.

It is called in quantum physics bipartite states. Assume that the inner product in
Hi is 〈·, ·〉i. Then H1 ⊗ H2 has the induced inner product satisfying the property
〈x ⊗ y,u ⊗ v〉 = 〈x,u〉1〈y,v〉2. We assume that Hl has an orthonormal basis
ei,l, i ∈ [Nl], where Nl ∈ N ∪ {∞} for l ∈ [2]. These two orthonormal bases induce

2050020-8
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the orthonormal basis ei,1 ⊗ ej,2 for i ∈ [N1], j ∈ [N2] in H1 ⊗ H2. A vector
a ∈ H1 ⊗H2 has the expansion

a =
N1,N2∑
i=j=1

aijei,1 ⊗ ej,2, ‖a‖ =

√√√√N1,N2∑
i=j=1

|aij |2 < ∞. (2.4)

Note that a induces two bounded linear operators A(a) : H2 → H1 and A(a)∨ :
H1 → H2 given by

A(a) =
N1,N2∑
i=j=1

aijei,1e∨j,2, A(a)∨ =
N1,N2∑
i=j=1

āijej,2e∨i,1. (2.5)

We can view A(a) as a matrix Â = [aij ]
N1,N2
i=j=1. We denote by Â† = [a†

pq]
N2,N1
p=q=1,

where a†
pq = āqp for all p ∈ [N2], q ∈ [N1]. (Â† is the “transpose conjugate” of

Â.) Next we observe that the operators A(a) and A(a)∨ can be viewed as adjoint
Hilbert–Schmidt operators on H̃ = H1 ⊕H2, with the inner product:

〈(x,u), (y,v)〉 = 〈x,y〉1 + 〈u,v〉2.
Let ẽi,1 = (ei,1, 0), ẽj,2 = (0, ej,2) for i ∈ [N1], j ∈ [N2]. Define

Ã(a) =
N1,N2∑
i=j=1

aij ẽi,1ẽ∨j,2, Ã(a)∨ =
N1,N2∑
i=j=1

āij ẽj,2ẽ∨i,1.

Then Ã(a), Ã(a)∨ ∈ T2(H̃). Furthermore, we have the following relations:

Ã(a)Ã(a)∨|H1 = A(a)A(a)∨ , Ã(a)Ã(a)∨|H2 = 0,

Ã(a)∨Ã(a)|H2 = A(a)∨A(a), Ã(a)∨Ã(a)|H1 = 0.

Lemma A.4 in Ref. 14 yields that A(a)A(a)∨ ∈ T+(H1), A(a)∨A(a) ∈ T+(H2), and
the two operators have the same singular values. Thus, the matrices ÂÂ†, Â†Â rep-
resent the operators A(a)A(a)∨, A(a)∨A(a) in the bases {ei,1}, {ej,2} respectively.

Let b =
∑N1,N2

i=j=1 bijei,1 ⊗ ej,2 ∈ H1 ⊗H2. Denote B̂ = [bij ]
N1,N2
i=j=1. Then 〈a,b〉 =

Tr ÂB̂† = Tr B̂†Â.
Assume that F ∈ T(H1 ⊗ H2). We now discuss the notions of partial traces

Tr1(F ) ∈ T(H2) and Tr2(F ) ∈ T(H1). Assume first that F is a rank one product
operator: (x ⊗ y)(u ⊗ v)∨. Then

Tr1((x ⊗ y)(u ⊗ v)∨) = 〈x,u〉yv∨, (2.6)

Tr2((x ⊗ y)(u ⊗ v)∨) = 〈y,v〉xu∨. (2.7)

Hence

‖(x⊗ y)(u ⊗ v)∨‖1 = ‖x‖‖y‖‖u‖‖v‖,
‖Tr1(x ⊗ y)(u ⊗ v)∨)‖1 = |〈x,u〉|‖y‖‖v‖,
‖Tr2((x ⊗ y)(u ⊗ v)∨)‖1 = |〈y,v〉|‖x‖‖u‖.
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Lemma 2.1. Assume that Hi is a separable Hilbert space of dimension Ni with
a basis ej,i, j ∈ [Ni] for i ∈ [2]. Denote H = H1 ⊗ H2. Let a,b ∈ H. Suppose
that a has the representation (2.4). Assume that b has a similar expansion and
Â = [aij ], B̂ = [bij ], i ∈ [N1], j ∈ [N2] are the representation matrices of a,b,
respectively. Denote by C and D the following operators :

Tr2 ab∨ = C =
N1∑

i=p=1

cipei,1e∨p,1, Tr1 ab∨ = D =
N2∑

j=q=1

djqej,2e∨q,2. (2.8)

Then

Ĉ = ÂB̂† = [cip]N1
i=p=1, D̂ = Â�B̂ = [djq ]N2

j=q=1. (2.9)

Furthermore C ∈ T(H1), D ∈ T(H2) and the following inequalities and equalities
hold

max(‖Tr2 ab∨‖1, ‖Tr1 ab∨‖1) ≤ ‖a‖‖b‖ = ‖ab∨‖1, (2.10)

〈(Tr2 ab∨)x,y〉 =
N2∑
j=1

〈x ⊗ ej,2,b〉〈a,y ⊗ ej,2〉, x,y ∈ H1, (2.11)

〈(Tr1 ab∨)u,v〉 =
N1∑
i=1

〈ei,1 ⊗ u,b〉〈a, ei,1 ⊗ v〉, u,v ∈ H2. (2.12)

In particular

Tr ab∨ = TrTr2 ab∨ = TrTr1 ab∨ = 〈a,b〉. (2.13)

Proof. Clearly ab∨ ∈ T(H). Furthermore

‖ab∨‖ = ‖a‖‖b‖ =

⎛
⎝N1,N2∑

i=j=1

|aij |2
⎞
⎠

1
2 (N1,N2∑

p=q=1

|bpq|2
) 1

2

.

Observe next that

ab∨ =

⎛
⎝N1,N2∑

i=j=1

aijei,1 ⊗ ej,2

⎞
⎠(N1,N2∑

p=q=1

bpqep,1 ⊗ eq,2

)∨

=
N1,N2,N1,N2∑
i=j=p=q=1

aij b̄pq(ei,1 ⊗ ej,2)(ep,1 ⊗ eq,2)∨.

Use (2.6) and (2.7) to deduce that the operators C = Tr2(ab∨) and D = Tr1(ab∨),
which represented by matrices Ĉ and D̂ respectively, satisfy (2.9) and (2.11)–(2.12).

Let H̃ and Ã(a), Ã(b) ∈ T2(H̃) be defined as above. Then Ĉ and D̂ represent
Ã(a)Ã(b)∨

∣∣H1 ∈ T(H1) and A(a)∨A(b)
∣∣H2 ∈ T(H2). This shows that C and D

2050020-10



December 30, 2020 12:11 WSPC/S0219-0257 102-IDAQPRT 2050020

Quantum Strassen’s theorem

are in the trace class. Lemma A.4 in Ref. 14 yields that

‖Ĉ‖1 = ‖Ã(a)Ã(b)∨‖1 ≤ ‖Ã(a)‖2‖Ã(b)∨‖2 = ‖Â‖2‖B̂‖2 = ‖a‖‖b‖,
‖D̂‖1 = ‖Ã(a)∨Ã(b)‖1 ≤ ‖Ã(a)∨‖2‖Ã(b)‖2 = ‖Â‖2‖B̂‖2 = ‖a‖‖b‖.

This proves (2.10).
It is left to show (2.13). As σ1(ab∨) = ‖a‖‖b‖ and all other singular values of

ab∨ are zero (2.3) yields that Trab∨ = 〈a,b〉. Observe next

Tr(Tr2 ab∨) =
N1∑
i=1

〈(Tr2 ab∨)ei,1, ei,1〉

=
N1∑
i=1

N2∑
j=1

〈ei,1 ⊗ ej,2,b〉〈a, ei,1 ⊗ ej,2〉 = 〈a,b〉.

The equality Tr(Tr1 ab∨) = 〈a,b〉 follows similarly.

The following lemma is known, see Theorem 26.7 and its proof in Ref. 2, or the
proof in Ref. 14.

Lemma 2.2. Assume that F ∈ T(H1 ⊗H2). Then

(1) Tr1(F ) ∈ T(H2), Tr2(F ) ∈ T(H1).
(2) ‖Tr1(F )‖1, ‖Tr2(F )‖1 ≤ ‖F‖1.
(3) Tr(Tr1 F ) = Tr(Tr2 F ) = Tr F .
(4) Assume that F ∈ T+(H). Then Tr1(F ) ∈ T+(H2), Tr2(F ) ∈ T+(H1) and

‖F‖1 = Tr(F ) = Tr(Tr1(F )) = ‖Tr1(F )‖1 = Tr(Tr2(F )) = ‖Tr2(F )‖1.

Recall that a sequence an, n ∈ N in H is called weakly convergent to a ∈ H,
denoted as an

w→ a, if limn→∞〈an,x〉 = 〈a,x〉 for all x ∈ H. As sequence of bounded
operators An ∈ B(H), n ∈ N is called convergent in weak operator topology to
A ∈ B(H), denoted as An

w.o.t.→ A, if limn→∞〈Anx,y〉 = 〈Ax,y〉 for all x,y ∈ H.

Lemma 2.3. Let Hl be a separable Hilbert space of dimension Nl ∈ N ∪ {∞} for
l ∈ [2]. Set H = H1 ⊗H2.

(1) Assume that an,bn,∈ H, n ∈ N, and an
w→ a,bn

w→ b. Then

anb∨
n

w.o.t.→ ab∨ in T(H), (2.14)

lim inf Tr ana∨
n ≥ Tr aa∨. (2.15)

For each xi ∈ Hi for i ∈ [2] the following inequalities hold:

lim inf〈(Tr1 ana∨
n)x2,x2〉 ≥ 〈(Tr1 aa∨)x2,x2〉,

lim inf〈(Tr2 ana∨
n)x1,x1〉 ≥ 〈(Tr2 aa∨)x1,x1〉. (2.16)

Assume that for l ∈ [2] Nl is finite. Then

Trl anb∨
n

w.o.t.→ Trl ab∨. (2.17)
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(2) Assume that the sequence ρn ∈ T+(H) converges in weak operator topology to
ρ ∈ T(H). Then ρ ∈ T+(H) and the following conditions hold:

lim inf Tr ρn ≥ Tr ρ, (2.18)

lim
n→∞Tr ρn = Tr ρ ⇐⇒ lim

n→∞ ‖ρn − ρ‖1 = 0, (2.19)

lim inf〈(Tr1 ρn)x2,x2〉 ≥ 〈(Tr1 ρ)x2,x2〉, (2.20)

lim inf〈(Tr1 ρn)x2,x2〉 ≥ 〈(Tr1 ρ)x2,x2〉, (2.21)

lim inf〈(Tr2 ρn)x1,x1〉 ≥ 〈(Tr2 ρ)x1,x1〉. (2.22)

If Nl is finite then

Trl ρn
w.o.t.→ Trl ρ. (2.23)

Proof. (1) For each u,v ∈ H we have the equality 〈(anb∨
n)u,v〉 = 〈u,bn〉〈an,v〉,

As an
w→ a,bn

w→ b we deduce (2.14). Recall that lim inf ‖an‖ ≥ ‖a‖. As Tr cc∨ =
‖c‖2 for c ∈ H we deduce (2.15).

Assume that N2 is finite. We prove (2.17) for l = 2. Recall (2.11) for an,bn:

〈(Tr2 anb∨
n)x,y〉 =

N2∑
j=1

〈x ⊗ ej,2,bn〉〈an,y ⊗ ej,2〉, x,y ∈ H1.

Letting n → ∞ we get (2.11). Hence (2.17) holds for l = 2. Similar arguments apply
if N1 is finite.

We now show (2.16). Assume first that N2 is finite. Then (2.17) yields the
equality in (2.16). Assume that N2 = ∞. Choose N ∈ N and let Ln,N and LN be
the following finite rank operators in T(H1):

〈Ln,Nx,y〉 =
N∑

j=1

〈x ⊗ ej,2, an〉〈an,y ⊗ ej,2〉,

〈LNx,y〉 =
N∑

j=1

〈x ⊗ ej,2, a〉〈a,y ⊗ ej,2〉.

Clearly, the sequence Ln,N , n ∈ N converges in weak operator topology to LN for
each N ∈ N. Observe next

〈(Tr2 ana∨
n)x,x〉 =

∞∑
j=1

|〈an,x⊗ ej,2〉|2 ≥ 〈Ln,Nx,x〉.

Hence

lim inf〈(Tr2 ana∨
n)x,x〉 ≥ 〈LNx,x〉.

As limN→∞〈LNx,x〉 = 〈(Tr2 aa∨)x,x〉 we deduce the second inequality in (2.16).
Similarly we deduce the first inequality in (2.16).
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(2) The claim that ρ ∈ T+(H) and the inequality (2.18) follow from Lemma B.4
in Ref. 14. Assume that the spectral decomposition of ρn is

∑∞
k=1 σk(ρn)ak,na∨

k,n.
Fix xl ∈ Hl for l ∈ [2]. We first choose a subsequence np, p ∈ N such that a
particular lim inf stated in part (2) of the lemma is achieved for this subsequence.
Clearly ρnp

w.o.t.→ ρ. Hence, without loss of generality we can assume that np = p

for p ∈ N. We choose a subsequence nm, m ∈ N such that

lim
m→∞σk(ρnm) = σk, ak,nm

w→ ak, k ∈ N.

As ρnm converges weakly also to ρ we deduce that ρ =
∑∞

k=1 σnaka∨
k and ‖ak‖ ≤ 1

for k ∈ N. Fix ε > 0. Then there exists N = N(ε) such that
∑∞

k=N σk < ε.
Furthermore there exists k > K2(ε) such that σN (ρk) < ε. Let

Bn =
N∑

k=1

σk(ρn)ak,na∨
k,n, Cn =

∞∑
k=N+1

σk(ρn)ak,na∨
k,n,

B =
N∑

k=1

σkaka∨
k , C =

∞∑
k=N+1

σkaka∨
k .

Then

ρn = Bn + Cn, ρ = B + C, Bn, Cn, B, C ∈ T+(H), ‖ρ − B‖1 = ‖C‖1 < ε,

Trl ρn 	 Trl Bn, ‖Trl ρ − Trl B‖1 = ‖Trl C‖1 ≤ ‖C‖1 < ε, n ∈ N, l ∈ [2].

For l ∈ [2] let {l′} = [2] \ {l}. Part (1) yields that

lim inf〈(Trl′ ρn)xl,xl〉 ≥ lim inf〈(Trl′ Bn)xl,xl〉
≥ 〈(Trl′ B)xl,xl〉 ≥ 〈(Trl′ ρ)xl,xl〉 − ε‖xl‖2.

As ε > 0 can be chosen arbitrary small we deduce all the inequalities in part (2).
The condition (2.19) is Lemma 4.3 in Ref. 10, or Lemma B5 in Ref. 14.

Assume that N2 is finite. Then H is isometric to the direct sum of N2 copies
of H1. Where each copy H1,j has the basis ei,1 ⊗ ej,2 for i ∈ [N1]. Let ρn,j ;H1,j →
H1,j be the restriction of the sesquilinear form 〈ρnu,v〉, where u = x ⊗ ej,2,v =
y⊗ej,2. Observe that Tr2 ρn =

∑N2
j=1 ρn,j . Define similarly ρ(j) for j ∈ [N2]. Clearly,

ρn,j
w.o.t.→ ρ(j) for j ∈ [N2]. Hence Tr2 ρn

w.o.t.→ Tr2 ρ =
∑N2

j=1 ρ(j). Similar results
apply if N1 is finite.

We now give a simple example to show that in part (1) of Lemma 2.3 we may
have strict inequalities.

Example 2.4. Assume that N1 = ∞. Consider ρn = (en ⊗ e1)(en ⊗ e1)∨, n ∈ N.
Then en ⊗ e1

w→ 0. So ρn
w.o.t.→ ρ = 0. Clearly Tr2(ρn) = ene∨n

w.o.t.→ 0, and
Tr1 ρn = e1e∨1 . Thus Tr1 ρn does not converge weakly to Tr1 ρ.
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3. Proof of the Main Theorems

3.1. Proof of Theorem 1.4

As

‖ρ(n)‖1 = Tr ρ(n) = Tr(Tr1 ρ(n)) = Tr(Tr2 ρ(n)), ‖ρi‖1 = Tr ρi, i ∈ [2],

we deduce that Tr ρ1 = Tr ρ2 = limn→∞ Tr ρ(n). The inequality (2.18) yields that
Tr ρ1 ≥ Tr ρ. The condition (2.19) implies that limn→∞ ‖ρ(n) − ρ‖1 = 0 if and only
if Tr ρ1 = Tr ρ. Assume to the contrary that Tr ρ1 = Tr ρ2 > Tr ρ.

The next claims follow from the results in Appendix B of Ref. 14. Recall that
T(H) ⊂ T2(H). Thus ρ(n), n ∈ N and ρ are in T2(H). Hence ρ(n), n ∈ N converges
in the weak topology to ρ in the Hilbert space T2(H). Banach–Sacks theorem1

yields that there exists a subsequence nj , j ∈ N such that the Cesàro subsequence
ρ̂m = 1

m

∑m
j=1 ρ(nj), m ∈ N converges in the norm ‖ · ‖2 to ρ. It is straightforward

to show that

lim
m→∞ ‖Tr2 ρ̂m − ρ1‖1 + ‖Tr1 ρ̂m − ρ2‖1 = 0.

The inequalities (2.22) and (2.18) yield that

α1 = ρ1 − Tr2 ρ ∈ T+(H1), α2 = ρ2 − Tr1 ρ ∈ T+(H2).

Note that Trα1 = Trα2 > 0. Consider the spectral decompositions of α1 and α2:

α1 =
∞∑

i=1

σi,1gig∨
i , {σi,1 ≥ 0} ↘ 0, 〈gi,gj〉 = δij , i, j ∈ N, Trα1 =

∞∑
i=1

σi,1,

α2 =
∞∑

i=1

σi,2fif∨i , {σi,2 ≥ 0} ↘ 0, 〈fi, fj〉 = δij , i, j ∈ N, Trα2 =
∞∑

i=1

σi,2.

As Tr α1 = Trα2 > 0 there exists δ > 0, such that

σ1,1 > δ, σ1,2 > δ, δ > 0. (3.1)

For N ∈ N let

αN,1 =
N∑

i=1

σi,1gig∨
i , α̃N,1 =

∞∑
i=N+1

σi,1gig∨
i ,

αN,2 =
N∑

i=1

σi,2fif∨i , α̃N,2 =
∞∑

i=N+1

σi,2fif∨i .

Fix N big enough so that

max(‖α̃N,1‖1, ‖α̃N,2‖1) < δ/10. (3.2)

For simplicity of the exposition of the proof we consider the following most
difficult case. First, α1 and α2 are not finite-dimensional: σi,1, σi,2 > 0 for all i ∈ N.
Second, let H̃1 and H̃2 be the closure of subspaces spanned by gi, i ∈ N and fi, i ∈ N
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respectively. Let Ĥi be the orthogonal complement of H̃i in Hi for i ∈ [2]. Then
Ĥ1 and Ĥ2 are infinite-dimensional with orthonormal bases ĝi, i ∈ N and f̂i, i ∈ N

respectively. Thus ei,j , i ∈ N is an orthonormal basis for Hj for j ∈ [2], where

e2i−1,1 = gi, e2i,1 = ĝi, e2i−1,2 = fi, e2i,2 = f̂i, for i ∈ N. (3.3)

For m ∈ N, let Pm,j be the orthogonal projection in Hj on the subspace spanned by
ei,j , i ∈ [2m] for j ∈ [2]. Define Rm = Pm,1 ⊗Pm,2 for m ∈ N. Then Pm,1, Pm,2, Rm

converge to the identity operators in the strong operator topology in H1,H2,H
respectively. Recall Lemma 5 in Ref. 13:

lim
m→∞ ‖Pm,1β1Pm,1 − β1‖1 + ‖Pm,2β2Pm,2 − β2‖1 + ‖RmβRm − β‖1 = 0

for all βi ∈ T(Hi), i ∈ [2] and β ∈ T(H).
Assume that we have the spectral decompositions

ρ̂n =
∞∑

i=1

λi,nxi,nx∨
i,n, {λi,n} ↘ 0, 〈xi,n, xj,n〉 = δij , Tr ρ̂n =

∞∑
i=1

λi,n,

ρ =
∞∑

i=1

λixix∨
i , {λi} ↘ 0, 〈xi,xj〉 = δij , Tr ρ =

∞∑
i=1

λi. (3.4)

Lemma B.6 of Ref. 14 yields that limn→∞ λi,n = λi for each i ∈ N. Furthermore,
by passing to a subsequence of ρ̂n, we can assume that limn→∞ ‖xi,n − xi‖ = 0 for
each λi > 0. Again, for simplicity of the exposition of the proof we will assume the
most difficult case that λi > 0 for each i ∈ N.

Recall that limm→∞ ‖RmρRm − ρ‖1 = 0. Then there exists m ∈ N such that

‖RmρRm − ρ‖1 < δ/10 and m > N. (3.5)

We now keep m > N fixed. The inequality (2.2) yields

σi(Rm(ρ̂n − ρ)Rm) ≤ ‖Rm‖2σi(ρ̂n − ρ) = σi(ρ̂n − ρ), for i ∈ N ⇒
‖Rm(ρ̂n − ρ)Rm)‖2 ≤ ‖ρ̂n − ρ‖2.

As limn→∞ ‖ρ̂n − ρ‖2 = 0 we deduce that there exists M1 ∈ N such that ‖Rm(ρ̂n −
ρ)Rm)‖2 ≤ δ/(20m) for n > M1. Recall that rankRm = 4m2. Hence rankRm(ρ̂n −
ρ)Rm ≤ 4m2. Thus

‖Rm(ρ̂n − ρ)Rm)‖1 =
4m2∑
i=1

σi(Rm(ρ̂n − ρ)Rm)

≤ 2m

⎛
⎝4m2∑

i=1

σ2
i (Rm(ρ̂n − ρ)Rm)

⎞
⎠

1/2

= 2m‖Rm(ρ̂n − ρ)Rm)‖2 ≤ δ/10.
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Part (2) of Lemma 2.2 yields

‖Tri Rmρ̂nRm − Tri RmρRm‖1 ≤ ‖Rmρ̂nRm − RmρRm‖1 ≤ δ/10 (3.6)

for n > M1.
In addition, we have Tri ρ̂n converge in trace norm to ρi+1, where ρ3 = ρ1. Thus

there exists M2, when n > M2, we have

‖Tri ρ̂n − ρi+1‖1 ≤ δ/10, for i ∈ [2].

Thus for n > max(M1, M2), we have

‖Tri(ρ̂n − Rmρ̂nRm) − (ρi+1 − Tri(RmρRm))‖1 ≤ δ/5. (3.7)

Lemma 2.2 and (3.5) imply

‖Tri(RmρRm) − Tri ρ‖1 ≤ ‖RmρRm − ρ‖1 < δ/10 for i ∈ [2]. (3.8)

We use Tri ρ to replace the Tri(RmρRm) in (3.7) to get

‖Tri(ρ̂n − Rmρ̂nRm) − (ρi+1 − Tri ρ)‖1 ≤ 3δ/10.

Let Tr0 stand for Tr2. Recall that αi = ρi − Tri−1 ρ = αN,i + α̃N,i for i ∈ [2]. The
inequality (3.2) yields

‖Tri−1(ρ̂n − Rmρ̂nRm) − αN,i‖1 ≤ 2δ/5 for i ∈ [2] (3.9)

and n > max(M1, M2). We finally get the contradiction by showing that the above
two inequalities are incompatible.

Recall the spectral decomposition of ρ̂n given by (3.4). Using the bases of H1,H2

defined by (3.3), we can write

xi,n =
∞∑

p,q=1

μi,n
p,qep,1 ⊗ eq,2.

So we have

λi,nxi,nx∨
i,n = λi,n

( ∞∑
p,q=1

μi,n
p,qep,1 ⊗ eq,2

)( ∞∑
r,s=1

μi,n
r,ser,1 ⊗ es,2

)∨

= λi,n

( ∞∑
p,q,r,s=1

μi,n
p,qμ̄

i,n
r,s(ep,1 ⊗ eq,2)(er,1 ⊗ es,2)∨

)
.

Hence

ρ̂n =
∞∑

i=1

λi,n

( ∞∑
p,q,r,s=1

μi,n
p,qμ̄

i,n
r,s(ep,1 ⊗ eq,2)(er,1 ⊗ es,2)∨

)
,

ρ̂n − Rmρ̂nRm =
∞∑

i=1

λi,n

( ∞∑
p,q,r,s=1

μi,n
p,qμ̄

i,n
r,s(ep,1 ⊗ eq,2)(er,1 ⊗ es,2)∨

)

−
∞∑

i=1

λi,n

(
2m∑

p,q,r,s=1

μi,n
p,qμ̄

i,n
r,s(ep,1 ⊗ eq,2)(er,1 ⊗ es,2)∨

)
.
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Then we have

Tr1(xi,nx∨
i,n) =

∞∑
p,q,s=1

μi,n
p,qμ̄

i,n
p,seq,2e∨s,2,

Tr1 ρ̂n =
∞∑

i=1

λi,n(
∑

p,q,s=1

μi,n
p,qμ̄

i,n
p,seq,2e∨s,2)

=
∞∑

q,s=1

(( ∞∑
i=1

∞∑
p=1

λi,nμi,n
p,qμ̄

i,n
p,s

)
eq,2e∨s,2

)
,

Tr1(ρ̂n − Rmρ̂nRm) =
∞∑

q,s=1

(( ∞∑
i=1

∞∑
p=1

λi,nμi,n
p,qμ̄

i,n
p,s

)
eq,2e∨s,2

)

−
2m∑

q,s=1

(( ∞∑
i=1

2m∑
p=1

λi,nμi,n
p,qμ̄

i,n
p,s

)
eq,2, e∨s,2

)
.

Write down the diagonal elements of Tr1(ρ̂n − Rmρ̂nRm):
2m∑
q=1

(
∞∑

i=1

∞∑
p=2m+1

λi,nμi,n
p,qμ̄

i,n
p,q)eq,2e∨q,2

+
∞∑

q=2m+1

(
∞∑

i=1

∞∑
p=1

λi,nμi,n
p,qμ̄

i,n
p,q)eq,2e∨q,2. (3.10)

As m > N are fixed as mentioned above, and n > max(M1, M2), according to
(3.9), we have

‖Tr1(ρ̂n − Rmρ̂nRm) − αN,2‖1 ≤ 2δ/5.

Observe that the diagonal elements of Tr1(ρ̂n − Rmρ̂nRm) − αN,2 are:

N∑
t=1

(( ∞∑
i=1

∞∑
p=2m+1

λi,n|μi,n
p,2t−1|2

)
− σt,2

)
e2t−1,2e∨2t−1,2

+
N∑

t=1

( ∞∑
i=1

∞∑
p=2m+1

λi,n|μi,n
p,2t|2

)
e2t,2e∨2t,2

+
2m∑

q=2N+1

( ∞∑
i=1

∞∑
p=2m+1

λi,n|μi,n
p,q|2

)
eq,2e∨q,2

+
∞∑

q=2m+1

( ∞∑
i=1

∞∑
p=1

λi,n|μi,n
p,q|2

)
eq,2e∨q,2.

Lemma A.3 in Ref. 14 yields that the absolute values of the diagonal elements of
Tr1(ρ̂n −Rmρ̂nRm)−αN,2 are bounded by ‖Tr1(ρ̂n −Rmρ̂nRm)−αN,2‖1 ≤ 2δ/5.
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As λi,n ≥ 0 for i, n ∈ N we deduce
N∑

t=1

∣∣∣∣∣
( ∞∑

i=1

∞∑
p=2m+1

λi,n|μi,n
p,2t−1|2

)
− σt,2

∣∣∣∣∣+
N∑

t=1

∞∑
i=1

∞∑
p=2m+1

λi,n|μi,n
p,2t|2

+
2m∑

q=2N+1

∞∑
i=1

∞∑
p=2m+1

λi,n|μi,n
p,q|2 +

∞∑
q=2m+1

∞∑
i=1

∞∑
p=1

λi,n|μi,n
p,q|2 ≤ 2δ/5.

In particular we deduce the following two inequalities:∣∣∣∣∣
( ∞∑

i=1

∞∑
p=2m+1

λi,n|μi,n
p,1|2

)
− σ1,2

∣∣∣∣∣ ≤ 2δ/5,

∞∑
q=2m+1

∞∑
i=1

λi,n|μi,n
1,q|2 ≤ 2δ/5. (3.11)

The inequality (3.1) and the first above inequality yield
∞∑

i=1

∞∑
p=2m+1

λi,n|μi,n
p,1|2 ≥ δ − 2δ/5 = 3δ/5. (3.12)

Consider now similar inequalities for the diagonal entries of Tr2(ρ̂n−Rmρ̂nRm)−
αN,1. Then the analogous inequality to (3.11) is

∞∑
p=2m+1

∞∑
i=1

λi,n|μi,n
p,1|2 ≤ 2δ/5.

But this inequality contradicts the inequality (3.12).
The equalities Tr ρ1 = Tr ρ2 = limn→∞ Tr ρ(n) establishes the last part of the

theorem.

3.2. Proof of Theorem 1.3

We first observe:

Lemma 3.1. Let H1,H2 be two separable Hilbert spaces. Assume that ρi ∈ T(Hi)
for i ∈ [2]. Let H = H1 ⊗H2. Then the function f : T(H) → [0,∞) given by (1.4)
is a convex Lipschitz function with the Lipschitz constant 2. Furthermore

f(X) ≥ 2‖X‖1 − ‖ρ1‖1 − ‖ρ2‖1 for X ∈ T+(H). (3.13)

Proof. Assume that X1, X2 ∈ T(H). We first show that f is a Lipschitz function
with the Lipschitz constant 2. Then

|f(X1) − f(X2)|
= |‖Tr2 X1 − ρ1‖1 − ‖Tr2 X2 − ρ1‖1 + ‖Tr1 X1 − ρ2‖1 − ‖Tr1 X2 − ρ2‖1|
≤ |‖Tr2 X1 − ρ1‖1 − ‖Tr2 X2 − ρ1‖1| + |‖Tr1 X1 − ρ2‖1 − ‖Tr1 X2 − ρ2‖1|
≤ ‖Tr2(X1 − X2)‖1 + ‖Tr1(X1 − X2)‖1 ≤ 2‖X1 − X2‖1.
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We now show the convexity of f . Assume that t ∈ (0, 1). Let X = tX1 + (1− t)X2.
Then

f(X) = ‖Tr2(tX1 + (1 − t)X2) − (t + (1 − t))ρ1‖1

+ ‖Tr1(tX1 + (1 − t)X2) − (t + (1 − t))ρ2‖1

≤ t‖Tr2 X1 − ρ1‖1 + (1 − t)‖Tr2 X2 − ρ1‖1

+ t‖Tr1 X1 − ρ2‖1 + (1 − t)‖Tr1 X2 − ρ2‖1

= tf(X1) + (1 − t)f(X2).

Assume that X ∈ T+(H). Then Trj X ∈ T+(Hj+1) for j ∈ [2], where H3 = H1.
Hence ‖X‖1 = TrX = Tr(Trj X) = ‖Trj X‖1 for j ∈ [2]. The triangle inequality
yields

f(X) ≥ ‖Tr2 X‖1 − ‖ρ1‖1 + ‖Tr1 X‖1 − ‖ρ2‖1 = 2‖X‖1 − ‖ρ1‖1 − ‖ρ2‖1.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Assume that X ⊆ H is a
closed infinite-dimensional subspace with an orthonormal basis xi, i ∈ N. Let Xn be
the subspace spanned by x1, . . . ,xn for n ∈ N. Consider the infimum (1.5). Then

μn(ρ1, ρ2) = min{f(X), X ∈ S+(Xn), ‖X‖1 ≤ ‖ρ1‖1 + ‖ρ2‖1}. (3.14)

Furthermore, the sequence μn(ρ1, ρ2), n ∈ N is nonincreasing.

Proof. Clearly f(0) = ‖ρ1‖1 + ‖ρ2‖1. Hence μn(ρ1, ρ2) ≤ f(0). Suppose that
X ∈ T+(H) and ‖X‖1 > f(0). The inequality (3.13) yields that f(X) ≥
2‖X‖1−f(0) > f(0). Hence it is enough to consider the infimum (1.5) restricted to
{X ∈ S+(Xn), ‖X‖1 ≤ f(0)}. This is a compact finite-dimensional set. Hence the
infimum is achieved. As Xn ⊂ Xn+1 we deduce that μn+1(ρ1, ρ2) ≤ μn(ρ1, ρ2) for
each n ∈ N.

Proof of Theorem 1.3. First assume that there exists ρ ∈ T+(H) such that
Tr2 ρ = ρ1, Tr1 ρ = ρ2 and supp ρ ⊆ X . As Tr ρ = Tr ρ1 we deduce that ρ ∈
S+,1(H). Next observe ρ ∈ T+(X ). Let Pn ∈ B(H) be the projection on span
of x1, . . . ,xn. Then Pn ∈ B(X ) and Pn, n ∈ N converges in the strong operator
topology to IX . Lemma 5 in Ref. 13 yields that limn→∞ ‖PnρPn−ρ‖1 = 0 in T(X ).
As supp PnρPn ⊆ Xn it follows that PnρPn ∈ S+(Xn) converges to ρ in norm
in T (H). Hence limn→∞ f(PnρPn) = 0. Clearly, μn(ρ1, ρ2) ≤ f(PnρPn). Hence
limn→∞ μn(ρ1, ρ2) = 0.

Second assume that limn→∞ μn(ρ1, ρ2) = 0. Assume that ρ(n) ∈ T+(H),
supp ρ(n) ⊆ Xn and μn(ρ1, ρ2) = f(ρ(n)). Clearly

lim
n→∞ ‖ρ(n)‖1 = lim

n→∞Tr ρ(n) = ‖ρ1‖1 = Tr ρ1.

Thus the sequence ρ(n), n ∈ N is bounded. Hence, there exists a subsequence ρ(nk)

which converges in weak operator topology to ρ. Let x ∈ X⊥. Then x ∈ X⊥
n .
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Therefore ρ(n)x = 0 and 〈ρ(n)x,y〉 = 0 for each y ∈ H. As ρ(nk) w.o.t.→ ρ we
deduce that 〈ρx,y〉 = 0 for each y ∈ H. Hence ρx = 0. Thus supp ρ ⊆ X . As
limk→∞ f(ρ(nk)) = 0, Theorem 1.4 yields that limk→∞ ‖ρ(nk) − ρ‖1 = 0. Hence
Tr2 ρ = ρ1 and Tr1 ρ = ρ2.

4. An SDP Solution When X is Finite-Dimensional

The quantum Strassen problem can be easily generalized to a standard semidefinite
problem in the finite-dimensional case. The feasible set is bounded and contains
a positive definite matrix. Hence, we can solve this problem using interior-point
methods.20 Moreover, the strong duality for this SDP problem holds. In this section,
we show that we can extend this approach to separable infinite-dimensional H1 and
H2 provided that X is finite-dimensional.

4.1. Finite-dimensional case

Let H = H1 ⊗ H2 be a finite-dimensional Hilbert space. Let X ⊆ H be a closed
subspace. Given two partial density operators ρi ∈ S+(Hi)\{0}, i ∈ [2]. We now
state the following SDP problem:

μ(ρ1, ρ2,X ) = max{Tr(XPX ), X ∈ S+(H), Tr2 X � ρ1, Tr1 X � ρ2}. (4.1)

Note that the feasible set is convex and bounded, as TrX ≤ min(Tr ρ1, Tr ρ2). If
supp ρi = Hi for i ∈ [2] then a feasible set contains a positive definite matrix.
In other cases, it is easy to show that it is enough to restrict the problem to
H′

i = supp ρi for i ∈ [2] and H′ = H′
1⊗H′

2. Then we can replace X by X ′ = X ∩H′.
We write down its primal problem and dual problem.

Primal problem
maximize: 〈A, X〉,
subject to: Φ(X) � B;

X ∈ S+(H1 ⊗H2)

Dual problem
minimize: 〈B, Y 〉
subject to: Φ∗(Y ) 	 A;

Y ∈ S+(H1 ⊕H2).

Here

Φ : S+(H1 ⊗H2) → S+(H1 ⊕H2), Φ∗ : S+(H1 ⊕H2) → S+(H1 ⊗H2),

A = PX , B =
[
ρ1

ρ2

]
,

Φ(X) =
[
Tr2(X)

Tr1(X)

]
,

Φ∗(Y ) = Φ∗
[
Y1

Y2

]
= Y1 ⊗ I2 + I1 ⊗ Y2.

(Note that the above Φ is the restriction of Φ given by (1.1) to positive semidefinite
matrices). It is easy to check the following equality:

∀M, N, 〈Φ(M), N〉 = 〈M, Φ∗(N)〉.

2050020-20



December 30, 2020 12:11 WSPC/S0219-0257 102-IDAQPRT 2050020

Quantum Strassen’s theorem

Moreover, the strong duality holds for this semidefinite program as we can check
that the primal feasible set is not empty, (0 is an allowable point), and there exists
an interior point in the dual feasible set.

• A primal feasible point: set X = 0 ∈ S+(H1 ⊗H2), Tr1(X) � ρ2, Tr2(X) � ρ1.
• A dual strict feasible point: set Y = I1 ⊕ I2 ∈ S+(H1 ⊕H2), Φ∗(Y ) = 2I12 � PX .

Hence, the primal and dual problems have no duality gap and the bounded optimal
solution of (4.1) can be computed by interior point methods.20

Theorem 4.1. Let ρi ∈ S+,1(Hi), i ∈ [2]. Assume that X ⊂ H. There exists ρ ∈
S+,1(H), supp ρ ⊆ X such that Tr2 ρ = ρ1, Tr1 ρ = ρ2 if and only if μ(ρ1, ρ2,X ) = 1.

Proof. Assume that there exists ρ ∈ S+,1(H), supp ρ ⊆ X such that Tr2 ρ =
ρ1, Tr1 ρ = ρ2. We choose X = ρ, so Tr(ρPX ) = Tr(ρ) = 1 as supp ρ ⊆ X .
For every feasible point X , Tr(XPX ) ≤ Tr(X) = Tr(Tr2(X)) ≤ Tr(ρ1) = 1. So
μ(ρ1, ρ2,X ) = 1.

Assume μ(ρ1, ρ2,X ) = 1 and the maximum is reached by Xmax. Then we have
1 = Tr(XmaxPX ) ≤ Tr(Xmax) ≤ Tr(ρ1) = 1, so Tr(XmaxPX ) = Tr(Xmax), it means
that supp(Xmax) ⊂ X . From Tr2 X � ρ1 and Tr(ρ1 − Tr2(Xmax)) = 0, we derive
ρ1 = Tr2(Xmax). In the same way, we can show ρ2 = Tr1(Xmax).

According to Theorem 4.1, we can check the existence of quantum lifting by
checking whether μ(ρ1, ρ2,X ) is equal to 1. This can be done numerically by veri-
fying if μ(ρ1, ρ2,X ) > 1 − ε for a given ε in polynomial time in the given data, see
Nesterov and Nemirovsky.20

4.2. Infinite-dimensional case

In this subsection, we assume that X ⊂ H is finite-dimensional.

4.2.1. H1 is infinite-dimensional and H2 is finite-dimensional

Lemma 4.2. Let H1,H2 be separable Hilbert spaces of dimensions N1 = ∞, N2 <

∞. Assume that X ⊂ H is a finite-dimensional subspace of dimension N . Then
there exists a finite-dimensional subspace H′

1 ⊂ H1 of dimension NN2 at most
such that X ⊂ H′ = H′

1 ⊗H2.

Proof. Assume that ei,1, i ∈ N is an orthonormal basis in H1, and H2 has an
orthonormal basis {e1,2, . . . , eN2,2}. Assume that x1, . . . ,xN is a basis in X . Then

xl =
∞,N2∑
i=p=1

xip,lei,1 ⊗ ep,2, l ∈ [N ].
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Set ul,p =
∑∞

i=1 xip,lei,1. Then xl =
∑N2

p=1 ul.p⊗ep,2. Let H′
1 be the subspace of

H1 spanned by ul.p for l ∈ [N ], p ∈ [N2]. Then dim H ′
1 ≤ NN2 and X ⊆ H′

1 ⊗H2.

Thus, in this case the coupling problem is a finite-dimensional problem.

4.2.2. H1 and H2 are infinite-dimensional

Assume that H is an infinite-dimensional separable Hilbert space. Let X be a closed
subspace. Then B(X ) is the subspace of all bounded operators in L ∈ B(H) such
that L(X ) ⊆ X and L(X⊥) = 0. In particular, L ∈ B(H) has support in X if and
only if L ∈ B(X ).

We assume now that X is finite-dimensional, and N = dimX . Then B(X )
has complex dimension N2. It can be identified with CN×N as follows. Fix an
orthonormal basis x1, . . . ,xN in X . Then a basis in B(X ) is xix∨

j for i, j ∈ [N ]. Thus
L ∈ B(X ) is of the form L =

∑N
i=j=1 aijxix∨

j . Hence L is one-to-one correspondence
with A = [aij ] ∈ CN×N . Observe next that L ∈ S(X ) if and only if A is Hermitian.

In what follows, we need the following lemma:

Lemma 4.3. Let H be an infinite-dimensional separable Hilbert space. Assume
that X ⊂ H is a finite-dimensional subspace of dimension N , and x1, . . . ,xN is
an orthonormal basis of X . Let Qn ∈ K(H), n ∈ N be a sequence of orthogonal
projections such that Qn → I in the strong operator topology. Set Xn = QnX .

(1) There exists K ∈ N such that dimXn = N for n > K.
(2) Let ρn ∈ S+(Xn) and assume that Tr ρn ≤ c for n > K. Then, there exists a

subsequence ρnk that converges in trace norm to ρ ∈ S+(X ).

Proof. First observe that since Qn is an orthogonal projection we have the inequal-
ity ‖Qnxi‖ ≤ 1 for i ∈ [N ] and n ∈ N. As limn→∞ ‖Qnxi − xi‖ = 0 for i ∈ [N ] we
deduce that for a given ε > 0 there exists K(ε) such that

1 − ε < 〈Qnxi, Qnxi〉 ≤ 1, |〈Qnxi, Qnxj〉| < ε for i, j ∈ [N ] and i �= j.

Let Wn = [〈Qnxi, Qnxj〉] ∈ CN×N . Then Wn is Hermitian. We claim that Wn

is positive definite for ε < 1/N . More precisely σ1(Wn − IN ) < Nε. (This follows
from Perron–Frobenius theorem, as the absolute value of each entry of I − Wn is
less than ε. See Ref. 12.) Let λ1(Wn) ≥ · · · ≥ λN (Wn) be the eigenvalues of Wn.
As Wn − IN is Hermitian it follows that |λi(Wn − IN )| ≤ Nε.

(1) For K = K(1/N), W is positive definite. Hence Qnx1, . . . , QnxN are linearly
independent for n > K.

(2) Assume that n > K. Denote by W
1/2
n the unique positive definite matrix

which is the square root of Wn. Note that the eigenvalues of W
1/2
n satisfy also

the inequality |λi(W
1/2
n − IN )| < Nε. Hence limn→∞ W

1/2
n = IN . Observe that

L ∈ B(Xn) is of the form
∑N

i=j=1 aijQnxi(Qnxj)∨. Furthermore ρ ∈ S+(Xn) if
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and only if A = [aij ] ∈ CN×N is Hermitian and positive semidefinite. However, the
trace of L is not equal to the trace of A but to the trace of W

−1/2
n AW

−1/2
n which

is Tr W−1
n A. This follows from the observation that Xn has an orthonormal basis

(x1, . . . ,xN )W 1/2. Note that

(1 − Nε)IN � Wn � (1 + Nε)IN ⇐⇒ (1 + Nε)−1IN � Wn � (1 − Nε)−1IN .

Hence for A 	 0 we get

(1 + Nε)−1 Tr A ≤ Tr ρ ≤ (1 − Nε)−1 TrA.

Assume that ρn ∈ S+(Xn) is a sequence whose trace is bounded above. Let ρn =∑N
i=j=1 aij,nQnxi(Qnxj)∨, n > K. Set An = [aij,n] ∈ CN×N . Then An, n > K

are positive semidefinite matrices with bounded traces. Therefore, there exists a
subsequence Ank

which converges entrywise to A = [aij ]. Set ρ =
∑N

i=j=1 aijxix∨
j .

It now follows that limk→∞ ‖ρnk − ρ‖1 = 0.

Lemma 4.4. Let H1,H2 be two separable Hilbert spaces with countable orthog-
onal bases ei,1, ei,2 for i ∈ N, respectively. Set H = H1 ⊗ H2. Assume that
ρ ∈ S+(H), ρi ∈ S+(Hi) are given and Tri ρ = ρi, i ∈ [2]. Let Pn,i ∈ S+(Hi)
be the orthogonal projection on Hi,n = span(e1,i, . . . , en,i). For n ∈ N, i ∈ [2],
ρi,n = Pn,iρiPn,i. Let ρ(n) = (Pn,1 ⊗ Pn,2)ρ(Pn,1 ⊗ Pn,2). Then we have Tr2 ρ(n) �
ρ1,n, Tr1 ρ(n) � ρ2,n.

Proof. Write

ρ =
∞∑

p,q=1

ρ1,pq ⊗ ep,2e∨q,2 =
∞∑

i,j=1

ei,1e∨j,2 ⊗ ρ2,ij ,

ρ1 = Tr2 ρ =
∞∑

p=1

ρ1,pp, ρ2 = Tr1 ρ =
∞∑

i=1

ρ2,ii,

where ρ1,pq is in a trace class operator on H1 and ρ2,ij is in a trace class operator
on H2. Then

Tr2 ρ(n) = Tr2

(
(Pn,1 ⊗ Pn,2)

( ∞∑
p,q=1

ρ1,pq ⊗ ep,2e∨q,2

)
(Pn,1 ⊗ Pn,2)

)

= Tr2

(
n∑

p,q=1

Pn,1ρ1,pqPn,1 ⊗ ep,2e∨q,2

)

=
n∑

p=1

Pn,1ρ1,ppPn,1 �
∞∑

p=1

Pn,1ρ1,ppPn,1 = ρ1,n.

Similarly Tr1 ρ(n) � ρ2,n.

Theorem 4.5. Let H1,H2 be two separable Hilbert spaces with countable orthog-
onal bases ei,1, ei,2 for i ∈ N respectively. Set H = H1 ⊗ H2. Suppose X ⊂ H
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is finite-dimensional. Assume that ρi ∈ S+(Hi) are given and Tr ρ1 = Tr ρ2 = 1.
Let Pn,i ∈ S+(Hi) be the orthogonal projection on Hi,n = span(e1,i, . . . , en,i). For
n ∈ N, i ∈ [2], set Xn = (Pn,1 ⊗ Pn,2X ) and ρi,n = Pn,iρiPn,i.

Consider the semidefinite programming problem

μn(ρ1, ρ2,X )

= max{Tr(XPXn); Tr2 X � ρ1,n, Tr1 X � ρ2,n,

X ∈ (Pn,1 ⊗ Pn,2)S+(H)(Pn,1 ⊗ Pn,2)}.
Then, the following statements are equivalent:

(1) ∃ρ ∈ S+,1(H1 ⊗H2) satisfies

Tr1(ρ) = ρ2, Tr2(ρ) = ρ1, supp(ρ) ⊂ X .

(2) limn→∞ μn(ρ1, ρ2,X ) = 1.

Proof. (1) ⇒ (2) Assume that there exists an ρ ∈ S+,1(H) such that Tr2 ρ =
ρ1, Tr1 ρ = ρ2, supp(ρ) ⊂ X . Let ρ(n) = (Pn,1 ⊗ Pn,2)ρ(Pn,1 ⊗ Pn,2), ρ(n) ∈
(Pn,1 ⊗ Pn,2)S+(H)(Pn,1 ⊗ Pn,2). According to Lemma 4.4, we have Tr2 ρ(n) �
ρ1,n, Tr1 ρ(n) � ρ2,n. Therefore, ρ(n) is a feasible solution of the maximal problem.
Moreover, since supp(ρ) ⊂ X , we deduce that ρ(n)(H) = (Pn,1 ⊗ Pn,2)ρ(Pn,1 ⊗
Pn,2)(H) ⊂ Xn. As Xn is closed, and supp(ρ(n)) is the closure of ρ(n)(H), we have
supp(ρ(n)) ⊂ Xn. So we have

μn(ρ1, ρ2,X ) ≥ Tr(ρ(n)PXn) = Tr(ρ(n)). (4.2)

Since Pn,1 ⊗ Pn,2 → I1 ⊗ I2 in the strong operator topology Lemma 5 in Ref. 13
yields limn→∞ ‖ρ(n) − ρ‖1 = 0. So limn→∞ Tr ρ(n) = Tr ρ = 1.

Since PXn � I, and X ∈ S+(H), Tr2 X � ρ1 we obtain

TrXPXn = Tr X1/2X1/2PXn = TrX1/2PXnX1/2 ≤
Tr X1/2IX1/2 = Tr X = Tr(Tr2 X) ≤ Tr ρ1 = 1.

Hence Tr(ρ(n)) = Tr(ρ(n)PXn) ≤ μn(ρ1, ρ2,X ) ≤ 1. By taking the limit on both
sides we deduce limn→∞ μn(ρ1, ρ2,X ) = 1.

(2) ⇒ (1) Let εn, n ∈ N be a positive sequence converging to zero. Suppose that

Tr(ρ(n)PXn) ≥ μn(ρ1, ρ2,X ) − εn

and Tr2 ρ(n) � ρ1,n, Tr1 ρ(n) � ρ2,n, and ρ(n) ∈ (Pn,1 ⊗ Pn,2)S+(H)(Pn,1 ⊗ Pn,2) ⊂
S+(Xn). According to Lemma 4.3(2), there exists nk, such that ρ(nk) converges in
trace norm to ρ ∈ S+(X ). Lemma 2.2 yields that Tri ρ(nk) converges to Tri ρ in
trace norm for i ∈ [2]. By taking the limit of the following inequality

μn(ρ1, ρ2,X ) − εn ≤ Tr(PXnk
ρ(nk)) ≤ Tr(ρ(nk)) ≤ 1.

We have limn→∞ Tr(ρ(nk)) = 1. As ρ(nk) converges in trace norm to ρ, we deduce
that Tr(ρ) = 1.
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For each nk, we have Tri(ρ(nk)) � ρj,nk
, where {i, j} = [2]. Lemma 5 in Ref. 13

yields that limk→∞ ρj,nk
= ρj for j ∈ [2]. Hence Tri ρ � ρj for {i, j} = [2]. Further-

more, Tr(Tri ρ) = Tr ρ1 = Tr ρ2 = 1. Hence ρ1 = Tr2 ρ and ρ2 = Tr1 ρ.

5. Continuity of the Hausdorff Metric

Let Φ be given by (1.1). Lemma 2.2 yields that Φ is a bounded linear operator
satisfying ‖Φ‖ ≤ 2. Denote Σ = Φ(T+(H1 ⊗ H2)). Note that (ρ1, ρ2) ∈ Σ if and
only if ρi ∈ T+(Hi) and Tr ρ1 = Tr ρ2.

Proposition 5.1. Assume that (ρ1, ρ2) ∈ Σ. Then the set M(ρ1, ρ2) given by (1.3)
is a nonempty, convex, compact, metric set with respect to the distance induced by
the norm in T(H1 ⊗H2). That is for each sequence γm ∈ M(ρ1, ρ2), m ∈ N there
exists a subsequence γmk

which converges in norm to γ ∈ M(ρ1, ρ2).

Proof. Clearly M(0, 0) = {0} and the proposition is trivial in this case. Assume
that Tr ρ1 = Tr ρ2 > 0. Then 1

Tr ρ1
ρ1 ⊗ ρ2 ∈ M(ρ1, ρ2). Clearly M(ρ1, ρ2) is

a convex metric space. Note that ‖γ‖1 = Tr ρ1 for each γ ∈ M(ρ1, ρ2). Hence
M(ρ1, ρ2) is a bounded set. Assume that γm ∈ M(ρ1, ρ2), m ∈ N. Then there exists
a subsequence γmk

which converges in the weak operator topology to γ. Clearly
Tr2 γmk

= ρ1, Tr1 γmk
= ρ2. Theorem 1.4 yields that limm→∞ ‖γmk

− γ‖1 = 0.
Hence γ ∈ M(ρ1, ρ2).

Observe that T+(H1 ⊗H2) fibers over Σ: T+(H1 ⊗H2) = ∪(ρ1,ρ2)∈ΣM(ρ1, ρ2).
We define the distance between two fibers using the Hausdorff metric. The distance
from β ∈ T(H1 ⊗H2) to M(ρ1, ρ2) is defined as

dist(β,M(ρ1, ρ2)) = inf{‖β − γ‖1, γ ∈ M(ρ1, ρ2)}.
Since M(ρ1, ρ2) is compact it follows that there exists γ(β) ∈ M(ρ1, ρ2) such that
dist(β,M(ρ1, ρ2)) = ‖β−γ(β)‖1. Assume that (σ1, σ2) ∈ Σ. Then, the semidistance
between M(σ1, σ2) and M(ρ1, ρ2) is given as

sd(M(σ1, σ2),M(ρ1, ρ2))

= sup{dist(β,M(ρ1, ρ2)), β ∈ M(σ1, σ2)}.
Since M(ρ1, ρ2) and M(σ1, σ2) are compact, it follows

sd(M(σ1, σ2),M(ρ1, ρ2)) = ‖β − γ‖1 for some β ∈ M(σ1, σ2), γ ∈ M(ρ1, ρ2).

Recall that the Hausdorff distance between M(σ1, σ2) and M(ρ1, ρ2) is given by

hd(M(σ1, σ2),M(ρ1, ρ2))

= max(sd(M(σ1, σ2),M(ρ1, ρ2)), sd(M(ρ1, ρ2),M(σ1, σ2))).

Theorem 5.2. The Hausdorff distance on the fibers over Σ is a complete metric.
Furthermore the sequence M(ρ1,m, ρ2,m), m ∈ N converges to M(ρ1, ρ2) in Haus-
dorff metric if and only if the sequence (ρ1,m, ρ2,m), m ∈ N converges in norm to
(ρ1, ρ2).
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Proof. Since each M(ρ1, ρ2) is compact it follows that

hd(M(σ1, σ2),M(ρ1, ρ2)) = 0 ⇐⇒ M(σ1, σ2) = M(ρ1, ρ2) ⇐⇒
(σ1, σ2) = (ρ1, ρ2).

As M(σ1, σ2) and M(ρ1, ρ2) are compact there exist β ∈ M(σ1, σ2) and γ ∈
M(ρ1, ρ2) such that hd(M(σ1, σ2),M(ρ1, ρ2)) = ‖β − γ‖1. Lemma 2.2 yields that
‖σ1 − ρ1‖1 + ‖σ2 − ρ2‖1 ≤ 2hd(M(σ1, σ2),M(ρ1, ρ2)).

Assume that the sequence M(ρ1,m, ρ2,m), m ∈ N is a Cauchy sequence in the
Hausdorff metric. Hence the sequence (ρ1,m, ρ2,,m), m ∈ N is a Cauchy sequence in
Σ. Therefore, there exists (ρ1, ρ2) ∈ Σ such that limm→∞ ‖ρ1,m − ρ1‖1 + ‖ρ2,m −
ρ2‖1 = 0.

We now show that the sequence M(ρ1,m, ρ2,m), m ∈ N converges to M(ρ1, ρ2)
in the Hausdorff metric. Since the sequence (ρ1,m, ρ2,m) is bounded, and each
M(ρ1,m, ρ2,m) is compact, it is straightforward to show using Theorem 1.4 that
the sequence sd(M(ρ1,m, ρ2,m),M(ρ1, ρ2)) converges to zero. It is left to show that

sd(M(ρ1, ρ2),M(ρ1,m, ρ2,m)) = dist(γm,M(ρ1,m, ρ2,m)) → 0, γm ∈ M(ρ1, ρ2).

Assume to the contrary that the above condition does not hold. Then, there exists
δ > 0 and a subsequence {mk}, k ∈ N such that dist(γmk

,M(ρ1,mk
, ρ2,mk

)) ≥ 2δ.
As M(ρ1, ρ2) is compact there exists a subsequence {mkl

}, l ∈ N and γ ∈ M(ρ1, ρ2)
such that liml→∞ ‖γmkl

− γ‖1 = 0. Hence we can assume that

dist(γ,M(ρ1,mkl
, ρ2,mkl

)) ≥ δ

for all l ∈ N. Without a loss of generality, we assume that mkl
= l for l ∈ N. We

will contradict this statement.
First, we assume that ρj,m, ρj � 0 and all their eigenvalues are simple. Then

there exist orthonormal bases {en,j,m}, {en,j}, n ∈ N of Hj such that

ρj,m =
∞∑

ij=1

λij ,j,meij ,j,m ⊗ e∨ij ,j,m, λij ,j,m > λij+1,j,m > 0,

ρj =
∞∑

ij=1

λij ,jeij ,j ⊗ e∨ij ,j , λij ,j > λij+1,j > 0.

Let Pn,j,m and Pn,j be the orthogonal projections of Hj on

Hn,j,m = span(e1,j,m, . . . , en,j,m) and Hn,j = span(e1,j, . . . , en,j,m)

respectively. Define ρ
(n)
j,m = Pn,j,mρj,mPn,j,m, ρ

(n)
j = Pn,j,mρjPn,j,m. As

lim
m→∞ ‖ρj,m − ρj‖1 = 0,

2050020-26



December 30, 2020 12:11 WSPC/S0219-0257 102-IDAQPRT 2050020

Quantum Strassen’s theorem

it follows that |λij ,j,m − λij ,j | → 0, ‖eij,j,m − eij ,j‖ → 0, ij → ∞, after we choose
the phases (signs) of eij ,j,m (see Lemma B.6 in Ref. 14). Hence for each n ∈ N

lim
m→∞ ‖Pn,j,m − Pn,j‖1 = 0,

lim
m→∞ ‖ρ(n)

j,m − ρ
(n)
j ‖1 = 0 ⇒ lim ‖(ρj,m − ρ

(n)
j,m) − (ρj − ρ

(n)
j )‖1 = 0. (5.1)

Let γn1,n2,m = Pn1,1,m ⊗ Pn2,2,mγPn1,1,m ⊗ Pn2,2,m and γn1,n2 = Pn1,1 ⊗
Pn2,2γPn1,1 ⊗ Pn2,2. Then limm→∞ ‖γn1,n2,m − γn1,n2‖1 = 0, and limn1,n2→∞ ‖γ −
γn1,n2‖1 = 0.

The arguments of the proof of Lemma 4.4 yields that Tr2 γn1,n2,m � ρ
(n1)
1,m , and

Tr1 γn1,n2,m � ρ
(n2)
2,m . Hence ρj,m − Trj′ γn1,n2,m 	 0, where {j, j′} = [2]. Define

σn1,n2,m = γn1,n2,m +
1

Tr(ρ1,m − Tr2 γn1,n2,m)
(ρ1,m − Tr2 γn1,n2,m)

⊗ (ρ2,m − Tr1 γn1,n2,m).

Then σn1,n2,m ∈ M(ρ1,m, ρ2,m) and

‖σn1,n2,m − γ‖1 ≤ ‖γn1,n2,m − γn1,n2‖1 + ‖γn1,n2 − γ‖1 + ‖ρ1,m − ρ1‖1

+ ‖ρ1 − Tr2 γn1,n2‖1 + ‖Tr2 γn1,n2 − Tr2 γn1,n2,m‖1.

Recall that (Lemma 2.2)

‖ρ1 − Tr2 γn1,n2‖1 ≤ ‖γ − γn1,n2‖1, ‖Tr2 γn1,n2 − Tr2 γn1,n2,m‖1

≤ ‖γn1,n2 − γn1,n2,m‖1.

Use (5.1) a choice of n1, n2 � 1 and corresponding m � 1 such that

dist(γ,M(ρ1,m, ρ2,m)) ≤ ‖γ − σn1,n2,m‖1 < δ.

This inequality contradicts our assumption and proves that M(ρ1,m, ρ2,m) con-
verges to M(ρ1, ρ2) in the Hausdorff metric.

We discuss briefly how to modify the above arguments to general (ρ1,m, ρ2,m)
and (ρ1, ρ2). For ρ1, ρ2 with simple eigenvalues we do not need to modify anything
as λnj ,j,m > λnj+1,j,m for fixed nj and m > Nj(nj). Let us consider now the
case where ρ1 and ρ2 are positive definite but may have multiple eigenvalues. Each
eigenvalue must have a finite multiplicity. Suppose that λnj ,j > λnj+1,j . Then
λnj ,j,m > λnj+1,j,m for m > Nj(nj). As Pnj ,j is well defined it follows that (5.1)
holds.

Denote by H′
j the closure of the range of ρj . It is straightforward to show

using Lemma 2.1 that M(ρ1, ρ2) ⊂ T+(H′
1 ⊗H′

2). Then Pn,j are the corresponding
projections in H′

j . Then for λnj ,j > λnj+1,j , (5.1) holds.
Finally, the last part of the theorem that the sequence M(ρ1,m, ρ2,m), m ∈ N

converges to M(ρ1, ρ2) in Hausdorff metric if the sequence (ρ1,m, ρ2,m), m ∈ N

converges in norm to (ρ1, ρ2) follows straightforward from the above arguments.
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