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ABSTRACT
The input to our algorithm is a multivariate polynomial,
whose complex rational coefficients are considered imprecise
with an unknown error that causes f to be irreducible over
the complex numbers C. We seek to perturb the coefficients
by a small quantity such that the resulting polynomial fac-
tors over C. Ideally, one would like to minimize the pertur-
bation in some selected distance measure, but no efficient
algorithm for that is known. We give a numerical multi-
variate greatest common divisor algorithm and use it on a
numerical variant of algorithms by W. M. Ruppert and S.
Gao. Our numerical factorizer makes repeated use of singu-
lar value decompositions. We demonstrate on a significant
body of experimental data that our algorithm is practical
and can find factorizable polynomials within a distance that
is about the same in relative magnitude as the input er-
ror, even when the relative error in the input is substantial
(10−3).

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms; G.1.2 [Math-

ematics of Computing]: Numerical Analysis—Approxi-
mation

General Terms
algorithms, experimentation
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1. INTRODUCTION
We consider the problem of approximately factoring a

polynomial f(x, y) ∈ C[x, y], where the actual coefficients
of f are real or complex numbers. We do not assume that f
is reducible over C. Irreducibility of f is the case, for in-
stance, if the coefficients of f are imprecise due to per-
turbations caused by physical measurements or by float-
ing point computation. More generally, we do not assume
that f is near a factorizable polynomial. By ‖f‖ we de-
note the Euclidean length of the coefficient vector of f .
By f [min] we denote a factorizable polynomial over C with
deg(f [min]) ≤ deg(f) such that ‖f − f [min]‖ is minimized,

that is, f [min] is a nearest reducible polynomial. We present

new algorithms that can find a factorization f̃ = f1 ·f2 · · · fr

in C[x, y] with deg(f̃) ≤ deg(f) such that ‖f̃ − f [min]‖ is
small.

In [17, Example 2] it was discovered that f [min] is depen-

dent on the degree notion. Our bounds such as deg(f̃) ≤
deg(f) limit the degrees in the individual variables, that

is degx(f̃) ≤ degx(f) and degy(f̃) ≤ degy(f) (rectangular
polynomials). Our algorithms are based on the exact algo-
rithms in [7]. All our methods are numerical and we execute
our procedures with floating point scalars. We use the sin-
gular value decomposition (SVD) to determine the number
of factors and approximate nullspace vectors in the arising
Ruppert matrices. Furthermore, we have designed a new ap-
proximate bivariate polynomial GCD algorithm for the last
step in Gao’s approach. Our approximate GCD algorithm
again makes use of the SVD on bivariate and univariate
Sylvester matrices.

We present a substantial body of experimental evidence
that our approach numerically computes approximate fac-
torizations. The difficulty of a satisfying numerical analy-
sis of any of our algorithms are the notions of “near” and
“small”. Our experiments show that our algorithms perform
well even for polynomials with a relatively large irreducibil-
ity radius [22, 17, 23]. In section 2 we provide an initial
analysis for the approximate GCD algorithm by proving that
the approximate GCD converges to the exact GCD as the
perturbation error goes to 0. However, our worst case error
bounds, which must make use of bivariate factor coefficient
bounds, seem unrealistically large.

There is an extensive literature on the problem of factor-
ing multivariate polynomials over the real or complex num-
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bers. In [14] one of the first polynomial-time algorithms
is given for input polynomials with exact rational or alge-
braic number coefficients, and the problem of approximate
factorization is already discussed there [14, section 6]. Ap-
proximate factorization algorithms suppose that the input
coefficients are perturbed and the input polynomial conse-
quently irreducible over C under exact interpretation of its
coefficients. However, if the input polynomial is near its
factorizable counterpart, say within machine floating point
precision, one can attempt to run exact methods with float-
ing point arithmetic, such as Hensel lifting or curve inter-
polation. The work reported in [28, 27, 6, 13, 26, 4, 2, 25,
30] studies recovery of approximate factorization from the
numerical intermediate results. A somewhat related topic
are algorithms that obtain the exact factorization of an ex-
act input polynomial by use of floating point arithmetic in
a practically efficient way [1].

A different line of methods bounds from below the dis-
tance from the input polynomial to the nearest factorizable
polynomial, that is, the irreducibility radius [22, 17]. Not
only do such bounds help in declaring inputs numerically
irreducible, they also provide insight in the quality of a com-
puted approximate factorization.

No polynomial-time algorithm is known for computing the
nearest factorizable polynomial f [min], which is open prob-
lem 1 in [15]. In [12] a polynomial-time algorithm is given for
computing the nearest polynomial with a complex factor of
constant degree. In practice, that algorithm is much slower
than any of the numerical solutions—and the same may be
expected of a future solution to the open problem—but for
polynomials of degree 2 or 3 one can obtain an actual opti-
mal answer, with which one can further gauge the output of
the fast but non-optimal numerical procedures.

With the algorithms presented in this paper, we have suc-
cessfully found approximate factorizations of all benchmark
examples presented in the literature, including those with
significant irreducibility radii (see section 3.4). The latter
seems to distinguish our method from all previous ones. Our
algorithms were designed to accomplish accurate factoriza-
tions rather than running at high speed, and we appear to
meet or surpass the backward errors reported for all previ-
ous algorithms from the literature. In addition, our timings
seem competitive, given that actual timings have been re-
ported quite sparsely throughout the literature. Last not
least, we present approximate factorizations for a list of new
benchmark examples, thereby not only establishing the ver-
satility of our method but also giving a set of new test prob-
lems to future algorithm designers.

2. SVD BASED APPROXIMATE
MULTIVARIATE GCD

2.1 Algorithm Description
One of the main problems in converting Gao’s factoriza-

tion algorithm for use in the approximate case is the lack of
a good multivariate GCD algorithm which will handle the
case when the given polynomials are quite far from having
a common factor.

We first make some general comments on GCDs of arbi-
trary multivariate polynomials. The following simple lemma
is the key to our approximate GCD algorithm.

Lemma 2.1. Let g, h ∈ C[x1, . . . , xn], both nonzero. Let

g1 = g/ gcd(g, h) and h1 = h/ gcd(g, h). Then all the solu-
tions u, v ∈ C[x1, . . . , xn] to the equation

ug + vh = 0 (1)

must be of the form

u = h1q, v = −g1q, (2)

where q ∈ C[x1, . . . , xn].

The proof of the lemma is trivial as C[x1, . . . , xn] is a
unique factorization domain. Note that the equation (1) is
a linear system for the coefficients of u and v. To make
it a finite system, we need to restrict the degrees of u and
v. There are several ways to do this. For example, one can
consider the individual degrees for each variable, or consider
any weighted degree. We choose to consider the total degree
(tdeg) and require that

tdeg(u) ≤ tdeg(h) − 1, tdeg(v) ≤ tdeg(g) − 1. (3)

Then gcd(g, h) = 1 iff (1) and (3) have no nonzero solution
for u and v.

In general, there is an explicit relation between the total
degree of gcd(g, h) and the dimension of the solution space.
To see this, note that the number of terms xi1

1 · · ·xin
n with

total degree ≤ d is the binomial number

β(d, n) =
(

d+n
n

)
.

Hence u has β(tdeg(h)−1, n) coefficients and v has β(tdeg(g)−
1, n) coefficients. Thus the number of variables for the linear
system is

m = β(tdeg(g) − 1, n) + β(tdeg(h) − 1, n).

By (2) and (3), all the solutions for u and v are determined
by q ∈ C[x1, . . . , xn] with

tdeg(q) ≤ ` − 1,

where ` is the total degree of gcd(g, h). Hence the dimension
of the solution space for u and v is exactly

β(` − 1, n).

Therefore one can compute the rank p of the coefficient ma-
trix and then determine ` directly from m− p = β(`− 1, n).

For univariate polynomials, the coefficient matrix for the
linear system (1) and (3) is nothing but the well-known
Sylvester matrix for g and h. In [3] the Sylvester matrix
is used to get an approximate algorithm for the univariate
GCD. For multivariate polynomials, we still call the coef-
ficient matrix corresponding to (1) and (3) the Sylvester
matrix for g and h. We shall apply it to multivariate GCDs.
Note that the cofactors g1 and h1 appear as the solution with
the smallest degree; they are the solution we are looking for.

We will denote the Sylvester matrix of g and h as S1. To
find the GCD we need to find a basis for the nullspace of
S1. In the case of exact arithmetic, the cofactors g1 and
h1 can be found by performing Gaussian elimination on the
nullspace basis. The GCD can then be found by division.
Doing this numerically, we face two difficulties: First, S1

may be full rank in exact arithmetic, and second, recover-
ing the smallest degree polynomial from the nullspace using
Gaussian elimination is not stable numerically.

To overcome the first difficulty, we use singular value de-
composition to find the nearest matrix with (lower) rank p.
The last m−p singular vectors form a basis for the nullspace
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of this nearest low rank matrix. To determine what p should
be, we look at the singular values of S1. Typically, when de-
termining rank numerically, one would specify a tolerance ε
and find a gap in the singular values:

σm ≥ · · · ≥ σm−p−1 > ε ≥ σm−p ≥ · · · ≥ σ1.

We do not wish to specify ε in advance, so we try to infer the
“best” ε from the largest gap (i.e. the largest ratio σi+1/σi)
in the singular values. In [5], it is shown that when given a
tolerance ε it is possible to certify the degree of the approx-
imate GCD using gaps in the sequence τi = σ1(Si(g, h))
instead of the singular values of S1. The size of the gap
needed to certify the degree is very large however, and in
practice the largest gap in the τis seems to given the same
degree as the largest gap in the σis.

Another technique is to evaluate g and h at all of their
variables but one, and find the “best” degree of the univari-
ate GCD. This seems to work well when a small tolerance
is given (in this case the tolerance could be inferred from
the factorization problem), but does not work as well when
inferring a tolerance, as above. The advantage of evaluating
to find the degree is that the univariate Sylvester matrix is
much smaller, so even if we have to compute SVDs for sev-
eral evaluations, it will be much faster than computing the
SVD of the multivariate Sylvester matrix.

The second difficulty above can be handled by removing
rows and columns from S1. Once we know what rank S1

should be, we can take a submatrix of S1 found by using
stronger degree restrictions (on the unknown polynomials u
and v) in the linear system ug+vh = 0 so that we have a new
Sylvester matrix Sk which has a nullspace of dimension 1,
where k is the degree of gcd(g, h). In this case, the single
basis vector for the nullspace will give a constant multiple of
the cofactors g1 and h1. This null vector can be computed
numerically without computing the full SVD by using an it-
erative method. For our implementation we use the method
given in [19]. Once we have our approximations of g1 and h1

we can compute an approximate GCD by doing least squares
approximate division.

A very similar multivariate approximate GCD algorithm
was proposed in [33] but a tolerance ε is required there, and
an additional Gauss-Newton iteration step is used to im-
prove the GCD further.

AMVGCD: Approximate Multivariate GCD.

Input: g and h in C[x1, . . . , xn].
Output: d, a non-constant approximate GCD of g and h.

1. Determine k, the degree of the approximate GCD of g
and h in one of two ways below:

(a) Form S = S1(g, h), the matrix of the linear sys-
tem ug+vh = 0, where g, h ∈ C[x, y] with tdeg(u) <
tdeg(h) and tdeg(v) < tdeg(g). Finding the largest
gap in the singular values of S and inferring the
degree from the numerical rank of S.

(b) Computing the degrees of the GCDs of several
random univariate projections of g and h by look-
ing for the numerical rank of the corresponding
univariate Sylvester matrices.

2. Reform S as Sk(g, h) that is, use tdeg(u) = tdeg(h)−k
and tdeg(v) = tdeg(g)− k as the constraints on u and

v in the linear system in the first step. This new S will
have a dimension 1 nullspace.

3. Compute a basis for the nullspace of S by computing
the singular vector corresponding the smallest singular
value of S. This vector gives a solution [u, v]T .

4. Find a d that minimizes ‖h − d u‖2
2; alternately mini-

mize ‖h− d u‖2
2 + ‖g + d v‖2

2, both using least squares.

If one wishes to specify a tolerance, then only the first step
is affected. It is possible that in this step we could find
that k = 0, in which case the method would return d = 1,
declaring g and h to be approximately relatively prime to
the given tolerance.

2.2 Convergence of the Algorithm
In this section we restrict to bivariate case (n = 2) for

ease of notation. Let us start with g̃ and h̃ relatively prime
and normalized so that ‖h̃‖2 = ‖g̃‖2 = 1. Suppose that

gcd(g, h) = d 6= 1, tdeg(g) = tdeg(g̃), tdeg(h) = tdeg(h̃),

‖g − g̃‖2 = ε1, and ‖h − h̃‖2 = ε2. We will show that as
ε1, ε2 → 0 that the computed approximate GCD for g̃ and
h̃ converges to d.

Let S = Sk(g, h) where k is chosen so that S has rank p,
and rank deficiency 1. Then w = [u, v] is a basis for the
nullspace of S, where u = h/d, and v = −g/d, and without
loss of generality we can assume that u is unit length. Let
S̃ = Sk(g̃, h̃). We can bound the distance between these two
Sylvester matrices:

‖S − S̃‖2
2 ≤ ‖S − S̃‖2

F = a1ε
2
1 + a2ε

2
2 = ε23

where

a1 = β(tdeg(h) − k, 2) and a2 = β(tdeg(g) − k, 2)

depend only on k and the degrees of g and h.
We can use the SVD to find M so that:

min
Rank(M)=Rank(S)

‖S̃ − M‖2 = σm−p(S̃) ≤ ε3.

Note that M is not a Sylvester matrix and ‖M −S‖2 ≤ 2ε3.
Now, M has a dimension 1 nullspace, so let w̃ = [ũ, ṽ] be
the vector which spans the nullspace of M with ‖ũ‖2 = 1.
Theorem 6.4 in [31] (reformulated for our purpose in [11,
section 8]) bounds the distance between w and w̃ in terms
of ε3 so that as ε3 → 0, ε4 = ‖w − w̃‖2 → 0. Thus for
sufficiently small ε1 and ε2 we have tdeg(ũ) = tdeg(u).

In the following we will make repeated use of the multi-
variate factor coefficient bound found in [8, pages 134-139]:

‖f1‖2‖f2‖2 ≤ 2
∑

i(degxi
f)‖f‖2, where f = f1f2.

Now, using least squares division, we compute d̃ as the
polynomial that minimizes

ε5 = min
d̄ : tdeg(d̄)≤tdeg(d)

‖d̄ ũ − h̃‖2.

We can bound ε5:

ε5 = ‖d̃ ũ − h̃‖2 ≤ ‖d(ũ − u) − (h̃ − h)‖2

≤ ‖d(ũ − u)‖1 + ε2 ≤ ‖d‖1‖ũ − u‖1 + ε2

≤
(

k+2
2

)1/2
‖d‖2

(
tdeg(h)−k+2

2

)1/2
‖ũ − u‖2 + ε2

≤ a4 ε4 + ε2

where

a4 = 2degx(h)+degy(h) ‖h‖2

(
k+2
2

)1/2(tdeg(h)−k+2
2

)1/2
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via the multivariate factor coefficient bound. Now,

‖(d − d̃)u‖2 = ‖h − d̃ ũ − d̃(u − ũ)‖2

≤ ‖h − h̃ + (h̃ − d̃ ũ)‖2 + ‖d̃(u − ũ)‖2

≤ ‖h − h̃‖2 + ‖h̃ − d̃ ũ‖2 + ‖d̃(u − ũ)‖1

≤ ε2 + ε5 + ‖d̃‖1‖u − ũ‖1

≤ 2ε2 + a4ε4 +
(

k+2
2

)1/2
‖d̃‖2

(
tdeg(h)−k+2

2

)1/2
ε4,

where ‖d̃‖2 is bounded as follows:

‖d̃‖2 ≤ 2degx(h)+degy(h)‖d̃ ũ‖2

≤ 2degx(h)+degy(h)(‖h̃‖2 + ‖d̃ ũ − h̃‖2)

≤ 2degx(h)+degy(h)(‖h̃‖2 + ε2 + a4ε4).

Thus, using the multivariate factor coefficient bound again,
we have that

‖d − d̃‖2 ≤ 2degx(h)+degy(h)(2ε2 + a5ε4)

with a bound a5 derived from the previous two estimates.
So, as ε1, ε2 → 0, ‖d − d̃‖2 → 0 since ε4 → 0, and a5 is

bounded in terms of the degrees and norms of g̃ and h̃. It
should be noted that in practice, the d̃ computed is much
closer than the given bound suggests it might be.

3. THE FACTORIZATION ALGORITHM
AND EXPERIMENTS

In this section, we propose a numerical algorithm for fac-
toring approximate bivariate polynomials over C. The al-
gorithm relies on the singular value decomposition of the
Ruppert matrix and approximate GCDs of bivariate poly-
nomials. We have implemented the algorithm in Maple 9.
A set of examples is tested.

3.1 Ruppert Matrix
We consider the problem of the factorization of a bivariate

polynomial f in C[x, y]. The coefficients of f may be known
to only a fixed precision. Our algorithms are based on the
exact algorithms in [7]. However, our procedures are de-
signed to take as input polynomials with imprecise floating
point coefficients. We use the numerical singular value de-
composition to determine the number of approximate factors
and approximate nullspace vectors in the arising Ruppert
matrices. The approximate factors can then be obtained by
computing approximate GCDs of f and polynomials formed
by the null vectors of the Ruppert matrix.

We assume that f is non-constant and gcd(f, fx) = 1
where fx = ∂f/∂x, which makes f both squarefree and with
no factor in C[y]. Suppose that f factors as

f = f1f2 · · · fr, (4)

where fi ∈ C[x, y] are distinct and irreducible over C. Define

Ei =
f

fi

∂fi

∂x
∈ C[x, y], 1 ≤ i ≤ r. (5)

Then

fx = E1 +E2 + · · ·+Er and EiEj ≡ 0 mod f for all i 6= j.

Theorem 3.1. [24] Suppose f ∈ C[x, y] with bi-degree
(m, n), i.e., degx f = m, degy f = n. Then f is absolutely

irreducible if and only if the equation

∂

∂y

(
g

f

)
=

∂

∂x

(
h

f

)
, (6)

has no nonzero solution g, h ∈ C[x, y] with deg g ≤ (m −
1, n), deg h ≤ (m, n − 2).

Since differentiation is linear over C, the equation (6) gives
a linear system for the coefficients of g and h, whose coef-
ficient matrix we call the Ruppert matrix R(f). The ma-
trix R(f) of f is full rank if and only if f is absolutely
irreducible. Using Ruppert’s criterion, [17] provides some
separation bounds for testing whether a numerical polyno-
mial is absolutely irreducible, given a certain tolerance on its
coefficients. When these bounds are small, one may suspect
the polynomial f to be near a reducible polynomial. In the
following, we start with an explanation of some results in [7]
for the factorization of polynomials with exact coefficients.

First, let us note that in [7] the degree conditions on g
and h are changed to:

deg g ≤ (m − 1, n), deg h ≤ (m, n − 1), (7)

which allows for the solution (g, h) = (fx, fy) even when f
is irreducible. Again, R(f) denotes the coefficient matrix.

Theorem 3.2. [7] Let f ∈ C[x, y] be a non-constant poly-
nomial of bi-degree (m, n) with gcd(f, fx) = 1. Define

G = {g ∈ C[x, y] : (6) and (7) hold for some h ∈ C[x, y]}
(8)

Suppose f has the factorization into irreducible polynomials
as in (4). Then G is a vector space over C of dimension r
and each g ∈ G is of the form g =

∑
λiEi where λi ∈ C.

Theorem 3.3. [7] Suppose that g1, . . . , gr form a basis
for G over C. Select si ∈ S ⊂ C uniform randomly and
independently for all 1 ≤ i ≤ r, and let g =

∑r
i=1 sigi.

There is a unique r × r matrix A = [ai,j ] over C such that

ggi ≡

r∑

j=1

ai,jgjfx (mod f) in C(y)[x]. (9)

Furthermore, let Eg(x) = det(Ix − A), the characteristic
polynomial of A. Then the probability that

f =
∏

λ∈C : Eg(λ)=0

gcd(f, g − λfx) (10)

gives a complete factorization of f over C is at least 1 −
r(r − 1)/(2|S|).

When we extend Gao’s exact algorithm to the factoriza-
tion of the polynomials with approximate coefficients, we
have to consider four main problems.

1. Reduce the polynomial f so that gcd(f, fx) = 1 ap-
proximately.

2. Determine the numerical dimension of G.

3. Compute an Eg that has no cluster of roots.

4. Compute the approximate GCDs of bivariate polyno-
mials: gcd(f, g − λifx).

The previous section provides us a robust algorithm to
compute the approximate GCDs of bivariate polynomials.
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We can use the algorithm AMVGCD to compute the ap-
proximate GCD of f and fx. By computing f/ gcd(f, fx),
we may reduce f to the case where gcd(f, fx) = 1 approxi-
mately.

Now let us look at the second and third problems. Sim-
ilarly to the discussion in section 2, we can determine the
numerical dimension of G by the singular value decomposi-
tion of the Ruppert matrix R(f). If a tolerance ε is given,
then the numerical dimension of G is the r such that

· · · ≥ σr+2 ≥ σr+1 > ε ≥ σr ≥ · · · ≥ σ1.

However, if we do not know the relative error in the coef-
ficients of f , it is difficult to provide a tolerance ε that is
consistent with the error in the data. In that case we may
look for the biggest gap in the singular values. Once we have
determined that the numerical dimension of G is r, then the
singular value σr tells us something about how far f is to a
polynomial f̃ that has r absolutely irreducible factors:

min
deg f̃=(m,n)

dim Nullspace(R(f̃))=r

‖R(f) − R(f̃)‖2 ≥ σr.

Thus σr can be used as a tolerance when we estimate the
degree of bivariate approximate GCD by projecting to uni-
variate GCD problems.

Suppose we have obtained the numerical dimension r of G.
The coefficients of the approximate basis g1, . . . , gr of G can
be determined from the singular vectors corresponding to
the last r small singular values v1, . . . , vr. It is easy to see
that ‖R(f)vi‖2 ≤ σi ≤ σr. So the gi’s form an approximate
basis for G with tolerance σr. We choose s1, . . . , sr ∈ S ⊂ C

uniform randomly and let g =
∑r

i=1 sigi. As pointed out
in [7, pg. 818, Comment 2], we can substitute an arbitrary
value of α ∈ C for y with the property that f(x, α) remains
squarefree. The matrix A can be formed in the following two
steps: First, we reduce the polynomial ggi and gjfx with
respect to f at y = α for 1 ≤ i, j ≤ r by using approximate
division of univariate polynomials [34]; then we solve the
least squares problem:

min ‖rem(ggi − (ai,1g1fx + · · · + ai,rgrfx), f)‖2

at y = α to find the value of unknown elements ai,j . Let
Eg(x) = det(Ix−A), the characteristic polynomial of A. We
compute all the numerical roots λ1, . . . , λr of the univariate
polynomial Eg over C, and check the smallest distance be-
tween these roots:

distance := min{|λi − λj |, 1 ≤ i < j ≤ r.}

If the distance is small, i.e., Eg has a cluster of roots, we
should choose another set of si’s and try to find a separable
Eg.

In [7], the absolutely irreducible factors are obtained by
computing the GCDs over algebraic extension fields formed
by the irreducible factors of Eg. Since we are working over
C, all the roots of Eg are already in C, hence there is no need
to deal with field extension. So we compute the bivariate
approximate GCDs f̃i = gcd(f, g − λifx) according to the
method in Section 2 for each numerical root λi of Eg. Sup-
pose we obtain a proper approximate factorization of f over
C: f ≈

∏r
i=1 f̃i. We can check the backward error of the

approximate factorization: minc∈C ‖f − c
∏r

i=1 f̃i‖2/‖f‖2. If
the backward error is reasonable small compared with the
relative error in the coefficients of f , we have found a valid

factorization of f . Otherwise, we can form a minimization
problem as in [13], and try to improve the approximate fac-
tors.

3.2 Algorithm
AFBP: Approximate Factoring Bivariate

Polynomials.

Input: A polynomial f ∈ C[x, y] such that f and fx are
approximately relatively prime, that is, f is approximately
squarefree and has no approximate factors in C[y] (see sec-
tion 3.3 below). Let degx(f) = n > 1, degy(f) = m > 1 and
let S be a finite set S ⊂ C with |S| ≥ mn.
Output: A list of approximate factors of f .

Step 1. [Ruppert matrix]

1.1 Form the Ruppert matrix from the linear equa-
tions (6) and (7).

1.2 Compute the singular value decomposition of the
Ruppert matrix, and find the last tdeg(f)+1 sin-
gular values σi.

1.3 Find the biggest gap in these singular values

max
i

{σi+1/σi}

and decide the numerical dimension r of the Rup-
pert matrix, suppose r ≥ 2.

1.4 Form a basis g1, . . . , gr from the last r right sin-
gular vectors v1, . . . , vr.

Step 2. [Separable Eg]

2.1 Pick si ∈ S, uniform randomly and independently,
and set g :=

∑r
i=1 sigi.

2.2 Select randomly a proper value for variable y = α
which does not change the degree or the square-
free property of f .

2.3 For y = α, compute ai,j that minimize the norm
of the univariate remainder:

min ‖rem(ggi −
r∑

j=1

ai,jgjfx, f)‖2.

2.4 Let Eg(x) = det(Ix − A), where A = [ai,j ]. We
compute the numerical roots λi, 1 ≤ i ≤ r of Eg

(the numerical eigenvalues of A) and distance :=
min1≤i<j≤r{|λi − λj |}.

2.5 If the distance is small then go to Step 2.1.

Step 3. [Approximate GCD] Compute fi = gcd(f, g−λifx)
over C[x, y] for 1 ≤ i ≤ r.

Step 4. [Backward error and correction]

4.1 Compute minc∈C ‖f − c
∏r

i=1 fi‖2/‖f‖2.

4.2 Improve the approximate factors if necessary.

Step 5. Output the approximate factors f1, . . . , fr and c.

Remark 3.4. Algorithm AFBP has been generalized to
polynomials in n > 2 variables. Instead of a single PDE as
in (6), one has n − 1 such equations:

∂

∂xi

g1

f
−

∂

∂x1

gi

f
= 0, ∀ 2 ≤ i ≤ n

deg gi ≤ deg f, degxi
gi ≤ degxi

f − 1, ∀ 1 ≤ i ≤ n;

see the journal version of [17].
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Remark 3.5. Our output polynomials are not certified
to be approximately irreducible in the sense that their radii
of irreducibility are large. The reason for this is that our
algorithm can be run on inputs that do not lie near factor-
izable polynomials, and the approximate GCDs in Step 3
may place a factor near a reducible polynomial. However,
one may always achieve approximate irreducibility certifi-
cation by applying the algorithms in [17] to the produced
factors.

3.3 Multiple Factors
In the case that f is quite close to a polynomial that is not

squarefree, our factorization algorithm does not work well.
A similar but lesser problem is the removal of approximate

factors in C[y], which essentially amounts to a univariate
approximate GCD computation. Our code performs such
content removal.

One method to deal with the non-squarefree case is to
compute fsqfr, the approximate quotient of f and the ap-
proximate GCD of f and fx. Then compute the distinct
approximate factors of fsqfr ≈ f1 · · · fr using our algorithm.
Finally, determine powers for each factor by looking for gaps
in the sequence αi,j = σ1(S1(fi, ∂x,jf)).

We can only definitively call f approximately squarefree
if all of the nearest polynomials that factor are squarefree.
We cannot compute the nearest polynomial that factors, but
we can bound the distance to the nearest polynomial that
factors using the singular values of R(f) [17], and similarly
bound the distance to the nearest polynomial that is not
squarefree using the singular values of S1(f, fx). If the two
bounds are very close we have to compute the factorization
both ways and use the one with smaller backwards error.

In [33] a different method is proposed, which is based en-
tirely on multivariate approximate GCDs and which gener-
alizes the univariate algorithm in [32]. We experimentally
compare our approach to that one in the next subsection.

3.4 Experiments

Example 3.6. [22] We illustrate our algorithm by fac-
toring the following polynomial:

f := (x2 + yx + 2y − 1)(x3 + y2x − y + 7) + 0.2x.

Since deg f = (5, 3), the Ruppert matrix is a 37 × 26
matrix. The last several singular values of the matrix are:

· · · , 0.0475177, 0.0180165, 0.00168900, 0.203908 · 10−10.

Starting from the second smallest singular value, the biggest
gap is 0.0180165/0.00168900 = 10.6669. So r = 2 and f is
supposed to be close to a polynomial having two irreducible
factors. A basis for G computed from the last two right
singular vectors is:

g1 = −0.222225 x4 − 0.249186 yx3 + 0.157991 y + 0.0120672

− 0.541602 yx2 + 0.265256 x2 + 0.341504 x − 0.179952 y3

− 0.0515876 yx − 0.00117838 y2x − 0.0670575 y3x

− 0.0402726 y2x2 − 0.00669638 x3 + 0.0653902 y2,

g2 = 0.186723 x4 + 0.149379 yx3 − 0.112034 x2 + 0.261412 y

− 0.0746893 yx + 0.522825 x + 0.0746893 y3 + 0.00746893

− 0.0746893 y2 + 0.112034 y2x2 + 0.0746893 y3x

+ 0.224068 yx2 − 0.146533 · 10−9 x3.

Take a random linear combination of g = 49
50

g1 + 29
40

g2 and
set y = 1. A = [ai,j ] can be computed as

[
−0.757129 1.166496

0.726481 0.537448

]
.

Two eigenvalues of the matrix A are λ1 = −1.23519, λ2 =
1.01551. Computing fi = gcd(f, g − λifx), i = 1, 2, we
obtain two factors of f :

f1 = −0.227274 x3 + 0.000400937 yx2 + 0.224906 y − 1.57196

− 0.226899 y2x − 0.00914627 yx + 0.000416589 y3

+ 0.0100343 x2 + 0.00747927 x + 0.00700437 y2,

f2 = −0.442980 x2 − 0.0121738 x − 0.447473 yx − 0.887806 y

− 0.000598981 y2 + 0.444049.

We optimize the scalar multiple for computing the back-
ward error: ‖f − 10.03713 f1f2‖2/‖f‖2 = 0.00950792. The
factorization can be corrected once to

f1 = 0.226888 x3 + 0.00192287 yx2 + 0.221635 y − 1.57177

− 0.225259 y2x + 0..00122024 yx + 0.0000988727 y3

+ 0.00464850 x2 − 0.00304222 x + 0.000834169 y2,

f2 = −0.442403 x2 − 0.0134080 x − 0.443501 yx − 0.888244 y

+ 0.00163781 y2 + 0.443727.

and the backw. err. ‖f−10.03706 f1f2‖2/‖f‖2 = 0.00102532,
which is a little bigger than the backward error 0.000753084
of the factorization given in [22]. �

Ex. deg(fi)
σr+1

σr

σr
‖R(f)‖2

coeff.
error

backward
error time(sec)

1 2,3 11 10−3 10−2 1.08e–2 14.631

2 5,5 109 10−10 10−13 8.30e–10 5.258

3 10,10 105 10−6 10−7 1.05e–6 85.96

4 7,8 107 10−8 10−9 1.41e–8 19.628

5 3,3,3 108 10−10 0 1.29e–9 9.234

6 6,6,10 103 10−6 10−5 2.47e–4 539.67

7 9,7 486 10−4 10−4 2.14e–4 43.823

8 4,4,4,4,4 273 10−6 10−5 1.31e–3 3098

9 3,3,3 1.70 10−3 10−1 7.93e–1 29.25

10 12,7,5 658 10−6 10−5 1.56e–4 968

11 12,7,5 834 10−6 10−5 3.19e–4 1560

12 12,7,5 8.34 10−4 10−3 8.42e–3 4370

13 5,(5)2 103 10−5 10−5 6.98e–5 34.28

14 (5)3,3,(2)4 107 10−9 10−10 2.09e–7 73.52

15 5,5 104 10−5 10−5 1.72e–5 332.99

15a 2,2 109 10−10 10−4 1.02e–9 13.009

16 18,18 104 10−7 10−6 3.75e–6 3173

17 18,18 104 10−7 10−6 4.10e–6 4266

18 6,6 106 10−8 10−7 2.97e–7 30.034

Table 1: Algorithm performance on benchmarks

We have implemented the AFBP algorithm and its vari-
ants in Maple. In Table 1, we show the performance for
some well known or randomly generated examples on Pen-
tium 4 at 2.0 Ghz for Digits = 10 in Maple 8 and 9 under
Windows and Linux. Here σr and σr+1 are singular values
around the biggest gap—the given values are orders of mag-
nitude; coeff. error indicates the noise imposed on the input,
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namely the relative 2-norm coefficient error to the original
product of polynomials. The time is that for the entire fac-
torization in seconds of a single run; the timings can vary
significantly (up-to a factor of 4) with the randomization.
Example 1 in Table 1 is from [22] and has already been ex-
plained above. Examples 2 and 3 are from [26]; Sasaki’s
algorithm takes 430ms and 2080ms on a SPARC 5 (CPU:
microSPARC Π, 70 MHz) and produced backward errors of
10−9 and 10−5, respectively. Example 4 in Table 1 is from
[4]; the backward error for their approximate factorization is
reported as 0.47×10−4, compared to ours of backward error
0.14 × 10−7. Example 5 in Table 1 is from [2], which is the
factorization of an exact polynomial of degree 9; here their
and our backward errors are about the same. No timings
were reported in the cited papers for Examples 1, 4 and 5.

Example 6 to 13 and 15 to 17 are constructed by choos-
ing factors with random integer coefficients in the range
−5 ≤ c ≤ 5 and then adding a perturbation. For noise
we choose a relative tolerance 10−e, then randomly choose a
polynomial that has the same degree as the product, 25% as
many terms (5% for Example 10 and 99% for Example 17)
and coefficients in [−10e, 10e]. Finally, we scale the pertur-
bation so that the relative error is 10−e. Examples 10, 11
and 12 approximately factorize the same polynomial with
perturbations of different noise level and sparseness.

Examples 16 and 17 have been speeded significantly by
changing how our implementation obtains the degree of the
GCD in Step 1 of Algorithm AMVGCD of section 2.1. The
use of σr as the tolerance for the approximate GCD is not
accurate due to the large norm of the projected univari-
ate polynomials, and must be increased to avoid the time-
consuming correction loop for obtaining suitable GCDs.

Example 13 and 14 have repeated factors denoted with
exponents in the degrees column. Example 14 is Zeng’s
ASFF example in [33]. The forward errors of the factors we
compute are about 10−8, similar to Zeng’s forward error.
Forward error means the relative 2-norm coefficient vector
distance of a computed approximate factor to the nearest
originally chosen factor, before noise is added to the prod-
uct. For our other examples our algorithm produces forward
errors that are in magnitude those of the stated backward
errors, with the exception of Example 9. Here the degrees
of the produced approximate factors are 4 and 5, hence the
forward error is ∞. In fact, the approximate factorization
is poor because better backward error can obtained simply
by setting terms to 0. Polynomials with 10% relative noise
are not handled well by our algorithms.

Example 15 and 15a are polynomials in three variables;
15a is from [15]. Our algorithm employed the method de-
scribed in Remark 3.4. Example 18 is a polynomial with
complex coefficients, where the real and imaginary parts of
the coefficients of the factors were chosen random integers
in [−5, 5]. We added noise to the real and imaginary parts
of all terms. The journal version of this paper will contain
a full suite of benchmarks that are complex polynomials.

We have successfully found the approximate factors of the
four examples that Jan Verschelde has provided us, which
arise in the engineering of Stewart-Gough platforms (see
[30]). The input polynomials in 2 and 3 variables of de-
gree 12 have small absolute coefficient error, 10−16, and
have approximate factors of multiplicities 1, 3 and 5.. We
computed the tri-variate approximate factors via sparse nu-
merical interpolation [10], which is possible here because the

forward error in the approximate factor coefficients is small..
We carried out all computations in double precision. Our
running times, no more than 200 seconds with a backward
error of no more than 7.62 · 10−9, appear much faster than
what [30] report for their solution, but we had at our dis-
posal the code for [10].

Our 23 test cases and Maple implementation are available
from http://www.mmrc.iss.ac.cn/~lzhi/Research/appfac.

html and http://www.math.ncsu.edu/~kaltofen/ (click on
the “Software” link).

4. CONCLUDING REMARKS
The singular value decomposition was introduced to the

area of hybrid symbolic/numeric algorithms in [3]. Since
then, the SVD approach has been successfully applied to a
variety of problems [5, 9], most recently to the univariate
squarefree factorization problem [32]. The past experience
indicates that straightforward application of the SVD as a
singular linear system solver may not yield useful results,
and that the algorithms often require modification. Such is
the case for our approximate GCD and factorization algo-
rithm. Often in the past literature, the hybrid algorithms
are experimentally shown to work in lieu of a theoretical
backward analysis. We present an analysis for our multi-
variate GCD algorithm. However, such worst case analy-
sis gives overly pessimistic error bounds, and becomes even
more difficult when the algorithms are nested, as is the case
for our factorization method. The worst case analysis to-
gether with our many successful experiments thus make our
methods “good heuristics” in the sense of [16].

Clearly, our work is not finished. Now that we have a uni-
versal bivariate approximate factorization algorithm, mean-
ing that closeness to a reducible polynomial is no longer a
necessary requirement, the case of three and more variables
becomes easier by way of the Bertini/Hilbert irreducibil-
ity theorems. One may interpolate the remaining variables,
that either with a dense or the new sparse numerical algo-
rithms [10], together with the homotopy of [18] when needed.
We have reported success with this approach in section 3.4
for the case that the irreducibility radius is small (10−16).
Since the generalized Sylvester and Ruppert matrices have
a fast matrix times vector product, a black box iterative
method for computing the singular values and vectors is
possible (cf. [33]), thus allowing direct application of our
method (see Remark 3.4 and Example 15 in section 3.4)
for three or more variables on larger examples. In order
to approximately factor substantially perturbed polynomi-
als with 25, say, variables into sparse factors, the sparse
interpolation approach requires further study.
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for their comments, Zhonggang Zeng for sending us [33], Jan
Verschelde for files of the examples in [30] and Wen-shin Lee
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