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ABSTRACT
We consider the problem of computing minimal real or com-
plex deformations to the coefficients in a list of relatively
prime real or complex multivariate polynomials such that
the deformed polynomials have a greatest common divisor
(GCD) of at least a given degree k. In addition, we restrict
the deformed coefficients by a given set of linear constraints,
thus introducing the linearly constrained approximate GCD
problem. We present an algorithm based on a version of
the structured total least norm (STLN) method and demon-
strate on a diverse set of benchmark polynomials that the
algorithm in practice computes globally minimal approxima-
tions. As an application of the linearly constrained approxi-
mate GCD problem we present an STLN-based method that
computes a real or complex polynomial the nearest real or
complex polynomial that has a root of multiplicity at least k.
We demonstrate that the algorithm in practice computes
on the benchmark polynomials given in the literature the
known globally optimal nearest singular polynomials. Our
algorithms can handle, via randomized preconditioning, the
difficult case when the nearest solution to a list of real input
polynomials actually has non-real complex coefficients.

Categories and Subject Descriptors: I.2.1 [Comput-
ing Methodologies]: Symbolic and Algebraic Manipulation
—Algorithms; G.1.2 [Mathematics of Computing]: Numeri-
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1. INTRODUCTION
Symbolic-numeric algorithms accept as input polynomi-

als and matrices with imprecise scalar coefficients, that is,
the inputs do not yield a non-trivial result to the problem
at hand. For instance, the polynomials have floating point
coefficients such that if they were interpreted exactly, the
polynomials would be relatively prime. One seeks minimal
changes in the coefficients so that the perturbed inputs at-
tain the desired property, for example, having a common
factor of a given degree k. A classical example of such a
problem formulation is that of computing a least squares
solution to a linear system: one seeks a minimal change in
the components of the right-side vector to make an incon-
sistent linear system have a solution.

Today, there is a significant body of results to solve those
“approximate computer algebra” problems. This paper con-
tributes to the approximate greatest common divisor (GCD)
and the nearest singular polynomial problem. First, we for-
mulate a generalization of the Sylvester matrix used for com-
puting approximate GCDs of two polynomials [10, 34] that
allows the computation of the approximate GCD of s ≥ 2
multivariate polynomials over the real and complex num-
bers. The structured total least squares (STLS) and struc-
tured total least norm (STLN) [27] deformation techniques
[18] are shown to produce accurate approximate GCDs. Sec-
ond, we allow additional linear constraints on the coeffi-
cients of the deformed polynomials that yield the approxi-
mate GCD. Such constraints can enforce certain input coeffi-
cients to remain unchanged, preserving for example monic-
ity or sparsity etc. They can also enforce linear relations
(equations and inequalities) among the input coefficients.
We present an STLN optimization formulation for the lin-
early constrained multivariate approximate GCD problem
of several polynomials that has a reduced dimension com-
pared with the unconstrained STLN formulation. Third, we
apply the linearly constrained GCD problem to the problem



of computing the nearest singular polynomial with a root of
multiplicity at least k ≥ 2 [37].

We show on a substantial body of benchmark data that
our STLN algorithm is capable of computing the global op-
tima for the approximate GCD and nearest singular poly-
nomial problems. Although the STLN method, based on a
least squares problem with penalty or least squares problems
with linear constraints, is not guaranteed to converge to a
global minimum, in our experiments it computes the solu-
tions found by the global methods in [20, 13, 37, 36]. We
note that the global minimum need not be unique [17, 19].
Our STLN implementation can handle inputs that have a
large distance to the minimally deformed polynomials with
a GCD or k-fold root. Such is especially the case when
the input coefficients are far from satisfying the additional
linear constraints. The approximate GCD and nearest sin-
gular polynomial problems have the exceptional property
that minimal solution over the complex numbers to input
polynomials with real coefficients can have non-real complex
coefficients. Our STLN implementation computes the com-
plex minimum via complex randomized pre-conditioning of
the inputs. A new tool for obtaining these globally optimal
results via STLN is the computation of initial vectors via
the Lagrangian multiplier method.

Because of the page limit, we cannot give a complete re-
view of previous work on the approximate GCD problem and
must refer to the full version of this paper [19]. But we shall
give a partial list of additional references. The question of
how to deal with floating point coefficients in the Euclidean
algorithm has been considered early on [8, 31, 30, 3]. Least
squares and SVD-based total least squares methods were in-
troduced in [6, 20]. When the approximate GCD is near the
input polynomials, local minima are more accessible, and
several algorithms have been proposed [7, 35, 10, 34]. The
use of structure preserving total least squares algorithms is
proposed in [15] in the setting of approximate polynomial
factorization. In [17, 23, 4, 18] the approach was applied to
the approximate GCD problem.

Finally, there is the issue of uniqueness of the global op-
timum. For certain structured total least squares prob-
lems the nearest solutions converge to an inconsistent sys-
tem and a global optimum does not exist [13, Example 3].
The approximate GCD problem always has a globally near-
est complex and a nearest real solution (in 2-norm) [17,
Theorem 2.1]. Clearly, if real input polynomials possess a
nearer complex optimum perturbation, the conjugate auto-
matically becomes a second solution. In fact, multiple best
approximations can exist and have been described for the
nearest singular polynomial [37] and approximate factoriza-
tion problems [15]. The examples in [37, Section 6] already
exhibit polynomial inputs with real coefficients that have
optimal approximations with complex coefficients. Even in-
finite families can occur for the nearest singular Toeplitz/
Hankel matrix problem [27, Section 4.3]. For the approxi-
mate GCD problem, the polynomials f1 = x + 1 and f2 =
x − 1 have in 2-norm infinitely many nearest polynomials
with a common root, namely f̃1 = −σ+i τ+1

σ2+τ2+1
(x−σ− i τ) and

f̃2 = σ−i τ+1
σ2+τ2+1

(x − σ − i τ) with i =
√
−1 and ‖f̃1 − f1‖2

2 +

‖f̃2 − f2‖2
2 = 2 for all σ, τ ∈ R.

2. TRANSFER TO LINEAR ALGEBRA
In order to apply structure preserving total least squares

methods, we need a linear algebra formulation of our poly-
nomial GCD problems. Fortunately, the approach in [17, 18,
24] can be generalized to s polynomials. We shall use total
degree in our estimates, but as stated in [19] other degrees
could be used.

Lemma 2.1 Let f1, . . . , fs ∈ F [y1, . . . , yr]\{0}, where F is
an arbitrary field, and let di = tdeg(fi) and k ≤ di for all i
with 1 ≤ i ≤ s. Then tdeg(gcd(f1, ..., fs)) ≥ k if and only if
there exist polynomials u1, . . . , us ∈ F [y1, . . . , yr] with

u1 6= 0, ∀j, 2 ≤ j ≤ s : ujf1 + u1fj = 0,
∀i, 1 ≤ i ≤ s : tdeg(ui) ≤ di − k.

ff

(1)

Proof. The property (1) expresses the fact that the GCD
can be cancelled in the fraction fj/f1 in the unique factor-
ization domain F [y1, . . . , yr].

The condition (1) leads to homogeneous linear system in
the unknown coefficients of ui. One may choose any of the
fi as the left-side polynomial. We choose the one of lowest
degree, so that the resulting coefficient matrix has minimal
dimensions. We shall investigate the structure of this ma-
trix. As in [26, 16] we introduce the convolution matrix

C[l](f), which for the coefficient vector ~u of a polynomial u

of degree l produces the coefficient vector of u·f as C[l](f)·~u.
For instance,

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(a2y

2 + a1y + a0) · (b2y
2 + b1y + b0) =

C[2](a2y
2 + a1y + a0) ·

2

4

b2

b1

b0

3

5 =

2

6

6

6

4

a2 0 0
a1 a2 0
a0 a1 a2

0 a0 a1

0 0 a0

3

7

7

7

5

·

2

4

b2

b1

b0

3

5 .

In the univariate case, the matrix is of Toeplitz form. In the
multivariate case, the dimensions of C[l](f) with tdeg(f) =
m are

`

l+m+r

r

´

×
`

l+r

r

´

. Then the matrix Sk(f1, . . . , fs) is
2

6

6

4

C[d2−k](f1) 0 ... 0 C[d1−k](f2)

0 C[d3−k](f1) 0 C[d1−k](f3)

...
. . .

...
...

0 0 ... C[ds−k](f1) C[d1−k](fs)

3

7

7

5

(2)

for the coefficient matrix of (1). The matrix is essentially
a multi-polynomial generalized Sylvester matrix. We will
exploit the following fact.

Lemma 2.2 Let f1, . . . , fs and k be as in Lemma 2.1. Then
tdeg(gcd(f1, . . . , fs)) ≥ k if and only if Sk(f1, . . . , fs) in (2)
has rank deficiency at least one.

Proof. The “only if” part follows directly from Lemma 2.1,
since u1 6= 0 yields a non-trivial column dependency in
Sk(f1, . . . , fs). The “if” part is a consequence of the fact
that the first s − 1 block columns in (2) form a set of lin-
early independent column vectors, hence any vector in the
right nullspace of Sk(f1, . . . , fs) must have a non-zero com-
ponent corresponding to u1 in (1), and Lemma 2.1 again
applies.

Next we reduce the problem of testing a polynomial for
having a factor of multiplicity k to a polynomial GCD prob-
lem. The approach is classical and incorporates Lemma 2.2.



Lemma 2.3 Let f(y) ∈ F [y] be a polynomial of degree n
over a field F of characteristic 0, and let k be a multiplicity
with 2 ≤ k ≤ n. Furthermore, denote by f [i] = dif/dyi

the i-th derivative of f . Then the following conditions are
equivalent.

(i) There exists a polynomial h(y) ∈ F [y] with deg(h) ≥ 1
such that hk is a factor of f .

(ii) deg(gcd(f [0], . . . , f [k−1])) ≥ 1.

(iii) The matrix Ssing
k (f) =

2

6

4

sn−1,k−1 0 ... 0 sn−k,0
0 sn−2,k−1 0 sn−k,1

...
. . .

...
...

0 0 ... sn−k+1,k−1 sn−k,k−2

3

7

5
(3)

where si,j = C[i](f [j]), has rank deficiency at least one.

Proof. The lemma immediately follows from the fact
that if f = h1h

2
2 · · ·hm

m with hi squarefree and pairwise rel-
atively prime, then gcd(f, df/dy) = h2h

2
3 · · ·hm−1

m (see, e.g,
[11]).

In some approximate multivariate polynomial factoriza-
tion algorithms [10, 16] approximate squared factors need
to be removed separately Lemma 2.3 has a multivariate
corollary, which allows us then to compute an approximate
squarefree factorization via our STLN-based approach.

Corollary 2.4 Let f(y1, . . . , yr) ∈ F [y1, . . . , yr] be a poly-
nomial of degree n in y1 over a field F of characteristic 0,
and let k be a multiplicity with 2 ≤ k ≤ n. Assume that f is
primitive in y1, i.e., f has no factor in F [y2, . . . , yr]. Then
there exists a polynomial h(y1, . . . , yr) ∈ F [y1, . . . , yr] with
deg(h) ≥ 1 such that hk is a factor of f if and only if the
matrix Ssing

y1,k(f) =

2

6

4

s̄n−1,k−1 0 ... 0 s̄n−k,0
0 s̄n−2,k−1 0 s̄n−k,1

...
. . .

...
...

0 0 ... s̄n−k+1,k−1 s̄n−k,k−2

3

7

5
(4)

where s̄i,j = C[i]( ∂j

∂y
j
1

f), has rank deficiency at least one.

Proof. We apply Lemma 2.3 with the coefficient field
L = F (y2, . . . , yr). Since f is assumed primitive in y1, all
factors in L[y1] are by Gauss’s lemma [11] associates of fac-
tors in F [y1, . . . , yr] and have degree ≥ 1 in y1.

3. A SOLUTION BASED ON STLN
Structure-preserving total least norm algorithms [21, 27,

5, 22] compute for a structured matrix A and a structured
vector b outside the range of A a minimally perturbed ma-
trix Ã of the same structure of A and a minimally perturbed
vector b̃ of the same structure of b such that the linear sys-
tem Ãx = b̃ is consistent. A special case is to compute
a structured approximation of a matrix S that is rank de-
ficient, in which case b can be chosen a column of S and
A the submatrix formed by the remaining columns. Com-
monly considered structured matrices are symmetric, sparse,
circulant, Toeplitz and Hankel matrices. In our case, the
matrices will have the generalized Sylvester structures (2),
(3) and (4) of Section 2. In this paper, we apply the STLN
algorithm of [27]. We shall briefly describe the method.

Let S(ζ) = [A1(ζ) | b(ζ) | A2(ζ)] and let A(ζ) = [A1(ζ) |
A2(ζ)]. Here the matrices S and A and the vector b are
parametrized via the vector ζ. In the case of S = Sk(f1, . . . , fs)
in (2), the parameter vector ζ contains the coefficients of
f1, . . . , fs, and in the case S = Ssing

k (f) or S = Ssing
y1,k(f), the

parameter vector is the coefficient vector of f . We wish to
solve the two structure-preserving total least norm problems

min
△c∈Rν

‖△c‖ or min
△c∈Cν

‖△c‖

with A(c + △c)x = b(c + △c) for some vector x, (5)

where c is fixed to the initial coefficient vector.∗ Here ‖·‖ can
be 2-, 1- and ∞-norm, hence the notion “least norm” rather
than “least squares,” which is the 2-norm case. The choice
of which column of S is moved to the right side depends on
whether the nearest singular matrix contains that column
in a linear column relation. For our problems, the condi-
tion is whether the corresponding co-factor polynomial uj

in Lemma 2.1 contains a corresponding non-zero term. As
suggested in [18] we choose the column corresponding to the
absolutely largest component in the first singular vector.

The STLN algorithm first initializes x as the unstructured
least squares solution A(c)x ≈ b(c) for the input parameters
c and △c = z = 0, and then refines both x and z simultane-
ously by iteration: the updated x + △x and z + △z satisfy
(5), namely

min ‖z+△z‖ with A(c+z+△z) (x+△x) = b(c+z+△z).

However, our optimization problems have many local sub-
optimal minima, and the standard initialization [27] is insuf-
ficient. We therefore extend the new initialization method in
[21, Section 4.5.3] based on Lagrangian multipliers to our ap-
proximate GCD problems. Because the matrix-vector prod-
uct S(ζ)ξ encodes sums of polynomial products, there is a
Sylvester-like matrix H(ξ) such that H(ξ)ζ = S(ζ)ξ. Sup-
pose the first singular vector of the matrix S(c) is v; then
we compute z as:

z = −H(v)Tr(H(v)H(v)Tr)−1S(c)v. (6)

Suppose b(c) is the t-th column corresponding to the ab-
solutely largest component in v; we compute the vector x
by normalizing the vector v to make v[t] = −1, i.e., we
initialize x as

x =

»

−v[1]

v[t]
, . . . ,−v[t − 1]

v[t]
,−v[t + 1]

v[t]
, . . .

–Tr

. (7)

Plugging in (6) we have −S(z)v = −H(v)z = S(c)v, hence
S(c + z)v = 0, or A(c + z)x = b(c + z) as required.

Since our parameterization is linear, we obtain as a first
order approximation of the residue

r(z + △z,x + △x)

= b(c + z + △z) − A(c + z + △z) (x + △x)

= b(c + z) + b(△z) − (A(c + z) + A(△z))(x + △x)

≈ b(c + z) − A(c + z)x + b(△z) − A(c + z)△x − A(△z)x

= r(z,x) + b(△z) − A(c + z)△x − A(△z)x.

Because the entries in b(ζ) are components of ζ we have a
constant matrix P with b(ζ) = Pζ. Furthermore, changing
the elements in H(ξ) that correspond to the right-side −b

∗
In [27] the matrix A(c) is denoted by A, and the “error” matrix

A(△c) by E, and the perturbation vector △c by η.



vector from −1 to 0, we obtain a second Sylvester-like ma-
trix Y (ξ) such that Y (ξ)ζ = A(ζ)ξ, in particular A(△z)x =
Y (x)△z. Hence a first order approximation of the new
residue can be expressed as

r(z + △z,x + △x)

≈ r(z,x) + P△z − A(c + z)△x − Y (x)△z. (8)

Using a penalty w ≫ 1 on the residue [1] the minimization
problem

min
△z,△x

‚

‚

‚

wr(z + △z,x + △x)
z + △z

‚

‚

‚

has then the first order iterative update

min
△x, △z

‚

‚

‚

‚

»

w(Y (x) − P ) wA(c + z)
I 0

– »

△z
△x

–

+

»

−wr(z,x)
z

– ‚

‚

‚

‚

(9)

[27, Equation (2.9)]. The iterative update x = x + △x and
z = z + △z is stopped when ‖△x‖ and/or ‖△z‖ becomes
smaller than a given tolerance. The minimization prob-
lem (9) is for 2-norm and large penalty values, for instance
w = 108, a stiff least squares problem which requires special
care [2]. If the coefficient matrix in (9) is not of full rank,
a solution via QR decomposition with column pivoting can
yield good results (see also [19]). Alternatively, (9) can be
formulated as least squares problem with linear equational
constraints; see end of Section 3.1 and Section 5. For 1- and
∞-norm (on the combined vector of linear and imaginary
parts), the problem can be solved by linear programming
(see [13, Section 8.3]). However, if then the optimization
problem is over the complex numbers (second case in (5)),
real and complex parts need to be separated first. By writ-
ing A(ζ) = A(ζR + i ζI) = A(ζR) + iA(ζI), where ζR and
ζI are the real and imaginary parts of ζ and i =

√
−1, and

splitting the residual and incremental vectors similarly, the
updated residue (8) can be written as

r(z + △z,x + △x)

≈ rR(z,x) + i rI(z,x) + P△zR + iP△zI

− (A(cR + zR) + iA(cI + zI))(△xR + i△xI)

− (Y (xR) + iY (xI))(△zR + i△zI)

= rR(z + △z,x + △x) + i rI(z + △z,x + △x).

The iterative update (9) can then be formulated as the
real optimization problem

min
△xR,△xI ,△zR,△zI

‚

‚

‚
M

ˆ

△zR △zI △xR △xI

˜Tr

+
ˆ

−wrR(z,x) −wrI(z,x) zR zI

˜Tr
‚

‚

‚
, (10)

where M is
"

w(Y (xR)−P ) −wY (xI ) wA(cR+zR) −wA(cI+zI )
wY (xI ) w(Y (xR)−P ) wA(cI+zI ) wA(cR+zR)

I 0 0 0

0 I 0 0

#

(11)

[27, Equation (2.12)].

3.1 Solution With Linearly Constrained Input
Coefficients

The matrix Ssing(f) in (3) is a specialization S(f1, . . . , fk)
in (2), where the input coefficients are restricted by linear

constraints. The constraints are of the form zj = λzi where
λ is an integer. The case is handled by making the ap-
propriate substitution in the least squares problem (9), in
particular since the minimization is on the vector of the
remaining free zi. Preserving monicity or sparsity of the in-
put polynomials can be enforced by constraints of the type
zj = constant.

In [13, Section 6.3] we have observed that the algorithms
in [6, 20] allow incorporation of arbitrary linear constraints
on the coefficients of the approximations of the input polyno-
mials. We now show how to accomplish optimization under
linear constraints for the STLN approach.

Let ζ be the symbolic coefficient vector (of dimension ν)
of the structured problem, and let Γζ = γ be the system of
fixed linear constraints on the goal coefficients. We do not
assume that Γc ≈ γ for the initial input coefficient vector c.
By Gaussian elimination we construct for the linear system
Γζ = γ − Γc a matrix C, a vector d and a sub-vector of the
free parameters [ζi1 , . . . , ζiµ ]Tr such that

ζ = Cζ− +d, where ζ− =

2

6

4

ζi1

...
ζiµ

3

7

5
; note that ΓC = 0. (12)

Following our earlier initialization approach, we compute

z = d − C (H(v)C)Tr(H(v)C (H(v)C)Tr)−1S(c + d)v,

where v is the first singular vector of the matrix S(c + d).
Again, we have S(c + z)v = 0. Normalizing v with respect
to the absolutely largest component, we obtain the initial-
ization of x (see (7)). The iterative update (9) can now be
written as

min
△x, △z−

‚

‚

‚

‚

»

w(Y (x) − P )C wA(c + z)
C 0

– »

△z−

△x

–

+

»

−wr(z,x)
z

–‚

‚

‚

‚

. (13)

The new coefficient values are c + z + △z = c + z + C△z−

and satisfies Γ(c + z + △z) = γ provided Γ(c + z) = γ.
Our initialization Γ(c + z) = Γ(c + d) = Γc + (γ − Γc) =
γ guarantees that throughout the iteration. If the scalars
are complex numbers, (13) can again be expressed as a real
optimization problem:

min
△xR,△xI ,△z

−

R
,△z

−

I

‚

‚

‚
M−

ˆ

△z−

R △z−

I △xR △xI

˜Tr

+
ˆ

−wrR(z,x) −wrI(z,x) zR zI

˜Tr
‚

‚

‚
,

where

M− =

2

6

6

4

M−

1,1 M−

1,2 wA(cR + zR) −wA(cI + zI)
M−

2,1 M−

2,2 wA(cI + zI) wA(cR + zR)
CR −CI 0 0
CI CR 0 0

3

7

7

5

with

M−

1,1 = w(Y (xR)CR − Y (xI)CI − PCR),
M−

1,2 = −w(Y (xI)CR + Y (xR)CI − PCI),
M−

2,1 = w(Y (xI)CR + Y (xR)CI − PCI),
M−

2,2 = w(Y (xR)CR − Y (xI)CI − PCR),

9

>

>

=

>

>

;

(14)

and the linear constraint is split into real and imaginary
parts as ζR + i ζI = (CR + iCI)(ζ

−

R + i ζ−

I ) + dR + idI .



Although Ssing
k (f) of (3) is a linearly constrained version

of Sk(f1, . . . , fk) of (2), the actual optimization problems
are not the same. For the nearest k-fold singular poly-
nomial one optimizes ‖△f‖, while the GCD problem with
the corresponding constraints on the coefficients optimizes
P ‖di

△f/dyi‖, which has a different minimum. Already in
[27] a (diagonal) weight matrix D is allowed in the mini-
mization problem (5), namely

min
△c∈Rν

‖D△c‖ or min
△c∈Cν

‖D△c‖

with A(c + △c)x = b(c + △c) for some vector x.

Then (13) becomes

min
△x, △z−

‚

‚

‚

‚

»

w(Y (x) − P )C wA(c + z)
DC 0

– »

△z−

△x

–

+

»

−wr(z,x)
Dz

–‚

‚

‚

‚

.

Not assuming that the weights are positive real numbers, the
matrix D can now be chosen as to optimize the norm of the
perturbation in the first polynomial in the GCD problem,
thus allowing the nearest singular polynomial question to
be formulated as a GCD problem with linearly constrained
coefficients. For general D = DR + iDI , the real matrix
given above now becomes the matrix M−:

2

4

M
−

1,1 M
−

1,2 wA(cR+zR) −wA(cI+zI )

M
−

2,1 M
−

2,2 wA(cI+zI ) wA(cR+zR)

DRCR−DICI −DRCI−DICR 0 0

DRCI+DICR DRCR−DICI 0 0

3

5 (15)

where M−

1,1, . . . , M
−

2,2 are as in (14).
As an entirely alternative approach, one can add the con-

straints Γ(z + △z) = γ directly to (9) and iterate on

min
△x, △z

‚

‚

‚

‚

‚

‚

2

4

w(Y (x) − P ) wA(c + z)
wΓ 0
D 0

3

5

»

△z
△x

–

+

2

4

−wr(z,x)
w(Γ(c + z) − γ)

Dz

3

5

‚

‚

‚

‚

‚

‚

. (16)

However, that least squares problem has a larger dimension
than (13). Nonetheless, a variant of (16) can be used to-
gether with the linear programming techniques mentioned
above (cf. [13, Section 8.3]) to minimize for 1- and ∞-norm
with linear component-wise inequality constraints Γ(c+ z+
△z) ≥ γ. For instance, for ∞-norm and for real inputs and
outputs one minimizes min△z ‖D(z + △z)‖∞ under the lin-
ear constraints (Y (x) − P )△z + A(c + z)△x = r(z,x) and
Γ△z ≥ γ − Γ(c + z). The corresponding linear program in
the unknowns δ and the entries of △z and △x is

minimize: δ

subject to: δ − Di△z ≥ Diz,

δ + Di△z ≥ −Diz,

(Y (x)−P )△z+A(c + z)△x = r(z,x),

Γ△z ≥ γ − Γ(c + z),

where Di is the i-th row of D, i = 1, 2, . . ..

3.2 Computing Complex Optima for Real
Inputs

In [17] we observe that the STLN iterations given above
can only produce the real local optimum when executed

on inputs with real coefficients. However, the approximate
GCD and nearest singular polynomial problems can in those
cases have a nearer approximation when permitting com-
plex coefficients in the solution [17, 19]. Here we employ the
change in the initialization of [17] in order to escape from
the entirely real arithmetic process. Suppose the first sin-
gular vector of the matrix S(c+ i△crand) is v, where △crand

is a random real vector of small noise. Then we compute z
as:

z = −H(v)Tr(H(v)H(v)Tr)−1S(c + i△crand)v.

We compute the x by normalizing the vector v with respect
to the absolutely largest component so that we have

A(c + i△crand + z)x = b(c + i△crand + z). (17)

However, we do not add i△crand to the real optimization
problem (10).

In the linearly constrained case, we initialize

z = d − C (H(v)C)Tr(H(v)C (H(v)C)Tr)−1 ×
S(c + d + i△crand)v,

where v is the first singular vector of the matrix S(c + d +
i△crand). We initialize the vector x by normalizing the vec-
tor v with respect to the absolutely largest component in v
(see (7)). Then we have

A(c + i C△z−

rand + z)x = b(c + i C△z−

rand + z), (18)

where △z−

rand is a random real vector of small free parame-
ter values. As is exhibited in Section 4, the preconditioners
(17) and (18) take the STLN iteration away from the real
local optimum for our problems. Unfortunately, x, z may
not be near the complex optimum and the algorithm then
searches through many iterations to find a suitable place
from which convergence begins. Nonetheless, the method
can compute global complex minima and appears signifi-
cantly faster than the universal polynomial-time algorithms
in [20, 37, 36]. Furthermore, for our approximate problems
we currently do not know of any viable alternative in this
difficult case.

4. ALGORITHMIC DETAILS AND
EXPERIMENTS

We have implemented algorithms for real and complex
inputs and real and complex optima for

– computing the approximate GCD of several multivari-
ate polynomials

– computing the nearest univariate polynomial with a
k-fold root

– computing the approximate GCD of several univariate
or multivariate polynomials with linearly constrained
coefficients

We first present a worked example of the latter procedure,
which constitutes a generalization of the nearest singular
polynomial problem to several input polynomials.

Example 4.1 Consider the polynomials

f = y(y−i )2+0.01 and g = (y+i )(y−i )2−0.01i . (19)



We seek to compute the nearest pair of complex polynomials
f̃ and g̃ that have a common 2-fold root (cf. [28]). The lin-
early constrained GCD problem is for the four polynomials
f , g, df/dy, dg/dy (cf. proof of Lemma 2.3) and restricting

the distance measure to ‖f − f̃‖2
2 + ‖g − g̃‖2

2. Writing the
coefficients as a single 14-dimensional vector ζ, we obtain
the parameterized constraint matrix

C =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, ζ− =

2

6

4

ζ1

...
ζ8

3

7

5
and d = 0,

(see Section 3.1). The weight matrix is D = diag(I8,06). We
use the real formulation (15) of the STLN algorithm with
constrained coefficients and a penalty weight of w = 108. Af-
ter 6 iterations we stop the algorithm at △x = 0.974 ·10−6 <
10−6. The needed deformation for the input coefficients is
computed as Cz− yielding the deformed inputs

f̃ = 0.0039 − 0.0018 i + 0.0013 y2 − 2.0006 i y2

+0.0037 i y − 1.0006 y + 0.0011 i y3 + 0.9982 y3,

g̃ = 0.0018 − 1.0066 i + 0.0006 y2 − 1.0022 i y2

−0.0006 i y + 1.0028 y − 0.0018 i y3 + 0.9984 y3.

The co-factors are derived from x as

ũ1 = 0.0018 + 0.0039 i + 0.9982 y2 + 0.0011i y2

−0.0013 y − 0.9994 i y,

ũ2 = 1.0036 + 0.0003 i + 0.9984 y2 − 0.0018 i y2

+0.0008999 y − 0.00081 i y.

Performing an approximate polynomial division [35, 16] we

obtain as the double factor h̃ = 0.001504 − 1.003015 i +
1.000000 y. Finally, the backward error is

‖f − h̃2 ũ1‖2
2 + ‖g − h̃2 ũ2‖2

2 = 0.947 · 10−4.

For comparison the unconstrained approximate GCD of
f , g, df/dy, dg/dy is h̄ = −6.504887 · 10−8 − 1.000011 i +
1.00000 y, which was found by our STLN implementation
after 2 iterations. Although h̄ seems a more accurate result
w.r.t. the construction (19), the backward error of the com-
bined approximate polynomial divisions of f by h̄2 and g by
h̄2 is 0.000140.

Example 4.2 Consider the polynomials

f = 1000 y10 + y3 − 1 and g = y2 − 1

100
.

We seek to compute the nearest pair of polynomials f̃ and g̃
that have a non-trivial GCD. We add random small complex
noise to the initialization as in Section 3.2. After about ten
iterations in the average, the algorithm converges to the
following local minima:

0.0421579, 0.0463113, 0.0474087, 0.0493292, . . .

for different initializations. Among solutions, the polynomi-
als

f̃ = 1000.0 y10 + 0.0000147908 y9 + 0.0000297998 y8

+0.0000604355 y7 + 0.000122287 y6 + 0.000247491 y5

+0.000500837 y4 + 1.00101 y3 + 0.00205103 y2

+0.00415059 y − 0.991601,

g̃ = 0.956139 y2 − 0.0887590 y − 0.189618,

have a common divisor y − 0.4941547, and the backward
error is

‖f − f̃‖2
2 + ‖g − g̃‖2

2 = 0.0421579.

It is the non-monic global minimum found by the global
methods in [20, 13].

The polynomials f and g also provide an example for
a small structured condition number of a Sylvester matrix
with a large unstructured condition number. Let S be the
Sylvester matrix of f and g and Ŝ be the nearest singular
Sylvester matrix to S measured in Frobenius matrix norm,
which we shall denote by ‖ · ‖F . First assume that Ŝ cor-

responds to two complex polynomials f̂ and ĝ of degrees 10
and 2, respectively. By virtue of the singularity of Ŝ, f̂ and
ĝ have a common root. Therefore

‖S − Ŝ‖2
F = 2‖f − f̂‖2

2 + 10‖g − ĝ‖2
2

≥ 2‖f − f̂‖2
2 + 2‖g − ĝ‖2

2

≥ 2‖f − f̃‖2
2 + 2‖g − g̃‖2

2 ≥ 0.084315.

Second, one can easily rule out that Ŝ corresponds to polyno-
mials with zero coefficients in the degree 10 and 2 terms. The
above lower bound can be scaled to other matrix norms by
well-known inequalities [32, Section 4.2, Example 13]. The

nearest unstructured singular matrix Â has ‖S − Â‖2
F equal

the square of the smallest singular value of S [9; 32, Theo-
rem 6.7], which is 0.000000098975. For other matrix norms,
similar explicit values can be computed [14, p. 775]. Such
a difference between structured and unstructured distances
to singularity is impossible for Toeplitz matrices [29]. 2

In the following three tables, we show the performance of
our algorithms for computing the approximate GCDs and
nearest singular polynomials on Pentium 4 at 2.0 Ghz for
Digits = 14 in Maple 10 under Windows.

In Table 1 we show the performance of our algorithm for
computing the monic nearest singular polynomials. Here
m denote the degrees of polynomials; k is the multiplicity
of roots; whereas it. (STLN) denotes the number of itera-
tions in our C-multiple-root algorithm; error (STLN) and

error (ZNKW) are the minimal perturbation ‖f̃ − f‖2
2 com-

puted by the algorithm in [36] and our C-multiple-root pro-

cedure, respectively, such that f̃ has a k-fold root.
Example 1 and 2 are from [37]. Example 1 is a real poly-

nomial. Due to the geometry of the zeros of the polynomial,
there are four nearest singular complex polynomials with a
k-fold root, for k = 2, 3. Our algorithm can compute all four
globally minimal solutions through randomization. Exam-
ple 2 is a polynomial with complex coefficients. Examples 3
to 8 are from [36]. Note that the minima Nm in Tables 2
and 5 in [37] and the minimum Nm in Example 5 in [36]
are incorrectly stated. Here we give the corrected minima
computed with the original Maple procedures of [37, 36].
Except Example 7, all other examples have real coefficients.



Ex. m k
it.

(STLN)
error

(ZNKW)
error

(STLN)

1 4 2 12 .1763296120 .1763296118

3 34 .6261127476 .6261127498

2 4 2 4 .1552760123e–12 .1552723415e–12

3 11 .8834609009e–9 .9814886696e–9

4 4 .2021848972e–4 .1958553174e–4

3 4 2 4 .1645037985e–10 .16450617515e–10

3 4 .4144531274e–6 .4144531274e–6

4 12 .1049993144 .1049993152

4 5 2 1 .2460987981e–8 .2461467456e–8

5 3 20 .3681785214 .3681784856

5 6 2 2 .3231668276e–5 .3231668277e–5

6 6 2 3 .3009788845e–11 .3009789157e–11

3 3 .7453849284e–6 .7453849284e–6

4 24 .4449023547 .4449023547

7 5 2 8 .8565349347 .8565327605

8 21 2 2 .190477e–8 .1893347157e–8

3 6 .963776e–4 .9637591989e–4

Table 1: Algorithm performance on benchmarks
(univariate singular polynomial case)

Ex. mi k e it.
error
(Zeng)

error
(GKMYZ)

error
(STLN)

1 7,7 4 3 2 2.44360e–4 2.59476e–4 6.50358e–5

2 7,7 4 5 1 2.44404e–8 2.59194e–8 6.50357e–9

3 7,7 4 7 1 2.44405e–12 2.59191e–12 6.50357e–13

4 7,7 4 9 1 2.44396e–16 2.59187e–16 6.50361e–17

5 6,6 3 2 3 2.26617 1.49524 4.80154e–1

6 10,10 5 4 2 2.74672e–3 1.84914e–3

7 8,8 4 5 2 7.09371e–5 2.38059e–5 2.01393e–5

8 40,40 30 5 2 1.39858e–3 4.83931e–4 4.39489e–4

9 10,9,8 5 3 2 6.21772e–2

10 8,7,8,6 4 5 2 4.04458e–6

Table 2: Algorithm performance on benchmarks
(multivariate polynomials case)

In fact, we have been able to match the ZNKW backward
error with both formulations of our STLN-method, one ex-
plicitly based on the matrix Ssing

k of (3) on page and one
based on approximate GCDs with linear constraints.

In Table 2 we show the performance of our algorithm for
computing the approximate GCDs of multivariate polyno-
mials. Here mi denote the total degrees of polynomials; k
is the total degree of the approximate GCD; whereas er-
ror (Zeng), error (GKMYZ) and error (STLN) are the min-

imal perturbation
P

i ‖f̃i−fi‖2
2 computed by the algorithms

in [34, 10] and our new algorithm, respectively. As in Ta-
ble 1, it. is again the number of iterations performed by our
STLN algorithm. Examples 1 to 4 in Table 2 correspond to
the Example 4 in [34] for different perturbations. We note
that following our results, Zhongang Zeng has shown us im-
provements to his code that yield backward errors compara-
ble to ours for those examples. Examples 5 and 7–10 were
constructed by choosing polynomials with random integer

j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
it. 1 1 1 3 4 5

err. 2.48e–12 3.33e–10 3.39e–8 3.76e–6 2.53e–4 2.93e–2

Table 3: Algorithm performance on two 4-variate
polynomials

coefficients in the range −25 ≤ c ≤ 25 and having a non-
trival GCD, then adding perturbations to each polynomial;
for perturbation we randomly choose a polynomial that has
the same degree as the unperturbed polynomial and coef-
ficients in [−10e, 10e]; finally, we scale the perturbation so
that the relative error is 10−e. Example 6 is an example with
complex coefficients, where the real and imaginary parts of
the coefficients were integers in the range −25 ≤ c ≤ 25.
Perturbations as stated before were added to both real and
imaginary parts of polynomials.

In Table 3 we show the performance of our algorithm for
computing the approximate linear common factor with mul-
tiplicity 2 of two degree 4 and 4-variate polynomial pair
f1, f2 defined in Example 5 in [34]. The case is handled by
computing GCD of f1, ∂f1, f2, ∂f2 and adding linear con-
straints which are generated by comparing the coefficients
of f1, ∂f1 and f2, ∂f2, respectively. Here ∂fi is the partial
derivative of fi w.r.t. one variable. The perturbation is of
order 10j−10.

Our 36 test cases and Maple implementation is available at
http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/manystln/

and http://www.math.ncsu.edu/~kaltofen/software/manystln/.

5. CONCLUDING REMARKS
We have shown that the structured total least norm ap-

proach to approximate computer algebra problems can be
applied when the coefficients of the deformed polynomials
are also to satisfy a set of linear constraints.

When the input polynomials are within a relative error of
no more than 10−2, we have demonstrated that our struc-
tured total least norm (STLN) based algorithms converge
quickly to the minimal approximate solutions, needing no
more than about 10 iterations. However, for both the ap-
proximate GCD and nearest singular polynomial problems
special cases arise where the nearest solution to a list of
polynomials with real inputs are complex polynomials. In
addition, our introduction of linear constraints on the input
coefficients can move the nearest solution satisfying those
constraints to a substantial distance from the input. These
are difficult cases for all iterative algorithms that we know.
Nonetheless, our STLN-based algorithms can compute opti-
mal solutions. We have presented a new approach to choose
better starting points, but in some difficult cases it still
takes significantly many iterations of search before reach-
ing a point of convergence.

In our experiments, we apply the penalty approach in [27].
The Constrained Total Least Squares (CTLS) and the Rie-
mannian SVD are possible alternatives, which under mild
conditions are equivalent [21]. We have extended the CTLS
algorithm in [25] to our approximate GCD problems. Our
initial experiments show that the CTLS approach can also
achieve globally optimal backward errors. We will continue
to investigate the numerical stability of the various struc-
ture preserving approximation techniques, including linear
programming, on larger inputs.



So far, we are focusing on speed of convergence and ac-
curacy of approximation. We use standard linear algebra
algorithms for our arising least squares problem. For uni-
variate polynomials, the displacement structure of matrices
which arise has been exploited to speed the cost of each in-
dividual iteration without loss of accuracy [35, 24]. Those
results carry over to our coefficient matrices at least in the
univariate case; in the multivariate case we hope to develop
efficient displacement operators in the near future.

The problem of computing approximate factorizations of
multivariate complex polynomials can also be solved by the
STLN approach [16], and therefore we can again introduce
additional linear constraints on the coefficients of the mini-
mally deformed and factorizable polynomial. We hope to in-
vestigate the performance of the linearly constrained struc-
tured total least norm methods applied to the approximate
factorization and related problems in the future.

Acknowledgement: We thank Ivan Markovsky for his comments
on the STLN iteration. Example 4.2 answers a question posed to
us by James Demmel at the BIRS “Challenges” workshop in Octo-
ber 2005. We thank Rong Xiao and Bican Xia for helping us compute
the non-monic global minimum of Example 4.2. We also thank Mark
Giesbrecht and John May for their comments on structure-preserving
methods, the referees for their helpful comments, and Zhonggang
Zeng for sending us his code for computing approximate GCDs of
polynomials.

6. REFERENCES
[1] Anda, A. A., and Park, H. Fast plane with dynamic scaling.

SIAM J. Matrix Anal. Applic. 15 (1994), 162–174.

[2] Anda, A. A., and Park, H. Self-scaling fast rotations for stiff
and equality-constrained linear least squares problems. Linear
Algebra and Applications 234 (1996), 137–161.

[3] Beckermann, B., and Labahn, G. A fast and numerically stable
Euclidean-like algorithm for detecting relative prime numerical
polynomials. J. Symbolic Comput. 26 (1998), 691–714.

[4] Botting, B., Giesbrecht, M., and May, J. Using Riemannian
SVD for problems in approximate algebra. In Wang and Zhi
[33], pp. 209–219.

[5] Chu, M. T., Funderlic, R. E., and Plemmons, R. J. Structured
low rank approximation. Linear Algebra and Applications 366
(2003), 157–172.

[6] Corless, R. M., Gianni, P. M., Trager, B. M., and Watt,

S. M. The singular value decomposition for polynomial
systems. In Proc. 1995 Internat. Symp. Symbolic Algebraic
Comput. ISSAC’95 (New York, N. Y., 1995), A. H. M. Levelt,
Ed., ACM Press, pp. 96–103.

[7] Corless, R. M., Watt, S. M., and Zhi, L. QR factoring to
compute the GCD of univariate approximate polynomials.
IEEE Transactions on Signal Processing 52 (Dec. 2004),
3394–3402.

[8] Dunaway, D. K. Calculation of zeros of a real polynomial
through factorization using Euclid’s algorithm. SIAM J.
Numer. Anal. 11, 6 (1974), 1087–1104.

[9] Eckart, C., and Young, G. The approximation of one matrix
by another of lower rank. Psychometrika 1, 3 (Sept. 1936),
211–218.

[10] Gao, S., Kaltofen, E., May, J. P., Yang, Z., and Zhi, L.

Approximate factorization of multivariate polynomials via
differential equations. In Gutierrez [12], pp. 167–174.

[11] von zur Gathen, J., and Gerhard, J. Modern Computer
Algebra. Cambridge University Press, Cambridge, New York,
Melbourne, 1999. Second edition 2003.

[12] Gutierrez, J., Ed. ISSAC 2004 Proc. 2004 Internat. Symp.
Symbolic Algebraic Comput. (New York, N. Y., 2004), ACM
Press.

[13] Hitz, M. A., and Kaltofen, E. Efficient algorithms for
computing the nearest polynomial with constrained roots. In
Proc. 1998 Internat. Symp. Symbolic Algebraic Comput.
(ISSAC’98) (New York, N. Y., 1998), O. Gloor, Ed., ACM
Press, pp. 236–243.

[14] Kahan, W. Numerical linear algebra. Canadian Math. Bull. 9
(1966), 757–801.

[15] Kaltofen, E., and May, J. On approximate irreducibility of
polynomials in several variables. In ISSAC 2003 Proc. 2003
Internat. Symp. Symbolic Algebraic Comput. (New York, N.
Y., 2003), J. R. Sendra, Ed., ACM Press, pp. 161–168.

[16] Kaltofen, E., May, J., Yang, Z., and Zhi, L. Approximate
factorization of multivariate polynomials using singular value
decomposition. Manuscript, 22 pages. Submitted, Jan. 2006.

[17] Kaltofen, E., Yang, Z., and Zhi, L. Structured low rank
approximation of a Sylvester matrix. Manuscript, 15 pages,
Oct. 2005. Preliminary version in SNC 2005 Proceedings,
Dongming Wang and Lihong Zhi eds., pp. 188–201, distributed
at the International Workshop on Symbolic-Numeric
Computation in Xi’an, China, July 19–21, 2005.

[18] Kaltofen, E., Yang, Z., and Zhi, L. Structured low rank
approximation of a generalized Sylvester matrix. In Proc. of
the Seventh Asian Symposium on Computer Mathematics
(Seoul, South Korea, 2005), S. Pae and H. Park, Eds., Korea
Institute for Advanced Study, pp. 219–222. Extended abstract.

[19] Kaltofen, E., Yang, Z., and Zhi, L. Approximate greatest
common divisors of several polynomials with linearly
constrained coefficients and singular polynomials. Manuscript,
16 pages, Apr. 2006.

[20] Karmarkar, N. K., and Lakshman Y. N. On approximate
GCDs of univariate polynomials. J. Symbolic Comput. 26, 6
(1998), 653–666.

[21] Lemmerling, P. Structured total least squares: analysis,
algorithms and applications. Dissertation, Katholieke
Universiteit Leuven, Belgium, 1999.

[22] Lemmerling, P., Mastronardi, N., and Van Huffel, S. Fast
algorithm for solving the Hankel/Toeplitz Structured Total
Least Squares problem. Numerical Algorithms 23 (2000),
371–392.

[23] Li, B., Liu, Z., and Zhi, L. Fast low rank approximation of a
Sylvester matrix. In Wang and Zhi [33], pp. 202–208.

[24] Li, B., Yang, Z., and Zhi, L. Fast low rank approximation of a
Sylvester matrix by structured total least norm. J. JSSAC
(Japan Society for Symbolic and Algebraic Computation) 11,
3,4 (2005), 165–174.

[25] Mastronardi, N., Lemmerling, P., and Van Huffel, S. Fast
structured total least squares algorithm for solving the basic
deconvolution problem. SIAM J. Matrix Anal. Applic. 22, 2
(2000), 533–553.

[26] May, J. P. Approximate factorization of polynomials in many
variables and other problems in approximate algebra via
singular value decomposition methods. PhD thesis, North
Carolina State Univ., Raleigh, North Carolina, Aug. 2005.

[27] Park, H., Zhang, L., and Rosen, J. B. Low rank approximation
of a Hankel matrix by structured total least norm. BIT 39, 4
(1999), 757–779.

[28] Pope, S., and Szanto, A. Nearest multivariate system with
given root multiplicities. Manuscript available at
http://www.math.ncsu.edu/~aszanto/papers.html, 2005.

[29] Rump, S. M. Structured perturbations part I: Normwise
distances. SIAM J. Matrix Anal. Applic. 25, 1 (2003), 1–30.

[30] Sasasaki, T., and Noda, M. T. Approximate square-free
decomposition and root-finding of ill-conditioned algebraic
equations. J. Inf. Process. 12 (1989), 159–168.

[31] Schönhage, A. Quasi-gcd computations. Journal of
Complexity 1 (1985), 118–137.

[32] Stewart, G. W. Introduction to Matrix Computations.
Academic Press, Inc., New York, 1973.

[33] Wang, D., and Zhi, L., Eds. Proc. 2005 International
Workshop on Symbolic-Numeric (July 2005). Distributed at
the Workshop in Xi’an, China.

[34] Zeng, Z., and Dayton, B. H. The approximate GCD of inexact
polynomials part II: a multivariate algorithm. In Gutierrez
[12], pp. 320–327.

[35] Zhi, L. Displacement structure in computing approximate
GCD of univariate polynomials. In Proc. Sixth Asian
Symposium on Computer Mathematics (ASCM 2003)
(Singapore, 2003), Z. Li and W. Sit, Eds., vol. 10 of Lecture
Notes Series on Computing, World Scientific, pp. 288–298.

[36] Zhi, L., Noda, M.-T., Kai, H., and Wu, W. Hybrid method for
computing the nearest singular polynomials. Japan J.
Industrial and Applied Math. 21, 2 (June 2004), 149–162.

[37] Zhi, L., and Wu, W. Nearest singular polynomial. J. Symbolic
Comput. 26, 6 (1998), 667–675.


