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1. INTRODUCTION
Consider the problem of optimizing a linear function over

a real algebraic variety X ⊆ Rn

c∗0 = max c1x1 + . . .+ cnxn

s.t. x ∈ X = {v ∈ Rn | h1(v) = · · · = hp(v) = 0},
(1.1)

where h1, h2, . . . , hp are polynomials in unknowns x1, . . . , xn.
There exists a polynomial Φ(c0, c1 . . . , cn) in n+ 1 variables
such that

Φ(c∗0, c1, . . . , cn) = 0.

Our aim is to compute such a polynomial Φ of the least
possible degree.

In [3, 4], Rostalski and Sturmfels explored dualities and
their interconnections in the context of polynomial optimiza-
tion (1.1). Assuming that the feasible regionX is irreducible,
compact and smooth, they showed that the optimal value
function Φ is represented by the defining equation of the hy-
persurface dual to the projective closure of X [4, Theorem
5.23]. In the present paper, we prove this conclusion is still
true for a noncompact real algebraic variety X, when X is
irreducible, smooth and the recession cone of the closure of
the convex hull co (X) of X is pointed.
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2. THE NON-COMPACT POINTED CASE
Let C be a non-empty convex set in Rn. We denote cl (C),

int (C) and ri (C) as the closure, interior and relative interior
of C respectively. The support function of C is defined by

δ∗(x∗ | C) = sup{〈x, x∗〉 | x ∈ C}.

Let dom (δ∗(x∗ | C)) denote the effective domain of δ∗(x∗ |
C). Note that δ∗(x∗ | C) is a proper convex function and
dom (δ∗(x∗ | C)) consists of all vectors a ∈ Rn such that the
maximal value of f(x) = aTx on C is finite.

The recession cone 0+C of C is the set including all vectors
y satisfying x+ λy ∈ C for every λ > 0 and x ∈ C.

Proposition 2.1. Let C1 and C2 be closed convex cone
with C2 ⊆ C1 and C2 ∩ ri (C1) 6= ∅, then 0+(C2) ⊆ 0+(C1).

Proof. It is a corollary of Theorem 8.3 in [2].

A convex cone K is pointed if it is closed and K ∩ −K =
{0}. The polar of a non-empty convex cone K is defined as

Ko = {x∗ ∈ Rn | ∀x ∈ K, 〈x, x∗〉 ≤ 0}.

Theorem 2.2. Let C ⊆ Rn be a closed and unbounded
convex set. Suppose that 0+C is pointed, then

(a) (0+C)o is an n-dimensional convex set;

(b) int
(
(0+C)o

)
⊆ dom (δ∗(x∗ | C)) ⊆ (0+C)o. Moreover,

f(x) = aTx attains its maximal value on C for every
a ∈ int

(
(0+C)o

)
.

Proof. (a). Since 0+C is closed by Theorem 8.2 in [2],
the conclusion follows from the result in [1, Section 3.3, Ex-
ercise 20].

(b). We first show that the maximal value of f(x) = aTx
on C is finite and attainable for every a ∈ int

(
(0+C)o

)
.

Fix a vector a ∈ int
(
(0+C)o

)
, then f(x) < 0 for all x ∈

0+C\{0}.
Suppose the maximal value of f(x) on C is +∞. Let P =
{x ∈ Rn | f(x) ≥ 0}, then P ∩ C is unbounded. Moreover,
P ∩ ri (C) 6= ∅, otherwise, according to Theorem 6.3 in [2],
cl (C) = cl (ri (C)), we have C ⊆ {x ∈ Rn | f(x) ≤ 0}. It
contradicts to the assumption that f is not bounded above.
Choose a vector x0 ∈ P ∩ ri (C). Since P ∩C is unbounded,
by Theorem 8.4 in [2], there exists a non-zero vector y ∈
0+(P ∩C), x0 +λy ∈ P ∩C for all λ ≥ 0, i.e., f(x0 +λy) ≥ 0
for all λ ≥ 0. By Proposition 2.1, we have y ∈ 0+C and
f(y) < 0. Therefore f(x0 + λy) < 0 for some λ > 0, which
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is a contradiction to the assumption that x0 + λy ∈ P ∩ C.
Hence, f(x) has a finite maximal value f∗ on C.

Now assume that f∗ can not be attained. Then there ex-
ists an unbounded sequence {xn}∞n=1 ⊆ C such that f(xn) ≥
f∗ − 1/n. Consider the closed convex set

C′ = cl (co ({xn}∞n=1 ∪ {x0})) ,

we have f(x) ≥ min{f∗ − 1, f(x0)} on C′. Since C′ is un-
bounded and x0 ∈ ri (C), there exists a non-zero vector
y ∈ 0+(C′) ⊆ 0+C by Theorem 8.4 in [2] and Proposition
2.1. Then x0 + λy ∈ C′ for all λ ≥ 0 and f(y) < 0 since
a ∈ int

(
(0+C)o

)
. Therefore, f is unbounded from below on

C′, which is a contradiction.
If a 6∈ (0+C)o, then there exists a vector y ∈ 0+C such

that x0+λy ∈ C for all λ ≥ 0 and f(y) = aT y > 0. Therefore
f(x0 + λy) is unbounded and the maximal value of f(x) =
aTx on C is infinite. Hence, we have dom (δ∗(x∗ | C)) ⊆
(0+C)o.

Remark 2.3. For a vector a ∈ (0+C)o\int
(
(0+C)o

)
, it

is difficult to determine whether a ∈ dom (δ∗(x∗ | C)). More-
over, the maximal value of f(x) = aTx could still be unattain-
able even when it is finite.

Example 2.4. Let us consider a closed convex set C de-
fined by

{(x, y) ∈ R2 | x2 − y2 ≥ 1, x ≥ 0}.

We have

0+C = {(x, y) ∈ R2 | −x ≤ y ≤ x, x ≥ 0},

and

(0+C)o = {(x, y) ∈ R2 | x ≤ y ≤ −x, x ≤ 0}.

Hence (−1, 1) is on the boundary of (0+C)o and it corre-
sponds to a linear function f(x) = −x + y with maximal
value 0 which is not attainable.

Let us review some background about dual variety in pro-
jective space Pn [3, 4]. Let I = 〈f1, . . . , fp〉 be a homoge-
neous radical ideal in polynomial ring R[x0, x1, . . . , xn] and
X = V (I) be the variety of I in Pn over C. The singular
locus sing(X) is defined by the vanishing of the c × c mi-
nors of the p× (n+ 1) Jacobian matrix Jac(X) = (∂fi/∂xj),
where c = codim(X). Let Xreg = X\sing(X) denote the
set of regular points in X. The projective variety X is
smooth if X = Xreg. A point (u0 : u1 : · · · : un) in
the dual projective space (Pn)∗ represents the hyperplane
{x ∈ Pn |

∑n
i=0 uixi = 0}. The vector u is tangent to X at

a regular point x ∈ Xreg if x lies in the hyperplane and its
representing vector (u0, u1, . . . , un) lies in the row space of
the Jacobian matrix Jac(X) at the point x. The conormal
variety CN(X) is the closure of the set

{(x, u) ∈ Pn × (Pn)∗ | x ∈ Xreg and u is tangent to X at x}.

The dual variety X∗ is the projection of CN(X) onto the
second factor.

Theorem 2.5. Let X∗ ⊂ (Pn)∗ be the dual variety to
the projective closure of a real affine variety X in Rn and
C = cl (co (X)). If X is irreducible, smooth and 0+C is
pointed, then X∗ is an irreducible hypersurface, and its defin-
ing polynomial is Φ(−c0, c1, . . . , cn), where Φ represents the
optimal value function.

Proof. Fix a vector c = (c1, . . . , cn) ∈ Rn such that the
maximal value c∗0 of f(x) = cTx on X is finite. We first show
that (−c∗0 : c1 : · · · : cn) belongs to X∗.
Case I: c∗0 is attainable. Let the maximal value c∗0 be
reached at x∗ ∈ X. Since X is smooth, x∗ is a regular
point of X and KKT conditions are satisfied at x∗. Then
the argument used in the proof of Theorem 5.23 in [4] is still
valid, which implies that (−c∗0 : c1 : · · · : cn) lies in the dual
variety X∗.
Case II: c∗0 is an asymptotic maximal value, i.e., c∗0 is only
reached at infinity. Since 0+C is pointed, by Theorem 2.2
and Remark 2.3, (0+C)o is n-dimensional and c ∈ (0+C)o\
int
(
(0+C)o

)
. Fix a vector a ∈ int

(
(0+C)o

)
. Since δ∗(x∗ |

C) is a proper convex function, by Theorem 7.5 in [2], we
have

c∗0 = δ∗(c | C) = lim
λ→0

δ∗((1− λ)c+ λa | C).

Then (c∗0, c) = lim
λ→0

(δ∗((1− λ)c+ λa | C), (1− λ)c+ λa). By

Theorem 6.1 in [2], we have (1 − λ)c + λa ∈ int
(
(0+C)o

)
for 0 < λ ≤ 1. By Theorem 2.2, the maximal value of the
function ((1− λ)c+ λa)Tx on X is finite and attainable for
0 < λ ≤ 1. Using the results in Case I, we have (−δ∗((1 −
λ)c+λa | C) : (1−λ)c+λa) lies in X∗ for 0 < λ ≤ 1, which
implies (−c∗0 : c1 : · · · : cn) ∈ X∗ since X∗ is closed.

We claim that X∗ is a hypersurface. In fact, for every
c ∈ int

(
(0+C)o

)
, by Theorem 2.2, the function cTx has

a finite maximal value c∗0 on X and therefore (−c∗0 : c1 :
· · · : cn) ∈ X∗ by the results in Case I. Since (0+C)o is
n-dimensional, we deduce that X∗ is of dimension n − 1.
As X is irreducible, X∗ is also irreducible and hence it is a
hypersurface. The defining equation of X∗ can be written as
Φ(−c0, c1, . . . , cn) = 0, then Φ represents the optimal value
function of the least degree. Any polynomials containing
the graph of the optimal value function must be divided by
Φ.

3. DISCUSSION
Consider the case when X is noncompact and 0+C is un-

pointed. By definition, 0+C contains a line L ⊂ Rn through
the origin and therefore (0+C)o is a subset of the hyperplane
H ⊂ Rn which is orthogonal to L. By Theorem 2.2 (b), we
have dom (δ∗(x∗ | C)) ⊆ H. Since the dual variety X∗ is
typically expected to have dimension n− 1 (see [3, 4]), it is
perhaps not the closure of

{(−c∗0 : c1 : · · · : cn) ∈ (Pn)∗ | c ∈ dom (δ∗(x∗ | C))}. (3.1)

However, we still can prove (3.1) belongs to X∗.
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