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ON ISOLATION OF SIMPLE MULTIPLE ZEROS

AND CLUSTERS OF ZEROS OF POLYNOMIAL SYSTEMS

ZHIWEI HAO, WENRONG JIANG, NAN LI, AND LIHONG ZHI

Abstract. Given a well-constrained polynomial system f associated with a
simple multiple zero x of multiplicity μ, we give a computable separation bound

for isolating x from the other zeros of f . When x is only given with a limited
accuracy, we give a numerical criterion for isolating a nearby cluster of μ zeros
of f (counting multiplicities) in a ball around x.

1. Introduction

There are two challenging problems in solving polynomial systems with singular
zeros: computing the local separation bound of an exactly given singular zero and
isolating a cluster of zeros near an approximately given singular zero.

Definition 1.1. Given a well-constrained1 polynomial system f = {f1, . . . , fn},
where fi ∈ C[X1, . . . , Xn] for i = 1, . . . , n, then x ∈ Cn is an isolated zero of f of
multiplicity μ if it satisfies the following three conditions:

(1) f(x) = 0,
(2) there exists a ball B(x, r) of radius r > 0 such that B(x, r)∩ f−1(0) = {x},
(3) a generic analytic function g sufficiently close to f possesses μ simple zeros

in B(x, r).

The last condition is related to Rouché’s Theorem [2, Theorem 2.12] which shows
that any analytic g satisfying

(1.1) ‖f(y)− g(y)‖ < ‖f(y)‖ ∀ y ∈ ∂B(x, r) := {y ∈ Cn | ‖y − x‖ = r},
has a finite number of zeros in B(x, r) and the sum of multiplicities of zeros is μ.

According to Definition 1.1, the problem of computing the local separation bound
of an exactly given singular zero x is to determine an upper bound of r such that
B(x, r) isolates x from the other zeros of f . The problem of isolating a cluster of
zeros of f near an approximately given singular zero x is to construct a nearby
polynomial system g such that it possesses x as its isolated zero of multiplicity μ
and satisfies (1.1), which implies that f has a cluster of μ zeros in B(x, r) according
to Rouché’s Theorem.
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Our contributions. Given a well-constrained polynomial system f = {f1, . . . , fn},
where fi ∈ C[X1, . . . , Xn] for i = 1, . . . , n, we generalize Dedieu and Shub’s quanti-
tative results for simple double zeros [10] to simple multiple zeros of arbitrary high
multiplicities.

Let Df(x) denote the Jacobian matrix of f at a point x ∈ Cn. Given an isolated
zero x of f of multiplicity μ, if corank(Df(x)) = 1, then its multiplicity structure
can be described by a closed basis {Λ0,Λ1, . . . ,Λμ−1} of the local dual space of f at
x; see Section 2.1. Let Δk be the nonlinear component of the kth order differential
functional Λk.

Definition 1.2. A point x ∈ Cn is a simple multiple zero of a polynomial system
f : Cn → Cn of multiplicity μ, if

(A) f(x) = 0,
(B) dimkerDf(x) = 1,
(C) Δk(f) ∈ im Df(x), for k = 2, . . . , μ− 1,
(D) Δμ(f) /∈ im Df(x).

Definition 1.3. Suppose x is a simple multiple zero of f . Then Df(x) is of normal
form if

Df(x) =

(
0 Df̂(x)
0 0

)
,(1.2)

where Df̂(x) is the invertible Jacobian matrix at x of the polynomials f̂ = {f1, . . . ,
fn−1} with respect to the variables X̂ = {X2, . . . , Xn}.

If x is a simple multiple zero of f and Df(x) is of normal form, then

Δk(f) ∈ im Df(x) = im

(
Df̂(x)

0

)
⇔ Δk(fn) = 0.

Therefore, the conditions (C), (D) in Definition 1.2 are equivalent to

(C) Δk(fn) = 0, for k = 2, . . . , μ− 1,
(D) Δμ(fn) �= 0.

We show in Section 2.2 that it is always possible to perform a unitary transformation
to obtain an equivalent polynomial system such that its Jacobian matrix at the
simple multiple zero is of normal form. Since the unitary transformation does not
change the distance between two zeros of f , without loss of generality, we can always
assume condition (1.2) is satisfied.

Our major results are summarized as follows:

• We propose a local separation bound for isolating a simple multiple zero
x of multiplicity μ from the other zeros of f . Let y be another zero of f .
Then

‖y − x‖ ≥ d

2γμ(f, x)μ
,
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where d is the smallest positive real root of a univariate equation that relies
only on μ (see (3.11) and (3.23)) and the constants

γμ(f, x) = max(γ̂μ(f, x), γμ,n(f, x)),

γ̂μ(f, x) = max

⎛
⎝1, sup

k≥2

∥∥∥∥∥Df̂(x)−1 · D
kf̂(x)

k!

∥∥∥∥∥
1

k−1

⎞
⎠ ,

γμ,n(f, x) = max

(
1, sup

k≥2

∥∥∥∥ 1

Δμ(fn)
· D

kfn(x)

k!

∥∥∥∥
1

k−1

)
;

see Theorem 3.4 in Section 3.1 and Theorem 3.17 in Section 3.2.
• We propose a numerical criterion for isolating a cluster of μ zeros in the
neighborhood of an approximately given simple multiple zero x from the
other zeros of f . If

‖f(x)‖+
∑

1≤k≤μ−1

‖Hk‖
(

d

4γμ(g, x)
μ

)k

<
dμ+1

2 (4γμ(g, x)
μ
)
μ ‖A−1‖

holds, where

A−1 =

(
1√
2
Df̂(x)−1 0

0
√
2

Δμ(fn)

)
∈ Cn×n,

g(X) = f(X)− f(x)−
∑

1≤k≤μ−1

Hk(X − x)k,

H1 =

(
∂f̂(x)
∂X1

0
∂fn(x)
∂X1

∂fn(x)

∂X̂

)
∈ Cn×n,

Hk =

⎛
⎝( 0 0

0 Δk(fn)

)
0n× · · · × n
︸ ︷︷ ︸

k

×(n−1)

⎞
⎠ ∈ C

n× · · · × n
︸ ︷︷ ︸

k+1 , 2 ≤ k ≤ μ− 1,

then f has μ zeros (counting multiplicities) inside the ball of radius d
4γμ(g,x)

μ

around x; see Theorem 3.8 in Section 3.1 and Theorem 3.20 in Section 3.2.

Related works. Our work is closely related to Dedieu and Shub’s quantitative re-
sults [10] for simple double zeros, which generalized Smale’s α-theory [3,46–50] for
simple zeros. Dedieu and Shub [10] explicitly gave an upper bound for separating
simple double zeros of analytic functions, and a numeric criterion for separating a
cluster of two zeros (counting multiplicities). Yakoubsohn [52] extended α-theory
to clusters of zeros of univariate polynomials and provided an algorithm to compute
them [53]. Giusti, Lecerf, Salvy, and Yakoubsohn [14] studied criteria on point esti-
mates for locating clusters of zeros of analytic functions in the univariate case and
provided bounds on the diameter of the cluster of μ zeros (counting multiplicities).
They proposed an algorithm based on Schröder’s iteration for approximating the
cluster and a stopping criterion which guarantees that the algorithm quadratically
converges to the cluster. In [15], they further generalized their results to locate and
approximate clusters of zeros of analytic maps of embedding dimension one via the
implicit function theorem and the symbolic deflation technique. We are inspired by
their idea of reduction to one variable, but we perform a unitary transformation to
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obtain an equivalent polynomial system such that its Jacobian matrix at the sim-
ple multiple zero is of normal form. Then we efficiently compute a closed basis of
the local dual space instead of computing the power series expansion of an implic-
itly known univariate analytic function, which might need a very high precision to
guarantee the correctness of their algorithm, especially for some ill-posed systems.

There are other different numeric and symbolic approaches to compute multi-
ple zeros of polynomial systems. In [40], Rall studied the convergence property
of Newton’s method for singular solutions, and many modifications of Newton’s
method to restore the quadratic convergence for singular solutions have been pro-
posed in [7–9, 18, 40–42].

In [17], Griewank constructed a bordered system from the initial system f and
the singular value decomposition of the Jacobian matrix Df(x) to restore the qua-
dratic convergence of Newton’s method when Df(x) has corank one. The method
was extended by Shen and Ypma [44, 45] to the case where Df(x) has arbitrary
high rank deficiency.

In [37, 39, 54], Ojika et al. proposed a deflation method to construct a regular
system to refine an approximate isolated singular solution to high accuracy. The
deflation method has been further developed and generalized by Leykin, Verschelde
and Zhao [28, 29] for singular solutions whose Jacobian matrix has arbitrary high
rank deficiency and for overdetermined polynomial systems. Furthermore, they
proved that the number of deflations needed to derive a regular solution of an
augmented system is strictly less than the multiplicity. Dayton and Zeng [4, 5]
proved that the depth of the local dual space is a tighter bound for the number
of deflations. In [27], Lecerf gave a deflation algorithm which outputs a regular
triangular system at the singular solution. In [34], Mantzaflaris and Mourrain
proposed a one-step deflation method and verified a multiple root of a nearby system
with a given multiplicity structure, which depends on the accuracy of the given
approximate multiple root. Hauenstein, Mourrain, and Szanto [20, 21] proposed a
novel deflation method which extends their early works [1,34] to verify the existence
of an isolated singular zero with a given multiplicity structure up to a given order.
More recently, in [16], Giusti and Yakoubsohn proposed a new deflation sequence
using the kerneling operator defined by the Schur complement of the Jacobian
matrix and proved a new γ-theorem for analytic regular systems.

Since arbitrary perturbations of coefficients may transform an isolated singular
solution into a cluster of simple roots, it is more difficult to verify that a polynomial
system has a multiple root. However, one can always certify that a perturbed system
has an isolated multiple zero or certify that the polynomial system has a cluster of
μ zeros in a small ball centered at x.

In [24], based on the deflated square systems proposed by Yamamoto in [54],
Kanzawa and Oishi presented a numerical method for proving the existence of
“imperfect singular solutions” of nonlinear equations with guaranteed accuracy.
Rump and Graillat [43] described a numeric algorithm for computing verified and
narrow error bounds with the property that a perturbed system is certified to
have a simple double zero within the computed error bounds. In [32], Li and Zhi
generalized the algorithm in [43] to compute guaranteed error bounds such that a
perturbed system is proved to have a breadth-one isolated singular solution within
the computed error bounds. In [33], they further generalized their results to treat
isolated singular zeros in arbitrary cases.
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In [11, 25, 26], Kearfott et al. presented completely different methods based on
verifying a nonzero topological degree to certify the existence of singular zeros of
nonlinear systems.
Structure of the paper. In Section 2, we first recall some notation and show
how to incrementally compute a closed basis of the local dual space of f at a
simple multiple zero x of multiplicity μ. Then we demonstrate how to compute an
equivalent polynomial system such that its Jacobian matrix at the simple multiple
zero is of normal form. In Section 3, we begin by showing how to extend the main
results in [10] to simple triple zeros. We present an upper bound for separating
a simple triple zero x from the other zeros of f and an explicit criterion that
guarantees the existence of a cluster of three zeros of f around an approximately
given x. Then we generalize these results to simple multiple zeros with arbitrary
high multiplicities. In Section 4, we demonstrate the performance of our algorithm
on isolating simple multiple zeros and clusters of zeros for a list of benchmark
examples. We also compare our algorithm with [10] and [15] with two detailed
examples.

2. Definition of simple multiple zeros

2.1. Local dual space. Let dα
x : C[X] → C denote the differential functional

defined by

(2.1) dα
x (g) =

1

α1! · · ·αn!
· ∂|α|g

∂Xα1
1 · · · ∂Xαn

n
(x) ∀g ∈ C[X],

where x ∈ Cn and α = [α1, . . . , αn] ∈ Nn. Clearly,

(2.2) dα
x

(
(X − x)β

)
=

{
1, if α = β,
0, otherwise.

Let If denote the ideal generated by f = {f1, . . . , fn}, where fi ∈ C[X1, . . . , Xn].
The local dual space of If at an isolated zero x is a subspace of Dx = spanC{dα

x},

(2.3) Df,x = {Λ ∈ Dx | Λ(g) = 0 ∀g ∈ If}.

When the zero x is clear from the context, we write dα1
1 · · · dαn

n instead of dα
x , where

dαi
i =

1

αi!
· ∂αi

∂Xαi
i

, for i = 1, . . . , n.

Let D(k)
f,x denote the subspace of Df,x of differential functionals of order bounded

by k. We define

(1) breadth κ = dim
(
D(1)

f,x

)
− dim

(
D(0)

f,x

)
,

(2) depth ρ = min
({

k | dim
(
D(k+1)

f,x

)
= dim

(
D(k)

f,x

)})
,

(3) multiplicity μ = dim
(
D(ρ)

f,x

)
.

If x is an isolated zero of f , then 1 ≤ κ ≤ n and ρ < μ < ∞.
Let Φσ : Dx → Dx denote the morphism defined by

Φσ(d
α1
1 · · · dαn

n ) =

{
dα1
1 · · · dασ−1

σ · · · dαn
n , if ασ > 0,

0, otherwise.
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Then computing a closed basis of D(k)
f,x is done essentially by matrix-kernel compu-

tations based on the stability property of Df,x [5, 35, 36, 51]:

(2.4) ∀Λ ∈ D(k)
f,x Φσ(Λ) ∈ D(k−1)

f,x , σ = 1, . . . , n.

In this paper, we deal with the simple multiple zeros satisfying f(x) = 0 and
dimkerDf(x) = 1. They are also called breadth-one multiple zeros in [5] because

dim(D(k)
f,x) − dim(D(k−1)

f,x ) = 1, k = 1, . . . , ρ, and ρ = μ − 1. Therefore, for the
breadth-one case,

(2.5) Df,x = spanC{Λ0 = 1,Λ1, . . . ,Λμ−1},
where deg(Λk) = k. Let Ψσ : Dx → Dx denote the morphism defined by

Ψσ(d
α1
1 · · · dαn

n ) =

{
dασ+1
σ · · · dαn

n , if α1 = · · · = ασ−1 = 0,
0, otherwise.

Proposition 2.1 ([30, Theorem 3.1]). Suppose we are given a simple multiple
zero x satisfying f(x) = 0, dim kerDf(x) = 1. Let (a1,1, . . . , a1,n)

T ∈ kerDf(x).
Without loss of generality, we assume a1,1 = 1. Then

Λ1 = d1 + a1,2d2 + · · ·+ a1,ndn ∈ D(1)
f,x,

and Λk can be incrementally constructed by Λk = Δk +ak,2d2+ · · ·+ak,ndn, where

(2.6) Δk =

n∑
σ=1

Ψσ(a1,σΛk−1 + · · ·+ ak−1,σΛ1), 2 ≤ k ≤ μ.

The parameters ak,2, . . . , ak,n are determined by solving the linear system

(2.7)

⎛
⎜⎝

d2(f1) · · · dn(f1)
...

. . .
...

d2(fn) · · · dn(fn)

⎞
⎟⎠
⎛
⎜⎝

ak,2
...

ak,n

⎞
⎟⎠ = −

⎛
⎜⎝

Δk(f1)
...

Δk(fn)

⎞
⎟⎠ , 2 ≤ k < μ.

When μ = 2, suppose kerDf(x) = spanC{v} and ‖v‖ = 1. Then Λ1(f) =
Df(x) · v = v1d1(f) + · · ·+ vndn(f) and

Δ2(f) =

n∑
σ=1

Ψσ(vσΛ1)(f) =

n∑
σ=1

Ψσ(vσ(v1d1 + · · ·+ vndn))(f)

=
∑
i>j

vivjdidj(f) + Σv2i d
2
i (f) =

1

2
D2f(x)(v, v).

Therefore, the condition Δ2(f) /∈ im Df(x) in Definition 1.2 is equivalent to the
condition D2f(x)(v, v) /∈ im Df(x) for simple double zeros; see formula (B) in [10].

In the following example, we show how to incrementally compute Λk and check
the conditions satisfied by the simple multiple zero listed in Definition 1.2.

Example 2.2 ([39]). Given an isolated zero x = (1, 2) of a polynomial system,

(2.8) f =

⎧⎨
⎩
X2

1 +X2 − 3,

X1 +
1

8
X2

2 − 3

2
.

• For k = 1, since Df(x) =
[
2 1

1
1
2

]
, we have Λ1 = d1 − 2d2.
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• For k = 2, according to (2.6), we construct Δ2 = d21 − 2d1d2 + 4d22. Then

Δ2(f) =

[
1
1
2

]
∈ im Df(x), and we solve (2.7) to obtain Λ2 = Δ2 − d2.

• For k = 3, according to (2.6), Δ3 = d31 − 2d21d2 + 4d1d
2
2 − d1d2 − 8d32 + 2d22,

and Δ3(f) =

[
0
1
4

]
/∈ im Df(x). Therefore, x is a simple triple zero of f .

2.2. Unitary transformations. We show below that it is always possible to per-
form a unitary transformation to obtain an equivalent polynomial system such that
its Jacobian matrix at the simple multiple zero is of normal form. We also show
that the unitary transformation does not change the distance between two zeros.

Let x be a simple multiple zero of f . By Definition 1.2, we have dimkerDf(x) =
1. Suppose the Jacobian matrix Df(x) is not of normal form. We compute two
unit vectors v ∈ kerDf(x) and u ∈ kerDf(x)T and then apply the Gram–Schmidt
process to obtain the unitary vectors v1, . . . , vn−1 and u1, . . . , un−1 such that

UT ·Df(x) ·W =

(
0 M
0 0

)

where W = (v, v1, . . . , vn−1), U = (u1, . . . , un−1, u) are two unitary matrices and
M ∈ C(n−1)×(n−1) is invertible. Let g = UT · f(W · X). Suppose x is a simple
multiple zero of f of multiplicity μ. Then W ∗x is a simple multiple zero of g of
multiplicity μ and the Jacobian matrix Dg(W ∗x) is of normal form, since

Dg(W ∗x) = UT ·Df(x) ·W =

(
0 M
0 0

)
.

Furthermore, suppose y is another zero of f . Then W ∗y is another zero of g,
and

(2.9) ‖W ∗x−W ∗y‖ = ‖W ∗(x− y)‖ = ‖x− y‖.

Remark 2.3. It is clear that if x is given as an exact simple multiple zero of f , then
as shown above, we can always construct an exact unitary transformation

(2.10) W ∗W = WW ∗ = In×n

such that W ∗x is a simple multiple zero of g = UT · f(W ·X) of multiplicity μ and
Dg(W ∗x) is of normal form. According to (2.9), an exact unitary transformation
does not change the distance between two zeros. Therefore, in the following sections,
if x is exactly given, then we always assume that Df(x) is of normal form.

Example 2.2 (continued). We compute two unit vectors v = u =

[ √
5
5

− 2
√
5

5

]

such that Df(x)v = Df(x)Tu =

[
0
0

]
. Then use the Gram–Schmidt process to

get v1 = u1 =

[
2
√
5

5√
5
5

]
such that

[
2
√
5

5

√
5
5√

5
5 − 2

√
5

5

]
·Df(x) ·

[ √
5
5

2
√
5

5

− 2
√
5

5

√
5
5

]
=

[
0 5

2
0 0

]
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

886 ZHIWEI HAO, WENRONG JIANG, NAN LI, AND LIHONG ZHI

which is of normal form. By performing a unitary transformation introduced above,

we transform x = (1, 2) to z = (− 3
√
5

5 , 4
√
5

5 ) and the polynomial system f to

(2.11) g =

⎧⎪⎪⎨
⎪⎪⎩

√
5

10
X2

1 +
3
√
5

10
X1X2 +

13
√
5

40
X2

2 − 3

5
X1 +

4

5
X2 −

3
√
5

2
,

√
5

5
X1X2 +

3
√
5

20
X2

2 − 4

5
X1 −

3

5
X2.

Another zero y = (−3,−6) of f is transformed to w = ( 9
√
5

5 ,− 12
√
5

5 ). The distance
between x and y is equal to the distance between z and w, i.e., ‖y−x‖ = ‖z−w‖ =

4
√
5. It is clear that Dg(z) =

[
0 5

2
0 0

]
. Moreover, according to (2.6) and (2.7),

we have

Δ2(g2) = d21(g2) = 0,Δ3(g2) = d31(g2)−
√
5

25
d1d2(g2) = − 1

25
.

Therefore, z is a simple triple zero of g and Dg(z) is of normal form.

Remark 2.4. If x is only given with limited accuracy, we can compute two ap-
proximate null vectors v and u of kerDf(x) and kerDf(x)T , and then use the
Gram–Schmidt process to get two unitary matrices W = (v, v1, . . . , vn−1), U =
(u1, . . . , un−1, u). At this moment, g = UT · f(W · X) has a cluster of zeros near
W ∗x and Dg(W ∗x) is of normal form approximately, i.e., the entries of its first
column and its last row are all approximately zero. According to (2.9), the unitary
transformation does not change the distance between two zeros. Therefore, if we
can certify that B(W ∗x, r) contains μ zeros of g, then B(x, r) is certified to contain
μ zeros of f .

Remark 2.5. It is also possible to perform the unitary transformation via the sin-
gular value decomposition. Let Df(x) = U ·

(
Σn−1 0

0 0

)
·V ∗, where U = (u1, . . . , un),

V = (v1, . . . , vn) are unitary matrices, V ∗ is the Hermitian transpose of V , and Σn−1

is an invertible diagonal matrix. Let g = U∗·f(W ·X), whereW = (vn, v1, . . . , vn−1)
is also a unitary matrix. Suppose x is a simple multiple zero of f of multiplicity
μ. Then W ∗x is a simple multiple zero of g of multiplicity μ and Dg(W ∗x) is of
normal form, since

Dg(W ∗x) = U∗ ·Df(x) ·W = U∗ · U · Σ · V ∗ ·W

=

(
Σn−1 0
0 0

)
·
(

0 In−1

1 0

)
=

(
0 Σn−1

0 0

)
.

It should be noted that if we perform the numerical singular value decomposition
of Df(x), then the matrix W ∗ only satisfies condition (2.10) approximately, i.e.,
‖W ∗W − In×n‖ ≤ ε and ‖WW ∗ − In×n‖ ≤ ε for a given tolerance ε. The change
in the Euclidian distance ‖W ∗x−W ∗y‖ and ‖x− y‖ is negligible; see the results
obtained for Example 2.2 in Section 3.1.

3. Local separation bound and cluster location

We start by showing how to extend the main results in [10] to simple triple
zeros. Then we generalize these quantitative results to simple multiple zeros with
arbitrary high multiplicities.
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3.1. Simple triple zeros. Let x be a simple triple zero of f and suppose Df(x)

is of normal form, i.e., ∂fi(x)
∂X1

= 0, ∂fn(x)
∂Xi

= 0 for 1 ≤ i ≤ n, and

Δ2(fn) = 0, Δ3(fn) �= 0.(3.1)

Recall that Df̂(x) is the Jacobian matrix of f̂ = {f1, . . . , fn−1} with respect to

X̂ = {X2, . . . , Xn}, which is invertible since Df(x) is of normal form. Let Λ0 = 1
and Λ1 = d1. According to (2.6), we have Δ2 = d21,

Λ2 = d21 + a2,2d2 + · · ·+ a2,ndn,

where a2,2, . . . , a2,n satisfy⎛
⎜⎝

a2,2
...

a2,n

⎞
⎟⎠ = −Df̂(x)−1

⎛
⎜⎝

Δ2(f1)
...

Δ2(fn−1)

⎞
⎟⎠ = −Df̂(x)−1

⎛
⎜⎝

d21(f1)
...

d21(fn−1)

⎞
⎟⎠ .

Moreover, since a1,1 = 1, a2,1 = 0, we have

Δ3 =
n∑

σ=1

Ψσ(a1,σΛ2 + a2,σΛ1) = Ψ1(Λ2) +
n∑

σ=1

Ψσ(a2,σd1)

= d31 + a2,2d1d2 + · · ·+ a2,nd1dn

= d31 + (d1d2, . . . , d1dn) ·
(
−Df̂(x)−1

)
·

⎛
⎜⎝

d21(f1)
...

d21(fn−1)

⎞
⎟⎠ .

Since dαi
i = 1

αi!
· ∂αi

∂X
αi
i

, i = 1, . . . , n, the condition (3.1) can be written explicitly as

Δ2(fn) =
1

2

∂2fn(x)

∂X2
1

= 0,

Δ3(fn) =
1

6

∂3fn(x)

∂X3
1

− ∂2fn(x)

∂X1∂X̂
·Df̂(x)−1 1

2

∂2f̂(x)

∂X2
1

�= 0.

For two nonzero vectors a, b ∈ Cn, we denote

(3.2) dP (a, b) = arccos
|〈a, b〉|
‖a‖ · ‖b‖

as the angle between them. Let y be another point in Cn with y �= x and define

(3.3) y − x = (ζ, η2, . . . , ηn)
T , η = (η2, . . . , ηn) .

Let ϕ = dP (v, y − x), v = (1, 0, . . . , 0)T ∈ kerDf(x); then we derive

(3.4) |ζ| = ‖y − x‖ cosϕ, ‖η‖ = ‖y − x‖ sinϕ.
For k ≥ 2, we denoteDkf̂(x) as the partial derivatives of f̂ of order k. We generalize
the main results in [10] to simple triple zeros.

The following lemma has been given in [10, Lemma 1] that is devoted to bound

the value of
∥∥∥Df̂(x)−1f̂(y)

∥∥∥ from below when 0 < ϕ ≤ π
2 . We present its short

proof for completeness.

Lemma 3.1. If γ̂3(f, x)‖y − x‖ ≤ 1
2 , then

(3.5)
∥∥∥Df̂(x)−1f̂(y)

∥∥∥ ≥ ‖y − x‖ sinϕ− 2γ̂3(f, x)‖y − x‖2.
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Proof. By Taylor’s expansion of f̂(y) at x, and ∂f̂(x)
∂X1

= 0, we derive

f̂(y) = f̂(x) +Df̂(x)η +
∑
k≥2

Dkf̂(x)(y − x)k

k!
.

Since f̂(x) = 0 and Df̂(x) is invertible, it implies that

(3.6) η = Df̂(x)−1f̂(y)−
∑
k≥2

Df̂(x)−1D
kf̂(x)(y − x)k

k!
.

By the triangle inequality, we conclude that

‖y − x‖ sinϕ = ‖η‖ ≤
∥∥∥Df̂(x)−1f̂(y)

∥∥∥+∑
k≥2

∥∥∥∥∥Df̂(x)−1D
kf̂(x)

k!

∥∥∥∥∥ ‖y − x‖k

≤
∥∥∥Df̂(x)−1f̂(y)

∥∥∥+∑
k≥2

γ̂3(f, x)
k−1‖y − x‖k

≤
∥∥∥Df̂(x)−1f̂(y)

∥∥∥+ 2γ̂3(f, x)‖y − x‖2,

where the last inequality comes from the assumption that γ̂3(f, x)‖y− x‖ ≤ 1
2 . �

For simplicity of symbols, we denote γ3(f, x) = max(γ̂3(f, x), γ3,n(f, x)) by γ3 in
the subsection. Let

(3.7) A =

( √
2Df̂(x) 0
0 1√

2
Δ3(fn)

)
∈ Cn×n.

Since Df̂(x) is invertible and Δ3(fn) �= 0, we have

(3.8) A−1 =

(
1√
2
Df̂(x)−1 0

0
√
2

Δ3(fn)

)
.

The following lemma extends the result [10, Lemma 3] for simple double zeros to
simple triple zeros. It gives the lower bound of ‖A−1f(y)‖ when 0 ≤ ϕ ≤ arctan 1√

2
.

The proof is based on Taylor’s expansion of fn at x and the conditions ∂fn(x)
∂X1

=

· · · = ∂fn(x)
∂Xn

= ∂2fn(x)
∂X2

1
= 0, Δ3(fn) �= 0. The proof of Lemma 3.2 is quite technical,

so we move it to the Appendix.

Lemma 3.2. If γ3‖y − x‖ ≤ 1
2 and 0 ≤ ϕ ≤ arctan 1√

2
, we have

(3.9) ‖A−1f(y)‖ ≥ 2γ3
3‖y − x‖3(h(ϕ)− ‖y − x‖)

where

(3.10) h(ϕ) =
cos3 ϕ− 8γ2

3 cos
2 ϕ sinϕ− 7γ2

3 cosϕ sin2 ϕ− 2γ2
3 sin

3 ϕ

2γ3
3(1 + 2 cosϕ+ sinϕ)

.

The following lemma extends the result of [10, Lemma 4] for simple double zeros
to simple triple zeros by finding a suitable θ ∈ (0, arctan 1√

2
] such that Lemmas 3.1

and 3.2 can be used to bound ‖y − x‖ from below by a universal formula.
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Lemma 3.3. Let d ≈ 0.08507 be the positive root of the equation

(3.11) (1− 2d− 8d2)
√
1− d2 − 9d− d2 + 6d3 = 0,

and let θ be defined by sin θ = d
γ2
3
. If γ3‖y − x‖ ≤ 1

2 and y ∈ Cn, then either

θ ≤ ϕ ≤ π

2
and ‖A−1f(y)‖ ≥

√
2γ3‖y − x‖

(
sin θ

2γ3
− ‖y − x‖

)
or

0 ≤ ϕ ≤ θ and ‖A−1f(y)‖ ≥ 2γ3
3‖y − x‖3

(
sin θ

2γ3
− ‖y − x‖

)
.

Proof. If θ ≤ ϕ ≤ π
2 , by Lemma 3.1, we derive

√
2‖A−1f(y)‖ =

∥∥∥∥∥
(

Df̂(x)−1f̂(y)
2

Δ3(fn)
fn(y)

)∥∥∥∥∥ ≥
∥∥∥Df̂(x)−1f̂(y)

∥∥∥
≥ 2γ3‖y − x‖

(
sin θ

2γ3
− ‖y − x‖

)
.

If 0 ≤ ϕ ≤ arctan 1√
2
, by Lemma 3.2, we derive

‖A−1f(y)‖ ≥ 2γ3
3‖y − x‖3 (h(ϕ)− ‖y − x‖) ,

where h(ϕ) is defined in (3.10). We claim that

(3.12) h(θ) ≥ sin θ

2γ3
.

Because sin θ = d
γ2
3
, it is sufficient to show that

(
1− d2

γ4
3

) 3
2

− 8d

(
1− d2

γ4
3

)
− 7d2

γ2
3

√
1− d2

γ4
3

− 2d3

γ4
3

− d− 2d

√
1− d2

γ4
3

− d2

γ2
3

≥ 0.

Since the left function for γ3 ≥ 1 is increasing for ∀d ∈
[
0, 1

6

]
, similar to the proof

of [10, Lemma 4], it is sufficient to check this inequality for γ3 = 1, i.e.,

(1− 2d− 8d2)
√
1− d2 − 9d− d2 + 6d3 ≥ 0.

The smallest positive root of equation (3.11), d ≈ 0.08507 ∈
[
0, 1

6

]
, is actually a

valid value. Therefore, the claim h(θ) ≥ sin θ
2γ3

follows.

Furthermore, for 0 ≤ ϕ ≤ θ ≤ arctan 1√
2
, the function h(ϕ) is nonnegative and

decreasing since its numerator is decreasing, its denominator is increasing, and both
of them are nonnegative. It implies that

h(ϕ) ≥ h(θ) ≥ sin θ

2γ3
.

Since θ ≤ arctan 1√
2
for d ≈ 0.08507 and γ3 ≥ 1, by Lemma 3.2, we conclude that

‖A−1f(y)‖ ≥ 2γ3
3‖y − x‖3 (h(ϕ)− ‖y − x‖) ≥ 2γ3

3‖y − x‖3
(
sin θ

2γ3
− ‖y − x‖

)
,

for 0 ≤ ϕ ≤ θ. �

Let d ≈ 0.08507 be the smallest positive root of the equation (3.11). The follow-
ing four theorems generalize the main results in [10] to simple triple zeros.
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Theorem 3.4. Let x be a simple triple zero of f . If y is another zero of f , then

(3.13) ‖y − x‖ ≥ d

2γ3
3

.

Proof. When γ3‖y − x‖ ≤ 1
2 , by Lemma 3.3 and sin θ = d

γ2
3
, we conclude that

‖y − x‖ ≥ sin θ

2γ3
=

d

2γ3
3

,

since f(y) = 0. When γ3‖y−x‖ ≥ 1
2 , the conclusion holds as γ3 ≥ 1 and d < 1. �

According to Theorem 3.4, for r < d
2γ3

3
, x is the only zero in the ball B(x, r). The

local separation bound d
2γ3

3
can be explicitly computed as shown by the following

example.

Example 2.2 (continued). We have shown in Section 2.2, after performing the
unitary transformation, that we have a polynomial system g (2.11), which has a

simple triple zero z = (− 3
√
5

5 , 4
√
5

5 ). Because Dg(z) is of normal form and μ = 3,
we calculate

γ̂3 = γ̂3(g, z) = max

(
1,

∥∥∥∥25 · D
2g1(z)

2

∥∥∥∥
)

= 1,

γ3,2 = γ3,2(g, z) = max

(
1,

∥∥∥∥25 · D2g2(z)

2

∥∥∥∥
)

= 5
√
5,

and thus γ3 = max(γ̂3, γ3,2) = 5
√
5. According to Theorem 3.4, d

2γ3
3
≈ 0.00003044

is an upper bound of r such that B(z, r) isolates z from the other zeros of g. Since
the unitary transformation does not change the distance between two zeros, we
guarantee that x is the only zero of f in the ball B(x, r) for r < 0.00003044.

Remark 3.5. The separation bound plays an important role in the subdivision-based
algorithms (like [12]) for isolating all zeros of a polynomial system. For Example
2.2, although our local separation bound 0.00003044 is still smaller than the actual
distance ‖x−y‖ = 4

√
5, it is much better than the global separation bound� 10−10

computed by the method in [12].

The separation bound can be used to obtain a numerical criterion for isolating a
cluster of three zeros in the neighborhood of an approximately given simple triple
zero x from the other zeros of f . The following theorem provides a lower bound of
the value ‖f(y)‖ for any y in the ball B(x, d

4γ3
3
).

Theorem 3.6. Let x be a simple triple zero of f . If ‖y − x‖ ≤ d
4γ3

3
, then

‖f(y)‖ ≥ d‖y − x‖3
2‖A−1‖ .

Proof. When ‖y − x‖ = ‖y − x‖ ≤ d
4γ3

3
= sin θ

4γ3
, by Lemma 3.3, we have

‖A−1f(y)‖ ≥ 2γ3
3‖y−x‖3

(
sin θ

2γ3
− ‖y − x‖

)
≥ 2γ3

3‖y−x‖3 sin θ
4γ3

=
d

2
‖y−x‖3. �

For R > 0, we define dR(f, g) = max‖y−x‖≤R ‖f(y)−g(y)‖. Theorem 3.7 follows
straight from Rouché’s Theorem.
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Theorem 3.7. Let x be a simple triple zero of f , and let 0 < R ≤ d
4γ3

3
. If

dR(f, g) <
dR3

2‖A−1‖ ,

then the sum of multiplicities of zeros of g in B(x,R) is three.

Proof. By Theorem 3.6, for any y such that ‖y − x‖ = R, we derive

‖f(y)− g(y)‖ ≤ dR(f, g) <
dR3

2‖A−1‖ =
d‖y − x‖3
2‖A−1‖ ≤ ‖f(y)‖.

According to Rouché’s Theorem: if f possesses μ zeros (counting multiplicities) in
B(x,R), then any analytic g satisfying ‖f(y)− g(y)‖ < ‖f(y)‖ ∀ y ∈ ∂B(x,R) has
μ zeros (counting multiplicities) in B(x,R) (see [2, Theorem 2.12]). According to
Theorem 3.4, if R ≤ d

4γ3
3
, x is the only triple zero of f in B(x,R). Therefore, g has

three zeros (counting multiplicities) in B(x,R). �

Next we consider a more difficult but useful case. Suppose x is an approximately
given simple triple zero of f and Df(x) is of approximately normal form, i.e., f(x),
the entries of Df(x)’s first column and last row, |Δ2(fn)|, are small with respect
to a given tolerance but |Δ3(fn)| is not, then we propose a numerical criterion for
isolating a cluster of three zeros in the neighborhood of x from the other zeros of f .

Let us explicitly write the formulas of H1, H2 and g(X):

H1 =

(
∂f̂(x)
∂X1

0
∂fn(x)
∂X1

∂fn(x)

∂X̂

)
,

H2 =

((
0 0

1
2
∂2fn(x)
∂X2

1
0

)
0n×n×(n−1)

)
,

g(X) = f(X)− f(x)−H1(X − x)−H2(X − x)2.

Theorem 3.8. Let γ3 = γ3(g, x). If

(3.14) ‖f(x)‖+ ‖H1‖
d

4γ3
3

+ ‖H2‖
d2

16γ6
3

<
d4

128γ9
3‖A−1‖ ,

then f has three zeros (counting multiplicities) in the ball of radius d
4γ3

3 around x.

Proof. Clearly, x is a zero of g and Dg(x) = Df(x)−H1 =

(
0 Df̂(x)
0 0

)
,

Δ2(gn) =
1

2

∂2gn(x)

∂X2
1

=
1

2

∂2fn(x)

∂X2
1

− 1

2

∂2fn(x)

∂X2
1

= 0,

Δ3(gn) =
1

6

∂3gn(x)

∂X3
1

− ∂2gn(x)

∂X1∂X̂
·Dĝ(x)−1 · 1

2

∂2ĝ(x)

∂X2
1

=
1

6

∂3fn(x)

∂X3
1

− ∂2fn(x)

∂X1∂X̂
·Df̂(x)−1 · 1

2

∂2f̂(x)

∂X2
1

�= 0.
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Hence x is a simple triple zero of g and Dg(x) is of normal form. Let R = d
4γ3

3 ; we

derive

dR(g, f) = max
‖y−x‖≤R

‖g(y)− f(y)‖ = max
‖y−x‖≤R

‖f(x) +H1(y − x) +H2(y − x)2‖

≤ ‖f(x)‖+ ‖H1‖R+ ‖H2‖R2 = ‖f(x)‖+ ‖H1‖
d

4γ3
3

+ ‖H2‖
d2

16γ6
3

.

If ‖f(x)‖+ ‖H1‖ d
4γ3

3
+ ‖H2‖ d2

16γ6
3
< d4

128γ9
3‖A−1‖ , then

dR(g, f) <
d4

128γ9
3‖A−1‖ =

dR3

2‖A−1‖ .

By Theorem 3.7, the sum of multiplicities of zeros of f in B(x,R) is three. �

Remark 3.9. When x is only given with limited accuracy, the radius r = d
4γ3

3
of the

ball B(x, r) which isolates a cluster of three zeros from the other zeros of f is only
half of the local separation bound r = d

2γ3
3
obtained in Theorem 3.4 for isolating an

exactly given simple triple zero x of f .

Given an approximate simple triple zero of a polynomial system, the validation
of the criterion (3.14) can be examined via numerical computations as shown by
the following example.

Example 2.2 (continued). Suppose we are given x = (1 + 10−18, 2 − 10−18);

we set digits= 20 for computing Df(x) = U ·
(

Σn−1 0
0 0

)
· V ∗ via the singular

value decomposition. For simplicity, below we only show the results to four decimal
places. We have

U ≈
[

−0.8944 −0.4472
−0.4472 0.8944

]
, V ∗ ≈

[
−0.8944 −0.4472
−0.4472 0.8944

]
.

After performing the unitary transformation defined in Remark 2.5, we obtain
an approximate zero z ≈ (−1.3416, 1.7889) of

g ≈
{
0.2236X2

1 + 0.6708X1X2 + 0.7267X2
2 − 0.6X1 + 0.8X2 − 3.3541,

− 2.5× 10−19X2
1 + 0.4472X1X2 + 0.3354X2

2 − 0.8X1 − 0.6X2 + 1.2× 10−18.

The unitary matrix W ≈
[

0.4472 0.8944
−0.8944 0.4472

]
satisfies

(3.15) W ·W ∗ − I3 = W ∗ ·W − I3 =

[
−1× 10−20 0

0 −1× 10−20

]
.

It is easy to check that ‖g(z)‖ ≈ 1.1045× 10−18, and Dg(z) satisfies the condition
of normal form (1.2) approximately if we set the tolerance to be 10−18:

Dg(z) =

[
−1.3× 10−19 2.5 + 1.2× 10−18

1.6× 10−19 −1.0× 10−20

]
.

Moreover, we can also check that |Δ2(g2)| = |d21(g2)| ≈ 2.53×10−19, but |Δ3(g2)| ≈
|d31(g2)− 0.08944d1d2(g2)| ≈ 0.04. Therefore, we construct a new system

g̃ = g−g(z)−
(

∂g1(z)
∂X1

(X1 − z1)
∂g2(z)
∂X1

(X1 − z1)

)
−
(

0
∂g2(z)
∂X2

(X2 − z2)

)
−
(

0
Δ2(g2)(X1 − z1)

2

)
.
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It is straightforward to check that z is a simple triple zero of g̃ and Dg̃(z) is of
normal form. We calculate

γ̂3 = γ̂3(g̃, z) = max

(
1,

∥∥∥∥0.4 · D2g̃1(z)

2

∥∥∥∥
)

= 1,

γ3,2 = γ3,2(g̃, z) = max

(
1,

∥∥∥∥25 · D2g̃2(z)

2

∥∥∥∥
)

≈ 11.1803,

and thus γ3 = max(γ̂3, γ3,2) ≈ 11.1803. Then we calculate the invertible matrix
A ≈ ( 3.5355 0

0 0.02828 ) . Finally, the criterion (3.14)

1.1045× 10−18 ≈ ‖g(x)‖+ ‖H1‖
d

4γ3
3

+ ‖H2‖
d2

16γ6
3

<
d4

128γ9
3‖A−1‖ ≈ 4.2397× 10−18

is satisfied. According to Theorem 3.8, it implies that g has three zeros in the
ball of radius r = d

4γ3
3
≈ 0.00001522. According to (3.15), the unitary matrix W

satisfies condition (2.10) approximately, hence we conclude that f has a cluster of
three zeros in the ball B(x, r).

Remark 3.10. For Example 2.2, the value of r = d
4γ3

3
≈ 0.00001522 is half of the local

separation bound d
2γ3

3
≈ 0.00003044, which is obtained from an exactly given simple

triple zero and an exact unitary transformation. It shows that the computation of
the value of r is numerically stable even if an approximate unitary transformation
is performed.

Remark 3.11. The equality of γμ(g, x) = γμ(f, x) is true for μ = 2 [10, Theorem 4].

For [19, Example 2], we show that
∥∥∥ 1
Δ3(f2)

· D2f2(x)
2

∥∥∥ �= ∥∥∥ 1
Δ3(g2)

· D2g2(x)
2

∥∥∥. Hence,

γ3,n(g, x) may not be equal to γ3,n(f, x) if they are not equal to 1.

3.2. Simple multiple zeros. We generalize the results in Section 3.1 to simple
multiple zeros of arbitrary high multiplicities.

Let f : Cn → Cn, let x be a simple multiple zero of f of multiplicity μ; and

suppose Df(x) is of normal form, i.e., ∂fi(x)
∂X1

= 0 and ∂fn(x)
∂Xi

= 0 for 1 ≤ i ≤ n,

Δk(fn) = 0 for k = 2, . . . , μ− 1, Δμ(fn) �= 0.
For simplicity of symbols, we denote γμ(f, x) = max(γ̂μ(f, x), γμ,n(f, x)) by γμ

in the subsection. Let

(3.16) A =

( √
2Df̂(x) 0
0 1√

2
Δμ(fn)

)
.

Since Df̂(x) is invertible and Δμ(fn) �= 0, we have

(3.17) A−1 =

(
1√
2
Df̂(x)−1 0

0
√
2

Δμ(fn)

)
.

It is clear that the proof of Lemma 3.1 does not depend on the multiplicity μ,
therefore it is straightforward to be generalized to the following lemma.

Lemma 3.12. If γμ‖y − x‖ ≤ 1
2 , then∥∥∥Df̂(x)−1f̂(y)
∥∥∥ ≥ 2γμ‖y − x‖

(
sinϕ

2γμ
− ‖y − x‖

)
.
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Lemma 3.14 extends Lemma 3.2 to simple multiple zeros of arbitrary multiplicity
μ. The proof is based on a reformulation of Taylor’s expansion of fn at x in Lemma

3.13 and the conditions ∂fn(x)
∂X1

= · · · = ∂fn(x)
∂Xn

= 0, Δk(fn) = 0 for k = 2, . . . , μ− 1,

Δμ(fn) �= 0. The proofs of Lemmas 3.13 and 3.14 are quite technical, so we move
them to the Appendix.

Lemma 3.13. We reformulate Taylor’s expansion of fn(y) at x as

fn(y) = C2ζ
2 + · · ·+ Cμζ

μ +
∑

i+j=μ,j>0

Ci,jζ
iηj +

∑
k≥μ+1

Dkfn(x)(y − x)k

k!

(3.18)

+
∑

1≤i+j−1≤μ−2

Ti,j−1 ·

⎛
⎝ ∑

k+i+j−1≥μ+1

Df̂(x)−1D
kf̂(x)(y − x)k

k!
ζiηj−1

⎞
⎠

−
∑

1≤i+j−1≤μ−2

Ti,j−1Df̂(x)−1f̂(y)ζiηj−1.

The coefficients of ζt in (3.18) satisfy

Ct = Δt(fn), for 2 ≤ t ≤ μ.

Ci,j and Ti,j−1 in (3.18) satisfy the inequalities

(3.19)

∥∥∥∥ 1

Δμ(fn)
Ci,j

∥∥∥∥ ≤ ci,jγ
i+j−1
μ ,

∥∥∥∥ 1

Δμ(fn)
Ti,j−1

∥∥∥∥ ≤ ti,j−1γ
i+j−1
μ ,

where ci,j (i+ j = μ, j > 0) and ti,j−1 (2 ≤ i+ j ≤ μ− 1) are constants, which can
be computed inductively by

ci,j = c
(μ)
i,j (i+ j = μ, j > 0),(3.20)

ti,j−1 = c
(i+j)
i,j (2 ≤ i+ j ≤ μ− 1),

c
(i+j)
i,j =

(i+ j)!

i!j!
+

∑
2≤p+q≤i+j−1,q≥1
p+k=i,q+l−1=j

c(p+q)
p,q · (k + l)!

k!l!
(2 < i+ j ≤ μ, j ≥ 1),

for initializing c
(2)
i,j = (i+j)!

i!j! (i+ j = 2, j ≥ 1).

Lemma 3.14. If γμ‖y − x‖ ≤ 1
2 , when 0 ≤ ϕ ≤ arctan 1√

μ−1
, we have

(3.21) ‖A−1f(y)‖ ≥ 2γμ
μ‖y − x‖μ (h(ϕ)− ‖y − x‖) ,

where

(3.22) h(ϕ) =
cosμ ϕ−

∑
i+j=μ,j>0 ci,jγ

μ−1
μ cosi ϕ sinj ϕ∑

1≤i≤μ−2 2ti,0γ
μ
μ +
∑

1≤i+j≤μ−2,j>0 2ti,jγ
μ
μ cosi ϕ sinj ϕ+ 2γμ

μ

,

where ci,j , ti,j−1 ∈ R are constants computed inductively according to (3.20).

In order to generalize the results in Lemma 3.3 to simple multiple zeros of ar-
bitrary multiplicity μ, we intend to find a suitable θ ∈ (0, arctan 1√

μ−1
] such that

h(ϕ) ≥ h(θ) ≥ sin θ
2γμ

for 0 ≤ ϕ ≤ θ. Let d be defined by d = min(d1, d2, d3),
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where d1 =
√

1
c2μ−1,1+1

, d2 =
√

1
μ−1 , and d3 is the smallest positive real root of the

function

p(d) = (1− d2)
μ
2 −

∑
i+j=μ,j>0

ci,jd(1− d2)
i
2 dj−1(3.23)

− d

⎛
⎝ ∑

1≤i≤μ−2

ti,0 +
∑

1≤i+j≤μ−2,j>0

ti,j(1− d2)
i
2 dj + 1

⎞
⎠ .

Lemmas 3.15 and 3.16 prove that θ = arcsin d
γμ−1
μ

is valid for generalizing the results

in Lemma 3.3 to simple multiple zeros of arbitrary multiplicity μ.

Lemma 3.15. Let θ be defined by sin θ = d

γμ−1
μ

. Then h(θ) ≥ sin θ
2γμ

, where h(ϕ) is

defined in (3.22).

Proof. By substituting sin θ = d
γμ−1
μ

and cos θ =

(
1− d2

γ
2(μ−1)
μ

)1/2

into (3.22), we

need to show that(
1− d2

γ
2(μ−1)
μ

)μ
2

− cμ−1,1d

(
1− d2

γ
2(μ−1)
μ

)μ−1
2

(3.24)

−
∑

i+j=μ−1,j>0

ci,j+1d

(
1− d2

γ
2(μ−1)
μ

) i
2

dj

γ
j(μ−1)
μ

− d

⎛
⎝ ∑

1≤i≤μ−2

ti,0 +
∑

1≤i+j≤μ−2,j>0

ti,j

(
1− d2

γ
2(μ−1)
μ

) i
2

dj

γ
j(μ−1)
μ

+ 1

⎞
⎠ ≥ 0.

• The sum of the first two terms in (3.24) is increasing in γμ and nonnegative

for γμ ≥ 1 and d ≤ d1 =
√

1
c2μ−1,1+1

, since it equals

(
1− d2

γ
2(μ−1)
μ

)μ−1
2
(√

1− d2

γ
2(μ−1)
μ

− cμ−1,1d

)
.

• The terms cosi ϕ sinj ϕ (j > 0) are increasing for ϕ ∈
[
0, arctan

√
1
i

]
, since

(cosi ϕ sinϕ)′ = cosi−1 ϕ(cos2 ϕ− i sin2 ϕ) ≥ 0. Hence, for 1 ≤ i+ j ≤ μ−1

and j > 0,

(
1− d2

γ
2(μ−1)
μ

) i
2

dj

γ
j(μ−1)
μ

is decreasing in γμ for d ∈
[
0,
√

1
μ−1

]
.

• The left-hand side of (3.24) is increasing in γμ, therefore it is sufficient to
prove p(d) ≥ 0 when γμ = 1. The conclusion holds as p(d) is decreasing in
d for 0 ≤ d ≤ d3 and p(0) = 1.

�
Lemma 3.16. For 0 ≤ ϕ ≤ θ, h(ϕ) in (3.22) is nonnegative and decreasing.

Proof. For ϕ ∈
[
0, arctan

√
1

μ−1

]
, because cosi ϕ sinj ϕ is increasing for i+ j = μ

and j > 0, the numerator of h(ϕ) is nonnegative and decreasing, and the denomi-
nator of h(ϕ) is positive and increasing. Hence, h(ϕ) is nonnegative and decreasing
for 0 ≤ ϕ ≤ θ. �
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According to Lemma 3.13, the coefficients ci,j and ti,j can be computed itera-
tively for arbitrary high multiplicities. It is worth noting that the value d is inde-
pendent of the polynomial system f . Table 1 shows the values of d for 2 ≤ μ ≤ 8.

Table 1. Values of d for 2 ≤ μ ≤ 8

μ 2 3 4 5 6 7 8
d 0.2865 0.08507 0.02171 0.005043 0.001105 0.0002336 0.00004809

The following four theorems generalize the results in Section 3.1 to simple mul-
tiple zeros of arbitrary high multiplicities.

Theorem 3.17. Let x be a simple multiple zero of f of multiplicity μ. If y is
another zero of f , then

‖y − x‖ ≥ d

2γμ
μ
.

Proof. For θ ≤ ϕ ≤ π
2 , by Lemma 3.12, we conclude that

‖y − x‖ ≥ sinϕ

2γμ
≥ sin θ

2γμ
=

d

2γμ
μ
.

For 0 ≤ ϕ ≤ θ, by Lemmas 3.14, 3.15, and 3.16, we have

‖A−1f(y)‖ ≥ 2γμ
μ‖y − x‖μ (h(ϕ)− ‖y − x‖) ≥ 2γμ

μ‖y − x‖μ (h(θ)− ‖y − x‖)

≥ 2γμ
μ‖y − x‖μ

(
sin θ

2γμ
− ‖y − x‖

)
. �

Theorem 3.18. Let x be a simple multiple zero of f of multiplicity μ. If ‖y−x‖ ≤
d

4γμ
μ
, then we have

‖f(y)‖ ≥ d‖y − x‖μ
2‖A−1‖ .

Proof. For θ ≤ ϕ ≤ π
2 , by Lemma 3.12, we derive

‖A−1f(y)‖ ≥ 1√
2
‖Df̂(x)−1f̂(y)‖ ≥

√
2γμ‖y − x‖

(
sin θ

2γμ
− ‖y − x‖

)
.

For 0 ≤ ϕ ≤ θ, by Lemma 3.14, 3.15, and 3.16, we derive

‖A−1f(y)‖ ≥ 2γμ
μ‖y − x‖μ

(
sin θ

2γμ
− ‖y − x‖

)
.

When ‖y − x‖ ≤ d
4γμ

μ
= sin θ

4γμ
, we conclude that

‖A−1f(y)‖ ≥ 2γμ
μ‖y − x‖μ sin θ

4γμ
=

d‖y − x‖μ
2

. �

Theorem 3.19. Let x be a simple multiple zero of f of multiplicity μ, and let
0 < R ≤ d

4γμ
μ
. If

dR(f, g) <
dRμ

2‖A−1‖ ,

then the sum of multiplicities of zeros of g in B(x,R) is μ.
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Proof. By Theorem 3.18, for any y such that ‖y − x‖ = R < d
4γμ

μ
, we derive

‖f(y)− g(y)‖ ≤ dR(f, g) <
dRμ

2‖A−1‖ =
d‖y − x‖μ
2‖A−1‖ ≤ ‖f(y)‖.

Then by Rouché’s Theorem, f and g have the same number of zeros inside B(x,R).
By Theorem 3.17, when R ≤ d

4γ3
μ
, the only zero of f in B(x,R) is x, which is of

multiplicity μ. Therefore, g has μ zeros in B(x,R). �

Suppose x is an approximately given simple multiple zero of f of multiplicity μ
and Df(x) is of normal form approximately, i.e., f(x), the entries of Df(x)’s first
column and last row, |Δk(fn)| (2 ≤ k ≤ μ − 1) are small with respect to a given
tolerance but |Δμ(fn)| is not, then we propose a numerical criterion for isolating a
cluster of μ zeros in the neighborhood of x from the other zeros of f .

Let H1 =

(
∂f̂(x)
∂X1

0

∂fn(x)
∂X1

∂fn(x)

∂X̂

)
, and let

(3.25) Hk=

⎛
⎝( 0 0

0 Δk(fn)

)
0n× · · · × n
︸ ︷︷ ︸

k

×(n−1)

⎞
⎠ ∈ C

n× · · · × n
︸ ︷︷ ︸

k+1 , 2 ≤ k ≤ μ− 1.

We construct a new system, g(X) = f(X)− f(x)−
∑

1≤k≤μ−1Hk(X − x)k.

Theorem 3.20. Let γμ = γμ(g, x). If

(3.26) ‖f(x)‖+
∑

1≤k≤μ−1

‖Hk‖
(

d

4γμ
μ

)k

<
dμ+1

2 (4γμ
μ)

μ ‖A−1‖
,

then f has μ zeros (counting multiplicities) in the ball of radius d
4γμ

μ
around x.

Proof. It is clear that x is a zero of g and Dg(x) is of normal form, since Dg(x) =

Df(x) − H1 =
(

0 Df̂(x)
0 0

)
, Δk(gn) = 0, 2 ≤ k ≤ μ − 1, Δμ(gn) = Δμ(fn) �= 0.

Hence, x is a simple multiple zero of g of multiplicity μ.
Let R = d

4γμ
μ(g,x)

; we derive

dR(g, f) = max
‖y−x‖≤R

‖g(y)− f(y)‖ = max
‖y−x‖≤R

‖f(x) +
∑

1≤k≤μ−1

Hk(X − x)k‖

≤ ‖f(x)‖+
∑

1≤k≤μ−1

‖Hk‖Rk = ‖f(x)‖+
∑

1≤k≤μ−1

‖Hk‖
(

d

4γμ
μ

)k

.

If ‖f(x)‖+
∑

1≤k≤μ−1 ‖Hk‖
(

d
4γμ

μ

)k
< dμ+1

2(4γμ
μ)μ‖A−1‖ , then

dR(g, f) <
dμ+1

2 (4γμμ)
μ ‖A−1‖ =

dRμ

2‖A−1‖ .

By Theorem 3.19, the sum of multiplicities of zeros of f in B(x,R) is μ. �
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4. Experiments

In this section, we present the numerical experiments for isolating simple mul-
tiple zeros or clusters of zeros of polynomial systems. All experiments are done
in Maple 17 on a desktop computer with Intel (R) Core (TM) i5-3470S CPU @
2.90GHz and RAM of 8GB running 64-bite Windows 8. The Maple environment
variable is set by the statement “UseHardwareFloats:=false”. All timings are
measured as elapsed time in seconds. The Maple codes of our algorithms and
all test results are available at http://www.mmrc.iss.ac.cn/~lzhi/Research/

hybrid/SimpleMultipleZeros/.
We first present some computational details. The local separation bound r = d

2γμ
μ

given in Theorem 3.17 depends on d and γμ. For a given multiplicity μ, the value d
is determined by finding the smallest positive real root of the function p(d) defined
by (3.23), which is independent of the given polynomial system f (see Table 1 for

2 ≤ μ ≤ 8). The value γμ involves the calculation of values
∥∥∥Df̂(x)−1 · Dkf̂(x)

k!

∥∥∥
and

∥∥∥ 1
Δμ(fn)

· Dkfn(x)
k!

∥∥∥, where Δμ(fn) is computed according to Proposition 2.1.

It is well known that computing the operator norm of tensors of order larger than
two is NP-hard [22]. Therefore, in our implementation, we use ‖ · ‖∞ to calculate
an upper bound of γμ according to [15, Lemma B.2]. It is also possible to get an
easily computable bound of the operator norm of tensors according to [13, Lemma
9.1]. Since the numerator d is monotonically decreasing on μ and the denominator
contains the μth power of γμ, the separation bound r = d

2γμ
μ
becomes less tight as

μ grows. Hence, in order to guarantee the criterion (3.26) to be satisfied, we may
need to run the algorithm in a large number of digits to obtain an approximate
zero x of high accuracy.

We test some benchmark examples in the literature and list their results in Table
2. All polynomial systems f are given with n equations and n unknowns. We use
deg to denote the largest total degree of the polynomials in f , ‖f(x)‖ and ‖Df(x)v‖
show the quality of the approximate zero x, r denotes the radius of the ball B(x, r)
containing a cluster of μ zeros, Digits denotes the Maple environment variable used
in the software-defined floating point arithmetic, and time measures the elapsed
time for outputting a successful certification of B(x, r) from inputs f, x, and μ. As
shown in Table 2, in order to satisfy the criterion (3.26), the required accuracy of
x might be around rμ.

When x is only given with low accuracy such that it fails to validate the criterion
(3.26), then we need to run the algorithm in [31] for refining x to a higher accuracy
and try the certification procedure again. In Table 3, we show the number of steps
of iterations required for a valid certification when the accuracy of x is around 10−3

and the total elapsed time for refining and certifying. For most examples listed in
Table 3, it only requires a few seconds to successfully certify the existence of a
cluster of μ zeros of f near x, even if the multiplicity is high (e.g., LiZhi2) or the
size of the system is large (e.g., LiZhi1).

We also test two examples to compare our algorithm with [10] and [15].

http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/SimpleMultipleZeros/
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/SimpleMultipleZeros/
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Table 2. Isolating simple multiple zeros or clusters of zeros.

Systems n deg Digits ‖f(x)‖ ‖Df(x)v‖ μ r time

Ojika1 [37] 2 2 20 2.26 e-020 4.04 e-021 3 5.68 e-06 0.047
Ojika2 [37] 3 2 16 9.60 e-011 5.57 e-011 2 1.10 e-03 0.031
Ojika3 [39] 3 3 16 7.96 e-013 1.32 e-014 2 2.23 e-04 0.016
Ojika4 [38] 3 6 16 1.15 e-031 8.52 e-033 3 1.93 e-09 0.203
Decker2 [6] 2 4 16 8.95 e-013 8.01 e-025 4 1.09 e-02 0.031
DZ4 [5] 3 4 20 9.83 e-061 3.69 e-121 5 3.50 e-11 0.062
DZ3 [5] 2 3 30 4.56 e-029 1.77 e-028 5 4.51 e-05 0.047

RuGr09 [43] 2 3 16 6.47 e-021 1.48 e-041 4 2.71 e-03 0.031
LiZhi1 [30] 10 3 16 2.70 e-050 5.72 e-101 3 2.29 e-13 1.172
LiZhi2 [30] 3 3 100 8.28 e-161 4.98 e-360 8 5.59 e-14 0.125
GLSY1 [15] 3 5 30 6.26 e-050 2.17 e-051 4 8.15 e-11 0.125

Table 3. Refining and isolating simple multiple zeros or clusters of zeros.

Systems ‖f(x)‖ ‖Df(x)v‖ r step time

Ojika1 [37] 2.26 e-03 4.03 e-04 5.68 e-06 3 0.157
Ojika2 [37] 9.60 e-04 5.57 e-04 1.10 e-03 2 0.047
Ojika3 [39] 7.92 e-04 1.31 e-05 2.23 e-04 2 0.078
Ojika4 [38] 1.18 e-02 8.44 e-04 1.93 e-09 4 0.437
Decker2 [6] 4.72 e-04 2.23 e-07 1.09 e-02 2 0.141
DZ4 [5] 1.49 e-03 1.02 e-06 3.50 e-11 5 0.485
DZ3 [5] 2.64 e-03 5.36 e-06 4.51 e-05 3 0.266

RuGr09 [43] 2.46 e-04 2.71 e-08 2.71 e-03 3 0.172
LiZhi1 [30] 1.69 e-03 4.56 e-07 2.29 e-13 5 2.094
LiZhi2 [30] 8.29 e-04 2.57 e-10 5.59 e-14 6 0.813
GLSY1 [15] 2.39 e-03 3.24 e-04 8.15 e-11 4 0.453

Example 4.1. Given a simple double zero x = (0, 0) of a polynomial system,

(4.1) f =

⎧⎪⎨
⎪⎩
X2

1 − 1

4
X1 −

1

2
X2,

1

2
X1X2.

It is clear that f has another zero y = (1/4, 0), and the actual minimal distance
of two zeros of f is ‖y − x‖ = 0.25.

For the method in [10], it is easy to check v =

(
2√
5

− 1√
5

)
∈ kerDf(x) and

A = Df(x) +
1

2
D2f(x)(v,Πv) =

(
− 1

4 + 8
5
√
5

− 1
2 − 4

5
√
5

− 2
5
√
5

1
5
√
5

)
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is invertible. Then

A−1D
2f(x)

2
=

( (
− 4

5 − 2(25+8
√
5)

10
√
5

− 8
5 −−25+32

√
5

20
√
5

) (
− 2(25+8

√
5)

10
√
5

0

−−25+32
√
5

20
√
5

0

) )
.

The computation of the norm of the order 3 tensor A−1D2f(x)
2 is challenging since

it is NP-hard [22]. Instead of bounding it by the infinity norm, for this example,
using our SOS certificates for global optima of polynomials and rational functions
[23], we can verify that

γ2(f, x) = max

(
1,

∥∥∥∥A−1D
2f(x)

2

∥∥∥∥
)

≥ 3.1121.

Therefore, the local separation bound computed by the method in [10] satisfies

d

2γ2(f, x)2
≤ 0.01546,

for d ≈ 0.2976.

Remark 4.2. We found two typos in [10]. The coefficient of the second
√
1− d2 is

−2d instead of −d in [10, Lemma 4]. Therefore, we have d ≈ 0.2976. Furthermore,
the degree of γ2(f, x) is 2 instead of 1 in [10, Theorem 1].

We compute two unit vectors v =

[
− 2

√
5

5√
5
5

]
and u =

[
0
1

]
such that Df(x)v =

Df(x)Tu =

[
0
0

]
. Then use the Gram–Schmidt process to get v1 =

[
−

√
5
5

− 2
√
5

5

]

and u1 =

[
1
0

]
such that

[
1 0
0 1

]
·Df(x) ·

[
− 2

√
5

5 −
√
5
5√

5
5 − 2

√
5

5

]
=

[
0

√
5
4

0 0

]
,

which is of normal form. We perform the unitary transformation to get a simple
double zero z = (0, 0) of

g =

⎧⎪⎪⎨
⎪⎪⎩

4

5
X2

1 +
4

5
X1X2 +

2

5
X2

2 +

√
5

4
X3,

− 1

5
X2

1 +
3

10
X1X2 +

1

5
X2

2 .

By (2.6) and (2.7), Δ2(g2) = d21(g2) = − 1
5 . AsDg(z) is of normal form, we calculate

that

γ̂2 = γ̂2(g, z) = max

(
1,

∥∥∥∥ 4√
5
· D

2g1(z)

2

∥∥∥∥
)

=
4√
5
,

γ2,2 = γ2,2(g, z) = max

(
1,

∥∥∥∥5 · D2g2(z)

2

∥∥∥∥
)

=
5

4
,

thus γ2 = γ2(g, z) = max(γ̂2, γ2,2) =
4√
5
.

Our local separation bound d
2γ2

2
≈ 0.04478 is tighter than d

2γ2(f,x)2
≤ 0.01546

obtained using the method in [10]. Although our local separation bound is smaller
than the actual distance 0.25 of two zeros of f , it is much larger than the global
separation bound � 10−10 obtained by using the method in [12].
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Example 4.3. Given a simple double zero x = (0, 0) and a nearby simple multiple
zero, y = (10−3k,−10−2k) of multiplicity l of a polynomial system

(4.2) f =

{
X2

1 +X3
2 +X1 + 10−kX2,

(X1 + 10−kX2) · (X1 − 10−3k)l−1,

where k controls the distance between two zeros and l controls the multiplicity of y.

We compare our algorithm with the algorithm in [15] for computing a certified
ball near the simple double zero x such that it contains two zeros (counting mul-
tiplicities). We list the minimal digits needed (Digits) for an approximate zero of
limited accuracy ‖x‖ for outputting a successful certification r in Table 4.

Table 4. Isolating a cluster of two zeros of (4.2)

algorithm in [15] our algorithm
k, l Digits ‖x‖ r Digits ‖x‖ r

k = 2, l = 2 16 7.49 e-15 4.31 e-09 16 1.08 e-44 1.40 e-21
k = 2, l = 5 36 8.08 e-34 2.02 e-18 16 8.96 e-47 8.78 e-23
k = 2, l = 10 66 7.07 e-66 7.72 e-35 16 9.84 e-49 1.73 e-23
k = 3, l = 2 16 1.10 e-21 4.16 e-11 16 8.16 e-65 1.43 e-31
k = 3, l = 5 46 4.15 e-48 1.75 e-25 16 1.01 e-66 8.94 e-33
k = 3, l = 10 92 1.29 e-94 1.72 e-48 16 8.13 e-69 1.77 e-33
k = 4, l = 2 16 6.93 e-25 9.00 e-14 16 7.68 e-85 1.43 e-41
k = 4, l = 5 60 8.51 e-62 4.90 e-32 16 6.08 e-87 8.95 e-43
k = 4, l = 10 120 3.80 e-125 8.18 e-63 16 9.58 e-89 1.77 e-43

As shown in Table 4, when we fix the multiplicity l of y and let k grow, then
the distance between two zeros x and y will decrease. Therefore, the value of ‖x‖
and the radius r of the certified ball containing a cluster of two zeros will get
smaller for both algorithms. However, when we fix k and let l grow to increase the
multiplicity of y, the value of ‖x‖ and r do not vary too much for our algorithm,
while these values decrease fast for the algorithm in [15]. Furthermore, when k
or l grows, the algorithm in [15] has to increase the necessary number of digits,
while our algorithm succeeds with the fixed precision. Since our method is based
on computing the local dual space at x, this makes our algorithm less sensitive to
the singularity of nearby zeros. The algorithm in [15] reduces looking for simple
multiple zeros of f to looking for zeros of a univariate analytic function via the
implicit function theorem. Therefore, they might need more digits to guarantee the
success of the reduction. On the other hand, since y = (10−3k,−10−2k) is another
zero of f near to x = (0, 0), the value of Δμ is smaller than 10−10 for k = 2. Hence,
the radius r we computed is much smaller than the one computed by the algorithm
in [15] for l = 2 and l = 5, and the value of ‖x‖ is also much smaller. Similarly,
the values of ‖x‖ and r computed by the algorithm in [15] are larger than ours
for k = 3, 4 and l = 2, 5. We would like to seek better ways to compute the local
separation bound when there are nearby clusters around the simple multiple zero
x.
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5. Appendix

We give the proof of Lemma 3.2.

Proof. Since ∂fn(x)
∂X1

= · · · = ∂fn(x)
∂Xn

= ∂2fn(x)
∂X2

1
= 0, the Taylor series yields

fn(y) =

(
∂2fn(x)

∂X1∂X̂
ζη +

1

2

∂2fn(x)

∂X̂2
η2
)
+

1

6

∂3fn(x)

∂X3
1

ζ3 +
1

2

∂3fn(x)

∂X2
1∂X̂

ζ2η

+
1

2

∂3fn(x)

∂X1∂X̂2
ζη2 +

1

6

∂3fn(x)

∂X̂3
η3 +

∑
k≥4

Dkfn(x)(y − x)k

k!
.

Substituting the rightmost η in
(

∂2fn(x)

∂X1∂X̂
ζ + 1

2
∂2fn(x)

∂X̂2
η
)
η by the expansion of η

(3.6), as Δ3(fn) �= 0, it implies that

1

Δ3(fn)
fn(y) =

1

Δ3(fn)

∂2fn(x)

∂X1∂X̂
Df̂(x)−1f̂(y)ζ +

1

Δ3(fn)

1

2

∂2fn(x)

∂X̂2
Df̂(x)−1f̂(y)η

+ ζ3 +
1

Δ3(fn)
C2,1ζ

2η +
1

Δ3(fn)
C1,2ζη

2 +
1

Δ3(fn)
C0,3η

3

+
∑
k≥4

1

Δ3(fn)

Dkfn(x)(y − x)k

k!
+

1

Δ3(fn)
T1,0

∑
k≥3

Df̂(x)−1D
kf̂(x)(y − x)k

k!
ζ

+
1

Δ3(fn)
T0,1

∑
k≥3

Df̂(x)−1D
kf̂(x)(y − x)k

k!
η,

where

C2,1 =
1

2

∂3fn(x)

∂X2
1∂X̂

− ∂2fn(x)

∂X1∂X̂
·Df̂(x)−1 ∂2f̂(x)

∂X1∂X̂
− 1

2

∂2fn(x)

∂X̂2
·Df̂(x)−1 1

2

∂2f̂(x)

∂X2
1

,

C1,2 =
1

2

∂3fn(x)

∂X1∂X̂2
− ∂2fn(x)

∂X1∂X̂
·Df̂(x)−1 1

2

∂2f̂(x)

∂X̂2
− 1

2

∂2fn(x)

∂X̂2
·Df̂(x)−1 ∂2f̂(x)

∂X1∂X̂
,

C0,3 =
1

6

∂3fn(x)

∂X̂3
− 1

2

∂2fn(x)

∂X̂2
·Df̂(x)−1 1

2

∂2f̂(x)

∂X̂2
,

T1,0 = −∂2fn(x)

∂X1∂X̂
, T0,1 = −1

2

∂2fn(x)

∂X̂2
.

For the classical operator norm, the following inequalities hold for i+ j = k:∥∥∥∥∥ ∂kf̂(x)

∂Xi
1∂X̂

j

∥∥∥∥∥ ≤ ‖Dkf̂(x)‖,
∥∥∥∥∥ ∂

kfn(x)

∂Xi
1∂X̂

j

∥∥∥∥∥ ≤ ‖Dkfn(x)‖.

Therefore, after moving ζ3 to the left side and moving 1
Δ3(fn)

fn(y) to the right side

of the expansion, by the triangle inequalities and γ3(f, x)‖y − x‖ ≤ 1
2 , we have

|ζ|3 ≤
∣∣∣∣ 1

Δ3(fn)
fn(y)

∣∣∣∣+ (2γ3,n|ζ|+ γ3,n‖η‖)
∥∥∥Df̂(x)−1f̂(y)

∥∥∥+ 8γ2
3 |ζ|2‖η‖

+ 7γ2
3 |ζ|‖η‖2 + 2γ2

3‖η‖3 + 2γ3
3‖y − x‖4 + 4γ3

3‖y − x‖3|ζ|+ 2γ3
3‖y − x‖3‖η‖.
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Substituting |ζ| = ‖y − x‖ cosϕ, ‖η‖ = ‖y − x‖ sinϕ in the inequality, we derive

‖y − x‖3 cos3 ϕ ≤
∣∣∣∣ 1

Δ3(fn)
fn(y)

∣∣∣∣+ γ3,n‖y − x‖(2 cosϕ+ sinϕ)
∥∥∥Df̂(x)−1f̂(y)

∥∥∥
+ 8γ2

3‖y − x‖3 cos2 ϕ sinϕ+ 7γ2
3‖y − x‖3 cosϕ sin2 ϕ+ 2γ2

3‖y − x‖3 sin3 ϕ
+ 2γ3

3‖y − x‖4(1 + 2 cosϕ+ sinϕ).

Since 0 ≤ ϕ ≤ arctan 1√
2
, we have

1 ≤ 2 cosϕ+ sinϕ ≤
√
5.

Then above inequality implies(
cos3 ϕ− 8γ2

3 cos
2 ϕ sinϕ− 7γ2

3 cosϕ sin2 ϕ− 2γ2
3 sin

3 ϕ

1 + 2 cosϕ+ sinϕ

)
‖y − x‖3 − 2γ3

3‖y − x‖4

≤ 1

1 + 2 cosϕ+ sinϕ

∣∣∣∣ 1

Δ3(fn)
fn(y)

∣∣∣∣+ γ3,n‖y − x‖(2 cosϕ+ sinϕ)

1 + 2 cosϕ+ sinϕ

∥∥∥Df̂(x)−1f̂(y)
∥∥∥

≤
∣∣∣∣ 1

Δ3(fn)
fn(y)

∣∣∣∣+
√
5

2 + 2
√
5

∥∥∥Df̂(x)−1f̂(y)
∥∥∥

≤
∥∥∥∥∥
(

1√
2
Df̂(x)−1 0

0
√
2

Δ3(fn)

)(
f̂(y)
fn(y)

)∥∥∥∥∥ = ‖A−1f(y)‖.

This finishes the proof of Lemma 3.2. �

The proof of Lemma 3.13 is given below.

Proof. Let us apply the differential functional Δt (2.6) to both sides of (3.18):

Δt(fn) = C2Δt(ζ
2) + · · ·+ CμΔt(ζ

μ) +
∑

i+j=μ,j>0

Ci,jΔt(ζ
iηj)

+
∑

1≤i+j≤μ−2

Ti,j ·

⎛
⎝ ∑

k≥μ+1−i−j

Df̂(x)−1Δt

(
Dkf̂(x)(y − x)k

k!
ζiηj

)⎞⎠
−

∑
1≤i+j≤μ−2

Ti,jDf̂(x)−1Δt

(
f̂(y)ζiηj

)
+
∑

k≥μ+1

Δt

(
Dkfn(x)(y − x)k

k!

)
.

According to (2.2), (2.4), and the fact that dt1 is the only differential monomial of
the highest order t in Δt and no other ds1 with s < t in Δt, for 2 ≤ t ≤ μ, we have:

(1) Δt(ζ
s) = 1 if s = t and 0 otherwise;

(2) Δt(ζ
iηj) = 0 for t ≤ i+ j = μ and j > 0;

(3) Δt

(
Dkf̂(x)(y−x)k

k! ζiηj
)
= 0 for t ≤ μ < i+ j + k;

(4) Δt

(
f̂(y)ζiηj

)
= 0 for 1 ≤ i+ j ≤ μ− 2;

(5) Δt

(
Dkfn(x)(y−x)k

k!

)
= 0 for t ≤ μ < k.

Hence, we conclude that Ct = Δt(fn) for t = 2, . . . , μ.
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Now let us show (3.19). By Taylor’s expansion of fn(y) at x, we derive

fn(y) =
1

2

∂2fn(x)

∂X2
1

ζ2 +
∂2fn(x)

∂X1∂X̂
ζη +

1

2

∂2fn(x)

∂X̂2
η2 + · · ·+ 1

μ!

∂μfn(x)

∂Xμ
1

ζμ

+
1

(μ− 1)!

∂μfn(x)

∂Xμ−1
1 ∂X̂

ζμ−1η + · · ·+ 1

μ!

∂μfn(x)

∂X̂μ
ημ +

∑
k≥μ+1

Dkfn(x)(y − x)k

k!
.

Note that the coefficient of the term ζiηj is 1
i!j!

∂i+jfn(x)

∂Xi
1∂X̂

j
, which satisfies

(5.1)

∥∥∥∥∥ 1

Δμ(fn)
· 1

i!j!

∂i+jfn(x)

∂Xi
1∂X̂

j

∥∥∥∥∥ ≤ (i+ j)!

i!j!
γi+j−1
μ .

For the monomial ζiηj , i+ j < μ, and j > 0, after substituting one η in ζiηj by

η =−Df̂(x)−1

(
1

2

∂2f̂(x)

∂X2
1

ζ2 +
∂2f̂(x)

∂X1∂X̂
ζη +

1

2

∂2f̂(x)

∂X̂2
η2

+ · · ·+
∑

0≤k≤μ+1−i−j

1

(μ+ 1− i− j − k)!k!

∂μ+1−i−j f̂(x)

∂Xμ+1−i−j−k
1 ∂X̂k

ζμ+1−i−j−kηk

+
∑

k≥μ+2−i−j

Dkf̂(x)(y − x)k

k!
−f̂(y)

⎞
⎠ ,

we have

ζiηj =−Df̂(x)−1

(
1

2

∂2f̂(x)

∂X2
1

ζi+2ηj−1 +
∂2f̂(x)

∂X1∂X̂
ζi+1ηj +

1

2

∂2f̂(x)

∂X̂2
ζiηj+1

(5.2)

+ · · ·+
∑

0≤k≤μ+1−i−j

1

(μ+1−i−j−k)!k!

∂μ+1−i−j f̂(x)

∂Xμ+1−i−j−k
1 ∂X̂k

ζμ+1−j−kηk+j−1

+
∑

k+i+j−1≥μ+1

Dkf̂(x)(y − x)k

k!
ζiηj−1−f̂(y)ζiηj−1

⎞
⎠ ,

where the total degree of each term in the above expression is at least i + j + 1.
Moreover, the norm of the coefficient of the new term ζi+kηj−1+l, i+k+j−1+l ≤ μ,
obtained after the substitution and divided by Δμ(fn). is bounded by

(5.3)

(
(i+ j)!

i!j!
γi+j−1
μ

)∥∥∥∥∥Df̂(x)−1 1

k!l!

∂k+lf̂(x)

∂Xk
1 ∂X̂

l

∥∥∥∥∥ ≤ (i+ j)!

i!j!

(k + l)!

k!l!
γi+k+j+l−2
μ .

For simplicity, we replace j−1 by j in the last two terms of (3.18). The iterative

formula for ci,j is obtained by (5.1) and (5.3). Let C
(i+j)
i,j denote the coefficient of

ζiηj after i + j − 2 substitutions (i.e., the coefficient of ζiηj when x is a simple
multiple zero of multiplicity i+ j). Then we conclude that∥∥∥∥ 1

Δi+j(fn)
C

(i+j)
i,j

∥∥∥∥ ≤ c
(i+j)
i,j γi+j−1

i+j .
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On the other hand, by (5.2), we derive

Ti,j−1 = −C
(i+j)
i,j

and ∥∥∥∥ 1

Δμ(fn)
Ti,j−1

∥∥∥∥ ≤ c
(i+j)
i,j γi+j−1

i+j .

Hence, we have ti,j−1 = c
(i+j)
i,j for 2 ≤ i+ j ≤ μ− 1. �

Now let us prove Lemma 3.14.

Proof. Since x is a simple multiple zero of f of multiplicity μ, by Lemma 3.13, we
have C2 = · · · = Cμ−1 = 0 and Cμ = Δμ(fn) �= 0. By (3.18), we derive that

ζμ =− 1

Δμ(fn)

∑
i+j=μ,j>0

Ci,jζ
iηj − 1

Δμ(fn)

∑
k≥μ+1

Dkfn(x)(y − x)k

k!

− 1

Δμ(fn)

∑
1≤i+j≤μ−2

Ti,j ·

⎛
⎝ ∑

k≥μ+1−i−j

Df̂(x)−1D
kf̂(x)(y − x)k

k!
ζiηj

⎞
⎠

+
1

Δμ(fn)

∑
1≤i+j≤μ−2

Ti,jDf̂(x)−1f̂(y)ζiηj +
1

Δμ(fn)
fn(y).

By the triangle inequality and Lemma 3.13, we have

|ζ|μ ≤
∑

i+j=μ,j>0

∥∥∥∥
1

Δμ(fn)
Ci,j

∥∥∥∥ |ζ|i‖η‖j +
∑

k≥μ+1

∥∥∥∥
1

Δμ(fn)

Dkfn(x)

k!

∥∥∥∥ ‖y − x‖k

+
∑

1≤i+j≤μ−2

∥∥∥∥
1

Δμ(fn)
Ti,j

∥∥∥∥ ·

⎛
⎝ ∑

k≥μ+1−i−j

∥∥∥∥∥Df̂(x)−1D
kf̂(x)

k!

∥∥∥∥∥ ‖y − x‖k|ζ|i‖η‖j
⎞
⎠

+
∑

1≤i+j≤μ−2

∥∥∥∥
1

Δμ(fn)
Ti,j

∥∥∥∥ ·
∥∥∥Df̂(x)−1f̂(y)

∥∥∥ |ζ|i‖η‖j +
∣∣∣∣

1

Δμ(fn)
fn(y)

∣∣∣∣

≤
∑

i+j=μ,j>0

ci,jγ
i+j−1
μ |ζ|i‖η‖j +

∑
k≥μ+1

γk−1
μ,n ‖y − x‖k

+
∑

1≤i+j≤μ−2

ti,jγ
i+j
μ · 2γ̂μ−i−j

μ ‖y − x‖μ−i−j+1|ζ|i‖η‖j

+
∑

1≤i+j≤μ−2

ti,jγ
i+j
μ ·

∥∥∥Df̂(x)−1f̂(y)
∥∥∥ |ζ|i‖η‖j +

∣∣∣∣
1

Δμ(fn)
fn(y)

∣∣∣∣

≤
∑

i+j=μ,j>0

ci,jγ
μ−1
μ |ζ|i‖η‖j+

∑
1≤i+j≤μ−2

2ti,jγ
μ
μ‖y − x‖μ−i−j+1|ζ|i‖η‖j+2γμ

μ‖y − x‖μ+1

+
∑

1≤i+j≤μ−2

ti,jγ
i+j
μ ·

∥∥∥Df̂(x)−1f̂(y)
∥∥∥ |ζ|i‖η‖j +

∣∣∣∣
1

Δμ(fn)
fn(y)

∣∣∣∣.
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By |ζ| = ‖y − x‖ sinϕ, ‖η‖ = ‖y − x‖ cosϕ, we obtain

‖y − x‖μ cosμ ϕ ≤
∑

i+j=μ,j>0

ci,jγ
μ−1
μ ‖y − x‖μ cosi ϕ sinj ϕ

+
∑

1≤i+j≤μ−2

2ti,jγ
μ
μ‖y − x‖μ+1 cosi ϕ sinj ϕ+ 2γμ

μ‖y − x‖μ+1

+
∑

1≤i+j≤μ−2

ti,jγ
i+j
μ ‖y − x‖i+j cosi ϕ sinj ϕ ·

∥∥∥Df̂(x)−1f̂(y)
∥∥∥+ ∣∣∣∣ 1

Δμ(fn)
fn(y)

∣∣∣∣.
Therefore, we conclude that

cosμ ϕ−
∑

i+j=μ,j>0 ci,jγ
μ−1
μ cosi ϕ sinj ϕ

1 +
∑

1≤i+j≤μ−2 ti,j cos
i ϕ sinj ϕ

· ‖y − x‖μ − 2γμ
μ‖y − x‖μ+1

≤ 1

1 +
∑

1≤i+j≤μ−2 ti,j cos
i ϕ sinj ϕ

∣∣∣∣ 1

Δμ(fn)
fn(y)

∣∣∣∣
+

∑
1≤i+j≤μ−2 ti,jγ

i+j
μ ‖y − x‖i+j cosi ϕ sinj ϕ

1 +
∑

1≤i+j≤μ−2 ti,j cos
i ϕ sinj ϕ

∥∥∥Df̂(x)−1f̂(y)
∥∥∥

≤
∣∣∣∣ 1

Δμ(fn)
fn(y)

∣∣∣∣+ 1

2

∥∥∥Df̂(x)−1f̂(y)
∥∥∥ ≤ ‖A−1f(y)‖.

Now it is clear that

‖A−1f(y)‖ ≥ 2γμ
μ‖y − x‖μ (h(ϕ)− ‖y − x‖) ,

for h(ϕ) defined by (3.22). �
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theory of cost. I, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 1, 107–142. MR803197
[48] M. Shub and S. Smale, Computational complexity: on the geometry of polynomials and a the-

ory of cost. II, SIAM J. Comput. 15 (1986), no. 1, 145–161, DOI 10.1137/0215011. MR822199
[49] S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc.

(N.S.) 4 (1981), no. 1, 1–36, DOI 10.1090/S0273-0979-1981-14858-8. MR590817
[50] S. Smale, Newton’s Method Estimates from Data at One Point, The merging of disciplines:

new directions in pure, applied, and computational mathematics (Laramie, Wyo., 1985),
Springer, New York, 1986, pp. 185–196. MR870648

[51] H. J. Stetter, Numerical Polynomial Algebra, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2004. MR2048781

https://www.ams.org/mathscinet-getitem?mr=2908589
https://www.ams.org/mathscinet-getitem?mr=2888317
https://www.ams.org/mathscinet-getitem?mr=3034563
https://www.ams.org/mathscinet-getitem?mr=3229659
https://www.ams.org/mathscinet-getitem?mr=2895219
https://www.ams.org/mathscinet-getitem?mr=1457851
https://www.ams.org/mathscinet-getitem?mr=881541
https://www.ams.org/mathscinet-getitem?mr=948507
https://www.ams.org/mathscinet-getitem?mr=719330
https://www.ams.org/mathscinet-getitem?mr=0210316
https://www.ams.org/mathscinet-getitem?mr=507559
https://www.ams.org/mathscinet-getitem?mr=539566
https://www.ams.org/mathscinet-getitem?mr=2661328
https://www.ams.org/mathscinet-getitem?mr=2148044
https://www.ams.org/mathscinet-getitem?mr=2322434
https://www.ams.org/mathscinet-getitem?mr=1377247
https://www.ams.org/mathscinet-getitem?mr=803197
https://www.ams.org/mathscinet-getitem?mr=822199
https://www.ams.org/mathscinet-getitem?mr=590817
https://www.ams.org/mathscinet-getitem?mr=870648
https://www.ams.org/mathscinet-getitem?mr=2048781


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ISOLATION OF SIMPLE MULTIPLE ZEROS & CLUSTERS OF ZEROS 909

[52] J.-C. Yakoubsohn, Finding a cluster of zeros of univariate polynomials, Complexity theory,
real machines, and homotopy (Oxford, 1999), J. Complexity 16 (2000), no. 3, 603–638, DOI
10.1006/jcom.2000.0555. MR1787887

[53] J.-C. Yakoubsohn, Simultaneous Computation of all the Zero-clusters of a Univariate Poly-
nomial, Foundations of computational mathematics (Hong Kong, 2000), World Sci. Publ.,
River Edge, NJ, 2002, pp. 433–455. MR2021992

[54] N. Yamamoto, Regularization of solutions of nonlinear equations with singular Jacobian

matrices, J. Inform. Process. 7 (1984), no. 1, 16–21. MR760383

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, Beijing 100190, China; and University of

Chinese Academy of Sciences, Beijing 100049, China

Email address: haozhiwei@mmrc.iss.ac.cn

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, Beijing 100190, and China; University of

Chinese Academy of Sciences, Beijing 100049, China

Email address: jiangwr@amss.ac.cn

College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China

Email address: nan.li@szu.edu.cn

Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, Beijing 100190, China; and University of

Chinese Academy of Sciences, Beijing 100049, China

Email address: lzhi@mmrc.iss.ac.cn

https://www.ams.org/mathscinet-getitem?mr=1787887
https://www.ams.org/mathscinet-getitem?mr=2021992
https://www.ams.org/mathscinet-getitem?mr=760383

	1. Introduction
	2. Definition of simple multiple zeros
	2.1. Local dual space
	2.2. Unitary transformations

	3. Local separation bound and cluster location
	3.1. Simple triple zeros
	3.2. Simple multiple zeros

	4. Experiments
	5. Appendix
	Acknowledgments
	References

