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Unlabeled sensing is the problem of solving a linear system of 
equations, where the right-hand-side vector is known only up to 
a permutation. In this work, we study fields of rational functions 
related to symmetric polynomials and their images under a linear 
projection of the variables; as a consequence, we establish that 
the solution to an n-dimensional unlabeled sensing problem with 
generic data can be obtained as the unique solution to a system 
of n + 1 polynomial equations of degrees 1, 2, . . . ,n + 1 in n
unknowns. Besides the new theoretical insights, this development 
offers the potential for scaling up algebraic unlabeled sensing 
algorithms.

© 2025 Elsevier Ltd. All rights are reserved, including those for 
text and data mining, AI training, and similar technologies.

1. Introduction

1.1. Unlabeled sensing

In unlabeled sensing (Unnikrishnan et al., 2015, 2018) one is given a matrix A∗ ∈Rm×n , with m > n
and rank(A) = n, and a vector y∗ ∈ Rm , such that for a permutation π of the coordinates of Rm

the linear system of equations A∗x = π(y∗) has a solution ξ∗; the problem then is to find ξ∗ from 
A∗ and y∗ . The main theorem of unlabeled sensing asserts that this is a well-defined question when 
A is generic and m ≥ 2n. This result has been generalized beyond permutations to arbitrary linear 
transformations (Tsakiris, 2023a; Peng and Tsakiris, 2021), as well as beyond linear spaces to unions 
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of linear spaces (Peng and Tsakiris, 2021) and to spaces of bounded-rank matrices (Yao et al., 2021, 
2024; Tsakiris, 2023b).

Unlabeled sensing is an extremely challenging computational problem, known to be NP-hard 
(Pananjady et al., 2018; Hsu et al., 2017), with brute-force (Elhami et al., 2017) or globally opti
mal approaches being tractable only for small dimensions; see Peng and Tsakiris (2020) for a brief 
account. Nevertheless, unlabeled sensing has a wealth of potential applications from biology (Abid 
and Zou, 2018; Ma et al., 2021) and neuroscience (Nejatbakhsh and Varol, 2021) to digital communi
cations (Song et al., 2018), data mining (Slawski and Ben-David, 2019; Slawski et al., 2020; Zhang et 
al., 2021) and computer vision (Tsakiris and Peng, 2019; Li et al., 2023).

1.2. Motivation

In this paper we are concerned with algebraic aspects of unlabeled sensing (Song et al., 2018; 
Tsakiris et al., 2020; Melánová et al., 2022), for which we now set the context. Let

R[y1, . . . , ym] =: R[y], R[x1, . . . , xn] =: R[x]
be polynomial rings in m and n variables respectively over the real numbers R, and let

pℓ =
∑︂

i∈[m]
yℓ

i ∈R[y]

be the ℓ-th power sum of the yi ’s; here and in the sequel [t] denotes the set {1,2, . . . , t}, whenever 
t is a positive integer. In Song et al. (2018) it was observed that ξ∗ is a root of the polynomial

qℓ = pℓ(A∗x) − pℓ(y∗) ∈R[x]
for any ℓ ∈N; here and in the sequel x is the column vector containing x1, . . . , xn in its entries. With 
A∗ generic, it was proved in Tsakiris et al. (2020) that the square system

Qn : q1(x) = · · · = qn(x) = 0

is zero-dimensional and thus has at most n! solutions. An algorithm was also developed, which in
volved solving the square polynomial system for all of its roots via off-the-shelf solvers, isolating a 
root by a suitable criterion, and then using an expectation-maximization procedure to refine that root. 
An attractive feature of this algorithm is that it has linear complexity in m, while it has been empiri
cally observed to be robust to low levels of noise: for SNR=40 dB, m = 1000 and n = 4, the algorithm 
took 25 milliseconds on a standard PC to produce a solution with a relative error of 0.4% with respect 
to the ground truth. On the other hand, this algorithm is not scalable with respect to n: as n increases, 
one would not even be able to store efficiently the n! solutions of the square polynomial system, let 
alone solve it; indeed, in Tsakiris et al. (2020) it was possible to report results only for n ≤ 6.

1.3. Contributions

Our object of study in this paper is the overdetermined system of n + 1 polynomial equations in n
unknowns

Qn+1 : q1(x) = · · · = qn+1(x) = 0.

Our main result reads:

Theorem 1. Suppose that A∗ ∈Rm×n and ξ∗ ∈Rn×1 are generic, let π be any permutation of the coordinates 
of Rm×1 , and set y∗ = π(A∗ξ∗) ∈ Rm×1 . Then ξ∗ is the unique complex solution of the polynomial system 
Qn+1 .
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Fig. 1. The logical dependencies between the statements in this paper, the latter concerning integral ring extensions (purple), 
degrees of finite field extensions (orange), resultants (green), and the main results (red). (For interpretation of the colors in the 
figure, the reader is referred to the web version of this article.)

Theorem 1 settles an important open question in the theory of unlabeled sensing. Indeed, that 
Qn+1 has a unique solution for generic data was already experimentally observed in Song et al. 
(2018), and a more general unique recovery conjecture was formulated in Melánová et al. (2022) 
(Conjecture 6). But Theorem 1 also has significant implications for unlabeled sensing algorithms: no 
matter which method is used to obtain a root of Qn+1, Theorem 1 guarantees that this root is ξ∗; 
contrast this to the algorithm of Tsakiris et al. (2020) which relied on filtering all n! solutions of 
Qn . Indeed, in Liang et al. (2024), for which the present manuscript partially serves as a rigorous 
theoretical foundation, we have proposed an algorithm for obtaining the unique solution of Qn+1 via 
rank-1 moment matrix completion, and reported encouraging results.

The proof of Theorem 1 relies on a careful analysis of a certain field of rational functions associated 
to the polynomials pℓ after a linear projection of the variables x has been applied, which is interesting 
on its own right (note that without the linear projection, the study of the field generated by the pℓ ’s 
for fixed given values of ℓ and the question of when this coincides with the field of symmetric rational 
functions on x, is an old and well-known topic in the literature, e.g. see Kakeya (1927); Nakamura 
(1927); Foulkes (1956); Dvornicich and Zannier (2009)). Let A = (aij) be an m × n matrix of variables 
so that all aij ’s and x j ’s are jointly algebraically independent over R. Denote by E =R(A, x) the field 
of rational functions in the variables A, x with coefficients in R and

Fn+1 = R(A, p1(Ax), . . . , pn+1(Ax))

the subfield of E consisting of the rational functions in A, p1(Ax), . . . , pn+1(Ax) with coefficients in 
R. We prove:

Theorem 2. The fields of rational functions Fn+1 and E coincide.

1.4. Organization

Theorem 2 is proved by a series of intermediate results, which occupy the core of this paper (§2 -
§4). Once Theorem 2 is established at end of §4 (Theorem 22), Theorem 1 readily follows as shown in 
§5. The logical dependencies between the various statements in this paper are summarized in Fig. 1. 
The paper is concluded by giving some illustrative examples in §6.

1.5. Acknowledgments

We thank Aldo Conca for reading the manuscript and giving us valuable comments, and Matteo 
Varbaro for a pointer in the literature. Hao Liang, Jingyu Lu and Lihong Zhi are supported by the 
National Key R&D Program of China (2023YFA1009401) and the National Natural Science Foundation 

3 



H. Liang, J. Lu, M.C. Tsakiris et al. Journal of Symbolic Computation 135 (2026) 102542 

of China (12071467). Manolis C. Tsakiris is supported by the National Key R&D Program of China 
(2023YFA1009402).

2. The field Fm

Nothing of what we will say in this and the next section depends on the ground field, other than 
the requirement that it has characteristic zero; we thus fix throughout such a field k; we will denote 
by k(A) the field of fractions of the polynomial ring k[A]. We fix polynomial rings over the field k(A)

S := k(A)[z1, . . . , zm], T := k(A)[y1, . . . , ym], R := k(A)[x1, . . . , xn],
and define k(A)-algebra homomorphisms S

φ→ T
ψ→ R , where φ(zi) = pi and ψ(yi) = ∑︁

j∈[n] aij x j for 
every i ∈ [m]. We let 𝔭= In+1(A|y) be the ideal of T generated by all (n+1)-minors of the m× (n+1)

matrix [A|y]; here y is the vector of variables y1, . . . , ym . Each such (n + 1)-minor is a linear form 
of T and thus 𝔭 is a prime ideal of T whose height can be seen to be m − n. Since ψ is surjective, 
𝔭= ker(ψ) and R ∼ = T /𝔭.

Let 𝔮 = S ∩ 𝔭 be the contraction of 𝔭 to S under φ; this is a prime ideal of S whose residue 
field S𝔮/𝔮S𝔮 we denote by κ(𝔮). We have an inclusion of integral domains S/𝔮 ↪→ T /𝔭 ∼ = R = k(A)[x], 
which identifies S/𝔮 with the k(A)-subalgebra k(A)[p1(Ax), · · · , pm(Ax)] of R; we denote the field 
of fractions of this subalgebra by Fm . In turn, this induces the inclusion of fraction fields κ(𝔮) ∼ = 
Fm ⊆ E ∼ = κ(𝔭), where we recall that E is the field of fractions of the polynomial ring k(A)[x] and 
κ(𝔭) = T𝔭/𝔭T𝔭 . The main result of this section is:

Proposition 3. We have an equality of fields Fm = E .

Towards proving Proposition 3, we begin with a basic but important fact.

Lemma 4. T is a free S-module of rank m!.

Proof. By virtue of Newton’s identities, the subalgebra φ(S) = k(A)[p1, . . . , pm] of T coincides with 
the subalgebra k(A)[s1, . . . , sm] generated by the m elementary symmetric functions s1, . . . , sm on the 
variables y; it thus suffices to prove that T is a free module over k(A)[s1, . . . , sm] of rank m!.

Consider the polynomial ring

P = k(A)[y, w] = k(A)[y1, . . . , ym, w1, . . . , wm]
of dimension 2m, and the ideal J of P generated by all wi − si(y) for i ∈ [m], where si(y) is the i-th 
elementary symmetric function on the variables y. Under any monomial order on P with y1 > · · · >
ym > w1 > · · · > wm , Proposition 5 in Section 1 of Chapter 7 of Cox et al. (2013) explicitly describes a 
Gröbner basis of J , consisting of m polynomials g1, . . . , gm ∈ P such that the leading term of gi is yi

i . 
It immediately follows that a k(A)-vector space basis of P/ J is given by all monomials of the form 
yℓ2

2 · · · yℓm
m wb1

1 · · · wbm
m , where the bi ’s range over the non-negative integers while 0 ≤ ℓi < i.

Now consider the k(A)-algebra epimorphism θ : P = k(A)[y, w] → T = k(A)[y] defined by θ(wi) =
si(y) and θ(yi) = yi for every i ∈ [m]. We have J = ker(θ) and so T = P/ J ; since P/ J is generated 
over k(A) by the m! monomials yℓ2

2 · · · yℓm
m as above and all monomials in w , T is a fortiori generated 

over k(A)[s1(y), . . . , sm(y)] ∼ = k(A)[w1, . . . , wm] by the yℓ2
2 · · · yℓm

m ’s. To show that these monomials 
are free generators, suppose that there is an algebraic relation 

∑︁
0≤ℓi<i cℓ2,...,ℓm (y)yℓ2

2 · · · yℓm
m = 0, with 

cℓ2,...,ℓm (y) ∈ k(A)[s1(y), . . . , sm(y)]. Write cℓ2,...,ℓm (y) = fℓ2,...,ℓm (s1(y), . . . , sm(y)), where fℓ2,...,ℓm is 
a polynomial in m variables with coefficients in k(A). Note θ( fℓ2,...,ℓm (w)) = cℓ2,...,ℓm (y), whence ∑︁

0≤ℓi<i fℓ2,...,ℓm (w)yℓ2
2 · · · yℓm

m ∈ ker(θ). Since J = ker(θ) and the gi ’s form a Gröbner basis of J , the 
leading term of 

∑︁
0≤ℓi<i fℓ2,...,ℓm (w)yℓ2

2 · · · yℓm
m must be divisible by yi

i for some i ∈ [m]; however, it 
is seen from the form of 

∑︁
0≤ℓi<i fℓ2,...,ℓm (w)yℓ2

2 · · · yℓm
m that this is impossible, unless this is the zero 
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polynomial. Since all monomials in y freely generate k(A)[y, w] as a module over k(A)[w], we in 
turn have that all fℓ2,...,ℓm (w)’s and thus all cℓ2,...,ℓm (y)’s are zero. □
Remark 5. The fact that T is a free S-module is a special case of the well-known Chevalley-Shephard
Todd theorem.

The Lemma 4 implies that T is integral to φ(S); this is a manifestation of a general fact:

Lemma 6 (Exercises 12 & 13, Chapter 5, Atiyah and MacDonald (1969)). Let R be a commutative ring and Π a 
finite group acting on R; denote by RΠ the subring of R consisting of the invariant elements of R with respect 
to the action of Π. Then the ring extension RΠ ⊆ R is integral, and for any prime ideal 𝔓 of R, the prime ideals 
of R that lie over 𝔓∩ RΠ are the orbit {π(𝔓) : π ∈ Π} of 𝔓 under Π.

We have:

Lemma 7. The prime ideals of T that lie over 𝔮= S ∩𝔭 are precisely of the form π(𝔭), where π is a permutation 
of the variables y1, . . . , ym; these are m! distinct prime ideals.

Proof. That a prime ideal of T lies over 𝔮 if and only if it is of the form π(𝔭), follows from Lemma 6. 
We prove that all m! such prime ideals π(𝔭) are distinct. For this, it suffices to prove that π(𝔭) ≠ 𝔭 as 
soon as π is not the identity permutation. Let σ = π−1 and 𝒥 = {m − n + 1, . . . ,m} = [m] \ [m − n].

For i1, . . . , in, in+1 distinct elements of m, we denote by Ai1,...,in the determinant of the n × n
matrix, whose s-th row is the is-th row of A, and by Ai1,...,îs,...,in+1

the determinant as above of the 
sub-matrix associated to rows i1, . . . , is−1, is+1, . . . , in+1. For any monomial order on T with y1 >

y2 > · · · > ym , the m − n linear forms of T given by

ℓi := yi +
∑︂
s∈𝒥

(−1)s−m+n Ai,m−n+1,...,ŝ,...,m

Am−n+1,...,m
ys, i ∈ [m − n]

are a reduced Gröbner basis of 𝔭. Similarly for i ∈ [m − n], the linear forms

μi := yi +
∑︂
s∈𝒥

(−1)s−m+n
A

σ (i),σ (m−n+1),...,ˆ︁σ (s),...,σ (m)

Aσ (m−n+1),...,σ (m)

ys

are a reduced Gröbner basis of π(𝔭).
Since a reduced Gröbner basis is unique, if 𝔭 = π(𝔭), necessarily ℓi = μi for every i ∈ [m − n]. 

In particular, for any i ∈ [m − n] and any s ∈ 𝒥 , the coefficient of ys in ℓi , must be equal to the 
coefficient of ys in μi . Notice that k(A) is the fraction field of the polynomial ring k[A] which is 
a unique factorization domain (UFD), and the numerators and denominators of ys ’s coefficients in 
ℓi and μi are irreducible polynomials in k[A] with coefficients ±1, we deduce that Am−n+1,...,m =
εAσ(m−n+1),...,σ (m) and Ai,m−n+1,...,ŝ,...,m = εA

σ(i),σ (m−n+1),...,ˆ︁σ(s),...,σ (m)
for any i ∈ [m − n], any s ∈

𝒥 , and some ε = ±1. These equalities imply that σ(𝒥 ) = 𝒥 and {i} ⊔ {m − n + 1, ..., ŝ, . . . ,m} =
{σ(i)} ⊔ {σ(m − n + 1), ...,ˆ︁σ(s), . . . , σ (m)} for any i ∈ [m − n] and s ∈𝒥 . From σ(𝒥 ) =𝒥 we see that 
{m −n + 1, ..., ŝ, . . . ,m} =𝒥 \ {s} ⊂𝒥 and {σ(m −n + 1), ...,ˆ︁σ(s), . . . , σ (m)} =𝒥 \ {σ(s)} ⊂𝒥 for any 
s ∈𝒥 . Hence, from i / ∈𝒥 we deduce that σ(i) / ∈𝒥 and σ(i) = i for any i ∈ [m −n]. Furthermore, from 
σ(i) = i / ∈ 𝒥 we also see that 𝒥 \ {s} = 𝒥 \ {σ(s)}, which implies σ(s) = s for any s ∈ 𝒥 . Therefore, 
σ = π−1 is the identity permutation and ε = 1. □

The Proposition 3 is a special case of the following result for 𝔓 = 𝔭:

Lemma 8. Let 𝔓 be a prime ideal of T lying over 𝔮. Then κ(𝔓) = κ(𝔮).

5 
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Proof. As T is a free S-module of rank m! by Lemma 4, T ⊗S κ(𝔮) is a κ(𝔮)-vector space of dimension 
m!. Since T ⊗S κ(𝔮) is a finitely generated κ(q)-algebra, which is also a finite-dimensional κ(𝔮)-vector 
space, it must be an Artinian ring. The prime ideals of T ⊗S κ(𝔮) correspond to the prime ideals 
of T lying over 𝔮. By Lemma 7, these are the m! distinct prime ideals π(𝔭), with π ranging over 
all permutations of the variables y1, . . . , ym . Quite generally, an Artinian ring is isomorphic to the 
product of its localizations at its prime ideals, hence

T ⊗S κ(𝔮) =
∏︂
π

Tπ(𝔭) ⊗S κ(𝔮).

Now, each Tπ(𝔭) ⊗S κ(𝔮) = Tπ(𝔭)/𝔮Tπ(𝔭) is an Artinian local ring and a finite κ(𝔮)-vector space. Since 
T ⊗S κ(𝔮) is an m!-dimensional κ(𝔮)-vector space and there are m! factors in the product, it must 
be that each Tπ(𝔭) ⊗S κ(𝔮) is a 1-dimensional κ(𝔮)-vector space, for every π . But κ(𝔮) is contained 
in every Tπ(𝔭) ⊗S κ(𝔮), so that Tπ(𝔭) ⊗S κ(𝔮) = κ(𝔮) for every π . Since Tπ(𝔭)/𝔮Tπ(𝔭) = Tπ(𝔭) ⊗S

κ(𝔮) = κ(𝔮) is a field, it must be that 𝔮Tπ(𝔭) = π(𝔭)Tπ(𝔭) and so Tπ(𝔭)/𝔮Tπ(𝔭) = Tπ(𝔭)/π(𝔭)Tπ(𝔭) =
κ(π(𝔭)). □
3. The field extension Fn ⊆ Fm

We denote by Fn the field of rational functions k(A)(p1(Ax), . . . , pn(Ax)); this is a subfield of 
E = k(A, x), this latter coinciding with Fm by Proposition 3. The main result of this section is:

Proposition 9. The field extension Fn ⊂ Fm is algebraic of degree [Fm : Fn] = n!.

Towards proving Proposition 9, we prove a fundamental fact:

Lemma 10. The polynomials p1(Ax), . . . , pn(Ax) are a regular sequence of R = k(A)[x].

Proof. For a homogeneous ideal J in a polynomial ring P over a field, it follows from Serre’s theorem 
on Hilbert functions (Bruns and Herzog, 1998, Theorem 4.4.3) that the Hilbert polynomial of P/ J
agrees with the Hilbert function of P/ J at degrees greater than or equal to the Castelnuovo-Mumford 
(CM) regularity of J . It can be seen via the Koszul complex that the CM-regularity of an ideal J
generated by a regular sequence of n elements of degrees 1,2,3, . . . ,n is reg( J ) = n(n − 1)/2 + 1.

Now let J be the ideal of R generated by p1(Ax), . . . , pn(Ax). Then the sequence p1(Ax), . . . , 
pn(Ax) is regular if and only if R/ J has zero Krull dimension, if and only if the Hilbert polynomial of 
R/ J is the zero polynomial, if and only if [ J ]a = [𝔪]a; here a = reg( J ) = n(n − 1)/2 + 1, [ J ]a denotes 
the degree-a homogeneous part of J , and 𝔪 is the ideal of R generated by x1, . . . , xn .

Let t be the dimension of [𝔪]a as a k(A)-vector space. Take generators for [ J ]a by multiplying ev
ery pi(Ax) by all monomials of degree a − i. Make a matrix H whose columns contain the coefficients 
of the generators of [ J ]a on the basis of [𝔪]a of all monomials of degree a. Then the pi(Ax)’s are a 
regular sequence if and only if not all t × t minors of H are zero. But if they were zero, they would 
also be zero upon substitution of A by A∗ , for any A∗ ∈ k̄m×n; here k̄ denotes the algebraic closure 
of k. However, this would contradict the fact that the pi(A∗x)’s are a regular sequence for a generic 
choice of A∗ ∈ k̄m×n , as per Lemma 4 in Tsakiris et al. (2020); here we have used the fact that when 
the pi(A∗x)’s are a regular sequence of k̄[x], the CM-regularity of the ideal they generate is still a, 
while the k̄-vector space dimension of the degree-a graded component of k̄[x] is still equal to t , so 
that the pi(A∗x)’s are a regular sequence if and only if not all t × t minors of H |A∗ are zero, where 
H |A∗ is obtained from H by replacing A by A∗ . □

Our next ingredient is fundamental as well and interesting in its own right.

Lemma 11. R = k(A)[x] is a free graded k(A)[p1(Ax), . . . , pn(Ax)]-module of rank n!.

6 
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Proof. We first prove that R is flat over Rn = k(A)[p1(Ax), . . . , pn(Ax)]. Quite generally, the inclusion 
of Rn into R is a homomorphism of positively graded rings, which takes the maximal homoge
neous ideal of Rn into the maximal homogeneous ideal 𝔪 of R . By part (3) of the Remark at 
page 178 in Matsumura (1989), R is flat over Rn if and only if R𝔪 is flat over Rn . By Lemma 10, 
p1(Ax), . . . , pn(Ax) is a regular sequence of R; as such it remains a regular sequence in R𝔪 . Conse
quently, Theorem 1 in Hartshorne (1966) gives that R𝔪 is flat over Rn; we conclude that R is flat 
over Rn .

Next, we argue that R is finitely generated graded Rn-module. Let J be the ideal of R generated by 
pi(Ax), i ∈ [n], which is a regular sequence by Lemma 10. It follows that R/ J is Artinian and of k(A)
vector space dimension n!; for the latter statement, we used the known form for the Hilbert series of 
the quotient of R by a regular sequence of homogeneous elements. As J is a homogeneous ideal, R/ J
is a graded k(A)-vector space, thus admitting a homogeneous k(A)-vector space basis {b + J : b ∈ ℬ}, 
where ℬ is a set of n! homogeneous polynomials in R . If f ∈ R is a homogeneous polynomial of 
degree d, then we can write f = ∑︁

b∈ℬ cb b + f1, where cb ∈ k(A) and f1 is a homogeneous polyno
mial of J of degree d. Writing f1 = ∑︁

i∈[n] gi pi(Ax), where gi is homogeneous of degree d − i, we 
have f = ∑︁

b∈ℬ cb b + ∑︁
i∈[n] gi pi(Ax). Writing each gi as a k(A)-linear combination of the b’s plus a 

homogeneous polynomial of degree d − i in J , we inductively see that R is finitely generated over Rn

by ℬ.
We now argue that R is free of finite rank as a graded Rn-module. As R is a finite (i.e., finitely 

generated) Rn-module and Rn is a polynomial ring, R is finitely presented over Rn; since R is flat 
over Rn , it follows by the Corollary at page 53 in Matsumura (1989) that R is a projective Rn-module. 
Hence, with 𝔫 the maximal homogeneous ideal of Rn , we have that R𝔫 is a projective (Rn)𝔫-module. 
Now, Theorem 1.5.15(e) in Bruns and Herzog (1998) asserts that the projective dimension of R as 
a graded module over Rn is equal to the projective dimension of R𝔫 over the local ring (Rn)𝔫; it 
follows that R is a finite projective graded Rn-module. Finally, Theorem 1.5.15(d) in Bruns and Herzog 
(1998) asserts that R is a finite projective graded Rn-module if and only if it is a finite free graded 
Rn-module.

It remains to argue that the rank of R as a free graded module over Rn is n!. We have seen that R
is free of finite rank, say ℓ, as a graded Rn-module via the inclusion of graded rings Rn → R . It follows 
that R ⊗Rn Rn/𝔫 is an Rn/𝔫-vector space of dimension ℓ. But R ⊗Rn Rn/𝔫= R/𝔫R = R/ J and we have 
already seen that R/ J has vector space dimension n! over the field k(A) = Rn/𝔫. Hence ℓ = n! (it can 
further be argued that ℬ is in fact a set of free homogeneous generators of R over Rn). □

Remark 12. The proof of Lemma 11 directly generalizes to any regular sequence h1, . . . ,hn of R
consisting of homogeneous elements of degrees d1, . . . ,dn; this yields that R is a free k(A)[h1, . . . ,hn]
module of rank d1 · · ·dn .

We can now prove Proposition 9.

Proof. (Proposition 9) For convenience we set Rn = k(A)[p1(Ax), . . . , pn(Ax)]. We have an inclusion 
of integral domains Rn ⊂ R , whose fields of fractions we denote respectively by K (Rn) and K (R). 
Now K (Rn) is just a localization of Rn and so it is flat over Rn . We thus have an inclusion of rings 
K (Rn) ⊂ R ⊗Rn K (Rn) ⊂ K (R). By Lemma 11, R is a finitely generated Rn-module and so the ring 
extension Rn ⊂ R is integral. It follows that the ring extension K (Rn) ⊂ R ⊗Rn K (Rn) is also integral; 
the Krull dimensions of both rings must be equal, whence R ⊗Rn K (Rn) is Artinian because K (Rn) is 
a field. Quite generally, an Artinian ring contained in an integral domain must be a field; this implies 
that R ⊗Rn K (Rn) is a field. This field contains R and, since it is contained in K (R), it must be that 
R ⊗Rn K (Rn) = K (R). As R is a free Rn-module of rank n! by Lemma 11, it follows that K (R) is a 
K (Rn)-vector space of dimension n!. Finally, recall that the fields K (Rn) and K (R) are just the fields 
Fn and Fm , respectively. □
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4. The field extension Fn+1 ⊆ Fm

In this section, we will prove that the field

Fn+1 = k(A)(p1(Ax), . . . , pn+1(Ax))

coincides with the field Fm = E ; Theorem 2 will follow as a special case for k =R.
We have fields Fn ⊆ Fn+1 ⊆ Fm . By Proposition 9 the degree of the field extension Fn ⊂ Fm is 

n!; hence to prove Fn+1 = Fm it suffices to prove that the degree of the field extension Fn ⊆ Fn+1
is n!. Note that Fn+1 is just the field Fn(pn+1(Ax)) generated over Fn by pn+1(Ax); thus it suffices 
to prove that the minimal polynomial μn+1 ∈ Fn[t] of pn+1(Ax) over Fn has degree n!. We will 
achieve this by using multidimensional resultants (Macaulay, 1916; van der Waerden, 1950; Gelfand 
et al., 1994; Lang, 2012), which for the convenience of the reader we now briefly review following 
(Macaulay, 1916).

For a positive integer a and a field K of characteristic zero, let l1, . . . , la be positive integers and 
denote by ℳ(t, li) the set of all monomials of degree li in the variables t = t1, . . . , ta . For every i ∈ [a]
and every monomial w ∈ℳ(t, li) we consider a variable c(i, w) and define f i = ∑︁

w∈ℳ(t,li)
c(i, w) w; 

this can be viewed as a homogeneous polynomial of degree li in the variables t with coefficients in 
the polynomial ring C = K [c(i, w) : w ∈ ℳ(t, li), i ∈ [a]]. Set l = l1 + · · · + la − a + 1 and let H be 
the matrix with entries in the ring C defined as follows: with w ∈ ℳ(t, l − li) and i ∈ [m] fixed, we 
consider the column-vector that gives the coefficients in C of w fi with respect to ℳ(t, l); then H has 
as its columns all such vectors as i and w range in [a] and ℳ(t, l − li) respectively. Macaulay defined 
the resultant ℛ( f1, . . . , fa) of f1, . . . , fa as the greatest common divisor of all maximal minors of H ; 
he proved that it has the following properties that we shall need:

Proposition 13 ((Macaulay, 1916), §6-§10, Chapter I). Set L = l1 · · · la and Li = L/li . Then

1. For i ∈ [a] the degree of c(i, tli
i ) in ℛ( f1, . . . , fa) is Li and the coefficient of c(a, tla

a )La is ℛ( f̄1, . . . , f̄a−1)
la , 

where f̄ i = f i |ta=0 .
2. For every i ∈ [a], we have that ℛ( f1, . . . , fa) is homogeneous in the variables (c(i, w))w∈ℳ(t,li) of degree 

Li .
3. Let f ∗

1 , . . . , f ∗
a ∈ K [t] = K [t1, . . . , ta] be any specialization of f1, . . . , fa, obtained by replacing each 

c(i, w) by an element of K , and ℛ( f ∗
1 , . . . , f ∗

a ) the corresponding specialization of ℛ( f1, . . . , fa). Then 
ℛ( f ∗

1 , . . . , f ∗
a ) = 0 if and only if f ∗

1 , . . . , f ∗
a have a common root in ¯K besides zero; here ¯K is the 

algebraic closure of K .

Remark 14. It is a basic observation that a set of n homogeneous polynomials in a polynomial ring 
of dimension n over K is a regular sequence if and only if the ideal they generate is primary to 
the maximal homogeneous ideal, which is equivalent to the polynomials admitting no common root 
in ¯K n other than zero. Indeed, the matrix H that appeared in the proof of Lemma 10 is precisely 
Macaulay’s matrix associated to the resultant of p1(Ax), . . . , pn(Ax).

We now return to our objective of showing that the minimal polynomial μn+1 of pn+1(Ax) over 
Fn has degree n!. We apply the formulation above with a = n + 1, letting t be the column vector 
with entries t1, . . . , tn , and introducing new variables r1, . . . , rn+1. For i ∈ [n + 1] we define f ∗

i =
pi(At) − riti

n+1; this is a homogeneous polynomial of degree i in the variables t1, . . . , tn+1 with coef
ficients in the polynomial ring k(A)[r] := k(A)[r1, . . . , rn+1]. We denote by ℛ( f ∗

1 , . . . , f ∗
n+1) ∈ k(A)[r]

the specialization of the resultant ℛ( f1, . . . , fm) of Proposition 13 with the variable c(i, w) replaced 
by the corresponding coefficient of w in f ∗

i . Similarly, applying the formulation above with a = n, we 
let ℛ(p1(At), . . . , pn(At)) be the specialization of ℛ( f1, . . . , fn) with the variable c(i, w) replaced by 
the corresponding coefficient of w in pi(At). It will be convenient to explicitly indicate the depen
dence of ℛ( f ∗

1 , . . . , f ∗
n+1) ∈ k(A)[r] on the variables A and r = r1, . . . , rn+1; for this we shall write 

ρ(A, r1, . . . , rn+1) := (−1)n!ℛ( f ∗
1 , . . . , f ∗

n+1). We next proceed with a series of key observations.
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Lemma 15. ρ(A, r1, . . . , rn+1) ∈ k(A)[r] is a non-zero polynomial of degree n! in the variable rn+1. The coef
ficient of rn!

n+1 is ℛ(p1(At), . . . , pn(At))n+1 ≠ 0.

Proof. By Lemma 10 p1(Ax), . . . , pn(Ax) is a regular sequence of R = k(A)[x]. Part (3) of Proposi
tion 13 and Remark 14 give that ℛ(p1(At), . . . , pn(At)) is a non-zero element of k(A). The statement 
now follows from part (1) of Proposition 13, because the resultant commutes with specialization. □
Lemma 16. We have ρ (A, p1(Ax), . . . , pn+1(Ax)) = 0.

Proof. After substituting ri with pi(Ax) in the polynomials f ∗
i for every i ∈ [n + 1], it is evident that 

the point (x1, . . . , xn,1) ∈ E n+1 is a common root; thus the resultant of these polynomials vanishes 
by part (4) of Proposition 13. □
Lemma 17. We have that ρ (A, p1(Ax), . . . , pn(Ax), rn+1) ≠ 0.

Proof. This follows immediately from Lemma 15. □
Remark 18. As by Lemma 10 the polynomials p1(Ax), . . . , pn(Ax) are a regular sequence of k(A)[x], 
they are algebraically independent over k(A). Hence the polynomials p1(Ax), . . . , pn(Ax), rn+1 are 
algebraically independent over k(A). Therefore, ρ (A, p1(Ax), . . . , pn(Ax), rn+1) is an irreducible poly
nomial in the ring k(A)[p1(Ax), . . . , pn(Ax), rn+1] if and only if ρ (A, r1, . . . , rn+1) is irreducible in 
k(A)[r1, . . . , rn+1].

We will prove that ρ (A, r1, . . . , rn+1) is irreducible in k[A, r1, . . . , rn+1]. We do this by first proving 
the special case m = n + 1, where all the difficulty concentrates.

Lemma 19. Suppose m = n + 1, then ρ (A, r1, . . . , rn+1) is irreducible as a polynomial in k[A, r1, . . . , rn+1].

Proof. When m = n + 1 we have Fm = Fn+1 and the degree of the field extension Fn ⊆
Fn+1 is n! by Proposition 9. Since Fn+1 = Fn(pn+1(Ax)), we have that the minimal polynomial 
μn+1 of pn+1(Ax) over Fn is of degree n!. On the other hand, by Lemma 17 the polynomial 
ρ (A, p1(Ax), . . . , pn(Ax), rn+1) ∈ Fn[rn+1] is a polynomial of degree n!, which by Lemma 16 has 
pn+1(Ax) as its root. Consequently, ρ (A, p1(Ax), . . . , pn(Ax), rn+1) ∈ Fn[rn+1] is the minimal polyno
mial μn+1 of pn+1(Ax) over Fn up to multiplication by an element of Fn . In view of Remark 18, we 
have that ρ (A, r1, . . . , rn+1) ∈ k(A)(r1, . . . , rn)[rn+1] is irreducible, where k(A)(r1, . . . , rn) denotes the 
field of fractions of the polynomial ring k(A)[r1, . . . , rn]. By Gauss’s lemma on irreducible polynomials, 
it suffices to prove that ρ (A, r1, . . . , rn+1) is primitive in k[A, r1, . . . , rn][rn+1].

Any common factor of the coefficients of ρ (A, r1, . . . , rn+1) must divide the coefficient of rn!
n+1, 

which by Lemma 15 is ℛ(p1(At), . . . , pn(At))n+1 ∈ k[A]. Hence, it suffices to show that no non
constant polynomial p(A) ∈ k[A] divides ρ (A, r1, . . . , rn+1). Suppose otherwise, that is p(A) ∈ k[A]
is a non-constant factor of ℛ(A, r1, . . . , rn+1) and let A∗ ∈ k̄m×n be a root of p(A). It follows that 
for any choice (r∗

1, . . . , r∗
n+1) ∈ k̄n+1 we have ρ(A∗, r∗

1, . . . , r∗
n+1) = 0, so that by part (3) of Proposi

tion 13 the polynomials f ∗
i (x) = pi(A∗x) − r∗

i xi
n+1 ∈ k̄[x1, . . . , xn+1], i ∈ [n + 1] have a common root 

0 ≠ (ξ1, . . . , ξn+1) ∈ k̄n+1. Let us distinguish between the case rank(A∗) = n and rank(A∗) < n.
Suppose that rank(A∗) = n. If ξn+1 = 0, letting ξ be the column vector (ξ1, . . . , ξn) ∈ k̄n , we have 

that A∗ξ ∈ k̄m is a common root of the polynomials p1(z), .., pm(z) ∈ k̄[z] = k̄[z1, . . . , zm] (recall m =
n + 1). Since the pi ’s are a regular sequence in k̄[z], we must have that A∗ξ = 0. By hypothesis 
rank(A∗) = n so that ξ = 0; however, this contradicts our assumption that not all ξ1, . . . , ξn+1 are 
zero. Hence, it must be that ξn+1 ≠ 0, and since the f ∗

i ’s are homogeneous, we may assume ξn+1 = 1; 
in turn, this gives r∗

i = pi(A∗ξ) for every i ∈ [n + 1]. As the r∗
i ’s were chosen arbitrarily, the image 

of the polynomial map k̄n → k̄n+1 that takes β∗ ∈ k̄n to (p1(A∗β∗), . . . , pn+1(A∗β∗)) ∈ k̄n+1 must be 
the entire k̄n+1. This implies that the a�ine coordinate ring of the closure of this map, which is 
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k̄[p1(A∗x), . . . , pn+1(A∗x)], must have Krull dimension n + 1. But this is impossible because this is a 
subring of k̄[x] = k̄[x1, . . . , xn].

We have concluded that rank(A∗) < n for any root A∗ of p(A). In other words, the hypersurface of 
k̄m×n defined by the polynomial p(A) must lie in the determinantal variety defined by the ideal In(A)

of maximal minors of A. But this is impossible, because the dimension of the former is (n + 1)n − 1 =
n2 + n − 1, while the dimension of the latter is well-known to be (n − 1)(n + 2) = n2 + n − 2 (Bruns 
and Vetter, 1988; Bruns et al., 2022). □

We now treat the general case.

Lemma 20. ρ (A, r1, . . . , rn+1) is irreducible in k[A, r1, . . . , rn+1].

Proof. The case m = n + 1 has been proved in Lemma 19, hence we assume m > n + 1. Let us 
denote by Ā the matrix obtained from A by replacing all aij ’s for which i > n + 1 with zero; 
this induces a k-algebra homomorphism ϑ : k[A, r] → k[ Ā, r] which takes A to Ā. As the resul
tant commutes with specialization, ϑ (ρ (A, r1, . . . , rn+1)) = ρ

(︁
Ā, r1, . . . , rn+1

)︁
. In view of Lemma 15, 

the degrees of rn+1 in ρ (A, r1, . . . , rn+1) and ρ
(︁

Ā, r1, . . . , rn+1
)︁

are the same integer n!, and the 
coefficients of rn!

n+1 are respectively ℛ(p1(At), . . . , pn(At))n+1 and ϑ
(︁
ℛ(p1(At), . . . , pn(At))n+1

)︁ =
ℛ(p1( Āt), . . . , pn( Āt))n+1, the latter being non-zero as it corresponds to the statement of Lemma 15
for the special case m = n + 1. Now suppose ρ (A, r1, . . . , rn+1) = gh with g,h non-constant 
polynomials in k[A, r]; then ρ

(︁
Ā, r1, . . . , rn+1

)︁ = ϑ(g)ϑ(h) with ϑ(g), ϑ(h) ∈ k[ Ā, r1, . . . , rn+1]. By 
Lemma 19, the polynomial ρ

(︁
Ā, r1, . . . , rn+1

)︁
is irreducible in k[ Ā, r1, . . . , rn+1], so we may assume 

that ϑ(g) = 1. It follows that the degree of rn+1 in ϑ(h) is n!, whence the degree of rn+1 in h
is n! as well. In turn, this gives that g divides the coefficient of rn!

n+1 in ρ (A, r1, . . . , rn+1), which 
by Lemma 15 is ℛ(p1(At), . . . , pn(At))n+1 ∈ k[A]. By part (2) of Proposition 13 and the construc
tion of ℛ(p1(At), . . . , pn(At)), we have ℛ(p1(At), . . . , pn(At)) is a multi-homogeneous polynomial 
in the coefficients of p1(At), . . . , pn(At) of multi-degree (n!/1, . . . ,n!/n). Now, the coefficients of 
pi(At) are homogeneous polynomials themselves in the variables A of degree i. We conclude that 
ℛ(p1(At), . . . , pn(At)) is a homogeneous polynomial in the variables A of total degree nn!. Since g
divides ℛ(p1(At), . . . , pn(At))n+1 it must also be homogeneous, and the fact that ϑ(g) = 1 shows 
that g is indeed a constant polynomial. □

We have arrived at the following crucial fact:

Lemma 21. The minimal polynomial μn+1 of pn+1(Ax) over Fn is up to multiplication by an element of Fn

equal to ρ(A, p1(Ax), . . . , pn(Ax), rn+1), and thus has degree n!.

Proof. By Lemma 20 and Remark 18 ρ(A, p1(Ax), . . . , pn(Ax), rn+1) is irreducible as a polynomial in 
k[A, p1(Ax), . . . , pn(Ax)][rn+1], which is a unique factorization domain (UFD). By Gauss’s lemma on ir
reducible polynomials over a UFD, the polynomial ρ(A, p1(Ax), . . . , pn(Ax), rn+1) is also irreducible in 
k(A)(p1(Ax), . . . , pn(Ax))[rn+1] = Fn[rn+1]. By Lemma 15 it has degree n! in rn+1 and by Lemma 16
it has pn+1(Ax) as its root. □

We can now state and prove the main technical theorem of this paper (Theorem 2 in the intro
duction):

Theorem 22. We have an equality of fields Fn+1 = Fm.

Proof. We have [Fm : Fn] = n! by Proposition 9 and [Fn+1 : Fn] = n! by Lemma 21; since Fn ⊆
Fn+1 ⊆ Fm , we must have Fn+1 = Fm . □
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5. Proof of Theorem 1

As a corollary to Theorem 22, we now prove Theorem 1.
We have Fn+1 = Fm by Theorem 22 and Fm = E by Proposition 3; that is Fn+1 = E . Con

cretely, k(A)(p1(Ax), . . . , pn+1(Ax)) = k(A)(x). It immediately follows from this equality that each xi

is a rational function over k in A, p1(Ax), . . . , pn+1(Ax). In particular, for every i ∈ [n], there exist 
polynomials

f i
(︁

A, p1(Ax), . . . , pn+1(Ax)
)︁
, gi

(︁
A, p1(Ax), . . . , pn+1(Ax)

)︁
in k[A][p1(Ax), . . . , pn+1(Ax)] such that xi = f i/gi ; in fact, since this holds for every field k of char
acteristic zero, one sees that f i, gi ∈Z[A][p1(Ax), . . . , pn(Ax)].

Now let A∗ ∈ k̄m×n and x∗ ∈ k̄n be generic in the sense that none of the gi ’s evaluates to zero upon 
substitution of A and x with A∗ and x∗ , respectively. Suppose that ξ ∈ k̄n is a common root of the 
polynomials qi(x) = pi(A∗x) − pi(A∗x∗), i ∈ [n + 1]; that is, pi(A∗ξ) = pi(A∗x∗) for every i ∈ [n + 1]. 
As a consequence,

0 ≠ gi
(︁

A∗, p1(A∗x∗), . . . , pn+1(A∗x∗)
)︁ = gi

(︁
A∗, p1(A∗ξ), . . . , pn+1(A∗ξ)

)︁
∀i ∈ [n], and thus the equality of rational functions xi = f i/gi gives an equality in k̄

ξi = f i
(︁

A∗, p1(A∗ξ), . . . , pn+1(A∗ξ)
)︁

gi
(︁

A∗, p1(A∗ξ), . . . , pn+1(A∗ξ)
)︁ = f i

(︁
A∗, p1(A∗x∗), . . . , pn+1(A∗x∗)

)︁
gi

(︁
A∗, p1(A∗x∗), . . . , pn+1(A∗x∗)

)︁ = x∗
i

for every i ∈ [n].

6. Examples

In this section, we illustrate Theorem 2 for n = 1,2. When n = 1, A is a column vector of length 
m. Hence, for any positive integer ℓ we have pℓ(Ax) = pℓ(A)x1; in particular x1 = p1(Ax)/p1(A).

When n = 2, the situation becomes significantly more involved. Let us write

pℓ(Ax) =
ℓ ∑︂

j=0 
c j,ℓ− j x

j
1xℓ− j

2 ,

where the coefficients c j,ℓ− j are given by the binomial theorem as

c j,ℓ− j =
(︃

ℓ

j 

)︃ m ∑︂
i=1 

a j
i1aℓ− j

i2 .

By an elementary calculation, we obtain relations in the field of fractions of k(A)[x1, x2]

x1 =
[︃
− c01

c10

]︃
· x2 +

[︃
p1(Ax)

c10

]︃
· 1 (∗)

x2
2 =

[︄
(−c10c11 + 2c01c20)p1(Ax) 
c2

10c02 − c10c01c11 + c2
01c20

]︄
· x2 +

[︄
c2

10 p2(Ax) − c20 p1(Ax)2

c2
10c02 − c10c01c11 + c2

01c20

]︄
· 1, (∗∗)

where, indeed, one verifies that

c2
10c02 − c10c01c11 + c2

01c20 =
∑︂

1⩽i< j⩽m

(ai1a j2 − ai2a j1)
2 ≠ 0.

From this it follows that the algebra k(A)[x1, x2] is freely generated as a module over its subalgebra 
k(A)[p1(Ax), p2(Ax)] by the elements 1 and x2. Hence there exist h1, h2 ∈ k(A)[p1(Ax), p2(Ax)] such 
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that p3(Ax) = h1 + h2x2. The calculation of h1 and h2 is done by first replacing x1 in p3(Ax) by 
the right-hand-side of (∗) and then successively using (∗∗) to reduce the degree in x2. The explicit 
formulas are found via the help of Maple to be

h1 = u1(A)p1(Ax)3 + u2(A)p2(Ax)p1(Ax)

c3
10(c2

10c02 − c10c01c11 + c2
01c20)2

h2 = v1(A)p1(Ax)2 + v2(A)p2(Ax) 
c3

10(c2
10c02 − c10c01c11 + c2

01c20)2
, with

u1(A) = − 6c4
01c2

20c30 + 6c3
01c10c11c20c30 + 4c3

01c10c2
20c21 − 5c2

01c02c2
10c20c30

− c2
01c2

10c2
11c30 − 3c2

01c2
10c11c20c21 − 3c2

01c2
10c12c2

20 + 2c01c02c3
10c11c30

+ 2c01c02c3
10c20c21 + 2c01c03c3

10c2
20 + 2c01c3

10c11c12c20 − c2
02c4

10c30

− c02c4
10c12c20 − c03c4

10c11c20,

u2(A) =c2
10(5c4

01c20c30 − 4c3
01c10c11c30 − 4c3

01c10c20c21 + 3c2
01c02c2

10c30

+ 3c2
01c2

10c11c21 + 3c2
01c2

10c12c20 − 2c01c02c3
10c21 − 2c01c03c3

10c20

− 2c01c3
10c11c12 + c02c4

10c12 + c03c4
10c11),

v1(A) =14c5
01c2

20c30 − 20c4
01c10c11c20c30 − 10c4

01c10c2
20c21 + 13c3

01c02c2
10c20c30

+ 7c3
01c2

10c2
11c30 + 13c3

01c2
10c11c20c21 + 7c3

01c2
10c12c2

20 − 9c2
01c02c3

10c11c30

− 7c2
01c02c3

10c20c21 − 5c2
01c03c3

10c2
20 − 4c2

01c3
10c2

11c21 − 8c2
01c3

10c11c12c20

+ 3c01c2
02c4

10c30 + 4c01c02c4
10c11c21 + 3c01c02c4

10c12c20

+ 5c01c03c4
10c11c20 + 2c01c4

10c2
11c12 − c2

02c5
10c21 − c02c03c5

10c20

− c02c5
10c11c12 − c03c5

10c2
11,

v2(A) =c2
10(c03c3

10 − c01c2
10c12 + c2

01c10c21 − c3
01c30)(c2

01c20 − c01c10c11 + c02c2
10).

Moreover, one can check that h2 ≠ 0 using Maple, and obtain a rational expression x2 = (p3(Ax) −
h1)/h2, which upon substitution to (∗) gives a rational expression of x1 in terms of elements of 
k(A)[p1(Ax), p2(Ax)].
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