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Abstract

We describe the design, implementation and experimental evaluation cdilgevithms for computing
the approximate factorization of multivariate polynomials with complex adefits that contain numeri-
cal noise. Our algorithms are based on a generalization of the diffdrfamtizs introduced by W. Ruppert
and S. Gao to many variables, and use singular value decompositiomuctustd total least squares ap-
proximation and Gauss-Newton optimization to numerically compute the xippaite multivariate factors.
We demonstrate on a large set of benchmark polynomials that our atgeréfficiently yield approximate
factorizations within the coefficient noise even when the relative erroeiiniput is substantial (1).

Key words: multivariate polynomial factorization, approximate factorization, singuadue
decomposition, numerical algebra, Gauss-Newton optimization

1. Introduction

When the scalars in the inputs to a symbolic computation arengas floating point num-
bers, often with added noise that may come as the result &dd@gding numerical computation
or a physical measurement, the desired singular propefitgse problem formulations can be
lost. We shall consider the problem of factoring a multisgipolynomial into its complex fac-
tors. Letf(xi,...,%n) € Q(i)[x1,...,X] be irreducible oveC, where irreducibility is caused by
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perturbations on the coefficients 6f By f[™" we denote a factorizable polynomial ov@r
with deg fIMn) < deg f) such that| f — fIM"||, is minimized, that is,f[™" is a nearest re-
ducible polynomial. We present new algorithms that can fifictorizationf = f1- fo--- f in
C[xq, ..., %] with deg ) < deq f) such that| f — fI™"]||, is small.

In (Kaltofen and May 2003 Example 2) it was discovered th&t™" is dependent on the
degree notion. Our bounds such as ([deg< deq f) limit the degrees in the individual vari-
ables, that is dggf) <deg,(f)fori=1,...,n. One of the authors, L. Zhi, had in Nov. 2002
considered to apply S. Gao’s exact polynomial factoringalgm (seeGaqg 2003 for numer-
ical coefficients. Independently, in the conclusion i&lfofen and May 2003 we have sug-
gested that structural minimal deformations that achiéeerntecessary rank deficiency of the
Ruppert matrices arising in S. Gao8003 algorithm yield an approximate factorization al-
gorithm. In Gao et al. 2004 we have jointly designed and implemented a hybrid symbolic
numeric variant of Gao’s bivariate polynomial factoring@ilithm. Our algorithm computes an
unstructured singular value decomposition followed byalnelesigned approximate bivariate
greatest common divisor algorithm. Here we present a nauitite generalization and, following
(Zeng and Dayton2004), we introduce Gauss-Newton post-iteration, which camiantly
improve the accuracy of the approximate factorization. Askiernative, one can use a struc-
tured total least squares deformati®ack et al. 1999 Lemmerling et al.2000 of the Ruppert
matrices, which we demonstrate to be a feasible approach.

We present experimental evidence that our new approactoireprthe approximate factor-
izations of Gao et al. 2004). The difficulty of a satisfying numerical analysis of any air
algorithms are the notions of “near” and “small”. Our expegnts show that our algorithms
perform well even for polynomials with a relatively largegiducibility radius Nagasaka2002
Kaltofen and May2003 Nagasaka2005.

There is an extensive literature on the problem of factonmifivariate polynomials over the
real or complex numbers. liKaltofen 1985 one of the first polynomial-time algorithms is given
for input polynomials with exact rational or algebraic nwenlgoefficients, and the problem of
approximate factorization is already discussed th&adtéfen 1985 section 6). Approximate
factorization algorithms suppose that the input coeffisieme perturbed and consequently, the
input polynomial is irreducible ove€ under an exact interpretation of its coefficients. How-
ever, if the input polynomial is near its factorizable carpart, say within machine floating
point precision, one can attempt to run exact methods withtifig point arithmetic, such as
Hensel lifting, computing zero-sum relations of power egnoots, or interpolating the irre-
ducible factors as curves. The work reported $agaki et a).1991, 1992 Galligo and Watt
1997 Huang et al.200Q Sasakj2001; Galligo and Rupprech2001; Corless et a].2001, 2002
Galligo and Rupprech2002 Rupprecht2004 Sommese et gl2004) studies recovery of ap-
proximate factorization from the numerical intermediatsuits. For significant noise, which is
the setting we study, those methods can suffer from stapititblems. For instance, the approx-
imate zero sums are now far from zero. A somewhat relate@d tgi algorithms that obtain the
exact factorization of an exact input polynomial by use ddfilog point arithmetic in a practically
efficient way Cheze 2004).

A different line of methods bounds from below the distanaarfithe input polynomial to the
nearest factorizable polynomial, that is, the irredudipriadius (Nagasaka2002 Kaltofen and May
2003 Nagasaka2005. Not only do such bounds help in declaring inputs numesiciate-
ducible, they also provide insight in the quality of a congaliapproximate factorization.

No polynomial-time algorithm is known for computing the nest factorizable polynomial
fImin] 'which is open problem 1 irk@altofen, 2000. In (Hitz et al, 1999 a polynomial-time al-
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gorithm is given for computing the nearest polynomial wittoanplex factor of constant degree.
In practice, that algorithm is much slower than any of the aroal solutions—and the same
may be expected of a future solution to the open problem—Iyidtynomials of degree 2 or 3
one can obtain an actual optimal answer with which one cahdugauge the output of the fast
but non-optimal numerical procedures.

With the algorithms presented in this paper, we have suftdgssomputed improved approx-
imate factorizations of all benchmark examples presemtehd literature, including those with
significant irreducibility radii introduced inGao et al.2004).

2. Approximate Multivariate Polynomial Division and GCD

Our algorithms require, as a substep, the computation ofoappate multivariate greatest
common divisors of complex polynomials. Several of the athms available for approximate
GCD further require an algorithm to compute approximatetivariate polynomial division,
which we shall discuss first.

2.1. Approximate Polynomial Division

The simplest interesting problem in approximate polyndigebra seems to be the problem
of polynomial “exact” division. Multiplication by a givengdynomial is a linear operation so
we can represent multiplication of polynomials of total exd by a givenf asC[d](f), the
convolution matrix associated withandd. For instance,

b
(82X + a1y +ao) - (bpx+bry +bo) = C? (apx+ary+ao0) - | by
bo
_az 0 0_
aa 0
by
0a O
- by
a 0 &
bo
0 apay
0 0 &a

Note that the convolution matrix can be formed for other oadiof degree (or polynomials with
a given support), but for simplicity of discussion we willeusotal degree in our descriptions in
this section. The results carry over to all degree notions.

If we are given polynomiald andg with tdegg) > tdeqd f) such thatf does not divideg
exactly then we want to apply a perturbation so thatoes divideg. If we fix the coefficients
of f thend, the closest polynomial tg that f divides, can be found by solving the least squares
problem:

min fa—all. 1
gyt goq | T4 9ll2 .

We can writeg'exactly in terms of a convolution matrix,

g = Clidedall(f) (cltdedal(£))T g
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(where we are being intentionally sloppy about the distimcbetweerg as a polynomial and
as a vector of its coefficients). In the univariate case, tedficient matrix for the least squares
problem () has a small displacement rank and the arising system caoh\m<fficiently Zhi,
2003.

One of the shortcomings of this approach is, although it dobg the approximation problem
completely, it does not allow fof to vary as well (or instead of). However, it is very easy to
implement, and the results it provides seem good enoughufopurposes.

If one wished to allow perturbations of the coefficients ofthé and g, then the division
problem becomes a total least squares (TLS) problem (jpations are allowed in the right-
hand side vector as well as the entries of the matrix). In finte the matrix¥ (f) has a very
specific structure, approximate division becomes a stradtiotal least squares (STLS) problem.

2.2. Approximate Polynomial GCD

For completeness we restate the algorithmGad et al. 2004). A very similar multivariate
approximate GCD algorithm was proposed independentlgém¢ and Daytor2004) but a pre-
specified toleranceis required there. In addition, a Gauss-Newton iteratiep & introduced to
improve the GCD further. In practice just a few steps of iieracan improve the backward error
by at least an order of magnitude and so it is usually worthetttea computation, especially
when theg and h started quite close to a pair with a non-trivial GCD. For epénif g and
h are nearly machine precision distance from a pair with acte®&D, the approximate GCD
computed from the SVD method is generally limited to abolftdfdhe machine precision, while
Gauss-Newton iteration can usually improve the result swewithin full machine precision.

Algorithm 1 (AMVGCD: Approximate Multivariate GCD).
INPUT: gandhin C[xq, ..., X
OuTPUT: d, a hon-constant approximate GCDgéndh

(1) Determinek, the degree of the approximate GCDgxindh, in one of the two ways below:
(a) FormS= S;(g,h), the matrix of the linear systeag+vh=0, whereg,h € C[xy, ..., Xn]
with tdeq'u) < tdegh) and tdeg@v) < tdeg g). Find the largest gap in the singular val-
ues ofSand infer the degree from the numerical raniSof
(b) Compute the degrees of the GCDs of several random uafegprojections off andh
by looking for the numerical rank of the corresponding uriai® Sylvester matrices.
(2) ReformSas (g,h) that is, use tde) = tdegh) — k and tde@v) = tdegg) — k as the
constraints ow andv in the linear system in the first step. This n8will have a dimension
1 nullspace.
(3) Compute a basis for the nullspaceSify computing the singular vector corresponding the
smallest singular value & This vector gives a solutioju,v].
(4) Findd, the approximate quotient bfandu (or g andv); alternately minimizejh—d u|3 +
lg+dV||3, using least squares.

If one wishes to specify a tolerance, then only the first sfep@Algorithm 1 is affected. In
that case, it is possible that the computation of the degvatlg/ieldk = 0, in which case the
method would returl = 1, declaringg andh to be approximately relatively prime to the given
tolerance.

We wish to add that there now exist viable alternatives td Itlo¢ approximate division and
approximate GCD problem based on structured total leastreg@pproximatiorkaltofen et al,



363 E. Kaltofen et al./Journal of Symbolic Computation 43 (20889—-376
20096.
3. TheFactorization Algorithm and Experiments

In this section, we propose an approximate factoring aflgorifor multivariate polynomials
overC. The algorithm is a generalization of the bivariate factgi@lgorithm in Gao et al.2004).
In addition, we have incorporated Gauss-Newton post-nefame of the approximate factors.
Much like the GCD algorithm presented above, our factoriggrthm relies on singular value
decomposition. We have implemented our algorithm in Majleafhd we present benchmark
tests.

3.1. The Exact Factoring Algorithm

We briefly describe the multivariate generalization of thhate factoring algorithm inGaq
2003, more details can be found iivigy, 2005.

Assume thaf is non-constant and g¢él, fy, ) = 1 wherefy, = df/dx1, which makesf both
square-free and with no factor @xy, . .., X,|. Suppose that factors as

f=fifp £, @
wheref; € Clx1,Xp, . ..,Xy] are distinct and irreducible ovét. Define

f of

=1 ox

€ Clx1,X2,...,Xn] L <i <. 3)

Then
fyy, =E1+E>x+---+E andEE; =0 modf foralli # j. 4)

The following fact, for two variables stated first iR(ppert 1986, gives a test for irreducibil-
ity and is a key part of the factoring algorithm.

Fact 2. Suppose & C[xq, X, .., %] with multi-degre€(ds, dz, ..., dn), i.e.,deg, f =di. Then f
is absolutely irreducible if and only if the equations

o (g\ _ d (h .
()= (1) =20 ©

have no nonzero solutionlg, ..., h, € C[x1,X,...,Xn] with

: (6)
deghi < (di,dp,...,di—1,...,dn),i =

de% S (d1_27d27"'5dn)7
2,...,Nn

Since differentiation is linear ovet, the equations5) give a linear system for the coef-
ficients of g and h;, whose coefficient matrix we call the Ruppert matrix Rijp The ma-
trix Rup(f) of f is full rank if and only if f is absolutely irreducible. Using the criterion in
Fact2, (Kaltofen and May2003 provides some separation bounds for testing whether amume
ical polynomial is absolutely irreducible, given a certiilerance on its coefficients. When these
bounds are small, one may suspect the polynori@ be near a reducible polynomial. In the
following, we explain how to use Fa2tfor factorization.
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First, let us note that, similar t@S@ag 2003 and Kaltofen and May2003, the degree condi-
tions ong and theh; are changed to:

degg < (dlfl,dz,...,dn), (7)
27 7n7

degh < (di,dp,....di —1,...,dn),i =

which allows for the solutiort fy,, fy,, ..., fx,) even whenf is irreducible. We use Rypf) to
denote the slightly larger coefficient matrix &) (using the boundsj.

Theorem 3. Let f € C[xg, %2, ..., Xn] be a non-constant polynomial of multi-degiele, do, . . . ,dn)
with ged(f, fy,) = 1. Define

G={g e C[x1,Xa,...,X| : (5) and(7) hold for some k,...,hy € C[x1,%2,..., %]} (8)

Suppose f has the factorization into irreducible polyndsés in ¢). Then G is a vector space
overC of dimension r and eachg G is of the form g= 5{_; A|E; whereA; € C.

The proof that follows is a direct multivariate generaliaatof Gao(2003 Theorem 2.3). First,

foranygy = Ex = fikg%' lethy; = fik‘;—)f('i‘, fori=2,...,n. Then(gx,h2,...,hn) satisfies ) and

9 (9\_ 9 (L10f\_ 9 (10f\_ 0 (hei
0Xi f - 0X| fk (9X1 N 0X1 fk 0xi a aXl f ’
fori=2,...,n.SoEy,...,E, € G. Sinceky, ..., E satisfy @), they are linearly independent over
C.Hencedim G >r.
Letg e G with hy,...,hy € Clx1,X, ..., X, satisfying §) and (7). We need to show tha is

a linear combination oy, ..., E; overC. Since gcdf, fy,) = 1, f has no repeated roots in the
algebraic closure df(xz,...,Xn). Let

d
f= Ud, .I_I(leCi),Ci S (C(Xz,...,Xn).

Due to deg, g < deg, f and deg h;j < deg, f, we have the partial fraction decompositions

d; i h: dy N
sz_a ey -
f = X1 —Gi f i X1 —CGi

wherebji € C(xz, ..., %), deg, ht =0,

ai:g(Ci7X27--~7Xn)/fx1(ci7X27---7Xn)- (9)

Since

d d ' ' ' . i _p.
O (o) _$( 1 s a duy o (h)_ & by
oxj \ f i; X1—Gi 0% (X1—Gi)? 9X; oxy \ f 4 (x1—c)?

The equation§) implies thatz—fjj_ = 0. It follows thata; € C for i =1,...,d; If ¢ andc; are

algebraic conjugates ov&l(xy, ..., %), then so are; anda; because ofJ); hencea; = a; since
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they are inC. Thereforeg; is constant foc; in the same conjugate class which corresponds to an
irreducible factor off overC(xy,...,Xn). So as in Gaqg 2003, we have that

g L 10f
A ) Vil
f i; i oxt”
where); € C. Therefore, each € Gis of the formg = y{_; A[E and dim- G =r. O

Now we show how to extract the factors 6ffrom the linear spacé&. This is the direct
generalization 065a0(2003 Theorems 2.9 and 2.10):

Fact 4. Suppose thatg...,g, form a basis for G ovet. Select sc S C uniform randomly
and independently forall <i <r, and letg=y{_; sg. There is a unique k r matrix A= [a; j]
overC such that

r
gg = Z 8 j0jfx, (modf) inC(x,...,%)[X]. (10)
=1

Furthermore, let ((x) = det(Ix — A), the characteristic polynomial of A. Then the probability
that

f= |_| ged(f,g—Afy) (11)
AeC:Eg(A)=0

gives a complete factorization of f ov€ris at leastl—r(r —1)/(2|§), where|S denotes the
cardinality of S.

Again, the proof is nearly exactly the same as the on&a(2003.

Itis possible to reduce Gao’s degree conditiof)g¢ Ruppert’s 6) in the factoring algorithms.
For completeness, we state the corresponding theoremewitosf reveals how to modify the
factoring algorithms.

Theorem 5. Letged(f, fy,) = 1. ThenRup(f) has rank deficiency + 1, i.e., the dimension of
the nullspace oRup(f) is r — 1, where r is the number of irreducible factors of f ow&r

The proof is based on Ruppert's original argumemRagpert 1999 Section 3). Clearly, any
solutiong, hy, ..., h, of Theorem3 that satisfies the stricter boun@) Corresponds to a vector in
the nullspace of Ruif). Fork=2,...,r the polynomials

deg, (fk)g1 —deg, (f1)ok,deg (fk)hi 2 —deg, (f1)hk2,

Ok

...,deg, (fx)hyn —deg, (f1)hkn,

wheregg andhy; are as in the proof of TheoreByare such solutions, i.e., qs@k) <d{—2, be-

cause the leading coefficients in the variatlef deg, ( fx)g1 = deg, (fx) fil % and deg (f1)gk=

deg(l(fl)fikg—;'; cancel. The corresponding coefficients vectors are ligeadependent, so the

rank deficiency of Ruff) is at least — 1. There cannot be an additional linearly independent
null vector, because otherwise all null vectors of Rufp would be spanned by those polynomial
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coefficient vectors, but the solutien= 0 f/dx1, hp =9 f/dxy,..., hy =0 f/dx, for Rup,(f) is

not in that span, since the degreexjrof g is too high. m|
The following paragraph is omitted from the journal version

Now suppose we have computed polynomiagls .., v; whose coefficient vectors form a basis

for theg-component of the nullspace of RuUp. By basis transformation we have= 3 tj k8«

for j =2,...,r, where[y; x| € C"~1*(=1) js non-singular. Therefore

;SjVj = Z(zsjﬂj,k)gk
= (Zdegq(fk) zsjUj,k) 01— Z (deg<1(f1) Zsi“i,k) 9

M(S2,...,S) A(S2,. .. &)

For symbolics; we have[]i-|(Ai(S,...,S) — AiI(S,...,%)) # 0, because the columns pf; ]
are linearly independent. Note that the coefficiers;afonstitutes thg-th row of those columns.
By Zippel/Schwartzy ; sjvj has distinct\; with probability (r —1)(r —2)/(2|BJ).

End of material omitted from the journal versian) authors.

3.2. The Numerical Factoring Algorithm

In order to apply the factorization algorithm given iBd4q 2003 and its multivariate gen-
eralization, given above, to approximate polynomials westhine able to solve the following
problems:

(1) compute the approximate GCDs of multivariate polyndsaigcd f,g— A fy, ),
(2) reduce the polynomidi so that gcdf, fy,) = 1 approximately,

(3) determine the numerical dimension@fand

(4) compute aricg that has no cluster of roots.

For the first problem, the previous section discusses ratgstithms to compute the approx-
imate GCDs of multivariate polynomials. The second problsralso handled by way of the
approximate GCD; we can compute the approximate GCD aid fy,. Then with an approx-
imate division,f/gcd(f, fy, ), we may, heuristically, reduce to the case where(fcf},) =1
approximately. Details on this approach follow below in 8@t3.4.

To solve the third problem we can determine the numericaédsion ofG by the SVD of the
matrix Rup (f). Let g; be thei" singular value of Rug(f). If a tolerancee is given, then the
numerical dimension d& is ther such that

2022 01> €20 >0 > 0L

However, if we do not know the relative error in the coeffi¢geaf f, it is difficult to provide a
tolerancee that is consistent with the error in the data. If we have nertoice given, we infer a
tolerance from the largest gap in the singular values. Thateé choose = o; so thato;1/0r

is as large as possible. As iKgltofen and May2003), the singular values, bounds from below
the distance fronf to a polynomialf that hag absolutely irreducible factors:

min |Rup,(f) —Rup,()[]2 > o.
)=r



367 E. Kaltofen et al./Journal of Symbolic Computation 43 (20889—-376

This inferred tolerance; can also be used as an input tolerance to the approximateanialte
GCDs at the end of the factorization algorithm.

Remark 6. Ideally, we could apply a structure preserving low rank agpnation (SPLRA) as
in (Park et al. 1999 to obtain a matrixR which is closest to Rug f) and has rank deficiency
r. SinceR preserves structure of Ry ), it corresponds to the Ruppert matrix of a polynomial
f which is the nearest polynomial that has exactibsolutely irreducible factors. However, so
far our experiments with applying various heuristics foL.BR to this problem have had mixed
results. So we leave details of research in this directiobetoeported in future papers. In the
following, we still use the SVD of the Ryff) to find a nearby rank deficient matrix.

For the fourth problem, suppose we have obtained approgifasisgs,...,gr of G from
the singular vectors corresponding to the lastingular values of Rugf). It is easy to see
that ||Rup;(f)gill2 < 0i < or. So thegis form an approximate basis f@& with toleranceo;.
Following construction of the matriRg as described in Faet, we find a random element &
by choosings, . ..,s € Sc C uniform randomly, lettingy = S|_; S0 and substituting arbitrary
values ofa; € C for x; with the property thaf (xq, a1, ..., 0n_1) remains square-free. The matrix
Ag can be formed in the following manner: first reduce the pofyiats gg andg; fy, modulo f
(evaluated ak, = ay) for 1 <'i, j < r by using approximate division of univariate polynomials

(see Sectiorz.1) then solve the least squares problem:

min{jrem(gg — (ai 101 fx, +- - +airgr fx,), )2

to find the value of unknown elemerds;. Let Eq(A) = def(IA — A), the characteristic polyno-
mial of Ay. We compute all the numerical roots, ..., A, of the univariate polynomisgty over
C as the eigenvalues @f, and find the smallest distance between these roots:

min_dist(g) = min{|A; — Aj|, 1<i<j<r}.

If the distance is small then numerically has a cluster of roots, and we should choose another
set ofss and try to find a separablg. In practice, since Faet saysg should give a separable
Eg with high probability, we compute a number of randgsiand keep thg with the largest
min.dist(g).

In Gao’s exact algorithm the absolutely irreducible fastare obtained frorg by computing
GCDs over algebraic extension fields given by the irredecfattors ofEy. In our case, all
the roots ofEy are given as numerical values @ Hence there is no need to deal with field
extensions, and we can compute directlyCinWe compute the multivariate approximate GCDs
fi = gcd(f,g— A fy, ) according to the method in Secti@rfor each numerical root; of Eg and
we obtain a proper approximate factorizationfadverC: f ~ []{_; fi.

Once we have computed an approximate factorization, threre aumber of ways to improve
it. First, we can compute a scalirghat minimizes the backward error of the approximate fac-
torization:

r
min||f —c[7 fill2/[ f|-.
min|| e[ filz/ Iz
The factorization can be improved further by solving a miazition problem (for example

the one in Huang et al. 2000) or by setting up a minimization problem to which we can
apply Gauss-Newton iteration, similar to what was done fmeethe approximate GCD in
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(Zeng and Dayton2004). First note that the optimization version of the approxienactoriza-
tion problem is finding a least squares solution to the noedr system of the forf(vy,...,v;) =
f wherey; € C[xq,...,X,] and

F(Vi,... V) = [C[tdEEIVZ‘“Vr)] (Vi) - --Cldegv)l (v, 1)y, } ,

HereCK (v) denotes the matrix of the linear map multiplication withy@mials of total de-
greek as described in subsecti@nl. Clearly there is a solution wheh= f;--- f; andv; = fj;
otherwise we will solve

vlr.,n.i.,r\]/r [IF(va,...,v) — fl2.

There exists such a minimum at one or more of the points where
(DF(Ve,..., Vi) F(vy,...,w) =0

(DF denotes the Jacobian Bf. When formulated this way, it is easy to see that we can apply
Gauss-Newton iteration to attempt to find the solution. Thagiven an initialv?,v3,... 0] we
refine with the update

VIV = V) = (DR (V) TR (V).

Given the description df above, the product rule gives that the Jacobiah &f a block matrix
of the form:

DF (V1> L aVr) — [C[tdEEIVl)] (VZ V3-- 'Vr) C[tdegvzﬂ (Vl V3-- 'Vr) . .C[tdegvr)] (Vl Voo 'Vrfl)]

which has full rank (so long as not all thvgs are 0) since every matrizl (v) has full rank (so
long asv # 0).

As with any type of Newton method, if the initial inp@g,v3, ..., is close enough and
DF is not rank deficient at the least squares solution, thertéhation will converge to the least
squares solution according kelley (1999 Theorem 2.4.1):

Fact 7. Letwy = [V, ...,V7] be the initial point and w= [v;,...,Vv{] be a local minimum for F.
If DF is full rank then there exist K- 0 and d > 0 so that if||wp — w.|| < d then the error of the
Gauss-Newton iteration update at step K) (&atisfies:

lexllz < K (lle-1/13+ IF (w.) = |2 [le-]]2).

Although, as done with the GCD iBao et al.(2004), it is possible to bound the distance of
the output of the SVD method for factorization from the ckisgpproximate factorization, that
bound is quite large (exponentially large in the degree)nééd a much tighter bound in order to
prove something about when the output of the SVD method willvithin the basin of attraction
of the global minimum. Finally, it is worth mentioning thaadt 7 implies that Gauss-Newton
iteration converges at a quadratic rate if the nearby loégalmum is an exact factorization of
f. Otherwise, iteration converges at a linear rate that isrsely proportional to the error of the
factorization at the global minimuni|E (w, ) — f||2). In practice, the iteration converges in very
few steps & 7 for most polynomials tested).
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3.3. Algorithm

Algorithm 8 (AFMP: Approx. Factoring M ultivariate Polynomials).

INPUT: A polynomial f € C[xg,...,%n] such thatf andfy, are approximately relatively prime,
that is f is approximately square-free and has no approximate B@id|xy,...,X,] (see Sec-
tion 3.4 below).

OuTPUT: A list of approximate factors; and an optimal scaling

Let Sbe a finite seBC C with |§ > tdeg f)?. In our implementatio®= {k/B| —B < k< B}
for a size parametds.

(1) Compute approximate nullspace solutions:
(a) Form the matrix Rug(f);
(b) Compute the singular value decomposition of the Ruppetrix, and find the last
tdeq f) + 1 singular valuesy;
(c) Find the biggest gap in the singular values and decidadheerical dimension of G,
assuming > 2;
(d) Form a basigy,...,gr of G from the last right singular vectors of Rygf).
(2) Compute arky with well spaced roots:
(a) Evaluate at randomly selected values for the variaklesa; that do not change the
degree or the square-free propertyfof
(b) Forkfrom 1 toK do (K =4 seems to work well in practice)
(i) Picks kx € Srandomly, and sefx = 3{_1S k0
(i) Computeq j k that minimize the norm of the univariate remainder:

r
min|[rem(gkdi — > & jk;j fx F)ll2:
=

(iii) Let Eg, (x) =det(Ix—A), where[Ag, ]i j = [a,j k. Compute the numerical rookgy, 1 <
i <r of Eg, (the numerical eigenvalues Af, ) and setnin_dist = mini<j«j<r{|Ai x—
Ajkl}
(c) Letg :J gk wheremin_disf is maximal.
(3) Compute factors via approximate GCDs:
Computef; = gcd(f,g— Aify,) overCixy,..., x| for 1 <i <r.
(4) Solve optimizations to refine the factorization:
(&) Apply Gauss-Newton iteration to improve the approxirfattors;
(b) Compute migec || f — [Ty fill2/| [l2-

Remark 9. Two aspects need to be clarified about the approximate GCIpuatation in step 3.
First, in order to obtain the degree of the multivariate G@Ix fastest to project to univariate
problems using a toleraneein Step 1 of Algorithm AMVGCD in Sectior2.2. The use ofoy

as the tolerance for the approximate GCD is not accuratedltreetlarge norm of the projected
univariate polynomials, and must be increased (e.g. nligitipy the ratio of the norm of the
projected polynomial to the norm of the original polynonpi@l obtain suitable GCDs. Second,
it should also be noted that Gauss-Newton refinement wilbeaised on the approximate GCD
computations performed in the AFMP algorithm; it will onlg lised on the factorization. Ex-
periments seem to indicate that using refinement on the gippate GCD computations leads to
better pre-refinement factorizations, but that the Gaumstbh iterations converge to the same
factorization as when refinement was not used in the GCD ctatipos.
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Remark 10. It is clear that output polynomials cannot be guaranteecetagproximately irre-
ducible. For example, in the case that the input does noebe afactorizable polynomial then the
approximate GCDs may place a factor near a reducible polialo®ne may, of course, always
achieve approximate irreducibility certification by apply the test given inKaltofen and May
2003 (generalized to multivariate polynomials iMéy, 2005) to the produced factors and apply
the algorithm again if necessary.

Remark 11. The shape of the matrix Ryff) depends on the degree 6fin eachx. Thus,
Algorithm 8 will find an approximate factorization df which will have the same (or smaller)
degree in eacly; but one which may have higher total degree ttaitf one wishes to find an
approximate factorization with the same total degreé ase can use a structured version of the
Ruppert matrix that depends on the total degreé.dfor more details seéay, 2005 Section
3.2).

In the examples and implementation below, the total degresepving version of the Ruppert
matrix has been used. Product of the approximate factorsdfeuill always have total degree
less than or equal to the the total degree of the originalmmotyial. Note that it is possible that
the nearest polynomial that factors may have higher totgilede SeeKaltofen and May2003
for detalils.

Remark 12. For the approximate algorithm, our choice®is based on experimental success.
In fact, we worked withHB = 10 with good results, requiring re-selectionggf... in Step (2.b.i)
rarely.

3.4. Multiple Factors

In the case that is quite close to a polynomial that is not square-free, octofézation algo-
rithm does not work well. This is related to the fact that thaat algorithm does not work at all
on polynomials with repeated factors. In that case Rtiphas many extraneous null vectors that
do not correlate with factors (at least, not in the same wa#jen an irreducible polynomial is
near a repeated factor polynomial, the approximate nutiove@nd numerical rank of Ryff)
exhibit some of these same problems. Another, similar lmsdieproblem is the removal of ap-
proximate factors irC[xy, ..., %], that essentially amounts to a multivariate approximatédGC
computation of several polynomialkdltofen et al, 2006).

One method to deal with the non-square-free case is to canfgyt, the approximate quo-
tient of f and the approximate GCD df and f, (Gao et al, 2004. Then compute the distinct
approximate factors ofsqsr ~ f1--- fr using our algorithm. Finally, determine powers for each
factor by looking for gaps in the sequengg = 01(Sy(fi, . f)).

We can only definitively calf approximately square-free if all of the nearest polynogiiaht
factor are square-free. We cannot compute the nearestgrolghthat factors, but we can bound
the distance to the nearest polynomial that factors usiagsthgular values of Rypf) as in
(Kaltofen and May2003, and similarly bound the distance to the nearest polynbiméd is not
square-free using the singular valuesSpff, fy, ). If the two bounds are very close we have to
compute the factorization both ways and use the one withlemzckwards error.

In (Zeng and Dayton2004) a different method is proposed, that is based entirely oti-mu
variate approximate GCDs and that generalizes the unieaalgorithm in Zeng 2003. Exper-
imentally, the two approaches seem to work similarly wetinjpare the example 14 from the
table below to the ASFF example id€ng and Daytor2004)).
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3.5. A Factoring Example

We illustrate our algorithm by factoring the following ngigpolynomial (from Kaltofen,
2000) over the complex numbers:

f = 81x* + 72%y? + 0.002°Z — 648¢ + 16y* + 0.001y°Z
— 2882 +1296— 6480037 — 0.0077.
The above polynomial is obtained by multiplying
(9x% 4 4y? + 25.455962 — 36)(9x? + 4y> — 2545578 — 36),

and rounding to three decimal places. Sincefdeg(4,4,4), the Ruppert matrix (with respect to
total degree) is 168 60. The last several singular values of the matrix are:

..-,198661 145253 0.868x 10 1° 0.431x 1072,
Starting from the second smallest singular value, the Isiggep is
145253/0.868x 10 1= 0.167x 103,

Sor =2 andf is supposed to be close to a polynomial having two irrededidttors. A basis
for G computed from the last two right singular vectors is:

g1 = 0.00015152478%° — 0.00060627% -+ 0.000067324y” + 0.23315726%7,
go = 0.108724346° — 0.43489738% + 0.04832193%y> — 0.000322604Z .

Take a random linear combination 9= g; + g, and sety =2 andz= —1. A= [ j] can be
computed as

0.000336771 (000192632

0.000335102 MO0335302

Two eigenvalues of the matri& are A; = 0.000590107 A, = 0.000081966. Computingd; =
ged(f,g—Aify), i = 1,2, we obtain two factors of:

f1 = 406598x° 4 180.710y? — 1150037 — 162639,
fo = 406596x° + 180.709y? + 1150042 — 162639,

By finding an optimal scaling factar = 0.00048996 that minimizeff — c f; f||2 we find the
factorization:

V€ f1 = 9.000015518 -+ 4.0000090947 — 25.45583592° — 36.00004257
V/C fp = 8.9999844482 + 3.9999909067 + 25.4559701 % — 35.99995743

that has a backward errpf —c fy fo||2/|| f |2 = 4.67 x 1012, We apply Gauss-Newton iteration
and find an improved factorization (rounded to 10 decimatgudy

f1 = 9.00001555%2 4 4.0000090947 — 25.4558359247 — 36.000042565
fy = 8.9999844482 + 3.9999909067 + 25.455970172° — 35.99995743

that has backward errgif — f1 f5||2/|| f||2 = 3.23x 10714
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3.6. Implementation and Experiments

The AFMP algorithm and its variants have been implementédaple and tests are reported
in (Gao et al.2004). There, Gauss-Newton iteration was not used to improvesxppate GCDs
or the final factorization. Here we report the results of egjpg the experiments with iterative
improvement in Tabld. Timings are given for some well known and some randomly gead
examples run on a Pentium 4 at 2.0 GHz Rigits = 14 in Maple 10 under Windows. Here
coeff. errorindicates the noise imposed on the input, namely the rel&morm coefficient
error to the original product of polynomials. Botlackward errorand bkwd. err. w/ iter.are
relative errors, namely{f — [7; fi[l2/| f||2. Please note that some incorrectly stated backward
errors in Gao et al.2004 have been corrected here. Tthmaeis that for the entire factorization in
seconds of a single run; the timings on a given example camsignificantly (up-to a factor of 4)
depending on the random choices made in the algorithm; thieEldewton iteration is generally
less than 10% of the total time. The coluriters is the number of Gauss-Newton iterations that
were run before convergence — further iteration did not owerthe factorization. Notice that the
number of iterations increases as the backward error ofilaé@n found increases (as discussed
in the paragraph following Fa@). The columrimpr.indicates the factor by which the backwards
error was improved by iterative refinement.

Our experiments seem to indicate that refinement will terrave to backward error by about
one order of magnitude over the results originally achieve(@ao et al. 2004. The improve-
ment can be quite a bit more pronounced if the original patyiabwas within machine precision
of being factorizable. In example 9, the factorization fdlefore refinement had backward error
worse than 2.37e-1, the backward error of the trivially daigeble polynomialf (x,y) — f(0,y),
while that is beaten slightly after refinement. As can be $8ethe number of iterations, when
|noise| ~ 10! it is still very difficult to get good results.

One can also compute the forward error of each factorizabipnvhich we mean the relative
2-norm coefficient vector distance of a computed approxnfiattor to the nearest originally
chosen factor, before noise was added to the product. Fextimaples our implementation pro-
duced forward errors that are of the same magnitude of thedsteackward errors, with the
exception of Example 9 where the degrees of the produced=ippaite factors are 4 and 5,
hence the forward error is, in some sense, infinite.

In Table1:

e Example 1 is from lagasaka2002 where an approximate factorization with backward er-
ror 0.000753084 is also given (this smaller backward error isiptssbecause the perturbed
polynomial has increased total degree and thus is not cahfgato the error given in Table 1
where total degree is presenvex

e Examples 2 and 3 are fron$&saki2001); Sasaki’s algorithm takes 430ms and 2080ms on a
SPARC 5 (CPU: microSPARQ, 70 MHz) and produced backward errors of 2@&nd 107,
respectively;

e Example 4 is from Corless et a).2001); the backward error for their approximate factoriza-
tion is reported as.@7 x 104, compared to our backward erraB88x 102 (no timings were
reported);

e Example 5 is from Corless et a).2002), which is the factorization of an exact polynomial of
degree 9 (here their and our backward errors are about thes santimings were reported);

2 Note added April 8, 2008: In [Kaltofen, Li, Yang, Zhi 2008,0er ISSAC 2008] we have proven that the backward
error here for the total degree is optimal.
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Table 1
Algorithm performance on benchmarks

Ex. | dedfi) Coeff. error | Backward error| Bkwd err. w/ iter | Time(s) Iters Impr.
1|23 1072 1.08e-2 1.02e-3 7.764| 7 10.6x
2|55 10713 1.07e-12 1.18e-13 6.813| 2 9.0x
3| 10,10 1077 9.95e-7 2.87e-7 157.09 | 3 3.4x
4178 109 1.94e-8 2.38e-9 50.222| 16 8.2x
51333 0 1.24e-13 6.44e-14 19.517| 1 2.4
6 | 6,6,10 10°° 1.47e-4 7.24e—6 1329.4 4 20.3x
7197 104 2.18e—4 7.07e-5 74.157| 4 3.1x
8| 44444 |10° 3.34e-3 8.56e—6 5345.5 4 | 390.6x
91333 101 8.03e-1 1.06e-1 33.062| 16 7.6x

10 | 12,7,5 10°° 3.16e—4 8.02e-6 1766.7 4 39.4x

11 | 12,75 10°° 7.77e-5 7.66e—6 2737.6 4 10.2x

12 | 12,75 108 5.82e-3 7.66e—4 4288.7 6 7.6x

13 | 5,(5)2 10°° 6.84e-5 6.52e—6 46.751| 3 10.5x

14 | (5)3,3,2* | 10710 2.60e-8 3.93e-9 136.39 | 2 6.6x

15| 55 10°° 1.55e-5 7.91e-6 559.30 | 3 2.0x

154 2,2 10°° 4.62e-13 3.23e-14 2.871| 2 14.4x

150 2,3 102 7.44e-4 3.78e-4 6.687 | 4 2.0x

16 | 18,18 106 4.50e-6 6.65e—7 5945.9 3 6.8x

17 | 18,18 106 4.03e-6 6.61e—7 10348. 3 6.1x

18 | 6,6 1077 2.97e-7 5.10e-8 31.829| 2 3.8x

e Examples 6 to 13 and 15 to 17 were constructed by choosingréaetith random integer
coefficients in the range-5 < ¢ < 5 and then adding a perturbation; for noise we choose a
relative tolerance 1, then randomly choose a polynomial that has the same degré® a
product, 25% as many terms (5% for Example 10 and 99% for Elafif) and coefficients
in [—1C%, 10°]; finally, we scale the perturbation so that the relativerded0 ¢;

e Examples 10, 11 and 12 approximately factorize the samenpotial with perturbations of
different noise level and sparseness;

e Example 13 has repeated factors denoted with exponent®iddfrees column; it should
be noted that the improved factorization found by GaussiNeuteration still has a squared
factor even though the refinement iteration does not trexidintical factors differently than
non-identical factors.

e Example 14 is Zeng’'s ASFF example iBgng and Dayton2004); it has non-trivial content
and repeated factors. The forward errors of the factors wepate are about 1@, similar to
Zeng'’s forward error.

e Example 15, 15a, and 15b are polynomials in three varialifes;is from Kaltofen 2000
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and is worked in detail in SectioB.5; Example 15b is fromHuang et al. 2000 where the
backward error for their approximate factorization afefirrement is reported as 5.72e-4;

e Example 18 is a polynomial with complex coefficients, whére teal and imaginary parts of
the coefficients of the factors were chosen random integdrs3, 5]. Noise was added to the
real and imaginary parts of all terms.

The implementation reported ifG@o et al. 2004 also successfully found the approximate
factors of four examples, provided by Jan Verschelde, whitde in the engineering of Stewart-
Gough platforms (seeSpmmese et al2004). The input polynomials in 2 and 3 variables of
degree 12 have small absolute coefficient error,!¥0and have approximate factors of multi-
plicities 1, 3 and 5. The trivariate approximate factorsevasmputed via sparse numerical inter-
polation using the techniques d@biesbrecht et 412004 2006, (which is possible in this exam-
ple because the forward error in the approximate factorficteits is near machine precision).
The running times, no more than 200 seconds with a backwesd@no more than 2- 102,
appear much faster than wh&dmmese et g12004) report for their solution, though this is part
due to the advantage gained by using the sparse interpgolaitte reported inGiesbrecht et a|.
2004 20086.

The Maple implementation and benchmark runs can be fourideoat
http://www.math.ncsu.edukaltofen/software/appfac/paper®rws/
or http://www.mmrc.iss.ac.cnlzhi/Research/hybrid/appfac/

4. Concluding Remarks

Wolfang Ruppert's differential formsRuppert 1986 1999 not only lead to a new exact
factorization algorithm Gag 2003, they yield a formulation as a nearest structured singular
matrix problem in the approximate setting. That settingntlalows the application of sev-
eral methods from numerical analysis, such as singulaeva@écomposition (SVD), which has
been already applied in the area of hybrid symbolic/numedgorithms in Corless et a).1995
Emiris et al, 1997 Gianni et al, 1998 Zeng 2003. Here we have shown that the SVD-based
approach followed by Gauss-Newton iteration can efficieptioduce approximate factoriza-
tion, which on our reversely engineered benchmark exantiges a backward error as near as
the introduced coefficient noise. Recently, structuredtl@arm algorithmsRark et al. 1999
Lemmerling et al.2000 have been successfully applied to hybrid symbolic/nuenaigorithms
(Kaltofen et al, 2007, Botting et al, 2005 Kaltofen et al, 2006 and we can report that they are
a viable alternative to the SVD/Gauss-Newton approach.

For polynomials with many variables, the arising struaduieals least norm problems have a
very high dimension. One approach, already mentioned itioseg. 6, is to use sparse numerical
interplolation Giesbrecht et 812006 of the bi- or tri-variate factor images. Another is the use o
fast structured solvers analogous to the theory of Toefikiezmatrices Pan 2001, Olshevsky
2003. For the univariate approximate GCD problem, results eperted in Zhi, 2003 Li et al.,
2009. We hope to develop displacement operators for genecatisdvester matrices and the
Ruppert matrices in the near future.
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