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The problem of approximately factoring a real or com-
plex multivariate polynomial f seeks minimal perturbations
∆f to the coefficients of the input polynomial f so that
the deformed polynomial f + ∆f has the desired factor-
ization properties. Efficient algorithms exist that compute
the nearest real or complex polynomial that has non-trivial
factors (see [3, 6] and the literature cited there). Here we
consider the solution of the arising optimization problems
using polynomial optimization (POP) via semidefinite pro-
gramming (SDP). We restrict to real coefficients in the input
and output polynomials.

Categories and Subject Descriptors: G.1.2

General Terms: algorithms, theory, experimentation

Keywords: approximate factorization, SDP, hybrid method

1. OPTIMIZING FACTOR COEFFICIENTS
In [4] we formulate the problem of computing for an ab-

solutely irreducible input polynomial f ∈ R[x, y] the nearest
polynomial with a factor g = g0,0 + g1,0x + g0,1y + · · · +
gk,0x

k ∈ R[x, y] of given total degree k as a multivariate
rational function optimization problem

min
g,deg(g)≤k

uf (g0,0, . . . , gk,0)/vf (g0,0, . . . , gk,0), (1)

where u, v are real polynomials in the coefficients of the fac-
tor g. Since the polynomial v is a positive polynomial, (1)
can be written as a constrained POP [9]

max
r,g

r, uf (g0,0, . . . , gk,0) − rvf (g0,0, . . . , gk,0) ≥ 0, (2)

and solved by sums-of-squares (SOS) relaxation. Note that

the optimum r[OPT] = ‖∆f‖2
2.

Example 1.1. Consider the polynomials

f1 = (x + y + 1) (x − 2 y + 1) + 0.1 x,
f2 =

`

x2+xy+2 y−1
´ `

x3+y2x−y+7
´

+0.2 x [5, Example 3],

f3 =
`

x2+3 y2+4 x+1
´

(x−2 y−1) +0.1 x3+0.2 y2+0.3 xy.
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We compute the optimal solution of the constrained POP (2)
with the MATLAB package SOSTOOLS [10].
Ex. 1.1.1. Polynomial f1: For k = 1, u, v are real poly-

nomials in three variables of degree 6, and ‖∆f
[SOS]
1 ‖2 ≈

2.61661 ·10−2 ≈ ‖∆f
[OPT]
1 ‖2, the latter because the solution

agrees with the approximate factorization (upper bound)
computed by our SVD+Gauss-Newton algorithm [6].
Ex. 1.1.2. Polynomial f2: For k = 1, u, v are real poly-

nomials in three variables of degree 30, and ‖∆f
[SOS]
2 ‖2 ≈

0.60422. It is obvious that f2 is closer to a polynomial with
degree 2 and 3 factors, we tried to solve the optimization
problem (2) for k = 2 or k = 3. However, the expressions
of u, v become very complicated and we can not solve the
problem yet.
Ex. 1.1.3. Polynomial f3: For k = 1, u, v are real poly-

nomials in three variables of degree 12, and ‖∆f
[SOS]
3 ‖2 ≈

2.0165 · 10−1 ≈ ‖∆f
[OPT]
3 ‖2, which again agrees with the

SVD+Gauss-Newton factorization.

2. OPTIMIZING INPUT COEFFICIENT
DEFORMATIONS

In [3, 5, 6] we employ the approach in [2, 11, 12] in the
hybrid symbolic-numeric setting. Our algorithms can use
the following fact, here stated for 2 variables.

Fact [6, Theorem 5]: Let f ∈ C[x, y] be a polynomial of
degrees degx(f) = dx ≥ 2 and degy(f) = dy ≥ 2 in the
variables x and y, respectively. Suppose GCD(f, ∂xf) = 1
and suppose that f has r irreducible factors over C. Fur-
thermore consider the coefficient matrix R(f) of the ho-
mogeneous linear system ∂y(g/f) = ∂x(h/f) in the coeffi-
cients of g, h ∈ C[x, y] with deg(g), deg(h) ≤ deg(f) and
degx(g) ≤ dx − 2, degy(h) ≤ dy − 1. Then the nullspace of
R(f) (the space of the combined coefficient vectors x of g, h)
has dimension r−1. In particular, f is irreducible over C if
and only if R(f) has a trivial nullspace, i.e., R(f) is of full
rank.

The problem of approximate factorization can then be for-
mulated as a structured deformation of a matrix to achieve
rank deficiency at least r − 1:

minQ,∆f ‖∆f‖2
2

s. t. R(f + ∆f)Q = 0, where QHQ = Ir−1.

ff

(3)

Note that like in the GCD case [7], the optimal solution
to (3) may not yield a polynomial with r factors since the
optimal solution f + ∆f may have a lower degree or a non-
trivial GCD of f and ∂xf .

Nonetheless, (3) is a constrained polynomial optimization
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problem and we can deploy codes based on Lagrangian mul-
tipliers (STLS) and semidefinite programming (SDP) for its
solution. In contrast to our earlier SVD+Gauss-Newton and
STLS approaches [6], SDP-based solutions are certified to
be the global optima (within the floating point error). If we
permit relaxation [8], the computed values ‖∆f‖ yield lower
bounds for the irreducibility radii [5].

We have tested the SDP approach on three small examples
with r = 2, using the Matlab SparsePOP code [13]. Here
Q is a single vector x of length 1. We have observed that
the order 2 Lasserre relaxation produces the actual global
solutions for our examples. It may be possible to prove this
fact. Those global optima agree with the local optimal solu-
tions computed by our SVD+Gauss-Newton and STLS ap-
proaches [6]. Unfortunately, the arising SDPs are quite large
and the SDP approach cannot solve the larger benchmarks
in [6].

The optimal objective value of order 1 Lasserre relaxation
for (3) is always zero, hence this relaxation produces no
lower bound. One can formulate for a given regularization
parameter ρ the randomized problem

minx,∆f‖∆f‖2
2 + ρ‖x‖2

2

s. t. R(f + ∆f)x = 0 and
vTx = 1 where v is a fixed random vector.

9

=

;

(4)

The statement of a lower bound is weaker (only with high
probability and accounting the regularization error), but the
order 1 Lasserre solution reveals some information. Similar
to [7], one can also select a column b(f) in R(f) and instead
use the constraint A(f + ∆f)y = b(f + ∆f), where A(f) is
R(f) with column b(f) removed.

Example 2.1 Set ρ = 10−6. We use the polynomials f1, f2

and f3 in Example 1.1.
Ex. 2.1.1. Polynomial f1: We compute the lower bound
by solving the order 1 and order 2 Lasserre relaxations for

the problem (4): ‖∆f
[1]
1 ‖2 ≈ 2.63075 · 10−3, ‖∆f

[2]
1 ‖2 ≈

9.07773 · 10−3, while the SVD lower bound [5] is ≈ 1.03581 ·
10−2. The solution produced by the order 2 Lasserre for (3)
is optimal (see Example 1.1.1). The corresponding SDPs
have the following sizes: Order 1 Lasserre relaxation for (4):
44 constraints; 3 semidefinite blocks of sizes 4, 4, 5 respec-
tively; and 7 free variables. Order 2 Lasserre for (3): 838
constraints, 3 semidefinite blocks of sizes 26, 39, 40 respec-
tively; and 326 free variables.
Ex. 2.1.2. Polynomial f2: The lower bounds computed by
the order 1 Lasserre relaxation for (4) and SVD [5] are, re-

spectively ‖∆f
[1]
2 ‖2 ≈ 1.54592·10−3, ‖∆f

[SVD]
2 ‖2 ≈ 1.77862·

10−3. The corresponding SDP has the following sizes: 896
constraints, 3 semidefinite blocks of sizes 37, 40, 40 respec-
tively; and 36 free variables. Unfortunately, the order 2
Lasserre relaxation for this example is too large to be cur-
rently solved.
Ex. 2.1.3. Polynomial f3: The lower bounds computed by
the order 1 Lasserre relaxation for (4) and SVD [5] are, re-

spectively ‖∆f
[1]
3 ‖2 ≈ 2.09142·10−3, ‖∆f

[SVD]
3 ‖2 ≈ 2.89648·

10−2. The corresponding SDP has the following sizes: 244
constraints, 3 semidefinite blocks of sizes 17,18,20; and 16
free variables.

We succeeded in solving the order 2 Lasserre relaxation
for (3) for the optimal solution (see Example 1.1.3): The
resulting SDP has 9939 constaints, 3 semidefinite blocks of
sizes 121, 150, 162, and 5832 free variables. It took 90 min-

utes of computing time to solve the associated SDP to 8
digits of accuracy on NCSU’s distributed high performance
IBM cluster “Henry2.”

3. DISCUSSION
We have tested SDP-based constrained polynomial opti-

mization packages on the optimization problems arising in
our approximate factorization algorithms. Both our algo-
rithms in [4] and in [6] lead to very large semidefinite pro-
grams. We plan to investigate SDP relaxations of (3) and (4)
that give better lower bounds than the order 1 Lasserre SDP
relaxation and are smaller in size than the order 2 Lasserre
SDP relaxation applied to these formulations. Solution of
these SDP relaxations using parallel interior point software
such as CSDP [1] and SDPARA [14] on a high performance
cluster is also planned.

Acknowledgement: We thank Jiawang Nie for valuable comments
on SDP relaxation.
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