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ABSTRACT. We consider the problem of extending the classical S-lemma from
the commutative case to noncommutative cases. Precisely, we extend the
S-lemma to three kinds of noncommutative polynomials: noncommutative
polynomials whose coefficients are real numbers, noncommutative matrix-
valued polynomials, and hereditary noncommutative matrix-valued polyno-
mials. Different from the commutative case, the S-lemma for noncommutative
polynomials can be extended to the case involving multiple quadratic con-
straints. Some examples are given to demonstrate the relations between these
newly derived conditions.
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1. INTRODUCTION

1.1. RELATED WORK AND MOTIVATION. Quadratic inequalities arise in many ar-
eas of theoretical and applied mathematics. In the field of optimization, quadrati-
cally constrained quadratic programming (QCQP) appears in various disciplines
[15] and includes some important subclasses, like the trust region problem [40],
Max-Cut problem, 0 − 1 quadratic programming problem and box-constrained
quadratic programming problem [33]. QCQP has been widely studied in the lit-
erature [1, 14, 27, 43, 52, 57] and is known to be NP-hard in general [49]. However,
when there is just one constraint, a QCQP problem can be reformulated as a semi-
definite programming problem by applying the celebrated S-lemma [5].

The classical S-lemma answers the question that when a quadratic inequal-
ity is a consequence of another quadratic inequality. More specifically, let f , g :
Rm → R be quadratic polynomials in m variables, R denote the set of real num-
bers, and suppose there is a real vector X̂ ∈ Rm such that g(X̂) > 0. The following
two statements are equivalent.
(1) For all X ∈ Rm, if g(X) ≥ 0, then f (X) ≥ 0.
(2) There is a nonnegative real number λ such that f (X) − λg(X) ≥ 0 for all

X ∈ Rm.
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There are numerous applications of S-lemma in quadratic optimization [12,
27, 35, 52], control theory [2, 6, 41], signal processing [34], statistics [26], etc. As
shown in the nice survey on S-lemma by Pólik and Terlaky [45], there are many
different approaches for proving the S-lemma. In [55, 56], Yakubovich used the
convexity result in [13] to prove the S-lemma. Pólik and Terlaky [45] provided
a modern proof that is similar to the one given in the book by Ben-Tal and Ne-
mirovski [2] and they also extended the proof to a non-homogeneous case. An
elementary proof of the S-lemma could be derived based on a lemma given by
Yuan [58].

Many problems in systems and control theory [51] are described by signal
flow diagrams and can naturally be converted to inequalities involving polyno-
mials in matrices, which lead to noncommutative polynomials. Optimization
problems with polynomial constraints in noncommuting variables also arise nat-
urally in quantum theory and quantum information science [3, 11, 16, 38, 39, 44].
Therefore, it would be interesting to know whether the classical S-lemma can be
extended to noncommutative polynomials.

Characterizations of polynomials that are positive on a semialgebraic set is a
fundamental problem in real algebraic geometry and have various applications in
polynomial optimization [4, 30, 31, 32, 42, 46, 50]. Some of these results have been
extended to noncommutative cases [7, 9, 17, 18, 19, 21, 22, 23, 24, 25, 28, 29, 37, 44].

Helton [18] and McCullough [36] proved a surprising result that positive
noncommutative polynomials are sums of squares (SOS), which is known to be
false for commutative polynomials. The first explicit such example was given by
Motzkin in 1967

Motzkin(x, y, z) = x4y2 + x2y4 + z6 − 3x3y3z3,

which is nonnegative but can not be written as a sum of squares.
Helton and McCullough showed that a noncommutative polynomial which

is positive on a bounded semi-algebraic set of operators has a weighted sum of
squares representation [24, Theorem 1.2 ]. It can certainly be used to answer the
question:

“ When a noncommutative quadratic inequality is a consequence of another
noncommutative quadratic inequality?"

There are well-developed packages for solving sums of squares problems
for noncommuting polynomials [8, 53]. However, it should be noted that Theo-
rem 1.2 in [24] requires that the positivity domain defined by noncommutative
inequalities is bounded. Moreover, one also needs to solve a sequence of SOS
relaxations with respect to fixed degrees to find the SOS representation. Sharp
degree bounds are given in [9] when the positivity domain is a polydisc or a
ball. Helton, Klep and Volčič showed a Positivstellensatz for hereditary quadratic
polynomials, by adding a slack variable [17]. On the other hand, we wish to seek
a noncommutative version of S-lemma which requires no boundedness condition
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on the domain defined by noncommutative quadratic inequalities and no slack
variables.

Helton, Klep and McCullough gave a linear Positivestellensatz for charac-
terizing the matricial linear matrix inequality (LMI) domination problems [20].
They showed that a linear pencil inequality in noncommutative variables is a con-
sequence of other linear pencil inequalities if and only if there exists a completely
positive map between the coefficients of these two linear pencil inequalities. This
result was generalized by Zalar to solve the linear operator inequality (LOI) dom-
ination problems [59]. Stimulated by the excellent work of Helton, Klep and Mc-
Cullough [20], we aim to extend the classical S-lemma to the noncommutative
case by introducing a nonzero completely positive map which can be seen as a
generalization of the nonnegative real number λ in the classical S-lemma.

1.2. SUMMARY OF THE MAIN RESULTS. The symbol N+ denotes the set of posi-
tive natural numbers. For n ∈ N+, Rn×n (resp. SRn) stands for the set of n × n
real matrices (resp. symmetric matrices). For m, n ∈ N+, the symbol (Rn×n)m

(resp. (SRn)m) denotes the vector space consisting of m-dimensional vectors of
n × n real matrices (resp. symmetric matrices).

The main part of the paper is devoted to extending the S-lemma for non-
commutative polynomials with matrix coefficients. Let f (x) be a noncommuta-
tive matrix-valued homogeneous quadratic symmetric polynomial:

f (x) =
m

∑
i=1,j=1

Aijxixj,

where Aij = AT
ji , Aij ∈ Rq×q for all i, j.

For n ∈ N+, let 1n represent the identity map from Rn×n to Rn×n. Inspired
by Choi’s characterization of a completely positive map via a positive semidef-
inite Choi matrix (Theorem 2.1), we generalize the condition in the classical S-
lemma of existing a nonnegative number λ such that f (X)− λg(X) ≥ 0 for all
X ∈ Rm to the existence of a completely positive linear mapping ϕ : Rq×q → Rq×q

such that
f (X)− (ϕ ⊗ 1n)g(X) � 0

for all X ∈ (SRn)m, n ∈ N+. The main results of this paper are stated below.

THEOREM 1.1. Let f (x) and g(x) be noncommutative matrix-valued homoge-
neous quadratic symmetric polynomials,

f (x) =
m

∑
i=1,j=1

Aijxixj, g(x) =
m

∑
i=1,j=1

Bijxixj,

where Aij, Bij ∈ Rq×q and Aij = AT
ji , Bij = BT

ji for all i, j = 1, . . . , m. Suppose that

there is an X̂ ∈ (SRn̂)m for some n̂ ∈ N+, such that g(X̂) � 0.
Then the following two statements are equivalent:



4 FENG GUO, SIZHOU YAN, AND LIHONG ZHI

(1) For all X ∈ (SRn)m, n > q, if (Idq ⊗ P)g(X)(Idq ⊗ P) � 0, then (Idq ⊗
P) f (X)(Idq ⊗ P) � 0, where P : Rn → Rn is the projection to the last q coor-
dinates, i.e., P = diag(0, Idq).

(2) There is a nonzero completely positive linear mapping ϕ : Rq×q → Rq×q such that
f (X)− (ϕ ⊗ 1n)g(X) � 0 for all X ∈ (SRn)m, n ∈ N+.

Interestingly, it is straightforward to extend Theorem 1.1 to the case involv-
ing multiple quadratic constraints (Remark 3.3), which is clearly different from
the S-lemma for the commutative polynomials.

Hereditary noncommutative matrix-valued polynomials are matrix-valued
polynomials in noncommuting letters {x1, x2, . . . , xm, xT

1 , xT
2 , . . . , xT

m}, and the let-
ters xT

1 , xT
2 , . . . , xT

m always appear on the right side of the monomials.
The following theorem is for a special case of hereditary noncommutative

matrix-valued polynomials. Its proof can be adjusted from the proof of Theorem
1.1.

THEOREM 1.2. Let f (x), g(x) be hereditary noncommutative matrix-valued ho-
mogeneous polynomials,

f (x) =
m

∑
i=1,j=1

AijxixT
j , g(x) =

m

∑
i=1,j=1

BijxixT
j ,

where Aij, Bij ∈ Rq×q and Aij = AT
ji , Bij = BT

ji for all i, j = 1, . . . , m. Suppose that
there is an X̂ ∈ (Rn̂×n̂)m for some n̂ ∈ N+, such that g(X̂) � 0. Then the following two
statements are equivalent:

(1) For all X ∈ (Rn×n)m, n ∈ N+, if g(X) � 0, then f (X) � 0.
(2) There is a nonzero completely positive linear mapping ϕ : Rq×q → Rq×q, such that

f (X)− (ϕ ⊗ 1n)g(X) � 0 for all X ∈ (Rn×n)m, n ∈ N+.

According to the Kraus representations [54, Theorem 2.22], a completely
positive map ϕ : Rq×q → Rq×q can be written as

ϕ(A) =
µ

∑
j=1

VT
j AVj, ∀ A ∈ Rq×q,

for some matrices Vj ∈ Rq×q, j = 1, . . . , µ. Therefore, by Theorem 2.2, it is easy
to show that the condition (2) in Theorem 1.1 and 1.2 are equivalent to showing
that f (x) has a weighted SOS representation

f (x) =
µ

∑
j=1

VT
j g(x)Vj + r(x)Tr(x),

for some matrices Vj ∈ Rq×q, j = 1, . . . , µ, and noncommutative matrix-valued
homogeneous linear polynomial r(x).
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1.3. ORGANIZATION OF THE PAPER. Some preliminary concepts and results are
given in Section 2. Section 3 is devoted to proving the main results Theorems 1.1
and 1.2. In Section 4, we present some other variants of S-Lemma. Finally, in
Section 5, we discuss some problems arising in extending S-lemma to noncom-
mutative matrix-valued nonhomogeneous polynomials.

2. PRELIMINARIES

2.1. NONCOMMUTATIVE MATRIX-VALUED SYMMETRIC POLYNOMIALS. In the pa-
per, we deal with noncommutative matrix-valued polynomials. Different from
the commutative polynomials, the variables and coefficients are all matrices. As
the matrix multiplication is not commutative, the monomials are words in non-
commuting variables.

The polynomial p we consider in this paper has the following form:

p = ∑
ω∈Wm

pωω,(2.1)

where pω ∈ Rq×q, q ∈ N+, only finitely many pω are nonzero, and Wm is a set of
words generated by the set of noncommuting letters {x1, x2, . . . , xm}.

When we evaluate a polynomial p at X ∈ (SRn)m, we let

p(X) = ∑
ω∈Wm

pω ⊗ ω(X),

where ω(X) = Xi1 Xi2 · · · Xik if ω = xi1 xi2 · · · xik , and the symbol ⊗ denotes the
Kronecker product

N ⊗ M = [Nij M]lk,

for finite dimensional matrices N = (Nij), M = (Mlk). Matrices N and M can
have different dimensions. We define the evaluation of a tuple X ∈ (SRn)m on
the empty word as Idn, where Idn denotes the identity matrix in Rn×n.

Define the transpose of a polynomial p as

pT = ∑
ω∈Wm

pT
ωωT ,

where ωT = xik · · · xi2 xi1 for the word ω = xi1 xi2 · · · xik . If p = pT , we say p is
symmetric. Polynomials considered in this paper are always assumed to be symmetric.

In particular, for noncommutative matrix-valued homogeneous quadratic
polynomials

f (x) =
m

∑
i=1,j=1

Aijxixj and g(x) =
m

∑
i=1,j=1

Bijxixj,
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where Aij = AT
ji , Bij = BT

ji , Aij, Bij ∈ Rq×q, the evaluations of f and g at X ∈
(SRn)m are

f (X) =
m

∑
i=1,j=1

Aij ⊗ XiXj and g(X) =
m

∑
i=1,j=1

Bij ⊗ XiXj.

If we restrict the coefficients (2.1) being real numbers, i.e., q = 1, then we get a
usual noncommutative scalar-valued polynomial.

2.2. COMPLETELY POSITIVE LINEAR MAP. A real number can be seen as a linear
map from R to R, and if the number is positive, the linear map translates a pos-
itive real number to another positive real number. Similarly, we can define posi-
tive linear maps and completely positive linear maps between real vector spaces
of higher dimensions.

For s, t ∈ N+, a linear map ϕ : Rs×s → Rt×t, can be represented by a matrix
in Rst×st

J(ϕ) =
s

∑
a,b=1

ϕ(Eab)⊗ Eab =

J11 · · · J1t
...

. . .
...

Jt1 · · · Jtt

 ,(2.2)

where Eab ∈ Rs×s is the matrix whose (a, b)-th entry is 1 and all others entries are
0, and

Jij = [ϕ(Eab)ij]a,b=1,...,s ∈ Rs×s,

with ϕ(Eab)ij being the (i, j)-th entry of ϕ(Eab).
The matrix J(ϕ) is called the Choi matrix of ϕ [10]. It is easy to verify that

for any M ∈ Rs×s,

ϕ(M) =

〈J11, M〉 · · · 〈J1t, M〉
...

. . .
...

〈Jt1, M〉 · · · 〈Jtt, M〉

 .

In this paper, 〈·, ·〉 stands for the Frobenius inner product of matrices.
We say that the linear map ϕ is positive, if for every positive semidefinite

matrix M ∈ SRs×s, M � 0, its image under the map ϕ is also positive semidef-
inite, i.e., ϕ(M) � 0. Recall that 1n represents the identity map from Rn×n to
Rn×n. We say ϕ is completely positive, if for all n ∈ N+, the linear map ϕ ⊗ 1n is
a positive linear map from Rsn×sn to Rtn×tn, where

ϕ ⊗ 1n(M ⊗ N) = ϕ(M)⊗ 1n(N), M ∈ Rs×s, N ∈ Rn×n.

THEOREM 2.1. [10] The linear map ϕ : Rs×s → Rt×t where s, t ∈ N+ is com-
pletely positive, if and only if the Choi matrix J(ϕ) is positive semidefinite.

There is a one-to-one correspondence between the set of all completely posi-
tive maps from Rs×s to Rt×t and the set of positive semidefinite matrices in Rst×st.
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ϕ∗ represents the adjoint operator of ϕ and ϕ∗ is completely positive if and only
if ϕ is completely positive.

2.3. POSITIVITY OF NONCOMMUTATIVE MATRIX-VALUED HOMOGENEOUS QUA-
DRATIC POLYNOMIALS. For a commutative polynomial h(x) = xT Hx with H ∈
SRm and x = [x1, x2, . . . , xm]T , we know h(X) ≥ 0 for all X ∈ Rm if and only if
H � 0. It is very interesting to see that this property can be extended to noncom-
mutative polynomials. The following result is a special case of [36, Theorem 0.2].

THEOREM 2.2. Let f (x) = ∑m
i=1,j=1 Aijxixj be a noncommutative matrix-valued

homogeneous quadratic polynomial, where the matrices Aij = AT
ji ∈ Rq×q for all i, j =

1, . . . , m. Define the coefficient matrix

A =

A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 .(2.3)

Then f (X) is positive semidefinite for all X ∈ (SRn)m, n ∈ N+, if and only if A is
positive semidefinite.

Proof. By [36, Theorem 0.2], f (X) is positive semidefinite for all X ∈ (SRn)m,
n ∈ N+, if and only if there exists a noncommutative matrix-valued homoge-
neous linear polynomial U(x) = ∑m

i=1 Uixi such that f (x) = U(x)U(x)T , which
is equivalent to the decomposition

A =

A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 =

U1
...

Um

(UT
1 · · · UT

m
)
� 0.

We give in Appendix A an alternative proof of Theorem 2.2 based on the
Choi matrix of a certain linear map.

2.4. NONCOMMUTATIVE POLYNOMIALS WITH SCALAR COEFFICIENTS. S-lemma
for noncommutative polynomials with scalar coefficients can be adapted easily
from the classical S-lemma for commutative polynomials.

PROPOSITION 2.3. Let f (x), g(x) be noncommutative homogeneous quadratic
polynomials,

f (x) =
m

∑
i=1,j=1

aijxixj, g(x) =
m

∑
i=1,j=1

bijxixj,

where ai,j, bi,j ∈ R and aij = aji, bij = bji for all i, j = 1, . . . , m. Suppose that there
is an X̂ ∈ (SRn̂)m for some n̂ ∈ N+, such that g(X̂) � 0. Then the following three
statements are equivalent:
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(1) For all X ∈ Rm, if g(X) ≥ 0, then f (X) ≥ 0.
(2) For all X ∈ (SRn)m, n ∈ N+, if g(X) � 0, then f (X) � 0.
(3) There is a nonnegative real number λ such that f (X) − λg(X) � 0 for all X ∈

(SRn)m, n ∈ N+.

Proof. For the given polynomials f and g, their corresponding coefficient
matrices are

A =

 a11 · · · a1m
...

. . .
...

am1 · · · amm

 and B =

 b11 · · · b1m
...

. . .
...

bm1 · · · bmm

 .

(3)=⇒(2)=⇒(1): The implications are obvious.
(1)=⇒(3): Assume that for all X ∈ Rm, g(X) = XT BX ≤ 0. Then we know

B � 0 and hence
g(X) = XT(B ⊗ Idn)X � 0,

for all X ∈ (SRn)m, n ∈ N+, which contradicts to the condition that there is an
X̂ ∈ (SRn̂)m for some n̂ ∈ N+, such that g(X̂) � 0. Hence, there always exists an
X̃ ∈ Rm such that g(X̃) > 0. According to the classical S-lemma, it follows that
there exists a positive real number λ such that f (X)− λg(X) ≥ 0 for all X ∈ Rm,
in particular, A − λB � 0. Then we know

f (X)− λg(X) = XT((A − λB)⊗ Idn)X � 0,

for all X ∈ (SRn)m, n ∈ N+.

3. S-LEMMA FOR NONCOMMUTATIVE POLYNOMIALS

In this section, we will prove the S-lemma for noncommutative matrix-
valued polynomials in Theorems 1.1 and 1.2.

3.1. S-LEMMA FOR NONCOMMUTATIVE MATRIX-VALUED POLYNOMIALS. Let
f (x) and g(x) be noncommutative matrix-valued homogeneous quadratic poly-
nomials,

f (x) =
m

∑
i=1,j=1

Aijxixj, g(x) =
m

∑
i=1,j=1

Bijxixj,

where Aij, Bij ∈ Rq×q and Aij = AT
ji , Bij = BT

ji for all i, j = 1, . . . , m. Define

A =

A11 · · · A1m
...

. . .
...

Am1 · · · Amm

 and B =

B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm

 .

Let us prove the main result Theorem 1.1 about extended S-lemma for non-
commutative matrix-valued homogeneous quadratic polynomials.
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Proof of Theorem 1.1. Assume that condition (2) is satisfied. Let P : Rn → Rn be
the projection to the last q coordinates. For all X ∈ (SRn)m, n, m ∈ N+, we have

(3.1)

m

∑
i=1,j=1

Aij ⊗ XiXj −
m

∑
i=1,j=1

ϕ(Bij)⊗ XiXj � 0

=⇒
m

∑
i=1,j=1

Aij ⊗ XiXj −
m

∑
i=1,j=1

(ϕ ⊗ 1n)(Bij ⊗ XiXj) � 0

=⇒(Idq ⊗ P)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ P)

− (Idq ⊗ P)

(
m

∑
i=1,j=1

(ϕ ⊗ 1n)(Bij ⊗ XiXj)

)
(Idq ⊗ P) � 0

=⇒(Idq ⊗ P)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ P)

−
m

∑
i=1,j=1

(Idqϕ(Bij)Idq)⊗ (PIdnXiXjIdnP) � 0

=⇒(Idq ⊗ P)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ P)

−
m

∑
i=1,j=1

(ϕ(IdqBijIdq))⊗ (IdnPXiXjPIdn) � 0

=⇒(Idq ⊗ P)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ P)

− (ϕ ⊗ 1n)

(
(Idq ⊗ P)

(
m

∑
i=1,j=1

Bij ⊗ XiXj

)
(Idq ⊗ P)

)
� 0.

=⇒(Idq ⊗ P) f (X)(Idq ⊗ P) � (ϕ ⊗ 1n)
(
(Idq ⊗ P)g(X)(Idq ⊗ P)

)
.

As ϕ is a completely positive linear map, if (Idq ⊗ P)g(X)(Idq ⊗ P) � 0, then
(ϕ ⊗ 1n)(Idq ⊗ P)g(X)(Idq ⊗ P) � 0. It follows that (Idq ⊗ P) f (X)(Idq ⊗ P) � 0.
Condition (1) is established.

Now we assume that condition (2) is false, our aim is to show that condition
(1) is also false. For a fixed linear map ϕ : Rq×q → Rq×q, let

ϕg(x) =
m

∑
i=1,j=1

ϕ(Bij)xixj.(3.2)

Consider the set

{ f (x)− ϕg(x) | ϕ : Rq×q → Rq×q is a completely positive linear map}.
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Clearly, f (x)− ϕg(x) is a homogeneous quadratic polynomial and its coefficient
matrix has the following form A11 − ϕ(B11) · · · A1m − ϕ(B1m)

...
. . .

...
Am1 − ϕ(Bm1) · · · Amm − ϕ(Bmm)

 = A− (1m ⊗ ϕ)B.

The set

D = {A− (1m ⊗ ϕ)B | ϕ : Rq×q → Rq×q is a completely positive linear map}

is a closed translated convex cone for the matrix A in SRmq. Let C denote the
positive semidefinite cone in SRmq. Since condition (2) is false, according to The-
orem 2.2, the coefficient matrix of f (x)− ϕg(x) can not be positive semidefinite.
Hence, we have C ∩ D = ∅.

Let us define

K = {J(ϕ) | ϕ : Rq×q → Rq×q is a completely positive linear map, ‖J(ϕ)‖ = 1},

where J(ϕ) is defined by (2.2) and ‖ · ‖ stands for the operator norm of the matrix.
The set K is compact. For any completely positive linear map ϕ : Rq×q → Rq×q

with ‖J(ϕ)‖ = 1, define

DJ(ϕ) = {A− λ(1m ⊗ ϕ)B | λ ≥ 0},

and
k(J(ϕ)) = inf{‖M1 −M2‖ | M1 ∈ C, M2 ∈ DJ(ϕ)}.

Then, k(J(ϕ)) can be seen as a continuous function on K. Since K is compact,
there is a completely positive linear map ϕ0 and J(ϕ0) ∈ K, such that k(J(ϕ0)) =
minJ(ϕ)∈K k(J(ϕ)).

For the completely positive linear map ϕ0, we have

(3.3)

(ϕ0 ⊗ 1n̂)g(X̂) =
m

∑
i=1,j=1

ϕ0(Bij)⊗ X̂iX̂j � 0,

(ϕ0 ⊗ 1n̂)g(X̂) =
m

∑
i=1,j=1

ϕ0(Bij)⊗ X̂iX̂j 6= 0.

Now we show that (1m ⊗ ϕ0)B has a positive eigenvalue. If not, we would have

(1m ⊗ ϕ0)B � 0.

Then (ϕ0 ⊗ 1n)g(X) � 0 for all X ∈ (SRn)m, which contradicts (3.3). Define

d(λ) = inf{‖M1 −A+ λ(1m ⊗ ϕ0)B‖ | M1 ∈ C}.

The condition that (1m ⊗ ϕ0)B has a positive eigenvalue ensures that

lim
λ→+∞

d(λ) = +∞,
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then there exists a positive number c such that

inf
λ∈[0,+∞)

d(λ) = inf
λ∈[0,c]

d(λ).

As [0, c] is compact and d(λ) is continuous, there exists a λ0 such that

d(λ0) = inf
λ∈[0,+∞)

d(λ) = k(J(ϕ0)).

Because C ∩ D = ∅, we have

inf{‖M1 − M2‖|M1 ∈ C, M2 ∈ D} = ‖M1 −A+ λ0(1m ⊗ ϕ0)B‖ > 0.

By the separation theorem [47, Theorem 11.4], there is a matrix Ms ∈ R(mq)×(mq),
such that

〈M1, Ms〉 ≥ a0 > 〈M2, Ms〉, ∀M1 ∈ C, ∀M2 ∈ D.
It is clear by the self-duality of the cone C in the Frobenius inner product that
Ms � 0 and a0 = 0. Then we have

〈A, Ms〉 < 0 and 〈(1m ⊗ ϕ)B, Ms〉 ≥ 0,(3.4)

for every completely positive linear map ϕ : Rq×q → Rq×q.
Let {e1, e2, . . . , eq} be the standard orthogonal basis of Rq, and E = ∑

q
i=1 ei ⊗

ei. The matrix Ms can be written in the following form

Ms =

Ms
11 · · · Ms

1m
...

. . .
...

Ms
m1 · · · Ms

mm

 ,(3.5)

where each Ms
ij ∈ Rq×q. The condition (3.4) can be written in the following form:

〈A, Ms〉 =
m

∑
i=1,j=1

〈Aij, Ms
ij〉 = ET

(
m

∑
i=1,j=1

Aij ⊗ Ms
ij

)
E < 0.(3.6)

Moreover, we have

〈(1m ⊗ ϕ)B, Ms〉 =
m

∑
i=1,j=1

〈ϕ(Bij), Ms
ij〉

=
m

∑
i=1,j=1

q

∑
a=1,b=1

〈ϕ(Bij), Eab〉〈Ms
ij, Eab〉

=

⟨
m

∑
i=1,j=1

ϕ(Bij)⊗ Ms
ij,

q

∑
a=1,b=1

Eab ⊗ Eab

⟩

=

⟨
m

∑
i=1,j=1

Bij ⊗ Ms
ij,

q

∑
a=1,b=1

ϕ∗(Eab)⊗ Eab

⟩

=

⟨
m

∑
i=1,j=1

Bij ⊗ Ms
ij, J(ϕ∗)

⟩
≥ 0,
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where Eab ∈ Rq×q are matrices whose (a, b)-th entry is 1 and all others are 0.
According to Theorem 2.1, the set{

J(ϕ∗) | ϕ : Rq×q → Rq×q is completely positive
}

is equivalent to the positive semidefinite cone in SRq2
. It follows that

m

∑
i=1,j=1

Bij ⊗ Ms
ij � 0.(3.7)

In order to show that the condition (1) in Theorem 1.1 is not satisfied, we
need to translate the inequality conditions (3.6) and (3.7) into the evaluations of
f and g at some matrix vector X ∈ (SRq)m. This requires some work, since the
positive semidefinite matrix Ms = (Ms

ij) ∈ (SRq)m may not belong to the set

X = {YYT | Y ∈ (SRq)m},

which is a strict subset of the positive semidefinite cone C ⊂ SRmq, and thus we
can not ensure that there always exists an X ∈ (SRq)m such that

f (X) =
m

∑
i=1,j=1

Aij ⊗ Ms
ij and g(X) =

m

∑
i=1,j=1

Bij ⊗ Ms
ij.

This is the main reason why we introduce a projection (3.10) to construct an eval-
uation point.

Since Ms defined in (3.5) is a positive semidefinite matrix, it has the decom-
position

(3.8)

Ms =
r

∑
k=1

vkvT
k , vk ∈ Rmq, r = rank(Ms),

vk =

v1
k
...

vm
k

 , vl
k ∈ Rq, 1 ≤ l ≤ m, k = 1, . . . , r.

We define XM := (XM
1 , . . . , XM

m ) ∈ (R(r+q)×(r+q))m, where for each i = 1, . . . , m,

XM
i =


(vi

1)
T

0
...

(vi
r)

T

vi
1 · · · vi

r 0

 ,(3.9)

and PM : R(r+q) → R(r+q) is the projection to the last q coordinates:

PM =

(
0

Idq

)
.(3.10)
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Then the condition (3.7) can be used to show

(Idq ⊗ PM)g(XM)(Idq ⊗ PM) =
m

∑
i=1,j=1

Bij ⊗ PMXM
i XM

j PM

=
m

∑
i=1,j=1

Bij ⊗ Ms
ij � 0.

On the other hand, the condition (3.6) can be used to show

ET(Idq ⊗ PM) f (XM)(Idq ⊗ PM)E = ET

(
m

∑
i=1,j=1

Aij ⊗ PMXM
i XM

j PM

)
E

= ET

(
m

∑
i=1,j=1

Aij ⊗ Ms
ij

)
E < 0.

Therefore, we have

(Idq ⊗ PM) f (XM)(Idq ⊗ PM) ⪰̸ 0.

Hence, condition (1) in Theorem 1.1 is false. ■

COROLLARY 3.1. Under the same assumption in Theorem 1.1, the statements (1)
and (2) in Theorem 1.1 are also equivalent to the following two conditions:

(3) For all X ∈ (SRn)m, all orthogonal projection matrices P ∈ Rn×n, n ∈ N+, if
(Idq ⊗ P)g(X)(Idq ⊗ P) � 0, then (Idq ⊗ P) f (X)(Idq ⊗ P) � 0.

(4) For all X ∈ (SRn)m, all matrices Q ∈ Rn×ℓ, ℓ, n ∈ N+, if (Idq ⊗ QT)g(X)(Idq ⊗
Q) � 0, then (Idq ⊗ QT) f (X)(Idq ⊗ Q) � 0.

Proof. From the proof of (2) ⇒ (1), we can see that (2) ⇒ (4) also holds by
modifying derivations in (3.1).

m

∑
i=1,j=1

Aij ⊗ XiXj −
m

∑
i=1,j=1

ϕ(Bij)⊗ XiXj � 0

=⇒
m

∑
i=1,j=1

Aij ⊗ XiXj −
m

∑
i=1,j=1

(ϕ ⊗ 1n)(Bij ⊗ XiXj) � 0

=⇒(Idq ⊗ QT)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ Q)

− (Idq ⊗ QT)

(
m

∑
i=1,j=1

(ϕ ⊗ 1n)(Bij ⊗ XiXj)

)
(Idq ⊗ Q) � 0
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=⇒(Idq ⊗ QT)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ Q)

−
m

∑
i=1,j=1

(Idqϕ(Bij)Idq)⊗ (QTIdnXiXjIdnQ) � 0

=⇒(Idq ⊗ QT)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ Q)

−
m

∑
i=1,j=1

(ϕ(IdqBijIdq))⊗ (IdlQTXiXjQIdl) � 0

=⇒(Idq ⊗ QT)

(
m

∑
i=1,j=1

Aij ⊗ XiXj

)
(Idq ⊗ Q)

− (ϕ ⊗ 1l)

(
(Idq ⊗ QT)

(
m

∑
i=1,j=1

Bij ⊗ XiXj

)
(Idq ⊗ Q)

)
� 0.

=⇒(Idq ⊗ QT) f (X)(Idq ⊗ Q) � (ϕ ⊗ 1l)
(
(Idq ⊗ QT)g(X)(Idq ⊗ Q)

)
.

As ϕ is a completely positive linear map, if (Idq ⊗ QT)g(X)(Idq ⊗ Q) � 0, then
(ϕ⊗1ℓ)(Idq ⊗QT)g(X)(Idq ⊗Q) � 0. It follows that (Idq ⊗QT) f (X)(Idq ⊗Q) �
0. Condition (4) is established.

The implications (4) ⇒ (3) ⇒ (1) are obvious.

REMARK 3.2. Theorem 1.1 is still true when the dimension q f of the coeffi-
cients of the polynomial f is not equal to the dimension qg of the coefficients of
the polynomial g. In fact, if q f < qg, we can always add zeros to the coefficients
of f to make q f = qg. Consider the case when q f > qg. Suppose that k is the

smallest positive integer satisfying q f ≤ kqg. Define a new polynomial g̃ =
k
⊕ g.

Then Theorem 1.1 is still valid after replacing g by g̃.

REMARK 3.3. Suppose that we are given multiple noncommutative matrix-
valued homogeneous quadratic polynomials

g1(x), . . . , gL(x),

and there is an X̂ ∈ (SRn̂)m for some n̂ ∈ N+, such that gl(X̂) � 0, l = 1, . . . , L.
Let

L
⊕ f (x) =

 f (x)
. . .

f (x)

 ,
L
⊕

l=1
gl(x) =

g1(x)
. . .

gL(x)

 .(3.11)
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Applying Theorem 1.1 to each diagonal entry of
L
⊕ f (x) and

L
⊕

l=1
gl(x), we can

prove the equivalence between two statements below:

(1) For all X ∈ (SRn)m, n > q, if (Idq ⊗ P)gl(X)(Idq ⊗ P) � 0, l = 1, . . . , L, then
(Idq ⊗ P) f (X)(Idq ⊗ P) � 0, where P : Rn → Rn is the projection to the last q
coordinates.

(2) There is a nonzero completely positive linear mapping ϕ : RLq×Lq → RLq×Lq

such that
L
⊕ f (X)− (ϕ ⊗ 1n)

L
⊕

l=1
gl(X) � 0 for all X ∈ (SRn)m, n ∈ N+.

3.2. S-LEMMA FOR HEREDITARY NONCOMMUTATIVE MATRIX-VALUED POLYNO-
MIALS. Now let f (x) and g(x) be hereditary noncommutative matrix-valued ho-
mogeneous polynomials with the following form

f (x) =
m

∑
i=1,j=1

AijxixT
j , g(x) =

m

∑
i=1,j=1

BijxixT
j ,

where Ai,j, Bi,j ∈ Rq×q and Ai,j = AT
j,i, Bi,j = BT

j,i for all i, j = 1, ..., m. In other
words, we do not assume that the matrix variables for f and g are symmetric.
Now we prove Theorem 1.2 in which the statement (1) is simpler than its counter-
part from Theorem 1.1, i.e., there is no need to apply projections in the hereditary
case.

Proof of Theorem 1.2. The implication (2) ⇒ (1) is obvious.
Let us show the implication (1) ⇒ (2). Assume that condition (2) in The-

orem 1.2 is false. Similar to the discussion in the proof of Theorem 1.1, we can
find a separation matrix Ms � 0 which satisfies the condition (3.4) and has the
decomposition (3.8).

Since we do not require the variable XM
i to be symmetric, instead of con-

structing XM
i as in (3.9), we let

XM
i =

(
vi

1 · · · vi
r
)

.

Letting n = max{r, q}, we add zero rows or columns into XM
i ∈ Rq×r to make it

a square matrix in Rn×n. Without loss of generality, we assume that r > q, and
define new matrices X̃M

i ∈ Rn×n for i = 1, . . . , m,

X̃M
i =


vi

1 · · · vi
r

0 · · · 0
...

. . .
...

0 · · · 0

 .

Let X̃M := (X̃M
1 , . . . , X̃M

m ) ∈ (Rn×n)m. We can translate the inequality conditions
(3.6) and (3.7) into the evaluations of f and g at X̃M ∈ (Rn×n)

m. In particular, we
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have

g(X̃M) =
m

∑
i=1,j=1

Bij ⊗
(

Ms
ij 0

0 0

)
� 0.

Let {e1, e2, . . . , eq} be the standard orthogonal basis of Rq, { f1, f2, . . . , fn} be the
standard orthogonal basis of Rn, and E′ = ∑

q
i=1 ei ⊗ fi, we have

E′T f (X̃M)E′ = E′T
(

m

∑
i=1,j=1

Aij ⊗
(

Ms
ij 0

0 0

))
E′ < 0.

Therefore, condition (1) in Theorem 1.2 is also false. ■

4. OTHER VARIANTS OF S-LEMMA IN NONCOMMUTATIVE CASES

Different from commutative polynomials, there are many ways to extend
the S-lemma for (noncommutative matrix-valued) polynomials with matrix eval-
uations. Comparing with the condition (1) in Theorem 1.1, we consider the fol-
lowing condition which is a more direct extension of the classical S-lemma:
(1′) For all X ∈ (SRn)m, n ∈ N+, if g(X) � 0, then f (X) � 0.

REMARK 4.1. It is straightforward to verify that condition (2) in Theorem
1.1 implies (1′). Therefore, under the assumption that there is an X̂ ∈ (Rn̂×n̂)m

for some n̂ ∈ N+, such that g(X̂) � 0, the condition (1) in Theorem 1.1 implies
the condition (1′), but it is unknown if it is true the other way around.

As illustrated by the following example, without the assumption of the ex-
istence of X̂ such that g(X̂) � 0, (1′) can not imply the condition (1) in Theorem
1.1.

EXAMPLE 4.2. We construct two noncommutative matrix-valued polyno-
mials

f =

(
x1x2 + x2x1 − x2x2 0

0 0

)
⊕
(

0 0
0 0

)
,

g =

(
x1x1 − x2x2 0

0 x1x2 + x2x1

)
⊕
(

0 x1x2 − x2x1
x2x1 − x1x2 0

)
.

For any X ∈ (SRn)2, if g(X) � 0, then we have X1X2 − X2X1 = 0. So X1, X2
have the same eigenspaces. Let X = (X1, X2), where

X1 =
r

∑
i=1

λivivT
i , X2 =

r

∑
i=1

µivivT
i (spectral decomposition).

Assuming that g(X) � 0, we have

(λi)
2 − (µi)

2 ≥ 0 and λiµi ≥ 0 for all i = 1, . . . , r,
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X1X2 + X2X1 − X2X2 =
r

∑
i=1

(2λiµi − µ2
i )vivT

i � 0.

Then f (X) is positive semidefinite. Hence f and g satisfy the condition (1′).
On the other hand, let

X0
1 =

0 0 0
0 0

√
2

0
√

2 0

⊕

0 0 0
0 0 0
0 0 0

 , X0
2 =

0 0 1
0 0 0
1 0 0

⊕

0 0 0
0 0 0
0 0 0

 ,

P =

(
0 0
0 0

)
⊕ Id4.

It is straightforward to verify that

(Id4 ⊗ P)g(X0)(Id4 ⊗ P) =
(

P(X0
1X0

1 − X0
2X0

2)P 0
0 P(X0

1X0
2 + X0

2X0
1)P

)
⊕
(

0 P(X0
1X0

2 − X0
2X0

1)P
P(X0

2X0
1 − X0

1X0
2)P 0

)
.

The top left corner matrix is a positive semidefinite matrix

P(X0
1X0

1 − X0
2X0

2)P =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 � 0.

The other submatrices are all zero matrices

P(X0
1X0

2 + X0
2X0

1)P = ±P(X0
1X0

2 − X0
2X0

1)P = 0.

Therefore, we have
(Id4 ⊗ P)g(X0)(Id4 ⊗ P) � 0.

However, we have

(Id4 ⊗ P) f (X0)(Id4 ⊗ P) =
(

P(X0
1X0

2 + X0
2X0

1 − X0
2X0

2)P 0
0 0

)
⊕
(

0 0
0 0

)
.

The top left corner matrix is negative semidefinite

P(X0
1X0

2 + X0
2X0

1 − X0
2X0

2)P =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 � 0.

Therefore, we have
(Id4 ⊗ P) f (X0)(Id4 ⊗ P) � 0,

and thus the condition (1) in Theorem 1.1 is false for the given f and g.
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With the assumption that there is an X̂ ∈ (SRn̂)m for some n̂ ∈ N+, such
that g(X̂) � 0, whether or not (1′) can imply the condition (1) in Theorem 1.1 is
an interesting problem and we wish to investigate it in future.

Furthermore, one can also consider the following condition:
(1′′) For all X ∈ (SRn)m, n ∈ N+, given a vector v ∈ Rqn, if vT g(X)v ≥ 0 then

vT f (X)v ≥ 0.
The following example shows that the condition (1′′) is strictly stronger

than the condition (1) in Theorem 1.1 and the condition (1′).

EXAMPLE 4.3. We are given the noncommutative matrix-valued polynomi-
als

f =

(
x1x1 0

0 x1x1 − x2x2

)
,

and

g =

(
x1x1 − x2x2 0

0 x1x1

)
.

Let us define a linear map ϕ2 from R2×2 to R2×2

ϕ2 :
(

a b
c d

)
→
(

d 0
0 a

)
.

It is easy to verify that ϕ2 is a completely positive linear map. We have

f (X)− (ϕ2g)(X) = 0 for all X ∈ SRn, n ∈ N+.

The condition (2) in Theorem 1.1 is satisfied. Therefore, condition (1) in Theorem
1.1 and condition (1′) are satisfied too. However, for

X0 = [1, 2]T , v = [0, 1]T ,

we have
vT g(X0)v = 1 > 0, but vT f (X0)v = −3 < 0.

Therefore, the condition (1′′) above is not satisfied.

5. SOME DISCUSSIONS

In this paper, we established several variants of the S-lemma for noncom-
mutative matrix-valued homogeneous quadratic polynomials. In contrast to the
commutative case, the extension of the S-lemma from homogeneous to nonho-
mogeneous polynomials remains an open problem.

In the commutative case, it is straightforward to convert a nonhomogeneous
polynomial to a homogeneous one by introducing a new variable. However, this
process becomes more complicated in noncommutative cases. First of all, due
to the noncommutativity of variables, the homogenization of a noncommutative
polynomial is not unique.
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EXAMPLE 5.1. For the noncommutative matrix-valued nonhomogeneous
quadratic polynomial

f (x) =
(

x2 x
x 1

)
,

we have two different choices of homogenization:

h1(x0, x) =
(

x2 xx0
x0x x2

0

)
and h2(x0, x) =

(
x2 x0x

xx0 x2
0

)
.

For all X ∈ SRn, n ∈ N+, it holds that

f (X) = h1(Idn, X) = h2(Idn, X).

The coefficient matrices of h1(X0, X) and h2(X0, X) satisfy the following condi-
tions: 

0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 � 0,


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 6� 0.

By Theorem 2.2, we know that h1(X0, X) is positive semidefinite for all X0, X ∈
SRn, n ∈ N+, while h2(X0, X) is not positive semidefinite for all X0, X ∈ SRn,
n ∈ N+.

Unlike the commutative case proved in [55, 56], it is unclear how to derive
S-lemma for nonhomogeneous quadratic polynomials from homogeneous ones.
In particular, for a general nonhomogeneous quadratic polynomial f and its ho-
mogenization h, we have

h(X0, X) 6= X0 f (X− 1
2

0 XX− 1
2

0 )X0, X ∈ (SRn)m, X0 ∈ SRn is invertible.

Thus, the S-lemma for general non-homogeneous quadratic polynomials in non-
commutative cases are still unknown and left for future research.
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tive comments. We would like to thank Ke Ye and Jianting Yang for their helpful
discussions. This research is supported by the National Key Research Project of
China 2018YFA0306702 and the National Natural Science Foundation of China
12071467.

Appendix A. An alternative proof of Theorem 2.2

We give below a different proof of Theorem 2.2 based on the Choi matrix.
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Proof of Theorem 2.2. Let A′
represent the canonical shufle of A, i.e.,

A′
= [A′

ij]i,j=1,...,q where A′
ij = [〈Akj, Eij〉]k,l=1,...,m.

Then, A � 0 if and only if A′ � 0 [48, Proposition 1]. Using the matrix A′
as the

Choi matrix, define a linear map

ψ f : Rm×m → Rq×q

M 7→


〈A′

11, M〉 · · · 〈A′
1q, M〉

...
. . .

...
〈A′

q1, M〉 · · · 〈A′
qq, M〉

 .

According to Theorem 2.1, the linear map ψ f is completely positive. Hence, ψ f ⊗
1n is a positive linear map for all n ∈ N+. It is essential to notice that

f (X) = ψ f ⊗ 1n

X1X1 · · · X1Xm
...

. . .
...

XmX1 · · · XmXm


for all X ∈ (SRn)m, n ∈ N+. Then we know that f (X) is positive semidefinite for
all X ∈ (SRn)m, n ∈ N+.

On the other hand, we define f ′(X) = ∑m
i=1,j=1 XiXj ⊗ Aij. It is obvious that

for any X ∈ (SRn)m, n ∈ N+,

f (X) � 0 ⇔ f ′(X) � 0.

Let X0 := (X0
1 , . . . , X0

m) ∈ (SR(m+1))m, where each X0
i is the matrix whose

(1, i + 1)-th entry and (i + 1, 1)-th entry are 1 and all others are 0, i.e.,

X0
i :=



(i + 1)-th
0 · · · 1 · · · 0
...

. . .
...

. . .
...

(i + 1)-th 1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

.

It is easy to check that

f ′(X0) =


∑m

i=1 Aii
A11 · · · A1m

...
. . .

...
Am1 · · · Amm

 .

By assumption f ′(X0) � 0, and hence we have A � 0.
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