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ABSTRACT
We generalize the technique by Peyrl and Parillo [Proc.
SNC 2007] to computing lower bound certificates for sev-
eral well-known factorization problems in hybrid symbolic-
numeric computation. The idea is to transform a numerical
sum-of-squares (SOS) representation of a positive polyno-
mial into an exact rational identity. Our algorithms suc-
cessfully certify accurate rational lower bounds near the ir-
rational global optima for benchmark approximate polyno-
mial greatest common divisors and multivariate polynomial
irreducibility radii from the literature, and factor coefficient
bounds in the setting of a model problem by Rump (up to
n = 14, factor degree = 13).

The numeric SOSes produced by the current fixed preci-
sion semi-definite programming (SDP) packages (SeDuMi,
SOSTOOLS, YALMIP) are usually too coarse to allow suc-
cessful projection to exact SOSes via Maple 11’s exact linear
algebra. Therefore, before projection we refine the SOSes
by rank-preserving Newton iteration. For smaller problems
the starting SOSes for Newton can be guessed without SDP
(“SDP-free SOS”), but for larger inputs we additionally ap-
peal to sparsity techniques in our SDP formulation.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; G.1.6 [Numerical
Analysis]: Global optimization
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1. INTRODUCTION

1.1 Motivation
Minimizing the deformations on inexact floating point sca-

lars in the inputs to symbolic computation problems so that
the resulting deformed inputs yield non-trivial outputs, such
as common roots, factors or sparse interpolants, has re-
sulted in a plethora of numerical optimization algorithms
for those hybrid symbolic-numeric tasks (see, e.g., the sur-
vey [46]). We have successfully deployed structure preserv-
ing total least squares algorithms based on Newton iteration
and the method of Lagrangian multipliers for the approxi-
mate polynomial greatest common divisor (GCD) problem
[16], the approximate multivariate polynomial factorization
problem [15], and the sparse multivariate polynomial and
rational function interpolation [17] problem. Those opti-
mization techniques efficiently produce local minima, which
with randomizing start values and projections experimen-
tally appear to actually be the global optima.

Semidefinite programming (SDP) is a far-reaching gener-
alization to the interior-point methods of linear program-
ming: theoretically, the SDPs can be solved in polynomial-
time and can produce approximations to classical combina-
torial optimization problems that were unachieved before.
In addition and important to our setting, via sum-of-squares
(SOS) and truncated moment techniques, SDP is applicable
to global polynomial optimization problems (POPs) of the
form

min
x∈Rn

p(x)

s. t. q1(x) ≥ 0, . . . , ql(x) ≥ 0
where p, q1, . . . , ql ∈ R[X1, . . . , Xn]

9
=
; (1)

(if the qj are omitted, the problem is unconstrained).
The idea of bringing SDP-based polynomial optimization

into hybrid symbolic-numeric computation was discussed
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among James Demmel, Erich Kaltofen and Lihong Zhi at
the October 2005 BIRS Workshop “Challenges in Linear and
Polynomial Algebra in Symbolic Computation Software.”
We now have a growing body of work [28, 13, 22, 23]. At this
moment in time, we can draw the following conclusion: SDP
is significantly more complex than our local (upper bound)
algorithms, but one also gets more: namely an SOS certifi-
cate à la Putinar for the global infimum r ∈ R of (1) in the
form of polynomials ui, vj,k ∈ R[X1, . . . , Xn], 0 ≤ i ≤ m,
1 ≤ j ≤ l, 1 ≤ k ≤ νj that satisfy the polynomial identity

p(X) − r =

mX

i=1

ui(X)2 +

lX

j=1

“
qj(X) ·

νjX

k=1

vj,k(X)2
”

(2)

Note that the above Positivstellensatz (2) [30] places restric-
tions on the constraints. Without constraints, not all such
polynomials have a polynomial SOS (e.g., Motzkin’s polyno-
mial), and either polynomial relaxations or a common square
polynomial denominator u2

0 in the u2
i , v

2
j,k (Emil Artin’s the-

orem) become necessary.
That is what the theory promises. However, an underlying

assumption is that the interior-point iteration is performed
with sufficiently high bigfloat precision, which current imple-
mentations do not support. The SOS certificate is numeric:
it is subject to round-off errors of the floating point scalars
in the computed equation (the exact solution may have ir-
rational algebraic coefficients) and, more consequentially, to
the numerical error from the fixed precision SDP solver it-
self. In fact, we will demonstrate on Siegfried Rump’s model
problem how an SDP solver can become quite unstable with
scale, see Table 1. In summary, (2) is satisfied only approx-
imately by the polynomials SDP produces.

Our goal is to convert the imprecise and possibly invalid
SOS certificate into an exact SOS certificate with exact ra-
tional scalars and polynomials, i.e., a proof, by bringing ex-
act symbolic methods into play. Then the floating point
precision in the SDP solver can be fixed, and further relax-
ations such as sparseness and “cheap-and-dirty” heuristics
can be introduced without concern for the returned answer.
One may even proceed by computing the numeric SOS cer-
tificate using Newton iteration directly rather than formu-
lating a corresponding SDP. Since the global optimum can
be an algebraic number in an extension of high degree [29],
we shall verify a nearby rational lower bound r̃ / r, r̃ ∈ Q.
We assume that the coefficients of the polynomials p and qj

in (1) are represented exactly, for example as exact rational
numbers. If they are floating point numbers, we can take
their rational values. If the coefficients are irrational alge-
braic numbers with an exact representation, our methods
also work, see Remark 2. Unlike Rump’s and Villard’s fully
analyzed and validated numerical approach (see [43] and its
references), our paradigm allows for unchecked numerical
techniques and low precision floating point numbers because
our exact rationalization catches all false certificates.

1.2 Used Approach and Results
We can formulate the problem of computing for an ab-

solutely irreducible input polynomial h of total degree t in
R[Z1, . . . , Zs] the nearest polynomial with a (real) factor of
given total degree k as an unconstrained polynomial opti-

mization problem [15, 23]:

min
h1, h2 ∈ R[Z1, . . . , Zs],

deg(h1) = k, deg(h2) = t − k

‖h(Z) − h1(Z)h2(Z)‖2 (3)

with n =
`

s+k

s

´
+

`
s+t−k

s

´
unknown coefficients. (With ‖ · ‖

we always denote the 2-norm of the coefficient vector.) Or
we can eliminate the coefficients of h2 by a symbolic least
squares ansatz and obtain a multivariate rational function
optimization problem:

min
x∈Rn

f(x)

g(x)
(where g(x) > 0 for all x ∈ Rn) (4)

with n =
`

s+k

k

´
[13]. Since any polynomial can always be

viewed as a rational function with the denominator as 1,
in the following, we focus on the more general problem of
minimization of a rational function by SOS:

r∗ := sup
r∈R,W

r

s. t. f(X) − rg(X) = md(X)T · W · md(X)
W � 0, W T = W

9
>=
>;

(5)

where md(X) is the column vector of all terms in X1, . . . , Xn

up to degree d. The dimension of md(X) is
`

n+d

d

´
. From (5)

we know W is a symmetric positive semidefinite real matrix
and the program is an SOS. We refer to [33, 31, 19, 28, 12]
for description of SOS relaxations and their dual problems.

The problem of finding the rational SOS is equivalent to
finding a rational positive semidefinite symmetric matrix
W solving SOS problem (5) (see (13) below). Inspired by
the method in [34], we start with a numerical solution W
computed by semidefinite programming solving problem (5).
However, we refine the matrix W further by using Newton
iteration. In the next step, we lower r∗ to a rational bound
r̃, convert W to a rational matrix and project the matrix
onto the affine linear hyperplane (cf. (5))

X = {A | AT = A, f(X)− r̃g(X) = md(X)T ·A·md(X)} (6)

denoting the nearest matrix in X by fW . The projection is
done by solving a rational least squares problem (11) exactly.

The hope is that fW is positive semidefinite, yielding a SOS

proof (2) for the lower bound r̃. If fW is not positive semidef-
inite, then we may increase the precision or reduce r̃ further
and try again. It is always possible to compute a valid ra-
tional solution using sufficiently many digits, provided the
optimal W remains positive semidefinite in a neighborhood
[34, Proposition 3.1].

We demonstrate our exact certification strategy on three
problems, the approximate greatest common divisor prob-
lem, the model problem by Rump, and the approximate fac-
torization problem. Thus we are able to certify for several
non-trivial problems from the literature minimum required
distances to the nearest solvable problem that are fairly near
their upper bounds. In fact, within minutes of computing
we can prove a lower bound for our approximate GCD prob-
lem [16, Example 4.2] that is accurate to 5 decimal mantissa
digits (6 decimal places). The lower bound establishes that
the corresponding ill-conditioned Sylvester matrix is struc-
turally well-conditioned. Rump’s [38] problem minimizes
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X

convert to rational

Newton iteration
WNewton

WSDP

project on hyperplane

symmetric positive semidefinite matrices
W̃

Figure 1: Rationalization of SOS

the factor coefficient bound

µn = min
P, Q

1

Bn−1
(

1

µn

= max
P, Q

Bn−1)

s. t. ‖P (Z)‖2 · ‖Q(Z)‖2 = Bn−1‖P (Z) · Q(Z)‖2

P, Q ∈ R[Z] \ {0}, deg(P ) ≤ n − 1, deg(Q) ≤ n − 1

Mignotte’s [25] bound is 1
µn

≤
`
2n−2
n−1

´2
. We can prove ac-

curate lower bounds for µn as high as n = 14 and upper
bounds at least as large as n = 63. Our upper bounds
are obtained by Newton-Lagrange optimization with an in-
cremental number of decimal mantissa digits (see also [1]).
For n = 14, we have 1.62 · 1011 < 1

µ14
< 3.12 · 1011 with

Digits := 16, while
`
26
13

´2 ≈ 1.08 ·1014. The SOS-based lower
bound for µ14 is at the limits of our fixed precision (15 deci-
mal mantissa digits) SDP solvers. Finally, we have certified
the irreducibility radius of [14, Example 3]. Our certified
lower bound computed in under one minute is accurate to 5
decimal mantissa digits (8 decimal places).

Our method has also produced the following exact SOS
representation of the non-negative polynomial D(λ) in [5]
(the benchmark “Vor1” in Safey El Din’s paper in these
Proceedings [40]): 16(au+au2)2 +(ay+aβ +2auy+4aβu−
a2x − a2α + 4aβu2 − 2a2αu)2 + (y + β + 2βu − ax − aα −
2aux− 4aαu− 4aαu2)2. The YALMIP numeric sparse SOS
+ Gauss-Newton refinement + rational projection takes no
more than 2 seconds in total.

In section 2 we illustrate how to extend the method in [34]
to find the rational sums of squares of polynomials. The
initial symmetric positive semidefinite matrix W can be ob-
tained by solving the SDP problem (5). We also explore
the possibility of starting at a random symmetric positive
semidefinite matrix with given rank as W . We have thus
successfully certified, without using SDP, the lower bounds
for Rump’s problem up to n = 10. The size of md(X) in-
creases very fast with d and the number of variables. So the
sparsity of the SDP problem (5) has to be exploited [36, 32,
44, 20, 27, 23]. See section 3.2.2 for a detailed discussion.

2. RATIONALIZING AN SOS DERIVED
FROM SDP AND NEWTON ITERATION

The SOS program (5) can be solved efficiently by algo-
rithms in SOSTOOLS [35], YALMIP [24] and SeDuMi [41].
However, since we are running fixed precision SDP solvers
in Matlab, we can only obtain a numerical positive semidef-
inite matrix W and floating point number r∗ which satisfy
approximately

f(X) − r∗g(X) ≈ md(X)T · W · md(X), W v 0. (7)

So r∗ is a lower bound of f(x)/g(x), x ∈ Rn, approximately!
For some applications, such as Rump’s model problem (16),
due to the numerical error, the computed lower bounds can
even be much bigger than upper bounds, see Table 1. This
motivates us to consider how to use exact linear algebra
tools to certify the lower bounds computed by SDP.

The lower bound r̃ is certified if r̃ and fW hold the follow-
ing conditions exactly:

f(X) − r̃g(X) = md(X)T · fW · md(X), fW � 0. (8)

In the following subsections, we start with using Gauss-
Newton iterations to refine r∗ and W which satisfy (7) ap-
proximately, then compute the rational number r̃ and ra-

tional positive semidefinite symmetric matrix fW which sat-
isfy (8) exactly. The projection steps are shown in Figure 1.

2.1 Newton Iteration
Let θ denote the backward error:

θ = ‖f(X) − rg(X) − md(X)T · W · md(X)‖.

The floating point number r can be computed by solving the
SOS program (5) or by other local optimization methods [6,
15]. In order to derive a satisfactory certified lower bounds,
it is important to start with an accurate lower bound, de-
noted by r∗.

For the refined r∗, the positive semidefinite symmetric
matrix W can be obtained by solving the following SOS
program:

inf
W

Trace(W )

s. t. f(X) − r∗g(X) = md(X)T · W · md(X)
W � 0, W T = W

9
>=
>;

(9)

(here Trace(W ) acts as a dummy objective function that is
commonly used in SDP for optimization problem without
an objective function.)

We expand the quadratic form obtained from the SOS
decomposition:

f(X) − r∗g(X) ≈
kX

i=1

(
X

α

ci,αXα)2 ∈ R[X]. (10)

Here k is the rank of the matrix W . The rank deficiency of
W corresponds to the number of global optima. For some
applications, if the number of global optima is known, then
k is known too. For Rump’s model problem (18), the rank
deficiency of W is 1 if n is even; and 2 if n is odd. For the
given tolerance, we compute the rank k by using the singular
value decomposition of W .
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We apply Gauss-Newton iteration to compute ∆ci,αXα

such that

f(X) − r∗g(X) =

kX

i=1

(
X

α

ci,αXα + ∆ci,αXα)2

+ O(

kX

i=1

(
X

α

∆ci,αXα)2).

We update the matrix W accordingly to W + ∆W and the
iteration is stopped when θ is less than the given tolerance τ .
If θ remains greater than the given tolerance τ after several
Gauss-Newton iterations, we may increase the precision of
the SDP and Gauss-Newton iteration computations or use
a smaller r∗ and try the computations again.

The total number of Xα in md(X) is
`

n+d

d

´
. So the com-

putation of Gauss-Newton iteration is very heavy. It is
necessary to exploit the sparsity of the SOS program (9).
Fortunately, for many optimization problems arising from
approximate polynomial computation, the sparsity can be
discovered by analyzing the Newton polytope. We show
in section 3.2.2 how to explore the sparsity for the prob-
lem (18).

Remark 1 It is possible to construct W as a random sym-
metric positive semidefinite matrix satisfying some given
conditions such as rank, sparsity. However, if the backward
error θ is large, we may need a big number of Gauss-Newton
iterations to reduce θ below τ .

2.2 Rationalizing an SOS
In [34], a Macaulay 2 package is presented to compute an

exact SOS decomposition from a numerical solution for non-
negative polynomials with rational coefficients. We extend
their technique to construct an exact rational SOS decompo-
sition for the polynomial f(X) − r̃g(X). Then r̃ is certified
to be the lower bound of the minimization problem (4).

Suppose W has been refined by Gauss-Newton iterations
such that ‖f(X) − r∗g(X) − md(X)T · W · md(X)‖ < τ .
We approximate r∗ by a nearby rational number r̃ / r∗

and convert W to a rational matrix. Then we orthogonally

project the refined matrix W to the rational matrix fW on
the hyperplane X in (6). The projection is achieved by
solving exactly the following least squares problems:

min
fW

‖W − fW‖2
F

s. t. f(X) − r̃g(X) = md(X)T · fW · md(X)

)
(11)

It is equivalent to solve a set of smaller least squares prob-
lems:

min
fW

X

α

X

β+γ=α

(Wβ,γ − fWβ,γ)2

s. t. fα − r̃gα =
X

β+γ=α

fWβ,γ

9
>>=
>>;

(12)

By solving the least squares problem (12) for each α, we get

the minimal rational solution, denoted by fW . Then we com-

pute the exact LTDL-decomposition [7] to check whether fW
is a symmetric positive semidefinite matrix. The optimum
r̃ is verified as the lower bound if

f(X) − r̃g(X)= md(X)T · fW · md(X)

= md(X)T · LT · D · L · md(X),

such that ∀i : Di,i ≥ 0,

9
>=
>;

(13)

where Di,i is the i-th diagonal entry of the diagnal matrix D.

If fW is not positive semidefinite, i.e., one entry, usually the
last, in the diagonal matrix D is negative, we can decrease r̃
or increase the precision of Newton iterations to repeat the
above computation. In our experiments, we usually choose
ρ ∈ [0.1 · θ, 0.5 · θ], and lower r∗ to r̃ = r∗ − ρ. In our

experience, the matrix fW becomes a positive semidefinite
matrix.

Remark 2 The crucial property for verification is that the

LTDL-factorization of fW can be computed by an algorithm
using rational arithmetic. The corresponding SOS is exact,
but not rational:

f(X) − r̃g(X) =
X

i

(
p

Di,i · Li · md(X))2, (14)

where Di,i > 0 is rational and Li is the i-th row of L. We
do not need this in our certificate, but if all coefficients are
rational, a rational SOS exists [10]. If the coefficients of f
and g are in an exact (not necessarily totally) real algebraic
extension K = Q[η]/(ϕ(η)), where ϕ(η) ∈ Q[η] and the sym-
bol η represents a designated real root of ϕ, the certificate
is verified exactly in the same manner by arithmetic in K.
Note that r̃ is still chosen in Q.

Algorithm Lower Bound Verification

Input: ◮ f(X1, . . . , Xn), g(X1, . . . , Xn) ∈ Q[X1, . . . , Xn]:
the numerator and denominator of a multivari-
ate rational function.

◮ r∗(optional): the approximate optimum of the
minimization problem.

◮ τ ∈ R>0: the given tolerance.
Output: ◮ r̃: the verified lower bound.

1. Gauss-Newton refinement

(a) Get an approximate SOS decomposition.

Case SDP is used to compute W :
A. If r∗ is given, set up SDP to compute W

such that W satisfy (7).
Otherwise, set up SDP to compute r∗ and
W such that they satisfy (7).

B. Compute the numerical rank k of W and
exploit the sparsity structure of polyno-
mials in the SOS.

Case SDP is not used to compute W :
Construct the symmetric positive semidefi-
nite matrix W randomly that satisfies the
rank condition and given structures.

(b) Apply Gauss-Newton method to refine (10) and
compute θ.

(c) If θ < τ , then get the refined matrix W .
Otherwise, decrease r∗ and go back to step 1(a)A.

2. Compute the exact SOS

(a) Lower r∗ to a rational number r̃ and convert W
as a rational matrix.

(b) Compute the rational matrix fW by solving (11).

(c) Check whether fW is positive semidefinite. If so,
return r̃. Otherwise, choose ρ ∈ [0.1 ·θ, 0.5 ·θ], let
r̃ = r∗ − ρ and go back to step 2b.
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Remark 3 Our projection method tries to achieve positive

semidefiniteness for a rational r̃ and fW such that r̃ is as close
as possible to r∗. We apply Gauss-Newton refinement to W
for r∗ (or a lowered r∗) and project using the even smaller r̃.
Refinement with the actual target r̃ seems to bring W too
close to the boundary of the cone of positive semidefinite
matrices, and orthogonal projection fails to preserve that
property.

3. THREE APPLICATIONS

3.1 Approximate Greatest Common Divisors
Approximate Greatest Common Divisors (GCDs) of uni-

variate and multivariate polynomials can be transformed as
global minimization of rational function (see [23] and the
reference there). An approximate global optimum r∗ can be
attained by structured total least norm method [16] or SOS
relaxations [23, 27]. By Algorithm Lower Bound Verifica-
tion, we can find the rational number r̃ which is verified as
the lower bound.

Example 1 (Example 4.2 in [16]) Consider the polynomi-
als

1000Z10
1 + Z3

1 − 1 and Z2
1 − 1

100
.

The local minimum computed by our STLN method is

r∗ = 0.0421579164 (15)

which can also be attained by SOS relaxations [23]. We
decrease r∗ by 4 × 10−8 to r∗ = 0.0421578636 and then
verify this lower bound. We reformulate the approximate
GCD problem as rational function minimization problem.
The numerator and denominator f(X), g(X) ∈ Q[X] can be
obtained from the formulation in [18, 11, 23].

The matrix W is computed by solving the SOS program (5)
with dim(md(X)) = 13. We check that

θ = ‖f(X) − r∗g(X) − md(X)T · W · md(X)‖
= 1.9430e-7.

Case 1: Without applying Gauss-Newton iteration, we lower
r∗ to the rational lower bound

r̃1 = 1414583 · 2−27 ≈ 0.0421578586 .

Our SDP-SOS took 0.02 seconds∗ to obtain the ra-
tional matrix fW by solving (11) with the exact com-
putation in Maple 11 with Digits:=20. By LTDL-

decomposition we find that fW is a positive semidef-
inite matrix:

f(X) − r̃1g(X) = md(X)T · fW · md(X) ≥ 0.

Hence, r̃1 is verified as the lower bound.

Case 2: Applying the Gauss-Newton iterations, the error
is reduced to

θ = ‖f(X) − r∗g(X) − md(X)T · W · md(X)‖
= 1.8140e-13.

We lower r∗ to the rational lower bound

r̃2 = 45266661 · 2−30 ≈ 0.0421578633 .

∗
All reported timings are on a 4 CPU (3GHz Xeon) MacPro with

9GB of memory under Linux 2.6.22-14 (Ubuntu).

Our SDP-SOS took 47.6 seconds to obtain the rational
positive semidefinite matrix fW ; r̃2 is also verified as
the lower bound.

Comparing the two cases, r̃2 is a bit better than r̃1. So we
let r̃ = r̃2 as the certified lower bound for this GCD problem.
And the local minimum computed by STLN method in [16]
is the approximate global optimum.

Note that in [16] we had the globality of (15) verified by
minimization with interval arithmetic [45]. The verification
of the minimum was important because the Sylvester matrix
of (1) is highly ill-conditioned, while the structured distance
to singularity is large, a phenomenon that has been studied
more since our discovery [2, 21].

3.2 Siegfried Rump’s Model Problem
In this section, we solve the Rump’s model problem by

using sparse semidefinite programming (sparse SDP). The
Newton-Lagrange method is applied to refine the global op-
tima computed by SDP. Furthermore, we certify exact lower
bounds by rationalizing sum-of-squares (SOS) decomposi-
tions.

3.2.1 Problem and Mathematical Background
Rump’s model problem [39, 38] is that of computing the

global minimum µn:

µn = min{‖PQ‖2 | P, Q ∈ R[Z], ‖P‖ = ‖Q‖ = 1

and deg(P ) = deg(Q) = n − 1}.

)
(16)

For a non-singular system of linear equations Ax = b, we
denote the Toeplitz condition number by κToep(A, x). It
characterizes the sensitivity of the solution x with respect
to infinitely small Toeplitz structured perturbations of the
matrix A and perturbations of b. It has been proved in [37]
that the ratio between the Toeplitz and the unstructured
condition number satisfies

κToep(A, x)

κ(A, x)
= α

‖A−1JΨx‖
‖A−1‖‖x‖ ≥ 1√

n

σmin(Ψx)

‖x‖ ,

where the matrix Ψx is defined by

Ψx :=

2
4

x1 . . . xn

. . .
x1 . . . xn

3
5 ∈ Rn×(2n−1),

J ∈ Rn×n is the permutation matrix mapping (1, . . . , n)T

into (n, . . . , 1)T and 1√
n

≤ α ≤
√

2. It was shown in [39]

that

√
µn = min‖x‖=1 σmin(Ψx) = min‖x‖=‖y‖=1 ‖Ψxy‖

= min‖x‖=‖y‖=1 ‖Ψyx‖

for all n. The upper bound of µn can be computed very effi-
ciently. The challenge is to compute rigorous lower bounds
for µn. In [38], verified lower bounds are given for n up
to 8. In the following, we show that by rationalizing SOS
computed from sparse SOS, we can efficiently compute the
certified lower bounds for n up to 14.

3.2.2 Rational Function Minimization by Sparse SOS
The problem (16) is equivalent to the rational function

159



n µ∗
n from fixed prec. SDP Newton-Lagrange Rump’s upper bound

3 0.111111111111132 0.1111111111111112 0.1111111111111113
4 0.0174291733214352 0.01742917332143266 0.01742917332143269
5 0.00233959554819155 0.002339595548155594 0.002339595548155599
6 0.00028973187528375 0.0002897318752796807 0.0002897318752796843
7 0.0000341850701964797 0.00003418506980008289 0.00003418506980008323
8 0.00000390543564465773 0.000003905435649755721 0.000003905435649755845
9 4.36004072290608e-007 4.360016539181021e-007 4.360016539181362e-007

10 4.78395278113997e-008 4.783939568771179e-008 4.783939568772086e-008
11 5.18272812166654e-009 5.178749097446552e-009 5.178749097451150e-009
12 5.54188889223539e-010 5.545881831162859e-010 5.545881831173105e-010
13 4.06299438537872e-011 5.886688081195787e-011 5.886688081216679e-011
14 2.26410681869460e-010 6.202444992001861e-012 6.202444992172272e-012

Table 1: Rump’s upper bounds and the optima computed by SDP and Newton-Lagrange

minimization:

µn = min{ ‖PQ‖2

‖P‖2‖Q‖2
| P (Z) =

nX

i=1

piZ
i−1 ∈ R[Z],

Q(Z) =
nX

i=1

qiZ
i−1 ∈ R[Z]}.

9
>>>=
>>>;

(17)

The numbers of unknowns in coefficients of P, Q are n(P ) =
n(Q) = n. It has been shown in [39] that polynomials P, Q
realizing the polynomials achieving µn must be symmetric
(self-reciprocal) or skew-symmetric. Thus the problem can
be rewritten into three optimization problems with three
different constraints

pn+1−i = pi, qn+1−i = qi, 1 ≤ i ≤ n,
pn+1−i = pi, qn+1−i = −qi, 1 ≤ i ≤ n,
pn+1−i = −pi, qn+1−i = −qi, 1 ≤ i ≤ n,

and the smallest of three minima is equal to µn. We are
going to minimize the rational function f(X)/g(X) with

f(X) = ‖PQ‖2 =

2nX

k=2

(
X

i+j=k

piqj)
2,

g(X) = ‖P‖2‖Q‖2 = (

nX

i=1

p2
i )(

nX

j=1

q2
j )

and the variables

X = {p1, . . . , pn(P )} ∪ {q1, . . . , qn(Q)},

where n(P ) = n(Q) = ⌈n/2⌉. An SOS-relaxed lower bound
of µn can be obtained by solving the following SOS program:

µ∗
n := sup

r∈R,W

r

s. t. f(X) − rg(X) = md(X)T · W · md(X)
W � 0, W T = W

9
>=
>;

(18)

here deg(f) = deg(g) = 4 and md(X) is the column vector of
all terms up to degree d = 2. The dimension of real symmet-
ric matrix W is

`
n(P )+n(Q)+2

2

´
and there are

`
n(P )+n(Q)+4

4

´

equality constraints.
Similar to [23], we exploit the sparsity in the SOS pro-

gram (18). Let C(p) denote the convex hull of supp(p) =
{α | pα 6= 0} for polynomial p(X) =

P
α pαXα. Suppose

f(X) − rg(X) = md(X)T · W · md(X) =
X

k

uk(X)2.

Let the polynomial h(X) =
Pn(P )

i=1

Pn(Q)
j=1 piqj , and Xα be

any term in the SOS, then

α ∈ 1

2
C(f(X) − rg(X)) ⊆ 1

2
C(h(X)2) = C(h(X)).

According to the property of convex hulls, there exist non-
negative numbers λi,j for 1 ≤ i ≤ n(P ), 1 ≤ j ≤ n(Q) such
that

Xα =
Y

i,j

(piqj)
λi,j =

Y

i

p
P

j λi,j

i

Y

j

q
P

i λi,j

j ,
X

i,j

λi,j = 1.

So Xα must be piqj for some i, j. The sparse SOS program
of the rational function minimization problem (17) is:

µ∗
n := sup

r∈R,W

r

s. t. f(X) − rg(X) = mG(X)T · W · mG(X)
W � 0, W T = W

9
>=
>;

(19)

where mG(X) is the column vector containing all terms piqj

for 1 ≤ i ≤ n(P ), 1 ≤ j ≤ n(Q). The dimension of the
real symmetric matrix W is n(P )n(Q) and the number of

equality constraints is
`

n(P )+1
2

´`
n(Q)+1

2

´
. For n = 14, the

sparse SOS program (19) has 784 equality constraints and
dim(W ) = 49 while the SOS program (18) has 3060 equality
constraints and dim(W ) = 120.

The SOS program (19) can be solved efficiently by algo-
rithms in SOSTOOLS [35], YALMIP [24] and SeDuMi [41].
However, we can see from the Table 1, the lower bounds
computed by the fixed precision SDP solver can be even
larger than the upper bounds given in [38]. There are dif-
ferent techniques to improve the output of SDP solver, for
example, Newton iteration.

Again, let f(X) = ‖PQ‖2, c1(X) = ‖P‖2−1 and c2(X) =
‖Q‖2 − 1, we apply Newton-Lagrange method to solve the
equality-constrained problem

min
x

f(x)

s. t. c1(x) = c2(x) = 0.

The initial values of X are the coefficients of the polynomials
P, Q computed by solving the sparse SOS program (19).

From the Table 1, we can see that the global optima
computed by solving the sparse SOS program (19) in Mat-
lab and refined by Newton-Lagrange method in Maple 11
with Digits := 16 are strictly smaller than Rump’s upper
bounds [38]. Actually, we can apply the Newton-Lagrange
method to any initial guess for the polynomials P and Q, it
is not necessary to start with solving the SOS program (19).
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n time(s) Digits certified lower bound Rump’s lower bound
3 0.028 20 0.11111111111111111 0.1111111111111083
4 0.368 20 0.017429173321432651 0.01742917332143174
5 8.128 20 0.002339595548155590 0.002339595548155278
6 182.8 20 0.0002897318752796799 0.0002897318752795867
7 837.4 20 0.00003418506980008202 0.00003418506980004407
8 2.112 15 0.000003905435649455700 0.000003905435649743504
9 7.008 15 4.36001623918100e-007 ?

10 34.14 15 4.78393556877000e-008 ?
11 27.93 15 5.17774909740000e-009 ?
12 174.1 15 5.51588183110000e-010 ?
13 181.2 15 5.78668808100000e-011 ?
14 1556 15 3.20244499200000e-012 ?

Table 2: The certified lower bounds and Rump’s lower bounds

However, the output of (19) provides us an initial positive
semidefinite matrix W which can be used in the following
lower bound certification.

Remark 4 Boyd and Collins have investigated the maxi-
mization of the single factor coefficient bound for integer
polynomials with respect to infinity norm [3, and its refer-
ences]. Collins establishes that the ratio of (the minimal
height among irreducible factors)/(height of their product)
can be ≥ 2.2005. In [1] we compute from the Rump poly-
nomials (see Table 1) with n = 67 an integer polynomial of
degree 132 with the record-breaking ratio ≥ 3.30846991.

3.2.3 Lower Bound Certification
Given the rational number rn = µ∗

n − ρn for the small
positive number ρn. We use the matrix W computed by
solving the sparse SOS program (19) as the initial approx-
imate positive semidefinite matrix. Applying the Newton
iteration method to the system of equations obtained from
the sparse SOS decomposition

f(X) − rng(X) = mG(X)T · W · mG(X)

=
P

k(
P

α ck,αXα)2 ∈ R[X],

we get the refined positive semidefinite matrix W . The nu-
merical matrix W is converted to the rational matrix W .
By solving the least squares problem

min
fW

X

i,j

(wi,j − w̃i,j)
2

s. t. f(X) − rng(X) = mG(X)T · fW · mG(X)

we project W to the hyperplane defined by the SOS decom-

position. If the computed projected rational matrix fW is
positive semidefinite, then we get the rational SOS decom-
position and rn is the certified lower bound for µn. If it’s
not, then we can increase the precision for solving SDP and
Newton iteration or try smaller rn.

In the Table 2, we compare the certified lower bounds ob-
tained by our algorithm applying Gauss-Newton iterations
with the lower bounds given in [38]. For n ≤ 7 we used
Maple 11’s Digits:=20, while for n ≥ 8 we used machine
precision. The case of n = 14 is our most difficult certificate
(see also Remark 3). The numerators and denominators of
its rational numbers have up to 945 decimal digits: http://

www4.ncsu.edu/∼kaltofen/software/certif/model14 SOS.txt.

Remark 5 We have also tried to avoid SDP altogether and
to start with a random positive semidefinite matrix with

rank deficiency 1 for n being even and 2 for n being odd.
For n up to 10, we can certify the same lower bounds listed
in Table 2.

3.3 Approximate Polynomial Factorizations
We can formulate the problem of computing for an ab-

solutely irreducible input polynomial of total degree t in
R[Z1, . . . , Zs] the nearest polynomial with a factor P of given
total degree k and cofactor Q of given total degree t − k
as a polynomial optimization problem minX∈Rn f(X) with
n =

`
s+k

s

´
+

`
s+t−k

s

´
. It has been pointed out in [13], with-

out exploring the sparsity of the SOS problem (5), it seems
difficult to certify the lower bound even for Example 3 in
[14], which originally was posed in [26, Example 1]. But the
sparsity of the SOS problem for the approximate factoriza-
tion can been exploited (see [23]). We have the following
sparse SOS program:

r∗ := sup
r∈R,W

r

s. t. f(X) − r = mG(X)T · W · mG(X)
W � 0, W T = W

9
>=
>;

(20)

where mG(X) is the column vector containing 1 and all
terms piqj for 1 ≤ i ≤

`
s+k

s

´
and 1 ≤ j ≤

`
s+t−k

s

´
, where

pi and qj are unknown coefficients of polynomials P and Q
respectively.

Example 2 (Example 3 in [14]) Consider the polynomial

(Z2
1 + Z2Z1 + 2Z2 − 1)(Z3

1 + Z2
2Z1 − Z2 + 7) +

1

5
Z1

we are going to certify the lower bounds for polynomial
having a degree one factor or a degree two factor. The
global minima r∗ computed by solving the sparse SOS pro-
gram (20) is 0.2947781736518 for k = 1, and 0.000413702070
for k = 2. The corresponding upper bound in [15, Table 1,
Example 1] is 0.00041370181014226 , which is lower than the
numeric SOS bound. The objective function f(X) ∈ Q[X]
can be obtained from the formulation (3) (see also in [23]).

For k = 1, the matrix W is computed by solving the sparse
SOS program (20) with dim(mG(X)) = 46. We check that

θ = ‖f(X) − r∗ − mG(X)T · W · mG(X)‖ = 1.06591917e-11.

Without applying the Gauss-Newton iterations, we lower r∗

to a rational number

r̃ = 633031307 · 2−31 ≈ 0.2947781733237
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and obtain the rational matrix fW by solving (11) with the
exact computation in Maple 11. By LTDL-decomposition

we find that fW is a positive semidefinite matrix:

f(X) − r̃g(X) = mG(X)T · fW · mG(X) ≥ 0.

Hence, r̃ is verified as the lower bound. And the local min-
imum computed by solving the sparse SOS program (20) is
the approximate global optimum. The algorithm takes 0.56
second to certify the lower bound.

For k = 2, the matrix W is computed by solving the sparse
SOS program (20) with dim(mG(X)) = 61. We check that

θ = ‖f(X) − r∗ − mG(X)T · W · mG(X)‖ = 1.04543742e-11.

Without applying the Gauss-Newton iterations, we lower r∗

to a rational number

r̃ = 111052 · 2−28 ≈ 0.000413700938

and obtain the rational matrix fW by solving (11) with the
exact computation in Maple 11. By LTDL-decomposition

we find that fW is a positive semidefinite matrix:

f(X) − r̃g(X) = mG(X)T · fW · mG(X) ≥ 0.

Hence, r̃ is verified as the lower bound. And the local mini-
mum computed by the approximate factorizer is the approx-
imate global optimum. The algorithm takes 2.56 seconds to
certify the lower bound. This is, due to 61 squares, our
largest certificate. The numerators and denominators of its
rational numbers have up to 1132 decimal digits: http://

www4.ncsu.edu/∼kaltofen/software/certif/factor SOS.txt.

Remark 6 Even though our certificates seem to contain
rational numbers with many digits in their numerators and
denominators (their logarithmic height), the exact linear al-
gebra (Steps 2b and 2c) does not contribute significantly to
the running time. In fact, once a floating point matrix W

that projects to a positive semidefinite rationalization fW
is found (see Remark 3), our algorithm completes quickly,
in part because very fast exact linear algebra methods are
available (see, e.g., [8, 47]). In fact, assuming that the
floating point numbers in the numeric SOS are reasonably
bounded in magnitude, the number of digits in the rational
scalars of the certificate grow no more than quadratically
(least squares + LTDL factorization) in the dimension of
the W matrix (see (14)). Note that if the rank of W , i.e.,
the number of squares in the SOS, is much smaller than
the dimension (see Step 1a), the number of digits is also
proportionally less. The best worst case logarithmic height
bounds for exact symbolic methods appear to grow exponen-
tially in the number of variables in the arising polynomial
systems [4]. The logarithmic height of our certificates is re-
duced because we certify a nearby rational lower bound of
small height and we project an SOS of fixed floating point
precision. The latter places a form of well-conditionedness
restriction on the optimization problems that we currently
can certify.

4. CONCLUSION
By rationalizing a numeric sum-of-squares representation

to an exact certificate we can eliminate numerical inaccura-
cies from our stated lower bounds. We have certified lower
bounds for several problems in hybrid symbolic-numeric com-
putation that previously remained unproven. The limiting

requirement of our approach is that the rationalized moment
matrix remains positive semidefinite, so that an exact sum-
of-squares representation can be obtained. We achieve the
former by refining SDP-based numeric SOSes by rank and
structure-preserving Gauss-Newton iteration, and the latter
by relaxing the lower bound. It is not clear that one needs
SDP to seed the Gauss-Newton iteration, or that orthogonal
projection is the best for preserving positive semidefinite-
ness (see Remark 3). Finally, the SOSes can be tightened
to Artin-style rational function sums-of-squares, or so-called
“big-ball” constraints can be added (we know non-negative
polynomials f for which f + δ are not SOSes for all real
δ ≥ 0). We plan to investigate those directions further,
and we can freely deploy wild and unanalyzed numerical
optimization heuristics, because our truly hybrid paradigm
yields exact symbolic certificates that leave no doubt.
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Note added Sep. 8, 2009: The trailing digits of the float-
ing point entries for our rational lower bounds in Table 2,
Column 4, n = 4 to 7, have been changed so that all digits
in all values constitute proven lower bounds.
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[4] Dahan, X., and Schost, É. Sharp estimates for triangular sets.
In Gutierrez [9], pp. 103–110.

[5] Everett, H., Lazard, D., Lazard, S., and Safey El Din, M.

The Voronoi diagram of three lines in r
3. In SoCG ’07:

Proceedings of the 23-rd Annual Symposium on
Computational Geometry (2007), ACM, New York, USA,
pp. 255–264.

[6] Gao, S., Kaltofen, E., May, J. P., Yang, Z., and Zhi, L.

Approximate factorization of multivariate polynomials via
differential equations. In Gutierrez [9], pp. 167–174.

[7] Golub, G. H., and Van Loan, C. F. Matrix Computations,
third ed. Johns Hopkins University Press, Baltimore,
Maryland, 1996.

[8] Gregory, B., and Kaltofen, E. Analysis of the binary
complexity of asymptotically fast algorithms for linear system
solving. SIGSAM Bulletin 22, 2 (Apr. 1988), 41–49.

[9] Gutierrez, J., Ed. ISSAC 2004 Proc. 2004 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y., 2004), ACM
Press.

[10] Hillar, C. Sums of polynomial squares over totally real fields
are rational sums of squares. Proc. American Math. Society
(2008). To appear. URL: http://www.math.tamu.edu/∼chillar/
files/totallyrealsos.pdf.

[11] Hitz, M. A., and Kaltofen, E. Efficient algorithms for
computing the nearest polynomial with constrained roots. In
Proc. 1998 Internat. Symp. Symbolic Algebraic Comput.
(ISSAC’98) (New York, N. Y., 1998), O. Gloor, Ed., ACM
Press, pp. 236–243.

[12] Jibetean, D., and de Klerk, E. Global optimization of rational
functions: a semidefinite programming approach. Math.
Program. 106, 1 (2006), 93–109.

[13] Kaltofen, E., Li, B., Sivaramakrishnan, K., Yang, Z., and Zhi,

L. Lower bounds for approximate factorizations via
semidefinite programming (extended abstract). In Verschelde
and Watt [42], pp. 203–204.

162

http://www4.ncsu.edu/~kaltofen/software/certif/factor_SOS.txt
http://www4.ncsu.edu/~kaltofen/software/certif/factor_SOS.txt
http://www-sop.inria.fr/galaad/conf/07gecko/Yakoubshon.J.C.pdf
http://www-sop.inria.fr/galaad/conf/07gecko/Yakoubshon.J.C.pdf
http://www.math.tamu.edu/~chillar/files/totallyrealsos.pdf
http://www.math.tamu.edu/~chillar/files/totallyrealsos.pdf


[14] Kaltofen, E., and May, J. On approximate irreducibility of
polynomials in several variables. In ISSAC 2003 Proc. 2003
Internat. Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2003), J. R. Sendra, Ed., ACM Press, pp. 161–168.

[15] Kaltofen, E., May, J., Yang, Z., and Zhi, L. Approximate
factorization of multivariate polynomials using singular value
decomposition. J. Symbolic Comput. 43, 5 (2008), 359–376.

[16] Kaltofen, E., Yang, Z., and Zhi, L. Approximate greatest
common divisors of several polynomials with linearly
constrained coefficients and singular polynomials. In ISSAC
MMVI Proc. 2006 Internat. Symp. Symbolic Algebraic
Comput. (New York, N. Y., 2006), J.-G. Dumas, Ed., ACM
Press, pp. 169–176.

[17] Kaltofen, E., Yang, Z., and Zhi, L. On probabilistic analysis
of randomization in hybrid symbolic-numeric algorithms. In
Verschelde and Watt [42], pp. 11–17.

[18] Karmarkar, N. K., and Lakshman Y. N. On approximate
GCDs of univariate polynomials. J. Symbolic Comput. 26, 6
(1998), 653–666. Special issue on Symbolic Numeric Algebra
for Polynomials S. M. Watt and H. J. Stetter, editors.

[19] Lasserre, J. B. Global optimization with polynomials and the
problem of moments. SIAM J. on Optimization 11, 3 (2000),
796–817.

[20] Lasserre, J. B. Global SDP-relaxations in polynomial
optimization with sparsity. SIAM J. on Optimization 17, 3
(2006), 822–843.

[21] Li, B., Liu, Z., and Zhi, L. Structured condition numbers of
Sylvester matrices (extended abstract), Dec. 2007. Presented
at MACIS 2007, URL: http://www-spiral.lip6.fr/MACIS2007/
Papers/submission 17.pdf.

[22] Li, B., Nie, J., and Zhi, L. Approximate GCDs of polynomials
and SOS relaxation. In Verschelde and Watt [42], pp. 205–206.

[23] Li, B., Nie, J., and Zhi, L. Approximate GCDs of polynomials
and sparse SOS relaxations. Manuscript, 16 pages. Submitted,
2007.
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