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Abstract

We describe the design, implementation and experimental evaluation of newalgorithms for computing
the approximate factorization of multivariate polynomials with complex coefficients that contain numeri-
cal noise. Our algorithms are based on a generalization of the differential forms introduced by W. Ruppert
and S. Gao to many variables, and use singular value decomposition or structured total least squares ap-
proximation and Gauss-Newton optimization to numerically compute the approximate multivariate factors.
We demonstrate on a large set of benchmark polynomials that our algorithms efficiently yield approximate
factorizations within the coefficient noise even when the relative error in the input is substantial (10−3).

Key words: multivariate polynomial factorization, approximate factorization, singularvalue
decomposition, numerical algebra, Gauss-Newton optimization

1. Introduction

When the scalars in the inputs to a symbolic computation are given as floating point num-
bers, often with added noise that may come as the result of a preceding numerical computation
or a physical measurement, the desired singular propertiesof the problem formulations can be
lost. We shall consider the problem of factoring a multivariate polynomial into its complex fac-
tors. Let f (x1, . . . ,xn) ∈ Q(i)[x1, . . . ,xn] be irreducible overC, where irreducibility is caused by
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perturbations on the coefficients off . By f [min] we denote a factorizable polynomial overC

with deg( f [min]) ≤ deg( f ) such that‖ f − f [min]‖2 is minimized, that is,f [min] is a nearest re-
ducible polynomial. We present new algorithms that can find afactorization f̃ = f1 · f2 · · · fr in
C[x1, . . . ,xn] with deg( f̃ ) ≤ deg( f ) such that‖ f̃ − f [min]‖2 is small.

In (Kaltofen and May, 2003, Example 2) it was discovered thatf [min] is dependent on the
degree notion. Our bounds such as deg( f̃ ) ≤ deg( f ) limit the degrees in the individual vari-
ables, that is degxi

( f̃ ) ≤ degxi
( f ) for i = 1, . . . ,n. One of the authors, L. Zhi, had in Nov. 2002

considered to apply S. Gao’s exact polynomial factoring algorithm (seeGao, 2003) for numer-
ical coefficients. Independently, in the conclusion of (Kaltofen and May, 2003) we have sug-
gested that structural minimal deformations that achieve the necessary rank deficiency of the
Ruppert matrices arising in S. Gao’s (2003) algorithm yield an approximate factorization al-
gorithm. In (Gao et al., 2004) we have jointly designed and implemented a hybrid symbolic-
numeric variant of Gao’s bivariate polynomial factoring algorithm. Our algorithm computes an
unstructured singular value decomposition followed by a newly designed approximate bivariate
greatest common divisor algorithm. Here we present a multivariate generalization and, following
(Zeng and Dayton, 2004), we introduce Gauss-Newton post-iteration, which can significantly
improve the accuracy of the approximate factorization. As an alternative, one can use a struc-
tured total least squares deformation (Park et al., 1999; Lemmerling et al., 2000) of the Ruppert
matrices, which we demonstrate to be a feasible approach.

We present experimental evidence that our new approach improves the approximate factor-
izations of (Gao et al., 2004). The difficulty of a satisfying numerical analysis of any ofour
algorithms are the notions of “near” and “small”. Our experiments show that our algorithms
perform well even for polynomials with a relatively large irreducibility radius (Nagasaka, 2002;
Kaltofen and May, 2003; Nagasaka, 2005).

There is an extensive literature on the problem of factoringmultivariate polynomials over the
real or complex numbers. In (Kaltofen, 1985) one of the first polynomial-time algorithms is given
for input polynomials with exact rational or algebraic number coefficients, and the problem of
approximate factorization is already discussed there (Kaltofen, 1985, section 6). Approximate
factorization algorithms suppose that the input coefficients are perturbed and consequently, the
input polynomial is irreducible overC under an exact interpretation of its coefficients. How-
ever, if the input polynomial is near its factorizable counterpart, say within machine floating
point precision, one can attempt to run exact methods with floating point arithmetic, such as
Hensel lifting, computing zero-sum relations of power series roots, or interpolating the irre-
ducible factors as curves. The work reported in (Sasaki et al., 1991, 1992; Galligo and Watt,
1997; Huang et al., 2000; Sasaki, 2001; Galligo and Rupprecht, 2001; Corless et al., 2001, 2002;
Galligo and Rupprecht, 2002; Rupprecht, 2004; Sommese et al., 2004) studies recovery of ap-
proximate factorization from the numerical intermediate results. For significant noise, which is
the setting we study, those methods can suffer from stability problems. For instance, the approx-
imate zero sums are now far from zero. A somewhat related topic are algorithms that obtain the
exact factorization of an exact input polynomial by use of floating point arithmetic in a practically
efficient way (Chèze, 2004).

A different line of methods bounds from below the distance from the input polynomial to the
nearest factorizable polynomial, that is, the irreducibility radius (Nagasaka, 2002; Kaltofen and May,
2003; Nagasaka, 2005). Not only do such bounds help in declaring inputs numerically irre-
ducible, they also provide insight in the quality of a computed approximate factorization.

No polynomial-time algorithm is known for computing the nearest factorizable polynomial
f [min] , which is open problem 1 in (Kaltofen, 2000). In (Hitz et al., 1999) a polynomial-time al-
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gorithm is given for computing the nearest polynomial with acomplex factor of constant degree.
In practice, that algorithm is much slower than any of the numerical solutions—and the same
may be expected of a future solution to the open problem—but for polynomials of degree 2 or 3
one can obtain an actual optimal answer with which one can further gauge the output of the fast
but non-optimal numerical procedures.

With the algorithms presented in this paper, we have successfully computed improved approx-
imate factorizations of all benchmark examples presented in the literature, including those with
significant irreducibility radii introduced in (Gao et al., 2004).

2. Approximate Multivariate Polynomial Division and GCD

Our algorithms require, as a substep, the computation of approximate multivariate greatest
common divisors of complex polynomials. Several of the algorithms available for approximate
GCD further require an algorithm to compute approximate multivariate polynomial division,
which we shall discuss first.

2.1. Approximate Polynomial Division

The simplest interesting problem in approximate polynomial algebra seems to be the problem
of polynomial “exact” division. Multiplication by a given polynomial is a linear operation so
we can represent multiplication of polynomials of total degreed by a given f asC[d]( f ), the
convolution matrix associated withf andd. For instance,

−−−−−−−−−−−−−−−−−−−−−−−→
(a2x+a1y+a0) · (b2x+b1y+b0) = C[2](a2x+a1y+a0) ·




b2

b1

b0




=




a2 0 0

a1 a2 0

0 a1 0

a0 0 a2

0 a0 a1

0 0 a0




·




b2

b1

b0


 .

Note that the convolution matrix can be formed for other notions of degree (or polynomials with
a given support), but for simplicity of discussion we will use total degree in our descriptions in
this section. The results carry over to all degree notions.

If we are given polynomialsf andg with tdeg(g) ≥ tdeg( f ) such thatf does not divideg
exactly then we want to apply a perturbation so thatf does divideg. If we fix the coefficients
of f theng̃, the closest polynomial tog that f divides, can be found by solving the least squares
problem:

min
tdeg(q)=tdeg(g)−tdeg( f )

‖ f q−g‖2. (1)

We can write ˜g exactly in terms of a convolution matrix,

g̃ = C[tdeg(q)]( f )(C[tdeg(q)]( f ))†g
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(where we are being intentionally sloppy about the distinction betweeng as a polynomial andg
as a vector of its coefficients). In the univariate case, the coefficient matrix for the least squares
problem (1) has a small displacement rank and the arising system can be solved efficiently (Zhi,
2003).

One of the shortcomings of this approach is, although it doessolve the approximation problem
completely, it does not allow forf to vary as well (or instead of)g. However, it is very easy to
implement, and the results it provides seem good enough for our purposes.

If one wished to allow perturbations of the coefficients of both f and g, then the division
problem becomes a total least squares (TLS) problem (perturbations are allowed in the right-
hand side vector as well as the entries of the matrix). In fact, since the matrixC[d]( f ) has a very
specific structure, approximate division becomes a structured total least squares (STLS) problem.

2.2. Approximate Polynomial GCD

For completeness we restate the algorithm in (Gao et al., 2004). A very similar multivariate
approximate GCD algorithm was proposed independently in (Zeng and Dayton, 2004) but a pre-
specified toleranceε is required there. In addition, a Gauss-Newton iteration step is introduced to
improve the GCD further. In practice just a few steps of iteration can improve the backward error
by at least an order of magnitude and so it is usually worth theextra computation, especially
when theg andh started quite close to a pair with a non-trivial GCD. For example, if g and
h are nearly machine precision distance from a pair with an exact GCD, the approximate GCD
computed from the SVD method is generally limited to about half of the machine precision, while
Gauss-Newton iteration can usually improve the result to exact within full machine precision.

Algorithm 1 (AMVGCD: Approximate Multivariate GCD).
INPUT: g andh in C[x1, . . . ,xn]
OUTPUT: d, a non-constant approximate GCD ofg andh

(1) Determinek, the degree of the approximate GCD ofg andh, in one of the two ways below:
(a) FormS= S1(g,h), the matrix of the linear systemug+vh= 0, whereg,h∈C[x1, . . . ,xn]

with tdeg(u) < tdeg(h) and tdeg(v) < tdeg(g). Find the largest gap in the singular val-
ues ofSand infer the degree from the numerical rank ofS.

(b) Compute the degrees of the GCDs of several random univariate projections ofg andh
by looking for the numerical rank of the corresponding univariate Sylvester matrices.

(2) ReformS as Sk(g,h) that is, use tdeg(u) = tdeg(h)− k and tdeg(v) = tdeg(g)− k as the
constraints onu andv in the linear system in the first step. This newSwill have a dimension
1 nullspace.

(3) Compute a basis for the nullspace ofSby computing the singular vector corresponding the
smallest singular value ofS. This vector gives a solution[u,v]T .

(4) Findd, the approximate quotient ofh andu (or g andv); alternately minimize‖h−d u‖2
2 +

‖g+d v‖2
2, using least squares.

If one wishes to specify a tolerance, then only the first step of the Algorithm1 is affected. In
that case, it is possible that the computation of the degree could yieldk = 0, in which case the
method would returnd = 1, declaringg andh to be approximately relatively prime to the given
tolerance.

We wish to add that there now exist viable alternatives to both the approximate division and
approximate GCD problem based on structured total least squares approximation (Kaltofen et al.,
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2006).

3. The Factorization Algorithm and Experiments

In this section, we propose an approximate factoring algorithm for multivariate polynomials
overC. The algorithm is a generalization of the bivariate factoring algorithm in (Gao et al., 2004).
In addition, we have incorporated Gauss-Newton post-refinement of the approximate factors.
Much like the GCD algorithm presented above, our factoring algorithm relies on singular value
decomposition. We have implemented our algorithm in Maple 10 and we present benchmark
tests.

3.1. The Exact Factoring Algorithm

We briefly describe the multivariate generalization of the bivariate factoring algorithm in (Gao,
2003), more details can be found in (May, 2005).

Assume thatf is non-constant and gcd( f , fx1) = 1 wherefx1 = ∂ f/∂x1, which makesf both
square-free and with no factor inC[x2, . . . ,xn]. Suppose thatf factors as

f = f1 f2 · · · fr , (2)

where fi ∈ C[x1,x2, . . . ,xn] are distinct and irreducible overC. Define

Ei =
f
fi

∂ fi
∂x1

∈ C[x1,x2, . . . ,xn] 1≤ i ≤ r. (3)

Then

fx1 = E1 +E2 + · · ·+Er andEiE j ≡ 0 mod f for all i 6= j. (4)

The following fact, for two variables stated first in (Ruppert, 1986), gives a test for irreducibil-
ity and is a key part of the factoring algorithm.

Fact 2. Suppose f∈ C[x1,x2, . . . ,xn] with multi-degree(d1,d2, . . . ,dn), i.e.,degxi
f = di . Then f

is absolutely irreducible if and only if the equations

∂
∂xi

(
g
f

)
=

∂
∂x1

(
hi

f

)
, i = 2, . . . ,n (5)

have no nonzero solution g,h2, . . . ,hn ∈ C[x1,x2, . . . ,xn] with

degg ≤ (d1−2,d2, . . . ,dn),

deghi ≤ (d1,d2, . . . ,di −1, . . . ,dn), i = 2, . . . ,n.



 (6)

Since differentiation is linear overC, the equations (5) give a linear system for the coef-
ficients of g and hi , whose coefficient matrix we call the Ruppert matrix Rup( f ). The ma-
trix Rup( f ) of f is full rank if and only if f is absolutely irreducible. Using the criterion in
Fact2, (Kaltofen and May, 2003) provides some separation bounds for testing whether a numer-
ical polynomial is absolutely irreducible, given a certaintolerance on its coefficients. When these
bounds are small, one may suspect the polynomialf to be near a reducible polynomial. In the
following, we explain how to use Fact2 for factorization.
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First, let us note that, similar to (Gao, 2003) and (Kaltofen and May, 2003), the degree condi-
tions ong and thehi are changed to:

degg ≤ (d1−1,d2, . . . ,dn),

deghi ≤ (d1,d2, . . . ,di −1, . . . ,dn), i = 2, . . . ,n,



 (7)

which allows for the solution( fx1, fx2, . . . , fxn) even whenf is irreducible. We use Rup1( f ) to
denote the slightly larger coefficient matrix of (5) using the bounds (7).

Theorem 3. Let f ∈C[x1,x2, . . . ,xn] be a non-constant polynomial of multi-degree(d1,d2, . . . ,dn)
with gcd( f , fx1) = 1. Define

G = {g∈ C[x1,x2, . . . ,xn] : (5) and(7) hold for some h2, . . . ,hn ∈ C[x1,x2, . . . ,xn]} (8)

Suppose f has the factorization into irreducible polynomials as in (2). Then G is a vector space
overC of dimension r and each g∈ G is of the form g= ∑r

i=1 λiEi whereλi ∈ C.

The proof that follows is a direct multivariate generalization of Gao(2003, Theorem 2.3). First,
for anygk = Ek = f

fk
∂ fk
∂x1

, let hk,i =
f
fk

∂ fk
∂xi

, for i = 2, . . . ,n. Then(gk,hk,2, . . . ,hk,n) satisfies (7) and

∂
∂xi

(
gk

f

)
=

∂
∂xi

(
1
fk

∂ fk
∂x1

)
=

∂
∂x1

(
1
fk

∂ fk
∂xi

)
=

∂
∂x1

(
hk,i

f

)
,

for i = 2, . . . ,n. SoE1, . . . ,Er ∈ G. SinceE1, . . . ,Er satisfy (4), they are linearly independent over
C. Hence dimC G≥ r.

Let g∈ G with h2, . . . ,hn ∈ C[x1,x2, . . . ,xn] satisfying (5) and (7). We need to show thatg is
a linear combination ofE1, . . . ,Er overC. Since gcd( f , fx1) = 1, f has no repeated roots in the
algebraic closure ofC(x2, . . . ,xn). Let

f = ud1

d1

∏
i=1

(x1−ci),ci ∈ C(x2, . . . ,xn).

Due to degx1
g < degx1

f and degx1
h j ≤ degx1

f , we have the partial fraction decompositions

g
f

=
d1

∑
i=1

ai

x1−ci
,

h j

f
=

d1

∑
i=1

b ji

x1−ci
+h∗j ,

whereb ji ∈ C(x2, . . . ,xn), degx1
h∗j = 0,

ai = g(ci ,x2, . . . ,xn)/ fx1(ci ,x2, . . . ,xn). (9)

Since

∂
∂x j

(
g
f

)
=

d1

∑
i=1

(
1

x1−ci

∂ai

∂x j
+

ai

(x1−ci)2

∂ci

∂x j

)
,

∂
∂x1

(
h j

f

)
=

d1

∑
i=1

−b ji

(x1−ci)2 .

The equation (5) implies that ∂ai
∂x j

= 0. It follows thatai ∈ C for i = 1, . . . ,d1 If ci andc j are

algebraic conjugates overC(x2, . . . ,xn), then so areai anda j because of (9); henceai = a j since



365 E. Kaltofen et al./Journal of Symbolic Computation 43 (2008) 359–376

they are inC. Thereforeai is constant forci in the same conjugate class which corresponds to an
irreducible factor off overC(x2, . . . ,xn). So as in (Gao, 2003), we have that

g
f

=
r

∑
i=1

λi
1
fi

∂ fi
∂x1

,

whereλi ∈ C. Therefore, eachg∈ G is of the formg = ∑r
i=1 λiEi and dimC G = r. 2

Now we show how to extract the factors off from the linear spaceG. This is the direct
generalization ofGao(2003, Theorems 2.9 and 2.10):

Fact 4. Suppose that g1, . . . ,gr form a basis for G overC. Select si ∈ S⊂ C uniform randomly
and independently for all1≤ i ≤ r, and let g= ∑r

i=1sigi . There is a unique r× r matrix A= [ai, j ]
overC such that

ggi ≡
r

∑
j=1

ai, jg j fx1 (mod f ) in C(x2, . . . ,xn)[x1]. (10)

Furthermore, let Eg(x) = det(Ix−A), the characteristic polynomial of A. Then the probability
that

f = ∏
λ∈C :Eg(λ )=0

gcd( f ,g−λ fx1) (11)

gives a complete factorization of f overC is at least1− r(r −1)/(2|S|), where|S| denotes the
cardinality of S.

Again, the proof is nearly exactly the same as the one in (Gao, 2003).
It is possible to reduce Gao’s degree conditions (7) to Ruppert’s (6) in the factoring algorithms.

For completeness, we state the corresponding theorem, whose proof reveals how to modify the
factoring algorithms.

Theorem 5. Let gcd( f , fx1) = 1. ThenRup( f ) has rank deficiency r−1, i.e., the dimension of
the nullspace ofRup( f ) is r−1, where r is the number of irreducible factors of f overC.

The proof is based on Ruppert’s original arguments (Ruppert, 1999, Section 3). Clearly, any
solutiong,h2, . . . ,hn of Theorem3 that satisfies the stricter bound (6) corresponds to a vector in
the nullspace of Rup( f ). Fork = 2, . . . , r the polynomials

degx1
( fk)g1−degx1

( f1)gk︸ ︷︷ ︸
ĝk

,degx1
( fk)h1,2−degx1

( f1)hk,2,

. . . ,degx1
( fk)h1,n−degx1

( f1)hk,n,

wheregk andhk,i are as in the proof of Theorem3, are such solutions, i.e., degx1
(ĝk)≤ d1−2, be-

cause the leading coefficients in the variablex1 of degx1
( fk)g1 = degx1

( fk)
f
f1

∂ f1
∂x1

and degx1
( f1)gk =

degx1
( f1)

f
fk

∂ fk
∂x1

cancel. The corresponding coefficients vectors are linearly independent, so the
rank deficiency of Rup( f ) is at leastr −1. There cannot be an additional linearly independent
null vector, because otherwise all null vectors of Rup1( f ) would be spanned by those polynomial
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coefficient vectors, but the solutiong = ∂ f/∂x1, h2 = ∂ f/∂x2, . . . , hn = ∂ f/∂xn for Rup1( f ) is
not in that span, since the degree inx1 of g is too high. 2

The following paragraph is omitted from the journal version.
Now suppose we have computed polynomialsv2, . . . ,vr whose coefficient vectors form a basis
for theg-component of the nullspace of Rup( f ). By basis transformation we havev j = ∑k µ j,kĝk

for j = 2, . . . , r, where[µ j,k] ∈ C(r−1)×(r−1) is non-singular. Therefore

∑
j

sjv j = ∑
k

(∑
j

sj µ j,k)ĝk

=
(
∑
k

degx1
( fk)∑

j
sj µ j,k

)

︸ ︷︷ ︸
λ1(s2, . . . ,sk)

g1−∑
k

(
degx1

( f1)∑
j

sj µ j,k

)

︸ ︷︷ ︸
λk(s2, . . . ,sk)

gk

For symbolicsj we have∏i<l (λi(s2, . . . ,sk)−λl (s2, . . . ,sk)) 6= 0, because the columns of[µ j,k]
are linearly independent. Note that the coefficient ofsj constitutes thej-th row of those columns.
By Zippel/Schwartz∑ j sjv j has distinctλi with probability(r −1)(r −2)/(2|B|).
End of material omitted from the journal version.c© authors.

3.2. The Numerical Factoring Algorithm

In order to apply the factorization algorithm given in (Gao, 2003) and its multivariate gen-
eralization, given above, to approximate polynomials we must be able to solve the following
problems:

(1) compute the approximate GCDs of multivariate polynomials: gcd( f ,g−λi fx1),
(2) reduce the polynomialf so that gcd( f , fx1) = 1 approximately,
(3) determine the numerical dimension ofG, and
(4) compute anEg that has no cluster of roots.

For the first problem, the previous section discusses robustalgorithms to compute the approx-
imate GCDs of multivariate polynomials. The second problemis also handled by way of the
approximate GCD; we can compute the approximate GCD off and fx1. Then with an approx-
imate division, f/gcd( f , fx1), we may, heuristically, reduce to the case where gcd( f , fx1) = 1
approximately. Details on this approach follow below in Section 3.4.

To solve the third problem we can determine the numerical dimension ofG by the SVD of the
matrix Rup1( f ). Let σi be theith singular value of Rup1( f ). If a toleranceε is given, then the
numerical dimension ofG is ther such that

· · · ≥ σr+2 ≥ σr+1 > ε ≥ σr ≥ ·· · ≥ σ1.

However, if we do not know the relative error in the coefficients of f , it is difficult to provide a
toleranceε that is consistent with the error in the data. If we have no tolerance given, we infer a
tolerance from the largest gap in the singular values. That is, we chooseε = σr so thatσr+1/σr

is as large as possible. As in (Kaltofen and May, 2003), the singular valueσr bounds from below
the distance fromf to a polynomialf̃ that hasr absolutely irreducible factors:

min
degf̃=(d1,...,dn)

dimNullspace(Rup1( f̃ ))=r

‖Rup1( f )−Rup1( f̃ )‖2 ≥ σr .
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This inferred toleranceσr can also be used as an input tolerance to the approximate multivariate
GCDs at the end of the factorization algorithm.

Remark 6. Ideally, we could apply a structure preserving low rank approximation (SPLRA) as
in (Park et al., 1999) to obtain a matrixR̃ which is closest to Rup1( f ) and has rank deficiency
r. SinceR̃ preserves structure of Rup1( f ), it corresponds to the Ruppert matrix of a polynomial
f̃ which is the nearest polynomial that has exactlyr absolutely irreducible factors. However, so
far our experiments with applying various heuristics for SPLRA to this problem have had mixed
results. So we leave details of research in this direction tobe reported in future papers. In the
following, we still use the SVD of the Rup1( f ) to find a nearby rank deficient matrix.

For the fourth problem, suppose we have obtained approximate basisg1, . . . ,gr of G from
the singular vectors corresponding to the lastr singular values of Rup1( f ). It is easy to see
that ‖Rup1( f )gi‖2 ≤ σi ≤ σr . So thegis form an approximate basis forG with toleranceσr .
Following construction of the matrixAg as described in Fact4, we find a random element ofG
by choosings1, . . . ,sr ∈ S⊂ C uniform randomly, lettingg = ∑r

i=1sigi and substituting arbitrary
values ofαi ∈ C for xi with the property thatf (x1,α1, . . . ,αn−1) remains square-free. The matrix
Ag can be formed in the following manner: first reduce the polynomialsggi andg j fx1 modulo f
(evaluated atxk = αk) for 1≤ i, j ≤ r by using approximate division of univariate polynomials
(see Section2.1) then solve the least squares problem:

min‖rem(ggi − (ai,1g1 fx1 + · · ·+ai,rgr fx1), f )‖2

to find the value of unknown elementsai, j . Let Eg(λ ) = det(Iλ −A), the characteristic polyno-
mial of Ag. We compute all the numerical rootsλ1, . . . ,λr of the univariate polynomialEg over
C as the eigenvalues ofAg, and find the smallest distance between these roots:

min dist(g) = min{|λi −λ j |, 1≤ i < j ≤ r}.

If the distance is small then numericallyEg has a cluster of roots, and we should choose another
set ofsis and try to find a separableEg. In practice, since Fact4 saysg should give a separable
Eg with high probability, we compute a number of randomgs and keep theg with the largest
min dist(g).

In Gao’s exact algorithm the absolutely irreducible factors are obtained fromg by computing
GCDs over algebraic extension fields given by the irreducible factors ofEg. In our case, all
the roots ofEg are given as numerical values inC. Hence there is no need to deal with field
extensions, and we can compute directly inC. We compute the multivariate approximate GCDs
f̃i = gcd( f ,g−λi fx1) according to the method in Section2 for each numerical rootλi of Eg and
we obtain a proper approximate factorization off overC: f ≈ ∏r

i=1 f̃i .
Once we have computed an approximate factorization, there are a number of ways to improve

it. First, we can compute a scalingc that minimizes the backward error of the approximate fac-
torization:

min
c∈C

‖ f −c
r

∏
i=1

f̃i‖2/‖ f‖2.

The factorization can be improved further by solving a minimization problem (for example
the one in (Huang et al., 2000)) or by setting up a minimization problem to which we can
apply Gauss-Newton iteration, similar to what was done to refine the approximate GCD in
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(Zeng and Dayton, 2004). First note that the optimization version of the approximate factoriza-
tion problem is finding a least squares solution to the non-linear system of the formF(v1, . . . ,vr)=
f wherevi ∈ C[x1, . . . ,xn] and

F(v1, . . . ,vr) =
[

C[tdeg(v2···vr )](v1) · · ·C[tdeg(vr )](vr−1)vr

]
.

HereC[k](v) denotes the matrix of the linear map multiplication with polynomials of total de-
greek as described in subsection2.1. Clearly there is a solution whenf = f1 · · · fr andvi = fi ;
otherwise we will solve

min
v1,...,vr

‖F(v1, . . . ,vr)− f‖2.

There exists such a minimum at one or more of the points where

(DF(v1, . . . ,vr))
H F(v1, . . . ,vr) = 0

(DF denotes the Jacobian ofF). When formulated this way, it is easy to see that we can apply
Gauss-Newton iteration to attempt to find the solution. Thatis, given an initial[v0

1,v
0
2, . . . ,v

0
r ] we

refine with the update

[vi+1
1 , . . . ,vi+1

r ] = [vi
1, . . . ,v

i
r ]− (DF(vi

1, . . . ,v
i
r))

†F(vi
1, . . . ,v

i
r).

Given the description ofF above, the product rule gives that the Jacobian ofF is a block matrix
of the form:

DF(v1, . . . ,vr) = [C[tdeg(v1)](v2v3 · · ·vr) C[tdeg(v2)](v1v3 · · ·vr) . . .C[tdeg(vr )](v1v2 · · ·vr−1)]

which has full rank (so long as not all thevi ’s are 0) since every matrixC[k](v) has full rank (so
long asv 6= 0).

As with any type of Newton method, if the initial input[v0
1,v

0
2, . . . ,v

0
r ] is close enough and

DF is not rank deficient at the least squares solution, then the iteration will converge to the least
squares solution according toKelley (1999, Theorem 2.4.1):

Fact 7. Let w0 = [v0
1, . . . ,v

0
r ] be the initial point and w⋆ = [v⋆

1, . . . ,v
⋆
r ] be a local minimum for F.

If DF is full rank then there exist K> 0 andδ > 0 so that if‖w0−w⋆‖ < δ then the error of the
Gauss-Newton iteration update at step k (ek) satisfies:

‖ek‖2 < K (‖ek−1‖2
2 +‖F(w⋆)− f‖2‖ek−1‖2).

Although, as done with the GCD inGao et al.(2004), it is possible to bound the distance of
the output of the SVD method for factorization from the closest approximate factorization, that
bound is quite large (exponentially large in the degree). Weneed a much tighter bound in order to
prove something about when the output of the SVD method will be within the basin of attraction
of the global minimum. Finally, it is worth mentioning that Fact 7 implies that Gauss-Newton
iteration converges at a quadratic rate if the nearby local minimum is an exact factorization of
f . Otherwise, iteration converges at a linear rate that is inversely proportional to the error of the
factorization at the global minimum (‖F(w⋆)− f‖2). In practice, the iteration converges in very
few steps (≈ 7 for most polynomials tested).
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3.3. Algorithm

Algorithm 8 (AFMP: Approx. Factoring Multivariate Polynomials).
INPUT: A polynomial f ∈ C[x1, . . . ,xn] such thatf and fx1 are approximately relatively prime,

that is f is approximately square-free and has no approximate factors in C[x2, . . . ,xn] (see Sec-
tion 3.4below).

OUTPUT: A list of approximate factorsfi and an optimal scalingc.
Let Sbe a finite setS⊂C with |S| ≥ tdeg( f )2. In our implementationS= {k/B | −B≤ k≤ B}

for a size parameterB.

(1) Compute approximate nullspace solutions:
(a) Form the matrix Rup1( f );
(b) Compute the singular value decomposition of the Ruppertmatrix, and find the last

tdeg( f )+1 singular valuesσi ;
(c) Find the biggest gap in the singular values and decide thenumerical dimensionr of G,

assumingr ≥ 2;
(d) Form a basisg1, . . . ,gr of G from the lastr right singular vectors of Rup1( f ).

(2) Compute anEg with well spaced roots:
(a) Evaluate at randomly selected values for the variablesxi = αi that do not change the

degree or the square-free property off ;
(b) Fork from 1 toK do (K = 4 seems to work well in practice)

(i) Pick si,k ∈ Srandomly, and set ¯gk = ∑r
i=1si,k gi

(ii) Computeai, j,k that minimize the norm of the univariate remainder:

min‖rem(ḡk gi −
r

∑
j=1

ai, j,kg j fx1, f )‖2;

(iii) Let Eḡk(x)= det(Ix−A), where[Aḡk]i, j = [ai, j,k]. Compute the numerical rootsλi,k,1≤
i ≤ r of Eḡk (the numerical eigenvalues ofAḡk) and setmin distk = min1≤i< j≤r{|λi,k−
λ j,k|};

(c) Letg = ḡk wheremin distk is maximal.
(3) Compute factors via approximate GCDs:

Computefi = gcd( f ,g−λi fx1) overC[x1, . . . ,xn] for 1≤ i ≤ r.
(4) Solve optimizations to refine the factorization:

(a) Apply Gauss-Newton iteration to improve the approximate factors;
(b) Compute minc∈C ‖ f −c∏r

i=1 fi‖2/‖ f‖2.

Remark 9. Two aspects need to be clarified about the approximate GCD computation in step 3.
First, in order to obtain the degree of the multivariate GCD,it is fastest to project to univariate
problems using a toleranceε in Step 1 of Algorithm AMVGCD in Section2.2. The use ofσr

as the tolerance for the approximate GCD is not accurate due to the large norm of the projected
univariate polynomials, and must be increased (e.g. multiplied by the ratio of the norm of the
projected polynomial to the norm of the original polynomial) to obtain suitable GCDs. Second,
it should also be noted that Gauss-Newton refinement will notbe used on the approximate GCD
computations performed in the AFMP algorithm; it will only be used on the factorization. Ex-
periments seem to indicate that using refinement on the approximate GCD computations leads to
better pre-refinement factorizations, but that the Gauss-Newton iterations converge to the same
factorization as when refinement was not used in the GCD computations.
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Remark 10. It is clear that output polynomials cannot be guaranteed to be approximately irre-
ducible. For example, in the case that the input does not lie near a factorizable polynomial then the
approximate GCDs may place a factor near a reducible polynomial. One may, of course, always
achieve approximate irreducibility certification by applying the test given in (Kaltofen and May,
2003) (generalized to multivariate polynomials in (May, 2005)) to the produced factors and apply
the algorithm again if necessary.

Remark 11. The shape of the matrix Rup1( f ) depends on the degree off in eachxi . Thus,
Algorithm 8 will find an approximate factorization off which will have the same (or smaller)
degree in eachxi but one which may have higher total degree thanf . If one wishes to find an
approximate factorization with the same total degree asf one can use a structured version of the
Ruppert matrix that depends on the total degree off . For more details see (May, 2005, Section
3.2).

In the examples and implementation below, the total degree preserving version of the Ruppert
matrix has been used. Product of the approximate factors found will always have total degree
less than or equal to the the total degree of the original polynomial. Note that it is possible that
the nearest polynomial that factors may have higher total degree. See (Kaltofen and May, 2003)
for details.

Remark 12. For the approximate algorithm, our choice ofS is based on experimental success.
In fact, we worked withB = 10 with good results, requiring re-selection of ¯g2, . . . in Step (2.b.i)
rarely.

3.4. Multiple Factors

In the case thatf is quite close to a polynomial that is not square-free, our factorization algo-
rithm does not work well. This is related to the fact that the exact algorithm does not work at all
on polynomials with repeated factors. In that case Rup1( f ) has many extraneous null vectors that
do not correlate with factors (at least, not in the same way).When an irreducible polynomial is
near a repeated factor polynomial, the approximate null vectors and numerical rank of Rup1( f )
exhibit some of these same problems. Another, similar but lesser problem is the removal of ap-
proximate factors inC[x2, . . . ,xn], that essentially amounts to a multivariate approximate GCD
computation of several polynomials (Kaltofen et al., 2006).

One method to deal with the non-square-free case is to compute fsqfr, the approximate quo-
tient of f and the approximate GCD off and fx1 (Gao et al., 2004). Then compute the distinct
approximate factors offsqfr ≈ f1 · · · fr using our algorithm. Finally, determine powers for each
factor by looking for gaps in the sequenceαi, j = σ1(S1( fi ,∂x1, j f )).

We can only definitively callf approximately square-free if all of the nearest polynomials that
factor are square-free. We cannot compute the nearest polynomial that factors, but we can bound
the distance to the nearest polynomial that factors using the singular values of Rup1( f ) as in
(Kaltofen and May, 2003), and similarly bound the distance to the nearest polynomial that is not
square-free using the singular values ofS1( f , fx1). If the two bounds are very close we have to
compute the factorization both ways and use the one with smaller backwards error.

In (Zeng and Dayton, 2004) a different method is proposed, that is based entirely on multi-
variate approximate GCDs and that generalizes the univariate algorithm in (Zeng, 2003). Exper-
imentally, the two approaches seem to work similarly well (compare the example 14 from the
table below to the ASFF example in (Zeng and Dayton, 2004)).



371 E. Kaltofen et al./Journal of Symbolic Computation 43 (2008) 359–376

3.5. A Factoring Example

We illustrate our algorithm by factoring the following noisy polynomial (from (Kaltofen,
2000)) over the complex numbers:

f := 81x4 +72x2y2 +0.002x2z2−648x2 +16y4 +0.001y2z2

−288y2 +1296−648.003z4−0.007z2.

The above polynomial is obtained by multiplying

(9x2 +4y2 +25.45596z2−36)(9x2 +4y2−25.45578z2−36),

and rounding to three decimal places. Since degf = (4,4,4), the Ruppert matrix (with respect to
total degree) is 168×60. The last several singular values of the matrix are:

· · · ,198.661,145.253,0.868×10−10,0.431×10−12.

Starting from the second smallest singular value, the biggest gap is

145.253/0.868×10−10 = 0.167×1013.

So r = 2 and f is supposed to be close to a polynomial having two irreducible factors. A basis
for G computed from the last two right singular vectors is:

g1 = 0.000151524784x3−0.000606279x+0.000067324xy2 +0.233157269xz2,

g2 = 0.108724346x3−0.434897383x+0.048321932xy2−0.000322604xz2.

Take a random linear combination ofg = g1 + g2 and sety = 2 andz = −1. A = [ai, j ] can be
computed as




0.000336771 0.000192632

0.000335102 0.000335302




Two eigenvalues of the matrixA are λ1 = 0.000590107,λ2 = 0.000081966. Computingfi =
gcd( f ,g−λi fx), i = 1,2, we obtain two factors off :

f1 = 406.598x2 +180.710y2−1150.03z2−1626.39,

f2 = 406.596x2 +180.709y2 +1150.04z2−1626.39.

By finding an optimal scaling factorc = 0.00048996 that minimizes‖ f − c f1 f2‖2 we find the
factorization:

√
c f1 = 9.000015518x2 +4.000009094y2−25.45583592z2−36.00004257,

√
c f2 = 8.999984448x2 +3.999990906y2 +25.45597017z2−35.99995743,

that has a backward error‖ f −c f1 f2‖2/‖ f‖2 = 4.67×10−13. We apply Gauss-Newton iteration
and find an improved factorization (rounded to 10 decimal places):

f1 = 9.000015552x2 +4.000009094y2−25.455835924z2−36.000042565,

f2 = 8.999984448x2 +3.999990906y2 +25.455970172z2−35.99995743,

that has backward error‖ f − f1 f2‖2/‖ f‖2 = 3.23×10−14



E. Kaltofen et al./Journal of Symbolic Computation 43 (2008) 359–376 372

3.6. Implementation and Experiments

The AFMP algorithm and its variants have been implemented inMaple and tests are reported
in (Gao et al., 2004). There, Gauss-Newton iteration was not used to improve approximate GCDs
or the final factorization. Here we report the results of repeating the experiments with iterative
improvement in Table1. Timings are given for some well known and some randomly generated
examples run on a Pentium 4 at 2.0 GHz forDigits = 14 in Maple 10 under Windows. Here
coeff. error indicates the noise imposed on the input, namely the relative 2-norm coefficient
error to the original product of polynomials. Bothbackward errorand bkwd. err. w/ iter.are
relative errors, namely‖ f −∏i f̃i‖2/‖ f‖2. Please note that some incorrectly stated backward
errors in (Gao et al., 2004) have been corrected here. Thetimeis that for the entire factorization in
seconds of a single run; the timings on a given example can vary significantly (up-to a factor of 4)
depending on the random choices made in the algorithm; the Gauss-Newton iteration is generally
less than 10% of the total time. The columniters is the number of Gauss-Newton iterations that
were run before convergence – further iteration did not improve the factorization. Notice that the
number of iterations increases as the backward error of the solution found increases (as discussed
in the paragraph following Fact7). The columnimpr. indicates the factor by which the backwards
error was improved by iterative refinement.

Our experiments seem to indicate that refinement will tend improve to backward error by about
one order of magnitude over the results originally achievedin (Gao et al., 2004). The improve-
ment can be quite a bit more pronounced if the original polynomial was within machine precision
of being factorizable. In example 9, the factorization found before refinement had backward error
worse than 2.37e-1, the backward error of the trivially factorizable polynomialf (x,y)− f (0,y),
while that is beaten slightly after refinement. As can be seenby the number of iterations, when
‖noise‖ ≈ 10−1 it is still very difficult to get good results.

One can also compute the forward error of each factorization, by which we mean the relative
2-norm coefficient vector distance of a computed approximate factor to the nearest originally
chosen factor, before noise was added to the product. For theexamples our implementation pro-
duced forward errors that are of the same magnitude of the stated backward errors, with the
exception of Example 9 where the degrees of the produced approximate factors are 4 and 5,
hence the forward error is, in some sense, infinite.

In Table1:

• Example 1 is from (Nagasaka, 2002) where an approximate factorization with backward er-
ror 0.000753084 is also given (this smaller backward error is possible because the perturbed
polynomial has increased total degree and thus is not comparable to the error given in Table 1
where total degree is preserved2 );

• Examples 2 and 3 are from (Sasaki, 2001); Sasaki’s algorithm takes 430ms and 2080ms on a
SPARC 5 (CPU: microSPARCΠ, 70 MHz) and produced backward errors of 10−9 and 10−5,
respectively;

• Example 4 is from (Corless et al., 2001); the backward error for their approximate factoriza-
tion is reported as 0.47×10−4, compared to our backward error 2.38×10−9 (no timings were
reported);

• Example 5 is from (Corless et al., 2002), which is the factorization of an exact polynomial of
degree 9 (here their and our backward errors are about the same; no timings were reported);

2 Note added April 8, 2008: In [Kaltofen, Li, Yang, Zhi 2008, Proc. ISSAC 2008] we have proven that the backward
error here for the total degree is optimal.
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Table 1
Algorithm performance on benchmarks

Ex. deg( fi) Coeff. error Backward error Bkwd err. w/ iter Time(s) Iters Impr.

1 2,3 10−2 1.08e–2 1.02e–3 7.764 7 10.6×

2 5,5 10−13 1.07e–12 1.18e–13 6.813 2 9.0×

3 10,10 10−7 9.95e–7 2.87e–7 157.09 3 3.4×

4 7,8 10−9 1.94e–8 2.38e–9 50.222 16 8.2×

5 3,3,3 0 1.24e–13 6.44e–14 19.517 1 2.4×

6 6,6,10 10−5 1.47e–4 7.24e–6 1329.4 4 20.3×

7 9,7 10−4 2.18e–4 7.07e–5 74.157 4 3.1×

8 4,4,4,4,4 10−5 3.34e–3 8.56e–6 5345.5 4 390.6×

9 3,3,3 10−1 8.03e–1 1.06e–1 33.062 16 7.6×

10 12,7,5 10−5 3.16e–4 8.02e–6 1766.7 4 39.4×

11 12,7,5 10−5 7.77e–5 7.66e–6 2737.6 4 10.2×

12 12,7,5 10−3 5.82e–3 7.66e–4 4288.7 6 7.6×

13 5,(5)2 10−5 6.84e–5 6.52e–6 46.751 3 10.5×

14 (5)3,3,(2)4 10−10 2.60e–8 3.93e–9 136.39 2 6.6×

15 5,5 10−5 1.55e–5 7.91e–6 559.30 3 2.0×

15a 2,2 10−5 4.62e–13 3.23e–14 2.871 2 14.4×

15b 2,3 10−2 7.44e–4 3.78e–4 6.687 4 2.0×

16 18,18 10−6 4.50e–6 6.65e–7 5945.9 3 6.8×

17 18,18 10−6 4.03e–6 6.61e–7 10348. 3 6.1×

18 6,6 10−7 2.97e–7 5.10e–8 31.829 2 3.8×

• Examples 6 to 13 and 15 to 17 were constructed by choosing factors with random integer
coefficients in the range−5 ≤ c ≤ 5 and then adding a perturbation; for noise we choose a
relative tolerance 10−e, then randomly choose a polynomial that has the same degree as the
product, 25% as many terms (5% for Example 10 and 99% for Example 17) and coefficients
in [−10e,10e]; finally, we scale the perturbation so that the relative error is 10−e;

• Examples 10, 11 and 12 approximately factorize the same polynomial with perturbations of
different noise level and sparseness;

• Example 13 has repeated factors denoted with exponents in the degrees column; it should
be noted that the improved factorization found by Gauss-Newton iteration still has a squared
factor even though the refinement iteration does not treat the identical factors differently than
non-identical factors.

• Example 14 is Zeng’s ASFF example in (Zeng and Dayton, 2004); it has non-trivial content
and repeated factors. The forward errors of the factors we compute are about 10−8, similar to
Zeng’s forward error.

• Example 15, 15a, and 15b are polynomials in three variables;15a is from (Kaltofen, 2000)
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and is worked in detail in Section3.5; Example 15b is from (Huang et al., 2000) where the
backward error for their approximate factorization after refinement is reported as 5.72e-4;

• Example 18 is a polynomial with complex coefficients, where the real and imaginary parts of
the coefficients of the factors were chosen random integers in [−5,5]. Noise was added to the
real and imaginary parts of all terms.

The implementation reported in (Gao et al., 2004) also successfully found the approximate
factors of four examples, provided by Jan Verschelde, whicharise in the engineering of Stewart-
Gough platforms (see (Sommese et al., 2004)). The input polynomials in 2 and 3 variables of
degree 12 have small absolute coefficient error, 10−16, and have approximate factors of multi-
plicities 1, 3 and 5. The trivariate approximate factors were computed via sparse numerical inter-
polation using the techniques of (Giesbrecht et al., 2004, 2006), (which is possible in this exam-
ple because the forward error in the approximate factor coefficients is near machine precision).
The running times, no more than 200 seconds with a backward error of no more than 7.62·10−9,
appear much faster than what (Sommese et al., 2004) report for their solution, though this is part
due to the advantage gained by using the sparse interpolation code reported in (Giesbrecht et al.,
2004, 2006).

The Maple implementation and benchmark runs can be found online at
http://www.math.ncsu.edu/∼kaltofen/software/appfac/paper07mws/
or http://www.mmrc.iss.ac.cn/∼lzhi/Research/hybrid/appfac/.

4. Concluding Remarks

Wolfang Ruppert’s differential forms (Ruppert, 1986, 1999) not only lead to a new exact
factorization algorithm (Gao, 2003), they yield a formulation as a nearest structured singular
matrix problem in the approximate setting. That setting then allows the application of sev-
eral methods from numerical analysis, such as singular value decomposition (SVD), which has
been already applied in the area of hybrid symbolic/numericalgorithms in (Corless et al., 1995;
Emiris et al., 1997; Gianni et al., 1998; Zeng, 2003). Here we have shown that the SVD-based
approach followed by Gauss-Newton iteration can efficiently produce approximate factoriza-
tion, which on our reversely engineered benchmark exampleshave a backward error as near as
the introduced coefficient noise. Recently, structured least norm algorithms (Park et al., 1999;
Lemmerling et al., 2000) have been successfully applied to hybrid symbolic/numeric algorithms
(Kaltofen et al., 2007; Botting et al., 2005; Kaltofen et al., 2006) and we can report that they are
a viable alternative to the SVD/Gauss-Newton approach.

For polynomials with many variables, the arising structured totals least norm problems have a
very high dimension. One approach, already mentioned in section 3.6, is to use sparse numerical
interplolation (Giesbrecht et al., 2006) of the bi- or tri-variate factor images. Another is the use of
fast structured solvers analogous to the theory of Toeplitz-like matrices (Pan, 2001; Olshevsky,
2003). For the univariate approximate GCD problem, results are reported in (Zhi, 2003; Li et al.,
2005). We hope to develop displacement operators for generalized Sylvester matrices and the
Ruppert matrices in the near future.
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thors were supported by NKBRPC (2004CB318000) and the Chinese National Natural Science
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http://www.math.ncsu.edu/~kaltofen/software/appfac/paper07_mws/
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/appfac/


375 E. Kaltofen et al./Journal of Symbolic Computation 43 (2008) 359–376

References

Botting, B., Giesbrecht, M., May, J., 2005. Using Riemannian SVD for problems in approximate algebra.
In: Wang and Zhi(2005), pp. 209–219, distributed at the Workshop in Xi’an, China, July 19–21.
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