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1. Introduction
1.1. Unlabeled sensing

In unlabeled sensing (Unnikrishnan et al., 2015, 2018) one is given a matrix A* € R™", with m > n
and rank(A) =n, and a vector y* € R™, such that for a permutation 7 of the coordinates of R™
the linear system of equations A*x = 7 (y*) has a solution £*; the problem then is to find £* from
A* and y*. The main theorem of unlabeled sensing asserts that this is a well-defined question when
A is generic and m > 2n. This result has been generalized beyond permutations to arbitrary linear
transformations (Tsakiris, 2023a; Peng and Tsakiris, 2021), as well as beyond linear spaces to unions
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of linear spaces (Peng and Tsakiris, 2021) and to spaces of bounded-rank matrices (Yao et al., 2021,
2024; Tsakiris, 2023b).

Unlabeled sensing is an extremely challenging computational problem, known to be NP-hard
(Pananjady et al., 2018; Hsu et al, 2017), with brute-force (Elhami et al., 2017) or globally opti-
mal approaches being tractable only for small dimensions; see Peng and Tsakiris (2020) for a brief
account. Nevertheless, unlabeled sensing has a wealth of potential applications from biology (Abid
and Zou, 2018; Ma et al., 2021) and neuroscience (Nejatbakhsh and Varol, 2021) to digital communi-
cations (Song et al., 2018), data mining (Slawski and Ben-David, 2019; Slawski et al., 2020; Zhang et
al.,, 2021) and computer vision (Tsakiris and Peng, 2019; Li et al., 2023).

1.2. Motivation

In this paper we are concerned with algebraic aspects of unlabeled sensing (Song et al., 2018;
Tsakiris et al., 2020; Melanova et al., 2022), for which we now set the context. Let

Rly1,..., yml=R[y]l, R[x1,...,x;] =:R[X]

be polynomial rings in m and n variables respectively over the real numbers R, and let

pe= )y €RIly]

ie[m]

be the ¢-th power sum of the y;’s; here and in the sequel [t] denotes the set {1,2,...,t}, whenever
t is a positive integer. In Song et al. (2018) it was observed that £* is a root of the polynomial

qe = pe(A*X) — pe(¥™) e R[x]

for any £ € N; here and in the sequel x is the column vector containing x1, ..., X, in its entries. With
A* generic, it was proved in Tsakiris et al. (2020) that the square system

Dnq1(x)=---=qu(x)=0

is zero-dimensional and thus has at most n! solutions. An algorithm was also developed, which in-
volved solving the square polynomial system for all of its roots via off-the-shelf solvers, isolating a
root by a suitable criterion, and then using an expectation-maximization procedure to refine that root.
An attractive feature of this algorithm is that it has linear complexity in m, while it has been empiri-
cally observed to be robust to low levels of noise: for SNR=40 dB, m = 1000 and n =4, the algorithm
took 25 milliseconds on a standard PC to produce a solution with a relative error of 0.4% with respect
to the ground truth. On the other hand, this algorithm is not scalable with respect to n: as n increases,
one would not even be able to store efficiently the n! solutions of the square polynomial system, let
alone solve it; indeed, in Tsakiris et al. (2020) it was possible to report results only for n <6.

1.3. Contributions

Our object of study in this paper is the overdetermined system of n 4+ 1 polynomial equations in n
unknowns
Dnt1: i) =+ =qnt1(x) =0.
Our main result reads:
Theorem 1. Suppose that A* € R™*" and £* € R"*! are generic, let = be any permutation of the coordinates

of R™1 and set y* = w (A*€*) € R™*1. Then &* is the unique complex solution of the polynomial system
«QHH'
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Fig. 1. The logical dependencies between the statements in this paper, the latter concerning integral ring extensions (purple),
degrees of finite field extensions (orange), resultants (green), and the main results (red). (For interpretation of the colors in the
figure, the reader is referred to the web version of this article.)
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Theorem 1 settles an important open question in the theory of unlabeled sensing. Indeed, that
2n4+1 has a unique solution for generic data was already experimentally observed in Song et al.
(2018), and a more general unique recovery conjecture was formulated in Melanova et al. (2022)
(Conjecture 6). But Theorem 1 also has significant implications for unlabeled sensing algorithms: no
matter which method is used to obtain a root of 2,1, Theorem 1 guarantees that this root is &*;
contrast this to the algorithm of Tsakiris et al. (2020) which relied on filtering all n! solutions of
2,. Indeed, in Liang et al. (2024), for which the present manuscript partially serves as a rigorous
theoretical foundation, we have proposed an algorithm for obtaining the unique solution of 2, via
rank-1 moment matrix completion, and reported encouraging results.

The proof of Theorem 1 relies on a careful analysis of a certain field of rational functions associated
to the polynomials p, after a linear projection of the variables x has been applied, which is interesting
on its own right (note that without the linear projection, the study of the field generated by the p,’s
for fixed given values of ¢ and the question of when this coincides with the field of symmetric rational
functions on x, is an old and well-known topic in the literature, e.g. see Kakeya (1927); Nakamura
(1927); Foulkes (1956); Dvornicich and Zannier (2009)). Let A = (a;;) be an m x n matrix of variables
so that all a;;’s and x;’s are jointly algebraically independent over R. Denote by & =R(A, x) the field
of rational functions in the variables A, x with coefficients in R and

Inr1 =R(A, p1(AX), ..., Pny1(AX))

the subfield of & consisting of the rational functions in A, p1(AX),..., pn+1(Ax) with coefficients in
R. We prove:

Theorem 2. The fields of rational functions %, 1 and & coincide.

1.4. Organization

Theorem 2 is proved by a series of intermediate results, which occupy the core of this paper (§2 -
§4). Once Theorem 2 is established at end of §4 (Theorem 22), Theorem 1 readily follows as shown in
§5. The logical dependencies between the various statements in this paper are summarized in Fig. 1.
The paper is concluded by giving some illustrative examples in §6.
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2. The field .7,

Nothing of what we will say in this and the next section depends on the ground field, other than
the requirement that it has characteristic zero; we thus fix throughout such a field k; we will denote
by k(A) the field of fractions of the polynomial ring k[A]. We fix polynomial rings over the field k(A)

S:=k(A)[z1,....zm], T :=k(A)[¥1,..., ¥m], R :=k(A)[x1, ..., Xn],

and define k(A)-algebra homomorphisms S Lr l@ R, where ¢(z;) = p; and ¥ (y;) = Zje[n] ajjx; for
every i € [m]. We let p = I;,+1(A|y) be the ideal of T generated by all (n+ 1)-minors of the m x (n+1)
matrix [A]y]; here y is the vector of variables y1,..., ym. Each such (n + 1)-minor is a linear form
of T and thus p is a prime ideal of T whose height can be seen to be m — n. Since v is surjective,
p=LKker(y) and R=T/p.

Let q =S Np be the contraction of p to S under ¢; this is a prime ideal of S whose residue
field Sq/qS, we denote by « (q). We have an inclusion of integral domains S/q < T/p = R =k(A)[x],
which identifies S/q with the k(A)-subalgebra k(A)[p1(AX),---, pm(Ax)] of R; we denote the field
of fractions of this subalgebra by .%p. In turn, this induces the inclusion of fraction fields «(q) =
Fm C & =k (p), where we recall that & is the field of fractions of the polynomial ring k(A)[x] and
k(p) =Ty/pTp. The main result of this section is:

Proposition 3. We have an equality of fields %y = &.
Towards proving Proposition 3, we begin with a basic but important fact.
Lemma 4. T is a free S-module of rank m!.

Proof. By virtue of Newton's identities, the subalgebra ¢(S) =k(A)[p1,...,pm] of T coincides with

the subalgebra k(A)[s1, ..., Sm] generated by the m elementary symmetric functions sq, ..., Sy on the

variables y; it thus suffices to prove that T is a free module over k(A)[s1, ..., Sm] of rank m!.
Consider the polynomial ring

P=k(A)[y, wl=k(A)[y1,..., Ym» W1,..., Wn]

of dimension 2m, and the ideal | of P generated by all w; — s;(y) for i € [m], where s;(y) is the i-th
elementary symmetric function on the variables y. Under any monomial order on P with y; > --- >
Ym > W1 > --- > Wy, Proposition 5 in Section 1 of Chapter 7 of Cox et al. (2013) explicitly describes a
Grobner basis of J, consisting of m polynomials g1, ..., gn € P such that the leading term of g; is y;
It immediately follows that a k(A)-vector space basis of P/] is given by all monomials of the form
yéz e yﬁ“ wll’1 ~-~W,L;l’", where the b;’s range over the non-negative integers while 0 < ¢; <.

Now consider the k(A)-algebra epimorphism 6 : P = k(A)[y, w] — T =k(A)[y] defined by 6(w;) =
si(y) and 6(y;) = y; for every i € [m]. We have ] =ker(9) and so T = P/]J; since P/] is generated
over k(A) by the m! monomials ygz ~~-yfn"' as above and all monomials in w, T is a fortiori generated
over k(A)[s1(¥),....,sm(¥)]1 = k(A)[w1,..., wy] by the yéz «~-yf,,’”‘s. To show that these monomials

.....

leading term of 205514 f[z’”_!gm(W)ygz . ~-yﬁ1’" must be divisible by yzi for some i € [m]; however, it

is seen from the form of 205514 fgz,”_,gm(w)yg2 e yﬁ;" that this is impossible, unless this is the zero
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polynomial. Since all monomials in y freely generate k(A)[y, w] as a module over k(A)[w], we in
turn have that all fy, ¢, (w)’s and thus all c¢,, . ¢, (y)’s are zero. O

Remark 5. The fact that T is a free S-module is a special case of the well-known Chevalley-Shephard-
Todd theorem.

The Lemma 4 implies that T is integral to ¢(S); this is a manifestation of a general fact:

Lemma 6 (Exercises 12 & 13, Chapter 5, Atiyah and MacDonald (1969)). Let R be a commutative ring and I1 a
finite group acting on R; denote by R™ the subring of R consisting of the invariant elements of R with respect
to the action of T1. Then the ring extension R C R is integral, and for any prime ideal 3 of R, the prime ideals
of R that lie over 3 N R™ are the orbit { (P) : 7 € I1} of P under TI.

We have:

Lemma 7. The prime ideals of T that lie over q = S Ny are precisely of the form 7 (p), where 7 is a permutation
of the variables y1, ..., ym; these are m! distinct prime ideals.

Proof. That a prime ideal of T lies over q if and only if it is of the form 7 (p), follows from Lemma 6.
We prove that all m! such prime ideals 7 (p) are distinct. For this, it suffices to prove that 7 (p) # p as
soon as 7t is not the identity permutation. Let o = avand T={m—-n+1,...,m}=[m] \ [m —n].

For i1,...,In,in41 distinct elements of m, we denote by Aj;,, ;, the determinant of the n x n
matrix, whose s-th row is the is-th row of A, and by Ail ,,,, boroine the determinant as above of the
sub-matrix associated to rows ii,...,is_1,is+1,...,in4+1. FOr any monomial order on T with y; >
Y2 >-+-> Yp, the m —n linear forms of T given by

A .
Zi ::yi_i_z(_])gfn—wn i,m—n+1,...,5,..., mys’ ie[m—n]
seJ

are a reduced Grobner basis of p. Similarly for i € [m — n], the linear forms

—

Wi=yi+ Z(_l)S,ern Aa(i),a(mfnJrl),...,o(s) ..... o(m) Vs
e Ag (m—n+1),....0(m)

are a reduced Grobner basis of m(p).

Since a reduced Grébner basis is unique, if p = 7 (p), necessarily ¢; = u; for every i € [m — n].
In particular, for any i € [m —n] and any s € J, the coefficient of ys in ¢;, must be equal to the
coefficient of ys in ;. Notice that k(A) is the fraction field of the polynomial ring k[A] which is
a unique factorization domain (UFD), and the numerators and denominators of y’s coefficients in
¢; and p; are irreducible polynomials in k[A] with coefficients +1, we deduce that Am_ny1,..m =
€A (m-n+1),...o(n) and Aim—nti,. 3..m= 8AU(i).a(m—n+l) ’’’’ SO0 m) for any i € [m —n], any s €
J, and some & = #1. These equalities imply that o(J7) =7 and {iju{m—n+1,...,§5,...,m} =
{olufom—n+1), 4..,5(3\), ...,o(m)} for any i € [m — n]/aﬂ:l se J.From o(J)=J we see that
m—n+1,...5,...mj=J\{s}cJ and {[oc(m—n+1),....0(s),...,0m}=T\{o(s)} C J for any
s € J. Hence, from i ¢ 7 we deduce that o (i) ¢ J and o (i) =i for any i € [m —n]. Furthermore, from
o(i)=i¢ J we also see that 7\ {s} =7 \ {o(s)}, which implies o (s) =s for any s € 7. Therefore,
o =m ! is the identity permutation and s =1. O

The Proposition 3 is a special case of the following result for 3 = p:

Lemma 8. Let *3 be a prime ideal of T lying over q. Then k () = k (q).

5
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Proof. As T is a free S-module of rank m! by Lemma 4, T ®s «(q) is a k(q)-vector space of dimension
m!. Since T ®s k(q) is a finitely generated « (q)-algebra, which is also a finite-dimensional « (q)-vector
space, it must be an Artinian ring. The prime ideals of T ®s x(q) correspond to the prime ideals
of T lying over q. By Lemma 7, these are the m! distinct prime ideals 7 (p), with 7 ranging over
all permutations of the variables y1,..., yn. Quite generally, an Artinian ring is isomorphic to the
product of its localizations at its prime ideals, hence

T ®s k(@) =] Trep ®s«@.
b

Now, each Ty ®s €(q) = Tr(p)/qTx(py is an Artinian local ring and a finite « (q)-vector space. Since
T ®s k(q) is an m!-dimensional « (q)-vector space and there are m! factors in the product, it must
be that each Ty ) ®s «(q) is a 1-dimensional « (q)-vector space, for every 7. But k(q) is contained
in every Trp) ®s k(q), so that Ty ®s k(q) = «(q) for every m. Since Trp)/qTzp) = Tr(p) ®s
k(q) =k (q) is a field, it must be that qTr ) =T (P)Tr(py and 50 Tr(p)/qTzp) = Trp)/T O Trp) =
k(@ (p). O

3. The field extension .7, € .9,

We denote by %, the field of rational functions k(A)(p1(Ax),..., pn(Ax)); this is a subfield of
& =k(A, x), this latter coinciding with .%;; by Proposition 3. The main result of this section is:

Proposition 9. The field extension .7, C %, is algebraic of degree [ %y, : Fn] =n!.
Towards proving Proposition 9, we prove a fundamental fact:
Lemma 10. The polynomials p1(Ax), ..., pn(Ax) are a regular sequence of R = k(A)[x].

Proof. For a homogeneous ideal | in a polynomial ring P over a field, it follows from Serre’s theorem
on Hilbert functions (Bruns and Herzog, 1998, Theorem 4.4.3) that the Hilbert polynomial of P/ ]
agrees with the Hilbert function of P/] at degrees greater than or equal to the Castelnuovo-Mumford
(CM) regularity of J. It can be seen via the Koszul complex that the CM-regularity of an ideal J
generated by a regular sequence of n elements of degrees 1,2,3,...,nis reg(J)=nn—1)/2+1.

Now let | be the ideal of R generated by pi(Ax),..., pn(Ax). Then the sequence p;(Ax),...,
pn(Ax) is regular if and only if R/J has zero Krull dimension, if and only if the Hilbert polynomial of
R/] is the zero polynomial, if and only if [ J]; = [m],; here a =reg(J) =n(n—1)/2+ 1, [J], denotes
the degree-a homogeneous part of J, and m is the ideal of R generated by x1, ..., X,.

Let t be the dimension of [m], as a k(A)-vector space. Take generators for [ J], by multiplying ev-
ery pi(Ax) by all monomials of degree a —i. Make a matrix H whose columns contain the coefficients
of the generators of [J]q on the basis of [m], of all monomials of degree a. Then the p;(Ax)’s are a
regular sequence if and only if not all t x t minors of H are zero. But if they were zero, they would
also be zero upon substitution of A by A*, for any A* € k™*"; here k denotes the algebraic closure
of k. However, this would contradict the fact that the p;(A*x)’s are a regular sequence for a generic
choice of A* € k™", as per Lemma 4 in Tsakiris et al. (2020); here we have used the fact that when
the p;(A*x)’s are a regular sequence of k[x], the CM-regularity of the ideal they generate is still g,
while the k-vector space dimension of the degree-a graded component of k[x] is still equal to t, so
that the p;(A*x)’s are a regular sequence if and only if not all t x t minors of H|4+ are zero, where
H|p+ is obtained from H by replacing A by A*. O

Our next ingredient is fundamental as well and interesting in its own right.

Lemma 11. R = k(A)[x] is a free graded k(A)[p1(AX), ..., pn(Ax)]-module of rank n!.

6
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Proof. We first prove that R is flat over R, = k(A)[p1(AX), ..., pn(AX)]. Quite generally, the inclusion
of R, into R is a homomorphism of positively graded rings, which takes the maximal homoge-
neous ideal of R, into the maximal homogeneous ideal m of R. By part (3) of the Remark at
page 178 in Matsumura (1989), R is flat over R, if and only if Ry, is flat over R,. By Lemma 10,
p1(Ax), ..., pn(Ax) is a regular sequence of R; as such it remains a regular sequence in R;,. Conse-
quently, Theorem 1 in Hartshorne (1966) gives that Ry, is flat over R,; we conclude that R is flat
over R;.

Next, we argue that R is finitely generated graded R,-module. Let | be the ideal of R generated by
pi(Ax), i € [n], which is a regular sequence by Lemma 10. It follows that R/J is Artinian and of k(A)-
vector space dimension n!; for the latter statement, we used the known form for the Hilbert series of
the quotient of R by a regular sequence of homogeneous elements. As ] is a homogeneous ideal, R/ J
is a graded k(A)-vector space, thus admitting a homogeneous k(A)-vector space basis {b+ J : b € B},
where B is a set of n! homogeneous polynomials in R. If f € R is a homogeneous polynomial of
degree d, then we can write f =", _scyb+ f1, where c, € k(A) and f; is a homogeneous polyno-
mial of | of degree d. Writing f1 = Zie[n] gipi(Ax), where g; is homogeneous of degree d — i, we
have f=3", .zcpb+ Zie[n] gipi(Ax). Writing each g; as a k(A)-linear combination of the b’s plus a
homogeneous polynomial of degree d —i in J, we inductively see that R is finitely generated over R,
by B.

We now argue that R is free of finite rank as a graded R,-module. As R is a finite (i.e., finitely
generated) R,-module and R, is a polynomial ring, R is finitely presented over Rj; since R is flat
over R;, it follows by the Corollary at page 53 in Matsumura (1989) that R is a projective R,;-module.
Hence, with n the maximal homogeneous ideal of R;, we have that R, is a projective (R;)n-module.
Now, Theorem 1.5.15(e) in Bruns and Herzog (1998) asserts that the projective dimension of R as
a graded module over R, is equal to the projective dimension of R, over the local ring (Rp),; it
follows that R is a finite projective graded R,-module. Finally, Theorem 1.5.15(d) in Bruns and Herzog
(1998) asserts that R is a finite projective graded R,-module if and only if it is a finite free graded
Rp-module.

It remains to argue that the rank of R as a free graded module over R, is n!. We have seen that R
is free of finite rank, say ¢, as a graded R,-module via the inclusion of graded rings R,, — R. It follows
that R ®g, Rn/n is an R,/n-vector space of dimension £. But R ®g, Rp/n=R/nR =R/] and we have
already seen that R/ ] has vector space dimension n! over the field k(A) = R, /n. Hence ¢ =n! (it can
further be argued that B is in fact a set of free homogeneous generators of R over R;). O

Remark 12. The proof of Lemma 11 directly generalizes to any regular sequence hq,...,h, of R
consisting of homogeneous elements of degrees d1, ..., d,; this yields that R is a free k(A)[h1, ..., hy]-
module of rank di - - - dp.

We can now prove Proposition 9.

Proof. (Proposition 9) For convenience we set R, = k(A)[p1(AX), ..., pn(Ax)]. We have an inclusion
of integral domains R, C R, whose fields of fractions we denote respectively by K(R,) and K(R).
Now K(Rjy) is just a localization of R, and so it is flat over R,. We thus have an inclusion of rings
K(Rn) C R ®g, K(Rp) C K(R). By Lemma 11, R is a finitely generated R,-module and so the ring
extension R, C R is integral. It follows that the ring extension K(R,) C R ®g, K(Ry) is also integral;
the Krull dimensions of both rings must be equal, whence R ®g, K(R;) is Artinian because K(Ry) is
a field. Quite generally, an Artinian ring contained in an integral domain must be a field; this implies
that R ®g, K(Ry) is a field. This field contains R and, since it is contained in K(R), it must be that
R ®g, K(Ry) = K(R). As R is a free R,-module of rank n! by Lemma 11, it follows that K(R) is a
K (Rp)-vector space of dimension n!. Finally, recall that the fields K(R;) and K(R) are just the fields
Fn and Fpy, respectively. O
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4. The field extension 7,1 € %y

In this section, we will prove that the field

Fnt1 =k(A)(P1(AX), ..., Pny1(AX))

coincides with the field .%,, = &; Theorem 2 will follow as a special case for k = R.

We have fields .7, € %11 € %m. By Proposition 9 the degree of the field extension %, C Fp, is
n!; hence to prove %11 = %y, it suffices to prove that the degree of the field extension .7, C %11
is n!. Note that ., is just the field .#,(pn+1(Ax)) generated over %, by pni1(Ax); thus it suffices
to prove that the minimal polynomial (41 € F(t] of pni1(Ax) over %, has degree n!. We will
achieve this by using multidimensional resultants (Macaulay, 1916; van der Waerden, 1950; Gelfand
et al, 1994; Lang, 2012), which for the convenience of the reader we now briefly review following
(Macaulay, 1916).

For a positive integer a and a field #" of characteristic zero, let I1,...,l; be positive integers and
denote by M(t, l;) the set of all monomials of degree [; in the variables t =t1, ..., t,. For every i € [a]
and every monomial w € M(t, ;) we consider a variable c(i, w) and define f; = ZWEM(t,li) c(i, w)w;
this can be viewed as a homogeneous polynomial of degree I; in the variables t with coefficients in
the polynomial ring C = #[c(i,w) : w € M(t,l;),i€[a]]l. Set =11+ ---+Il;—a+1 and let H be
the matrix with entries in the ring C defined as follows: with w € M(t,l —1I;) and i € [m] fixed, we
consider the column-vector that gives the coefficients in C of wf; with respect to M(t,[); then H has
as its columns all such vectors as i and w range in [a] and M(t, [ —[;) respectively. Macaulay defined
the resultant R(f1,..., fo) of f1,..., fa as the greatest common divisor of all maximal minors of H;
he proved that it has the following properties that we shall need:

Proposition 13 ((Macaulay, 1916), §6-§10, Chapter1). Set L=1; -- -1, and L; = L/I;. Then

1. Fori € [a] the degree of (i, tg") inR(f1, ..., fa) is L and the coefficient of c(a, t)Le is R(fy, ..., fa_1)l,
where fi = filt,=o.

2. Foreveryi € [a], we have that R(f1, ..., fq) is homogeneous in the variables (c(i, W))we M) Of degree
L;.

3. Let ff,..., ff € H[t]=Ht1,...,tq] be any specialization of f1, ..., fa, obtained by replacing each
c(i, w) by an element of ', and R(f{, ..., f{) the corresponding specialization of R(f1, ..., fa). Then
R, ..., f§) =0ifand only if ff,..., fi have a common root in %" besides zero; here % is the
algebraic closure of .

Remark 14. It is a basic observation that a set of n homogeneous polynomials in a polynomial ring
of dimension n over ¢ is a regular sequence if and only if the ideal they generate is primary to
the maximal homogeneous ideal, which is equivalent to the polynomials admitting no common root
in %" other than zero. Indeed, the matrix H that appeared in the proof of Lemma 10 is precisely
Macaulay’s matrix associated to the resultant of pi(Ax), ..., pn(Ax).

We now return to our objective of showing that the minimal polynomial 1p4+1 of pnpy1(Ax) over
Zn has degree n!. We apply the formulation above with a =n + 1, letting t be the column vector
with entries tq,...,tp, and introducing new variables rq,..., 1. For i € [n + 1] we define f* =
pi(At) — rit,i1+1; this is a homogeneous polynomial of degree i in the variables t1, ..., t;4+1 with coef-
ficients in the polynomial ring k(A)[r] := k(A)[r1, ..., n+1]. We denote by R(f7,.... fr;) € k(A)r]
the specialization of the resultant R(f1,..., fim) of Proposition 13 with the variable c(i, w) replaced
by the corresponding coefficient of w in f;*. Similarly, applying the formulation above with a =n, we
let R(p1(At), ..., pn(At)) be the specialization of R(fy, ..., fn) with the variable c(i, w) replaced by
the corresponding coefficient of w in p;(At). It will be convenient to explicitly indicate the depen-
dence of R(f,..., :4—1) € k(A)[r] on the variables A and r =rq,...,ry41; for this we shall write

P(A T, ... Thy1) = (—1)"!R(fl*, -++» fy1). We next proceed with a series of key observations.

8
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Lemma 15. p(A,r1, ..., h+1) € k(A)[r] is a non-zero polynomial of degree n! in the variable r,41. The coef-
ficient of 111 is R(p1(At), ..., pa(AD)™ T £ 0.

Proof. By Lemma 10 pq(AX),..., pp(Ax) is a regular sequence of R = k(A)[x]. Part (3) of Proposi-
tion 13 and Remark 14 give that R(p1(At), ..., pn(At)) is a non-zero element of k(A). The statement
now follows from part (1) of Proposition 13, because the resultant commutes with specialization. O

Lemma 16. We have p (A, p1(AX), ..., pn+1(AX)) =0.

Proof. After substituting r; with p;(Ax) in the polynomials f;* for every i € [n+ 1], it is evident that
the point (x1,...,xn, 1) € &1 is a common root; thus the resultant of these polynomials vanishes
by part (4) of Proposition 13. O

Lemma 17. We have that p (A, p1(AX), ..., pn(AX),1h4+1) #O0.
Proof. This follows immediately from Lemma 15. O

Remark 18. As by Lemma 10 the polynomials p1(Ax), ..., pn(Ax) are a regular sequence of k(A)[x],
they are algebraically independent over k(A). Hence the polynomials pq(Ax),..., pn(AX), 41 are
algebraically independent over k(A). Therefore, p (A, p1(Ax), ..., pn(AX),h41) is an irreducible poly-
nomial in the ring k(A)[p1(AX), ..., pn(AX),m+1] if and only if p (A,rq,..., 1) is irreducible in
k(A)[r1,....ra+1]

We will prove that p (A, rq,...,41) is irreducible in k[A, 11, ..., h4+1]. We do this by first proving
the special case m =n + 1, where all the difficulty concentrates.

Lemma 19. Suppose m =n + 1, then p (A, 11, ..., m+1) is irreducible as a polynomial in k[A, 11, ..., Th+1].

Proof. When m =n + 1 we have % = %11 and the degree of the field extension %, C
Fni1 is n! by Proposition 9. Since %11 = % (Pn+1(AX)), we have that the minimal polynomial
Unt1 of pni1(Ax) over %, is of degree n!. On the other hand, by Lemma 17 the polynomial
P (A, p1(AX), ..., pn(AX),hy1) € Fnlrn+1] is a polynomial of degree n!, which by Lemma 16 has
Pn+1(Ax) as its root. Consequently, p (A, p1(AX), ..., pn(AX), ht1) € Fnlrns1] is the minimal polyno-
mial wnpy1 of ppy1(AX) over %, up to multiplication by an element of .%,. In view of Remark 18, we
have that p (A,r1,...,Th41) € k(A)(r1, ..., n)[ra+1] is irreducible, where k(A)(rq,...,r;) denotes the
field of fractions of the polynomial ring k(A)[rq, ..., r;]. By Gauss’s lemma on irreducible polynomials,
it suffices to prove that p (A,r1,...,p4+1) is primitive in k[A, 11, ..., ][r+1]-

Any common factor of the coefficients of p (A,r1,...,rm+1) must divide the coefficient of r,’}!_H,
which by Lemma 15 is R(p1(At),..., pn(AD)"1 € k[A]. Hence, it suffices to show that no non-
constant polynomial p(A) € k[A] divides p (A,71,...,Tq41). Suppose otherwise, that is p(A) € k[A]
is a non-constant factor of R(A,rq,...,rm+1) and let A* € k™" be a root of p(A). It follows that
for any choice (r;‘,...,r,’;ﬂ) € k"1 we have p(A*,r’{,...,r,’;H) =0, so that by part (3) of Proposi-
tion 13 the polynomials f;*(x) = p;i(A*x) — r;kxilﬂ €k[X1,...,Xn1], i € [n + 1] have a common root
0+ (&1,...,E41) €K™, Let us distinguish between the case rank(A*) =n and rank(A*) <n.

Suppose that rank(A*) =n. If &4 =0, letting & be the column vector (&, ...,&,) € k", we have
that A*¢ € k™ is a common root of the polynomials p1(2), .., pm(2) € k[z] =k[z1, ..., zn] (recall m =
n + 1). Since the p;'s are a regular sequence in k[z], we must have that A*& = 0. By hypothesis
rank(A*) =n so that & = 0; however, this contradicts our assumption that not all &, ..., &+ are
zero. Hence, it must be that &;,1 # 0, and since the f*’s are homogeneous, we may assume &;11 = 1;
in turn, this gives rf = p;(A*£) for every i € [n + 1]. As the r’s were chosen arbitrarily, the image
of the polynomial map k" — k™! that takes * € k" to (p1(A*B*), ..., pnt1(A*B*)) € k™! must be
the entire k"*!, This implies that the affine coordinate ring of the closure of this map, which is

9
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I_c[pl(A*x), ..., Pny1(A*X)], must have Krull dimension n 4 1. But this is impossible because this is a
subring of k[x] =k[x1, ..., xn].

_ We have concluded that rank(A*) < n for any root A* of p(A). In other words, the hypersurface of
k™m>" defined by the polynomial p(A) must lie in the determinantal variety defined by the ideal I,,(A)
of maximal minors of A. But this is impossible, because the dimension of the former is (n+1)n—1=
n2 +n — 1, while the dimension of the latter is well-known to be (n — 1)(n +2) =n% +n — 2 (Bruns
and Vetter, 1988; Bruns et al,, 2022). O

We now treat the general case.
Lemma 20. p (A, 11, ...,Thy1) isirreducible in k[A, 11, ..., Tht1].

Proof. The case m =n + 1 has been proved in Lemma 19, hence we assume m > n + 1. Let us
denote by A the matrix obtained from A by replacing all a;j’'s for which i > n + 1 with zero;
this induces a k-algebra homomorphism ® : k[A, ] — k[A,r] which takes A to A. As the resul-
tant commutes with specialization, o (p (A,11,...,Thy1)) =p (/_\, | ST rn+1). In view of Lemma 15,
the degrees of ry41 in p(A,11,...,T+1) and p(/_\,rl,...,rnH) are the same integer n!, and the
coefficients of rI'; are respectively R(p1(At), ..., pa(AD)™! and ® (R(p1(AD),..., pa(AD)™T) =
R(p1(At), ..., pn(A)"1 the latter being non-zero as it corresponds to the statement of Lemma 15
for the special case m = n + 1. Now suppose p(A,rq,...,M+1) = gh with g,h non-constant
polynomials in k[A,r]; then p (A,r1,....Tny1) = 2(2P(h) with &(g), #(h) € k[A, 11, ..., a41]. By
Lemma 19, the polynomial p (A,r1,...,rn+1) is irreducible in k[A,rq,...,41], SO we may assume
that 9(g) = 1. It follows that the degree of r,4+q in ¥ (h) is n!, whence the degree of r,+q1 in h
is n! as well. In turn, this gives that g divides the coefficient of rL”H in p(A,r1,...,T+1), Which
by Lemma 15 is R(p1(At), ..., pn(At))™1 € k[A]. By part (2) of Proposition 13 and the construc-
tion of R(p1(At), ..., pn(At)), we have R(pi(At),..., pn(At)) is a multi-homogeneous polynomial
in the coefficients of pi(At),..., pn(At) of multi-degree (n!/1,...,n!/n). Now, the coefficients of
pi(At) are homogeneous polynomials themselves in the variables A of degree i. We conclude that
R(p1(At), ..., pn(At)) is a homogeneous polynomial in the variables A of total degree nn!. Since g
divides R(p1(At), ..., pn(AD)"1 it must also be homogeneous, and the fact that 9(g) = 1 shows
that g is indeed a constant polynomial. O

We have arrived at the following crucial fact:

Lemma 21. The minimal polynomial (tn11 of pnt1(Ax) over Z, is up to multiplication by an element of %,
equal to p(A, p1(AX), ..., pn(AX), n4+1), and thus has degree n!.

Proof. By Lemma 20 and Remark 18 p(A, p1(Ax), ..., pn(Ax),h41) is irreducible as a polynomial in
k[A, p1(Ax), ..., pn(Ax)][rn+1], which is a unique factorization domain (UFD). By Gauss’s lemma on ir-
reducible polynomials over a UFD, the polynomial p(A, p1(AX), ..., pn(AX),h41) is also irreducible in
k(A)(p1(AX), ..., pn(Ax))[rnt1] = Fnlrns1]. By Lemma 15 it has degree n! in rp,41 and by Lemma 16
it has pp4+1(Ax) as its root. O

We can now state and prove the main technical theorem of this paper (Theorem 2 in the intro-
duction):

Theorem 22. We have an equality of fields %11 = Fm.

Proof. We have [%, : %] =n! by Proposition 9 and [ 41 : %] =n! by Lemma 21; since %, C
1 € Py, we must have Fp 1 = Py, O

10
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5. Proof of Theorem 1

As a corollary to Theorem 22, we now prove Theorem 1.

We have %11 = %y by Theorem 22 and %, = & by Proposition 3; that is %;11 = &. Con-
cretely, k(A)(p1(AX), ..., pn+1(Ax)) = k(A)(x). It immediately follows from this equality that each x;
is a rational function over k in A, p1(AX), ..., pn+1(AX). In particular, for every i € [n], there exist
polynomials

fi(A. p1(AX), ... pny1(AX)), gi(A, P1(AX), ..., Pny1(AX))

in kK[A][p1(AX), ..., pnt1(Ax)] such that x; = f;j/g;; in fact, since this holds for every field k of char-
acteristic zero, one sees that fj, gi € Z[A][p1(AX),..., pn(AX)].

Now let A* € k™" and x* € k" be generic in the sense that none of the g;’s evaluates to zero upon
substitution of A and x with A* and x*, respectively. Suppose that & € k" is a common root of the
polynomials q;j(x) = pi(A*x) — pi(A*x*), i € [n + 1]; that is, p;(A*&) = p;(A*x*) for every i € [n + 1].
As a consequence,

0 gi(A*, p1(A*X"), ... Pny1(A*XY)) = gi(A*, p1(A*E). ..., Pny1(A*E))
Vi € [n], and thus the equality of rational functions x; = f;/g; gives an equality in k

_ fi(A*a pl(A*f), "'apﬂ-‘rl (A*E)) _ ff(A*a pl(A*X*)v ~~~7Pn+1 (A*X*)) :th
YT gi(AY, pr(AE), ., rp (AYE))  gi(AF, pr(ATXY), ..., Pagi(A*x))

for every i € [n].

6. Examples

In this section, we illustrate Theorem 2 for n =1,2. When n=1, A is a column vector of length
m. Hence, for any positive integer £ we have p;(Ax) = p¢(A)xy; in particular x; = p1(Ax)/p1(A).
When n =2, the situation becomes significantly more involved. Let us write

¢
J
Pe(AX) = cjojxixy 7,
j=0

where the coefficients c;j ,_; are given by the binomial theorem as

Z m
_ J =]
Cje—j= <J> Zanaiz .
i=1
By an elementary calculation, we obtain relations in the field of fractions of k(A)[x1, x2]

X1 = [—Cﬂ] < X2 + [pl(AX)] -1 (%)
€10

10
(—c10€11 + 2€01€20) P1(AX) S CloP2(AX) — caop1 (AX)? 1, (x%)
C%OCoz —C10€01C11 + ‘%1620 ’

2 _
X; =

2 2
C19C02 — C10C01C11 + Cy1C20
where, indeed, one verifies that
2 2 _ . )2 0
C10€02 — €10€01C11 + Cp1C20 = (aj1ajz — ajpajr)” #0.
1<i<j<m

From this it follows that the algebra k(A)[xq, x2] is freely generated as a module over its subalgebra
k(A)[p1(Ax), p2(Ax)] by the elements 1 and x,. Hence there exist hy, hy € k(A)[p1(Ax), p2(Ax)] such

11
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that p3(Ax) = h1 + hax. The calculation of hy and hy is done by first replacing x; in p3(Ax) by
the right-hand-side of (%) and then successively using (xx) to reduce the degree in x,. The explicit
formulas are found via the help of Maple to be

_ u1(A)p1(A%)® + u3(A)p2(AX)p1 (AX)

hy =
3 2 2
€30(CpC02 — C10C01C11 + €1 C20)?
2
v1(A)p1(AX)” + v2(A)p2(AX) .
hy = 5— 5 Wwith
€10 (€10C02 — C10C€01€11 + €51 €20)
A) = — 6ct. 2 6c3 4c3 2 52 2
u1(A) = — 6cp1C50C30 + 6€51€10€11€20€30 + 4Cg1C10C39C21 — 5€51C02C7(C20C30

2 2 2 2 2 2 2 2 3
— C51€70€11€30 — 3C51C1pC11€20C21 — 3C1CT0C12C50 + 2€01€02€79€11C€30
3 3 2 3 2 4
~+ 2€01€02€7€20C21 + 2C01C03C7C50 + 2€01€719C11€12€20 — CpaC10C30
4 4
— €02€7pC12€20 — €03C1C€11€20,
A) =2 (54 _ 43 43 32 2
Uz (A) =c19(5¢p1€20C30 — 4C€31€10€11€30 — 4Cg1€10C20C21 + 3C51C02C7(C30
2 2 2 2 3 3
~+ 3¢1C10C11C21 + 3€51€10€12€20 — 2C01C02C79C21 — 2€C01C03C7pC20
3 4 4
— 2€01€7pC11€12 + C02C7pC12 + C03CTpC11),
A) =14c), c2,c30 — 20ch —10c}, c1oc2 13¢3 2
v1(A) =14cg¢50C30 Cp1€10€11€20C30 Cp1€10C59C21 + 13C31C02€79C20C30
3 2 2 3 2 3 2 2 2 3
~+ 7¢p1€10CT1€30 + 13¢5 €1pC11€20C21 + 7C1€19C12C50 — 9C51€02€79€11€30
2 3 2 3 2 2 3 2 2 3
— 7¢51€02€719C20C21 — 3€1€03C10C50 — 4C51C10CT1€21 — 8C51€1pC11€12C20
2 4 4 4
~+ 3€01CppC10C30 + 4€01€02€19C11€21 + 3C01C02C79C12C20
4 4 2 2 5 5
+ 5€01€03€79C11€20 + 2€01C19CT1€12 — Cgp€70€21 — €02€03C70C20
5 5 2
— €02€79C11C12 — C03CpC11»
A) =2 3 2 2 3 2 2
v2(A) =c7(C03C79 — C01C1pC12 + C51€10C21 — Cg1€30)(CH1C20 — C01€10C11 + C02CTg)-

Moreover, one can check that hy # 0 using Maple, and obtain a rational expression x = (p3(Ax) —
h1)/hz, which upon substitution to (%) gives a rational expression of x; in terms of elements of
k(A)[p1(AX), p2(AX)].
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