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ABSTRACT
Algebraic randomization techniques can be applied to hy-
brid symbolic-numeric algorithms. Here we consider the
problem of interpolating a sparse rational function from
noisy values. We develop a new hybrid algorithm based
on Zippel’s original sparse polynomial interpolation tech-
nique. We show experimentally that our algorithm can han-
dle sparse polynomials with large degrees. We also give a
(partial) mathematical justification why the Zippel’s alge-
braic randomization technique can be used with our ap-
proximate data: the randomly generated non-zero values
are expected to be bounded away from zero. We show that
the random Fourier-like matrices arising in our algorithm,
have the desired rank property in the exact case, and appear
usable numerically.

Furthermore, we show that Sylvester matrices of poly-
nomials with nonidentically distributed random coefficients
have large condition numbers. That phenomenon has pre-
cluded several algebraic randomization techniques from use
in the approximate hybrid setting.

Categories and Subject Descriptors: I.2.1 [Comput-
ing Methodologies]: Symbolic and Algebraic Manipulation
—Algorithms; G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation

General Terms: algorithms, theory, experimentation

Keywords: multivariate rational function, interpolation,
sparse polynomial, random matrix, structured matrix, con-
dition number, probabilistic analysis, symbolic/numeric hy-
brid method
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1. RANDOMIZATION IN ALGEBRAIC
AND HYBRID COMPUTATION

Since the discovery of the Zippel-Schwartz lemma [6, 38,
43] in 1979, randomization techniques based on introduc-
ing elements that have been randomly sampled from a fi-
nite subset of the domain of scalars have become ubiqui-
tous. Zippel’s original application was to sparse multivariate
polynomial interpolation [44, 45], Schwartz’s to establishing
polynomial identities, and DeMillo’s and Lipton’s to proving
programs correct by executing at random inputs.

A classical application is to compute the GCD of many
polynomials by computing the GCD of random linear com-
binations [21, Theorem 6.2 and Note added in proof]. Im-
portant applications are the effective Hilbert irreducibility
theorems [13, 20, 25] for polynomial factors and precondi-
tioning of dense, sparse and black box matrices [2, 27, 28,
42]. Randomization is needed in Gao’s polynomial factor-
ization algorithm [11] and in solvers for linear systems whose
coefficient matrices have small displacement rank [24, Ap-
pendix]. There are many more examples for exact symbolic
algorithms.

Hybrid symbolic-numeric algorithms permit errors in the
input scalars due to floating point round-off or through phys-
ical measurement. In order to obtain a non-trivial solution,
the algorithms minimally deform those input variables to
obtain the desired result, say

1. a solution to an inconsistent system of linear and polyno-
mial equations (total least squares: TLS [16], structured
TLS: STLS [32, 34], symbolic-numeric elimination [15,
17, 33, 35]),

2. the GCD of relatively prime polynomials (approximate
GCD [4, 8, 30, 36]),

3. a non-trivial factorization of irreducible multivariate poly-
nomials with real or complex coefficients (approximate
factorization [12, 26, 37]),

4. a univariate rational function interpolant [19] and a sparse
multivariate interpolant (sparse numeric interpolation of
polynomials: SNIP [14], sparse numeric interpolation of
rational functions: SNIPR [29]).

When employing algorithms from the exact symbolic set-
ting for numerical inputs, randomization again can be ad-
vantageous. In the exact setting, the Zippel-Schwartz lemma
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allows the elimination of singular cases. In the hybrid set-
ting, the same randomization can avoid ill-conditioned sub-
problems [12, 14, 26], unstable divisions by elements that are
near zero, or areas of divergence or local minima in iterative
refinement [30].

In Section 2 we consider the approximate GCD problem
when using random projections of the coefficients. In par-
ticular, we investigate the condition number of the Sylvester
matrix of random polynomials. Large random dense matri-
ces with random entries from a standard Gaussian distri-
bution have a small condition number [3], and random per-
turbations of the entries of well-conditioned dense matrices
remain well-conditioned [39]. Because of the root distribu-
tion of random polynomials, the Sylvester matrices of two
random polynomials with coefficients from a Gaussian dis-
tribution have a similar expected values of their condition
numbers. We exploit such well-conditionedness in our new
rational function interpolation algorithm. When the coef-
ficients are binomially distributed, however, the roots con-
centrate on the real axis and the condition numbers of the
corresponding Sylvester matrices become very large. The
latter phenomenon caused our earlier hybrid SNIPR algo-
rithm in [29, Section 6] to fail on large degree inputs.

In Section 4 we present our hybrid ZNIPR algorithm for
numerically interpolating rational functions from noisy val-
ues. We adapt Zippel’s original variable-by-variable sparse
polynomial interpolation algorithm in two ways: first, we
show how to deploy the algorithm for sparse rational func-
tions and give a complete probabilistic analysis (Section 4.1)
for exact arithmetic. We then use the algorithm in the set-
ting where the rational function values are noisy. Our ex-
periments show that the method can handle large degree
polynomials, unlike our earlier SNIPR method. In Section 3
we show that Zippel’s assumptions have a justification in the
numerical hybrid setting. As said above, the needed relative
primeness assumptions can also be understood. Finally, it
may be possible to also give estimates on the condition num-
ber of the arising random Fourier-like matrices from recent
work in signal processing.

2. APPROXIMATE GCD OF RANDOM
UNIVARIATE POLYNOMIALS

Let {aj(ω)}∞j=0 denote a sequence of random variables

with respect to the distribution ω. Let pd(x) =
Pd

j=0 aj(ω)xj

denote the random univariate polynomial of degree d defined
by the sequence {aj(ω)}. Let α, β and δ be three arbitrary
numbers such that 0 ≤ α < β ≤ 2π, and 0 < δ ≤ 1. Con-
sider the following subsets of the complex numbers:

B = {z ∈ C : α < arg z < β}
C = {z ∈ C : 1− δ ≤ |z| ≤ 1 + δ}.

The following result is stated and proved in [40], see also [1,
Theorem 8.1]:

Theorem 2.1 Let the coefficients aj(ω) of a random alge-
braic polynomial pd(x) be independently and identically dis-
tributed complex-valued random variables, let the expected
value

E(max{0, log |aj |}) <∞ for all j = 0, 1, . . . , d,

and let Nd(B,ω) and Nd(C,ω) denote the expected number
of zeros of the random polynomials that are contained in the

set B and C, respectively. Then

lim
d→∞

Nd(B,ω)

d
=
β − α

2π
and lim

d→∞

Nd(C,ω)

d
= 1.

Theorem 2.1 tells us, as the degree of the polynomial in-
creases, the zeros tend to concentrate on the circumference
of the unit circle and appear to be uniformly distributed.
Moreover, it is also shown in [1, Theorem 8.5], as the num-
ber of sample polynomials increase, the sample zeros cluster
about the averaged zeros. This implies that the probabil-
ity for random polynomials having common roots increases
along with the growth of degrees of polynomials. So high de-
gree random polynomials always have an approximate GCD
within fixed precision deformation [5]. However, we also
notice that for random polynomials with independent and
normally distributed coefficients, the condition number of
the Sylvester matrix generated by the polynomials increases
almost linearly in the degrees of polynomials, as is the case
for arbitrary dense matrices [3, Theorem 6.1]:

Theorem 2.2 For an m×n complex random matrix Gm×n

whose elements are independent and identically distributed
standard normal random variables, then the expected loga-
rithm of the 2-norm condition number satisfies:

E(log κ2(Gm×n)) < log
n

n−m+ 1
+ 2.258,

for any n ≥ m ≥ 2.

We do not know if the structured condition number for
Sylvester matrices of random polynomials with normally
distributed coefficients, which is smaller than the condition
number, has linear growth.

For the univariate polynomials coming from the ZNIPR
algorithm of Section 4, the coefficients of these polynomials
distributed almost independently and normally, the degrees
of polynomials used for Table 1 and 2 are less than 100,
so by the arguments above, the roots of these univariate
polynomials are well separated and the condition numbers
of the Sylvester matrices are relatively small (in the 100’s).

If the random polynomials have nonidentical coefficients,
then the zeros of these random polynomials are distributed
differently from the zeros of random polynomials with Gaus-
sian coefficients. For example, as reported in [9, 10], the
random polynomial of the form

pd(x) =

dX

j=0

aj(ω)
q`

d

j

´
xj (1)

with Gaussian coefficients {aj(ω)}dj=0 has
√
d real zeros on

average, while polynomials with identically distributed co-
efficients have fewer than (2 log d+ 14)/π real roots for d→
∞ [18]. See Figures 1 and 2 for the distribution of the zeros
of the random polynomials of degrees 20 with coefficients
distributed identically and binomially respectively.

Moreover, we observe that the condition numbers of Sylvester
matrices generated by the random polynomials with bino-
mial coefficients increase exponentially in the degrees of the
polynomials. That explains why the condition numbers of
the Sylvester matrices come from the SNIPR algorithm are
huge even for polynomials with moderate degrees. The ran-
dom univariate polynomials obtained by evaluating y ←
w3x− w3w1 + w2 where wi are complex points on the unit
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Figure 1: Roots for identically distr. coeff.’s
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Figure 2: Roots for binomially distr. coeff.’s

circle, have coefficients distributed binomially. A mathe-
matical analysis of the condition number and structured
condition number of Sylvester matrices of polynomials with
non-identically distributed coefficients, say as in (1), appears
open.

3. A NUMERIC ZIPPEL-SCHWARTZ
LEMMA

In Section 4 we will employ the randomization as in Zip-
pel’s original application, namely to determine if coefficient
polynomial is identical zero by computing its value at a ran-
dom point. We need to show that for certain random points,
polynomial values are actually bounded away from zero.

Lemma 3.1 Let 0 6= h(y1, . . . , yr) ∈ Z[i ][y1, . . . , yr] and
for all 1 ≤ i ≤ r let pi = exp( 2πi

bi
) ∈ C, with the bi ∈ Z≥3

distinct prime numbers. Suppose h(p1, . . . , pr) 6= 0. Then
for random integers si with 1 ≤ si < bi the expected value

E{|h(ps1

1 , . . . , p
sr
r )|} ≥ 1.

Proof. Let B = b1 · · · br and let ζB = exp( 2πi

B
). The cy-

clotomic polynomial ΦB(z) of order B is irreducible over
Q(i ). Therefore h(ps1

1 , . . . , p
sr
r ) is an automorphic image of

h(p1, . . . , pr) in Q(ζB , i ) over Q(i ) and thus non-zero. We
have for the norm

0 6=
Y

1≤s1<b1

· · ·
Y

1≤sr<br

h(ps1

1 , . . . , p
sr
r ) ∈ Z[i ].

Therefore for N = (b1 − 1) · · · (br − 1) we have by the arith-
metic-geometric mean inequality

1

N

X
|h(ps1

1 , . . . , p
sr
r )| ≥ N

qY
|h(ps1

1 , . . . , p
sr
r )| ≥ 1. 2

By the Schwartz-Zippel lemma we can achieve the premise
h(p1, . . . , pr) 6= 0 with high probability. Since all |h(ps1

1 ,
. . . , psr

r )| ≤ ‖h‖1 a reasonable number of randomly selected
h(ps1

1 , . . . , p
sr
r ) can be heuristically expected to be bounded

from 0.

4. ZIPPEL NUMERICAL INTERPOLATION
OF RATIONAL FUNCTIONS (ZNIPR)

4.1 Probabilistic analysis of exact algorithm
Consider the rational function f/g ∈ F (x1, . . . , xn), where

the numerator and denominator are represented as

f =

tfX

j=1

ψjx
dj , g =

tgX

k=1

χkx
ek , ψj , χk ∈ F \ {0}, (2)

where F is an arbitrary field and the terms are denoted by

xdj = x
dj,1

1 · · ·xdj,n
n and xek = x

ek,1

1 · · ·xek,n
n . We analyze

our variant of Zippel’s sparse interpolation technique to re-
cover the numerator and denominator. Zippel’s technique
[22, Section 4] determines the support of fi = f(x1, . . . , xi,
ai+1, . . . , an) and gi = g(x1, . . . , xi, ai+1, . . . , an) incremen-
tally from the support of fi−1 and gi−1, where a2, . . . , an ∈
F is a random anchor point. We will use Zippel’s probabilis-

tic assumption that each term x
dj,1

1 · · ·xdj,i−1

i−1 , 1 ≤ j ≤ tf
and each term x

ek,1

1 · · ·xek,i−1

i−1 , 1 ≤ k ≤ tg has a non-zero
coefficient in fi−1 and gi−1. The sets of possible terms in fi

can be restricted to

Di = {xdj,1

1 · · ·xdj,i−1

i−1 · xδ
i | 1 ≤ j ≤ tf ,

0 ≤ δ ≤ min(deg(f)− dj,1 − · · · − dj,i−1, degxi
(f))}

and in gi the term set can be restricted to

Ei = {xek,1

1 · · ·xek,i−1

i−1 · xη
i | 1 ≤ k ≤ tg,

0 ≤ η ≤ min(deg(g)− ek,1 − · · · − ek,i−1, degxi
(g))}.

Here we make the assumption that fi−1 and gi−1 are cor-
rectly determined and, as said earlier, contain the full set of
possible terms, that with high probability as we will induc-
tively argue. We also assume that we know deg(f), degxi

(f),
deg(g) and degxi

(g). Let y and z be the coefficient vectors
of fi and gi for the terms in Di and Ei. For any l = 0, 1, 2 . . .
and any point p1, . . . , pi ∈ F the value of the rational func-
tion

γi,l = fi(p
l
1, . . . , p

l
i)/gi(p

l
1, . . . , p

l
i) ∈ F \ {0,∞}

constitutes a linear equation for the coefficient vector,
X

j,δ

yj,δ(p
dj,1

1 · · · pdj,i−1

i−1 pδ
i )

l

− γi,l

X

k,η

zk,η(p
ek,1

1 · · · pek,i−1

i−1 pη
i )l = 0.

9
>>=
>>;

(3)
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With l = 0, . . . , L−1 the equations (3) form a linear system

[Vi,L(p1, . . . , pi),−Γi,LWi,L(p1, . . . , pi)]

»
yT

zT

–
= 0, (4)

where Γi,L is a diagonal non-singular matrix of rational func-
tion values and Vi,L and Wi,L are Vandermonde matrices.

Provided fi−1 and gi−1 were correctly computed in the
previous iterations, the coefficient vector [y z] of fi and gi

solves (4). Suppose now the fi and gi are relatively prime
in F [x1, . . . , xi]. For random anchor points a2, . . . , an, this
will be true with high probability. In fact, fi and gi are then
random projections of the primitive parts of f and g after
removing their contents in F [xi+1, . . . , xn]. We argue now
that for random p1, . . . , pi and for L ≥ |Di| · |Ei| the lin-
ear system (4) has with high probability no second linearly
independent solution.

We shall first assume that the random choices for p1, . . . ,
pi ∈ S ⊂ F are such that no two terms in Di and no two
terms in Ei evaluate at xµ ← pµ, 1 ≤ µ ≤ i, to the same
element in F . Now let f̄ and ḡ be the polynomials for a
second solution. Because Vi,L and Wi,L are Vandermonde
matrices, we must have for L ≥ max(|Di|, |Ei|) that f̄ 6= 0
and ḡ 6= 0. Furthermore,

∀l, 0 ≤ l ≤ L− 1:
f̄

ḡ
(pl

1, . . . , p
l
i) =

fi

gi

(pl
1, . . . , p

l
i).

So

∀l, 0 ≤ l ≤ L− 1: (f̄gi − fiḡ)(p
l
1, . . . , p

l
i) = 0. (5)

The terms of the polynomial f̄gi − fiḡ are in

DiEi = {σ · τ | σ ∈ Di, τ ∈ Ei} with |DiEi| ≤ |Di| · |Ei|.

Note that for i = 1 we have |D1E1| ≤ degx1
(f)+degx1

(g)+
1. Finally, we assume that the random choices for p1, . . . , pi ∈
S are such that no two terms in DiEi evaluate to the same
value (which subsumes our earlier assumption). For L ≥
|DiEi| we then must have

f̄gi − fiḡ = 0,

because the coefficent vector of fgi − fiḡ is by (5) a kernel
vector in a square non-singular Vandermonde matrix. Thus
f̄/ḡ = fi/gi and because of the degree conditions imposed
on Di and Ei, (f̄ , ḡ) cannot be a polynomial multiple of
(fi, gi).

The linear system (4) may yield fi and gi for smaller L,
and one may incrementally add equations until null space
dimension 1 occurs. The above proof gives an upper bound
on L, which can be used to diagnose bad random choices.

4.2 STLN-based numeric variant
Consider the rational function f/g ∈ Q(i )(x1, . . . , xn)

with gcd(f, g) = 1 and f, g are represented as (2), where
F = Q(i ) ⊂ C. In this subsection, Zippel’s method [44] is
implemented to numerically interpolate f and g from the
approximate black box of f/g. If the actual supports of
fi−1 and gi−1 are Di−1 and Ei−1, respectively, the candi-
date support of fi and gi can be obtained from Di−1, Ei−1

and deg(f), deg(g). For the degree bounds of f and g are
d̄ and ē respectively, we explain how to interpolate f and g
variable by variable.

In order to interpolate fi and gi from d̄, ē and Di−1, Ei−1,
we solve the following two problems:

P1 Construct the candidate support of fi and gi from the
degree bounds d̄, ē and Di−1, Ei−1,

P2 Compute the coefficients corresponding to the candi-
date support from P1 and get the actual support of fi

and gi.

Let k = min(d̄−degxi
(f), ē−degxi

(g)), and let d̄i = d̄−k,
ēi = ē− k, then at least one of the equations below is true:

d̄i = degxi
(f) or ēi = degxi

(g).

The possible terms in fi and gi can be constructed from k.
Without loss of generality, we assume that d̄i = degxi

(f).
In this case, the possible terms in fi are

D̄i = {xdj,1

1 · · ·xdj,i−1

i−1 · xδ
i | 1 ≤ j ≤ tf ,

0 ≤ δ ≤ min(d̄− dj,1 − · · · − dj,i−1, d̄i)} (6)

and the possible terms in gi are

Ēi = {xer,1

1 · · ·xer,i−1

i−1 · xη
i | 1 ≤ r ≤ tg,

0 ≤ η ≤ min(ē− er,1 − · · · − er,i−1, ēi)}. (7)

We show that the interpolants f̄i and ḡi computed with
D̄i and Ēi must be the form:

f̄i = q fi, ḡi = q gi, where q ∈ C \ {0}. (8)

Assume to the contrary that deg(q) > 0. Because Di−1

and Ei−1 are actual supports, we must have degxi
(q) > 0.

Hence, d̄i ≥ degxi
(f̄i) > degxi

(fi), which is in contradiction

with d̄i = degxi
(f). Property (8) justifies the use of D̄i and

Ēi as the the set of possible terms of fi and gi.
Now let us show how to compute k. Denote the univariate

polynomials f [i] and g[i] as:

f [i] = f(a1, . . . , ai−1, xi, ai+1, . . . , an) =
d̄X

j=0

ψjx
j
i ,

g[i] = g(a1, . . . , ai−1, xi, ai+1, . . . , an) =

ēX

k=0

χkx
k
i ,

where ψs, χt ∈ C. Given a random root of unity p ∈ C, we
compute the evaluations

σl =
f [i]

g[i]
(pl) ∈ C \ {0,∞}, l = 0, 1, . . . , d̄+ ē+ 1,

and construct the following linear equations

d̄X

j=0

yjp
l j − σl

ēX

k=0

zkp
l k = 0, l = 0, 1, . . . , d̄+ ē+ 1.

The above equations form a linear system

G

»
yT

zT

–
= [Vi, −ΓiWi]

»
yT

zT

–
= 0, (9)

where Vi,Wi are Vandermonde matrices generated by the

vectors [1, p, . . . , pd̄]T and [1, p, . . . , pē]T, and where

Γi = diag(σ0, σ1, . . . , σd̄+ē+1).

According to [19, Corollary 2.2] (see also Section 4.1), k is
the rank deficiency of G. We can estimate k by checking the
number of small singular values of G or finding the largest
gap among the singular values [26].
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Now we apply Structured Total Least Norm (STLN) [34]
method to solve P2. Suppose the possible terms in fi and
gi are

D̄i = {xd̄j,1

1 · · ·xd̄j,i

i , j = 1, 2, . . . t̄f}
and

Ēi = {xēj,1

1 · · ·xēj,i

i , j = 1, 2, . . . t̄g}
We assume that fi and gi are represented as

fi =

t̄fX

j=1

yjx
d̄j,1

1 · · ·xd̄j,i

i , gi =

t̄gX

k=1

zkx
ēk,1

1 · · ·xēk,i

i , (10)

where yj and zk are unknown. Since some terms in D̄i and
Ēi do not exist, the values of some yj and zk will be very
small or zero. In other words, the terms corresponding to
those yj and zk have zero coefficients in the true fi and gi.

The unknown coefficients yj and zk are computed via an
STLN algorithm. Let b1, . . . , bi ∈ Z>0 be sufficient large
distinct prime numbers and sj be random integers with 1 ≤
sj < bj . We choose pj = exp(2πi /bj)

sj ∈ C for 1 ≤ j ≤ i
(see [14]). In the exact case, discussed in Section 4.1 above,
we know that rank deficiency of the matrix in (4) is 1 for
L ≥ t̄f t̄g evaluations. In fact, t̄f t̄g is an upper bound which
guarantees that the rank deficiency of the matrix (4) is no
more than 1. For the random examples shown in Table 1
and Table 2, our algorithm only needs L = t̄f + t̄g + 10
probes to achieve a unique rational function solution.

The structured matrix input for the STLN algorithm is

G(c) = [Vi,L(p1, . . . , pi),−diag(c)Wi,L(p1, . . . , pi)] (11)

(cf. (4)), where L = t̄f + t̄g + ξ (ξ ≥ 1), Vi,L,Wi,L are
Vandermonde matrices, c = [eγi,0, . . . , eγi,L−1]

T, and

eγi,l ≈
fi(p

l
1, . . . , p

l
i)

gi(pl
1, . . . , p

l
i)

for l = 0, . . . , L− 1,

which are the noisy evaluations for the rational function f/g.
We briefly present the STLN [30, 31] method to compute

a singular matrix

G(ec) = [Vi,L(p1, . . . , pi),−diag(ec)Wi,L(p1, . . . , pi)]

such that ‖ec − c‖ is minimized. We choose the column b

as the (m + t̄f )-th column corresponding to the absolutely
largest component in the last t̄g elements of v with v is the
last singular vector of G(c) [30]. The matrix A(c) consists of
the remaining columns of G(c). Our problem can be trans-
formed as the following polynomial optimization problem
(POP):

minz,u‖z‖
s. t. A(c + z)u = b(c + z).

ff
(12)

Solving (12) by STLN requires two matrices P and Y with
the following properties:

b(z) = P z, A(z)u = Y (u) z. (13)

Let ŵj , 1 ≤ j ≤ L, be formed by the j-th row of the matrix
Wi,L, after deleting the element corresponding to the column
b. Let the vector û be the subvector consisting of the last
t̄g − 1 elements of u. Then P and Y are diagonal matrices,
where

P = diag(1, vi, vi
2, . . . , vL−1

i ) with vi = p
ēm,1

1 · · · pēm,i

i

and

Y = diag(ŵ1 û, ŵ2 û, . . . , ŵL û).

With the matrices P and Y , we now can carry out the STLN
method to solve the problem (12). The details are described
in [30, 31].

The solution u to (12) constitutes the coefficient vector
of fi and gi. One obtains the exact support of fi and gi by
removing terms whose coefficients yj or zk are smaller than
the given tolerance.

Algorithm Zippel Numerical Interpolation of Rational
Functions

Input: ◮
f(x1,...,xn)
g(x1,...,xn)

∈ C(x1, . . . , xn) input as a black box.
◮ (x1, . . . , xn): an ordered list of variables in f/g.
◮ d̄, ē: degree bounds d̄ ≥ deg(f) and ē ≥ deg(g).
◮ ǫ ∈ R>0: the given tolerance.

Output: ◮ f(x1, . . . , xn)/c and g(x1, . . . , xn)/c, where c ∈
C.

1. Initialize the anchor points and the support of f and
g: choose a1, a2, . . . , an as random roots of unity, let
D0 = {1} and E0 = {1}.

2. For i = 1, 2, . . . , n do:
Interpolate the polynomials fi and gi as follows:

(a) We compute d̄i and ēi described as above, which
are the possible degrees of f and g for the variable
xi:

Choose a random root of unity p and get the ap-
proximate evaluation:

eγi,l ≈
f(a1, . . . , ai−1, p

l, ai+1, . . . , an)

g(a1, . . . , ai−1, pl, ai+1, . . . , an)
,

l = 0, 1, 2, . . . , d̄+ ē+ 1.

Construct the matrix G in (9) from eγi,l and p.
Compute the SVD of G and find k. Let d̄i = d̄−k,
and ēi = ē− k.

(b) From d̄, d̄i and Di−1, get the possible terms D̄i of
fi, similarly get the possible terms Ēi of gi from
ē, ēi and Ei−1.

(c) Using STLN method, interpolate fi and gi and get
their actual terms Di, Ei:

Choose random roots of unity p1, . . . , pi. For l =
0, 1, 2, . . ., compute approximate values:

eγi,l ≈ fi(p
l
1, . . . , p

l
i)/gi(p

l
1, . . . , p

l
i),

and construct the matrix G in (11) from eγi,l and
D̄i, Ēi.

Compute the almost nearest singular matrix G̃ by
STLN method and get the solution u in (12).

Obtain fi and gi from u and D̄i, Ēi. Check whether
fi and gi are approximate relative prime (e.g., by
our algorithm [30]).

If this is the case, get Di and Ei of fi and gi by
cutting off the small terms according to ǫ.

Otherwise, go back step 2a to choose new points
p, p1, . . . , pi to interpolate fi and gi.
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3. With the support of fn and gn, interpolate f(x1, . . . , xn)
/c and g(x1, . . . , xn)/c again to improve the accuracy of
the coefficients:

(a) Construct the matrix G from the evaluations γn,l

and the exact terms Dn and En. Compute G̃ and
the solution u in (12) using STLN method.

(b) Obtain f(x1, . . . , xn)/c and g(x1, . . . , xn)/c from u

and Dn, En. 2

4.3 Experiments
Algorithm ZNIPR has been implemented in Maple and

the performance is reported in the following two tables. All
examples in Table 1 and Table 2 are run in Maple 10 under
Windows for Digits:=10. In Table 1 we exhibit the perfor-
mance of Algorithm ZNIPR for recovering univariate ratio-
nal functions from a black box for noisy values. A univariate
rational function can also be interpolated from approximate
oversampled values by solving the Toeplitz-like linear system
[23]. In [29], the STLN method is also applied to solve that
overdetermined system. Comparing the backward errors,
ZNIPR can get better results than the method in [29], since
ZNIPR takes advantage of the sparsity of rational functions
in Step 3. For each example, we construct two relatively
prime polynomials with random integer coefficients in the
range −5 ≤ c ≤ 5. Here RandomNoise denotes the noise
in this range randomly added to the black box of f/g; df

and dg denote the degree of the numerator and denomina-
tor respectively; tf and tg denote the number of terms of
the numerator and denominator respectively; whereas er-
ror (ZNIRP) and error (KY’07) are relative errors, namely

(‖f̃ − f‖22 + ‖g̃ − g‖22)/(‖f‖22 + ‖g‖22), computed by our al-
gorithm and the algorithm in [29].

Ex. RandomNoise df , dg tf , tg
error

(ZNIPR)

error
(KY’07)

1 10−4 ∼ 10−2 3, 3 1, 3 1.46102e–7 6.52633e–7

2 10−5 ∼ 10−3 4, 5 2, 4 6.90952e–7 2.38658e–5

3 10−6 ∼ 10−4 8, 3 4, 3 6.82760e–9 5.02298e–8

4 10−5 ∼ 10−3 10, 10 4, 4 1.05930e–6 1.16975e–4

5 10−6 ∼ 10−4 3, 15 2, 6 1.32383e–8 8.99870e–6

6 10−6 ∼ 10−4 20, 20 5, 5 2.31127e–9 4.92399e–8

7 10−6 ∼ 10−4 30, 7 6, 3 1.07707e–8 2.2445 e–7

8 10−7 ∼ 10−5 5, 40 4, 7 2.68987e–11 2.00818e–8

9 10−7 ∼ 10−5 50, 50 5, 5 1.02862e–11 8.34669e–10

10 10−9 ∼ 10−7 80, 80 6, 6 9.80489e–15 2.31186e–12

11 10−9 ∼ 10−7 100, 100 7, 7 1.59983e–15 5.84762e–7

Table 1: Algorithm performance on benchmarks (univari-
ate case)

In Table 2 we exhibit the performance of Algorithm ZNIPR
on multivariate inputs. For each example, we construct two
relatively prime multivariate polynomials with random inte-
ger coefficients in the range −5 ≤ c ≤ 5. Here RandomNoise
denotes the noise in this range randomly added to the black
box of f/g; df and dg denote the degree of the numerator
and denominator respectively; tf and tg denote the number
of terms of the numerator and denominator respectively; n
denotes the number of the variables of the rational functions;

N denotes the number of the black box probes needed to
interpolate the approximate multivariate rational function;
finally, error (ZNIRP) denotes the relative backward error
computed by our algorithm. Example 13 is one polynomial
test (c.f. [14]), which demonstrates that Algorithm ZNIPR
can also interpolate sparse multivariate polynomials from
noisy values.

Ex. RandomNoise df , dg tf , tg n N
error

(ZNIPR)

1 10−5 ∼ 10−3 1, 1 2, 2 2 138 7.05479e–8

2 10−5 ∼ 10−3 2, 2 3, 3 2 140 4.29232e–7

3 10−5 ∼ 10−3 1, 4 2, 4 3 247 5.91114e–7

4 10−6 ∼ 10−4 5, 2 10, 6 3 308 4.92402e–8

5 10−7 ∼ 10−5 7, 7 25, 25 5 1456 4.01293e–7

6 10−7 ∼ 10−5 10, 3 15, 5 8 4781 3.04625e–8

7 10−7 ∼ 10−5 5, 13 4, 6 10 1498 5.37480e–8

8 10−7 ∼ 10−5 20, 20 7, 7 15 3658 3.36386e–10

9 10−8 ∼ 10−6 30, 30 6, 6 20 6391 1.20737e–12

10 10−8 ∼ 10−6 40, 40 6, 6 5 2810 1.02589e–10

11 10−8 ∼ 10−6 60, 60 7, 7 4 2862 3.51967e–13

12 10−8 ∼ 10−6 80, 80 6, 6 10 6864 7.59227e–13

13 10−8 ∼ 10−6 60, 0 6, 1 20 2862 2.00141e–12

Table 2: Algorithm performance on benchmarks (multi-
variate case)

Note that the numbers N of black box evaluations needed
in Table 2 are somewhat high due to the loose degree estima-
tion in Step 2(a) in Algorithm ZNIPR. We are investigating
how to compute sharper estimates for the degrees of the
terms in the sets D̄i and Ēi.

Acknowledgement: We thank Terence Tao for his comments on the
condition number of random Fourier matrices.
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