
Journal of Symbolic Computation 125 (2024) 102315
Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

The integral closure of a primary ideal is not 

always primary

Nan Li a, Zijia Li b,d, Zhi-Hong Yang c, Lihong Zhi b,d

a School of Mathematical Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
b KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
c School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China
d University of Chinese Academy of Sciences, Beijing, 100049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2023
Received in revised form 29 February 2024
Accepted 1 March 2024
Available online 6 March 2024

MSC:
13B22
32S15
32S60

Keywords:
Integral closure
Whitney stratification
Zariski equisingularity
Embedded primes
Monomial ideals

In 1936, Krull asked if the integral closure of a primary ideal is still 
primary. Fifty years later, Huneke partially answered this question 
by giving a primary polynomial ideal whose integral closure is 
not primary in a regular local ring of characteristic p = 2. We 
provide counterexamples to Krull’s question regarding polynomial 
rings over any fields. We also find that the Jacobian ideal J of the 
polynomial f = x6 + y6 + x4zt + z3 given by Briançon and Speder 
(1975) is a counterexample to Krull’s question.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Krull (1936, p. 577) asked: Ist etwa bei einem Primärideal q immer auch qb Primärideal? For monomial 
ideals, the answer to Krull’s question is yes. The integral closure of a primary monomial ideal is always 
primary (Jarrah, 2002, p. 5474). However, for non-monomial ideals, Huneke partially answered this 
question by giving a counterexample in the regular local ring k[[x, y, z]] with char(k) = 2 (Huneke, 
1986, Example 3.7). According to Jarrah (2002, p. 5473) there are no known counterexamples for 
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rings of characteristic zero. The integral closure of ideals is related to Whitney equisingularity. For 
instance, Tráng and Teissier (1988, Proposition 1.3.8) (see also Flores and Teissier, 2018, Remark 4.11) 
gave an algebraic description for Whitney’s condition (b) using the integral closure of the sheaf of 
ideals, which started the modern equisingularity theory. Gaffney (1992, 1996), Gaffney and Kleiman 
(1999) generalized the theory of integral closure of ideals to modules, and made many applications 
in studying Whitney equisingularity.

Our main contributions are summarized below:

• We answer Krull’s question negatively by giving a sequence of primary ideals

I = 〈x3, y3, x2 y, x2zn − xy2〉,n ∈Z+
whose integral closures

Ī = 〈x3, y3, x2 y, x2zn, xy2〉
are not primary over a field of characteristic zero or positive characteristics. Hence, taking integral 
closure of a primary polynomial ideal may create embedded primes. On the other hand, we also 
show that there are examples where the given polynomial ideal is not primary but its integral 
closure is primary. It implies that taking integral closure may also remove embedded primes. 
Therefore, the relation between a primary ideal and its integral closure is not clear yet.

• We discover that the Jacobian ideal J of the polynomial

f (x, y, z, t) = x6 + y6 + x4zt + z3 = 0, (1)

is also a counterexample to Krull’s question. This polynomial was first given by Briançon and 
Speder (1975) and it has been investigated by many researchers ever since (see Parusiński and 
Păunescu, 2017, Example 7.9; Wall, 2010, p. 354; Zariski, 1977, pp. 14–16). Let J̄ be the integral 
closure of J , V 1 be the hypersurface defined by f = 0 and V 2 be the singular locus of V 1. We 
find that J̄ has an embedded prime P = 〈x, y, z, 4t3 + 27〉, and the variety of P contains exactly 
the points where (V 1 \ V 2, V 2) fails Whitney’s conditions.

The paper is organized as follows. Section 2 is for basic definitions and properties of integral 
closures of ideals. In Section 3, we present a sequence of primary ideals whose integral closures are 
not primary over a field of characteristic zero or positive characteristics. Moreover, we present an 
example to show that taking integral closure may remove embedded primes. Finally, we compute the 
integral closure J̄ of the Jacobian ideal of f defined by (1) and verify that the pair (V 1 \ V 2, V 2) fails 
Whitney’s conditions at the variety of the embedded prime of J̄ .

2. Basic properties

Let us first recall some basic definitions from Huneke and Swanson (2006).

Definition 2.1. Let I be an ideal in a ring R . An element r ∈ R is said to be integral over I if there 
exists an integer n and elements ai ∈ I i , i = 1, . . . , n, such that

rn + a1rn−1 + a2rn−2 + · · · + an−1r + an = 0.

The set of all integral elements over I is called the integral closure of I and is denoted by Ī . If I = Ī , 
then I is called integrally closed. Let J be an ideal satisfying I ⊂ J , we say that J is integral over I if 
J ⊂ Ī .

Definition 2.2. Let k be a field and R be the polynomial ring k[x1, . . . , xd]. For any monomial 
m = xn1

1 xn2
2 · · · xnd

d , its exponent vector is (n1, . . . , nd) ∈ Nd . For any monomial ideal I , the set of all 
exponent vectors of all the monomials in I is called the exponent set of I.
2
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The integral closure of a monomial ideal in a polynomial ring is still a monomial ideal (Huneke 
and Swanson, 2006, Proposition 1.4.2). The following proposition is useful for computing the integral 
closure of a monomial ideal.

Proposition 2.3 (Huneke and Swanson, 2006, Proposition 1.4.6). The exponent set of the integral closure of a 
monomial ideal I equals all the integer lattice points in the convex hull of the exponent set of I .

3. Counterexamples to Krull’s question

In this section, we answer Krull’s question negatively by giving a sequence of primary ideals 
whose integral closures are not primary. We also show that the Jacobian ideal of the ideal defined by 
f (x, y, z, t) = x6 + y6 + x4zt + z3 is another counterexample to Krull’s question.

3.1. A set of counterexamples to Krull’s question

Let I = 〈x3, y3, x2 y, x2z − xy2〉 and Ī be the integral closure of I . Integral closure of ideals can be 
computed by the algorithm in de Jong (1998), and primary decomposition of ideals can be computed 
by classical algorithms in Gianni et al. (1988), Eisenbud et al. (1992), Shimoyama and Yokoyama 
(1996); all these algorithms have been implemented in Macaulay2 (Grayson and Stillman, 2022). From 
the computation result of Macaulay2, we get

Ī = 〈x3, y3, x2 y, x2z, xy2〉.
The ideal Ī has an irredundant primary decomposition:

Ī = 〈x2, y3, xy2〉 ∩ 〈x3, y, z〉,
which implies that Ī is not primary. In fact, we found that this ideal is a special case of a sequence of 
counterexamples in the following theorem.

Theorem 3.1. Let k[x, y, z] be a polynomial ring over a field k. Let n be a positive integer, and

I = 〈x3, y3, x2 y, x2zn − xy2〉
be a polynomial ideal in k[x, y, z]. Then the ideal I is primary and its integral closure

Ī = 〈x3, y3, x2 y, x2zn, xy2〉
is not primary.

Theorem 3.1 follows from three claims below.

• Claim 1. The ideal I = 〈x3, y3, x2 y, x2zn − xy2〉 ⊂ k[x, y, z] is primary, where n ∈Z+ .
Proof of Claim 1.1

First, we prove that I : z∞ = I . Let T be a new variable. It follows from Cox et al. (2015, Chapter 4, 
§ 4, Theorem 14) that

I : z∞ = (I + 〈zT − 1〉) ∩ k[x, y, z].
One can verify that G = {x3, x2 y, xy2 − x2zn, y3, zT −1} is a Gröbner basis of the ideal I +〈zT −1〉
with respect to the lexicographic order T > y > x > z. Then

1 This proof is suggested by an anonymous referee. We thank Sizhuo Yan for pointing out the lexicographic order y > x > z
and Hao Liang for sharing his knowledge about graded rings and quasi-homogeneous ideals.
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G ∩ k[x, y, z] = {x3, x2 y, xy2 − x2zn, y3}
is a Gröbner basis of the ideal I : z∞ , which implies that I : z∞ = I .
Suppose that the ideal I has an embedded prime P1 �

√
I = 〈x, y〉. Then P1 is quasi-

homogeneous since I is quasi-homogeneous with deg x = deg y = n and deg z = 1 (see e.g. Bruns 
and Herzog, 1993, Lemma 1.5.6). Therefore, we have P1 = 〈x, y, z〉 because 〈x, y, z〉 is the only 
quasi-homogeneous prime ideal that properly contains 〈x, y〉. By the first uniqueness theorem of 
primary decomposition (see e.g. Atiyah and Macdonald, 1969, Theorem 4.5), we have P1 = √

I : f
for some f ∈ k[x, y, z] and f /∈ I . Then there is a positive integer m such that zm ∈ (I : f ), which 
implies that zm f ∈ I and f ∈ I : zm ⊂ I : z∞ = I . This is a contradiction. Claim 1 is proved. �

• Claim 2. For n ∈Z+ , the integral closure of the ideal I = 〈x3, y3, x2 y, x2zn − xy2〉 ⊂ k[x, y, z] is

Ī = 〈x3, y3, x2 y, x2zn, xy2〉.
Proof of Claim 2. Let I1 = 〈x3, y3〉 ⊂ I . By Proposition 2.3, the monomial xy2 is in the integral 
closure of I1, which implies that xy2 is in the integral closure of I . Therefore I + 〈xy2〉 ⊂ Ī . On 
the other hand, I +〈xy2〉 = 〈x3, y3, x2 y, x2zn, xy2〉, and according to Proposition 2.3, it is integrally 
closed, which leads to I + 〈xy2〉 = Ī . Claim 2 is proved. �

• Claim 3. The ideal Ī = 〈x3, y3, x2 y, x2zn, xy2〉 ⊂ k[x, y, z] is not primary, where n ∈Z+ .
Proof of Claim 3. Because x2zn ∈ Ī while x2 /∈ Ī and (zn)m /∈ Ī for any m ∈ Z+ , the ideal Ī is not 
primary. Claim 3 is proved. �

In contrast, there exist non-primary ideals whose integral closures are primary. For instance,

I = 〈x2, y2, xyz〉 = 〈x2, xy, y2〉 ∩ 〈x2, y2, z〉
is not primary. By Proposition 2.3, its integral closure is

Ī = 〈x2, y2, xy〉,
which is primary.

3.2. Another counterexample related to Whitney equisingularity

The following example was given in Briançon and Speder (1975) by Briançon and Speder to show 
that Whitney equisingularity does not imply Zariski equisingularity. We show that the Jacobian ideal 
J of f is primary and its integral closure J̄ is not, which gives another counterexample to Krull’s 
question. Moreover, the embedded prime of J̄ happens to be the vanishing ideal of the points where 
Whitney equisingularity fails.

Example 3.2. Let f = x6 + y6 + x4zt + z3 ∈Q[x, y, z, t], and its Jacobian ideal

J = 〈x4t + 3z2, x4z, y5, 3x5 + 2x3zt〉 ⊂ Q[x, y, z, t].
We verified by Macaulay2 that J is a primary ideal of Q[x, y, z, t], while its integral closure J̄ in 
Q[x, y, z, t] is not primary, where

J̄ = 〈3x2 yz + 2yz2t, 3x3z + 2xz2t, x4t + 3z2, y4z, x4z, y5, 3x2 y3 + 2y3zt,

3x3 y2 + 2xy2zt, 9x4 y − 4yz2t2, 3x5 + 2x3zt, x3 yzt, x4 y2,

4y3zt3 + 27y3z, xy3zt2, 2x3 y2t2 − 9xy2z, 4xy4t3 + 27xy4〉.
The associated primes of J̄ are

〈z, y, x〉 and 〈z, y, x, 4t3 + 27〉.

4
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As suggested by one of the anonymous referees, one can treat Example 3.2 without using 
Macaulay2. First, one proves that the Jacobian ideal J of f is primary by the following argument: 
the associated primes of J in C[x, y, z, t] are binomial according to Eisenbud and Sturmfels (1996, 
Theorem 6.1) (also Swanson and Sáenz-de Cabezón, 2017, Theorem 18), and (t − c) is not a zero-
divisor of C[x, y, z, t]/ J for any c 	= 0. Then one shows that 4t3 + 27 is contained in one of the 
associated primes of J̄ by verifying that (4t3 + 27)xz2 ∈ J̄ and xz2 /∈ J̄ .

Since the polynomial f = x6 + y6 + x4zt + z3 is a classical example in the literature (Briançon 
and Speder, 1975; Parusiński and Păunescu, 2017; Wall, 2010; Zariski, 1977), let us investigate its 
properties by the integral closure of the Jacobian ideal of f .

Theorem 3.3. Let f = x6 + y6 + x4zt + z3 , V 1 be the hypersurface defined by f = 0, V 2 be the singular 
locus of V 1 , and V 3 be the variety of 〈x, y, z, 4t3 + 27〉. The pair (V 1 \ V 2, V 2) does not satisfy Whitney’s 
condition (a) and (b) at the points in V 3.

Proof. Since Whitney’s condition (b) implies Whitney’s condition (a), we only need to prove that the 
pair (V 1 \ V 2, V 2) does not satisfy Whitney’s condition (a).

Let p = (0, 0, 0, ξ) be a point in V 3, where ξ = (− 3
√

27/4)ω and ω is one of the cube roots of 
unity, i.e. ω3 = 1. Consider the sequence of points

pε = (ε,0, c ε2, ξ) where ε 	= 0 and c = ( 3
√

1/2)ω2.

Note that ξ = −3c2 and c3 = 1/2. For any ε 	= 0, we have pε ∈ V 1 \ V 2 and pε → p, as ε → 0. One 
can verify that V 2 = {(0, 0, 0, t) ∈C4} and T pε

V 1 = {(x, y, z, t) ∈C4 | t = 0}, and therefore T p V 2 = V 2
is not contained in the limit of T pε

V 1 as ε → 0. �
One can verify by the criterion in Ðinh and Jelonek (2021, Lemma 2.8) and/or the algorithm in 

Helmer and Nanda (2022) that V 3 contains all the points where (V 1, V 1 \ V 2) fails Whitney’s condi-
tions.

We also noticed that this example implies that the stratification defined by isosingular sets 
(Hauenstein and Wampler, 2013) is different from Whitney stratification: one can stratify V 1 as 
(V 1 \ V 2) ∪ (V 2 \ {0}) ∪ {0} by isosingular sets, which does not exclude V 3 from V 2.
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