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Abstract

The problem of computing approximate GCDs of several polynomials with real or
complex coefficients can be formulated as computing the minimal perturbation such
that the perturbed polynomials have an exact GCD of given degree. We present
algorithms based on SOS (Sums Of Squares) relaxations for solving the involved
polynomial or rational function optimization problems with or without constraints.
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1 Introduction

The problem of computing approximate GCDs of several polynomials f1, . . . , fs

∈ F [z1, . . . , zt], where F is R or C can be written as computing the minimal
perturbation such that the perturbed polynomials have an exact GCD of total
degree k ≥ 1,

r∗ := min
p,u1,...,us

‖f1 − p · u1‖
2
2 + ‖f2 − p · u2‖

2
2 + · · ·+ ‖fs − p · us‖

2
2 (1)

where p, u1, . . . , us ∈ F [z1, . . . , zt] are polynomials with the total degrees
tdeg(p) = k, tdeg(p · ui) ≤ di = tdeg(fi) for 1 ≤ i ≤ s. The minimization
problem has many different formulations, and various numeric optimization
techniques have been proposed, see (Chin et al., 1998; Kaltofen et al., 2006a)
and references therein. The optimization problem has a global solution under
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certain conditions given in (Kaltofen et al., 2006b). In particular, an algorithm
based on global minimization of rational function was proposed in (Karmarkar
and Lakshman Y. N., 1996, 1998) to compute approximate GCDs of univari-
ate polynomials. The most expensive part of their algorithm is to find all the
real solutions of two bivariate polynomials of high degrees. It has been shown
in (Nie et al., 2008) that SOS (Sums Of Squares) relaxation (Lasserre, 2001;
Parrilo, 2000) can be used to find the global minimum of the rational func-
tion that arises from the approximate GCD computation. The SOS programs
can be solved by reformulating them as semidefinite programs (SDP), which
in turn are solved efficiently by using interior point methods (Nesterov and
Nemirovskii, 1994; Vandenberghe and Boyd, 1996; Wolkowicz et al., 2000). In
the following sections, we apply SOS relaxations to solve different optimiza-
tion problems formulated in (Chin et al., 1998; Karmarkar and Lakshman Y.
N., 1996, 1998; Kaltofen et al., 2006a; Nie et al., 2008). The sparsity of the
optimization problem has also been exploited.

2 Minimization problems

In this section, we formulate the approximate GCD problem as polynomial or
rational function minimization problem with or without constraints. The SOS
relaxations are used to solve these optimization problems. We refer to (Parrilo
and Sturmfels, 2003; Parrilo, 2000; Lasserre, 2001; Nie et al., 2008; Jibetean
and de Klerk, 2006) for description of SOS relaxations and their dual problem.

2.1 Polynomial minimization problem

The minimization problem (1) is a nonlinear least squares problem. As shown
in (Chin et al., 1998), if a good initial guess is taken, then Newton-like opti-
mization method or Levenberg-Marquardt method can converge very fast to
the global optimum. However, if we start with poor initial guess, then these
methods may converge to local minimum after taking a large number of iter-
ations.

An entirely different approach was introduced by Shor (Shor, 1987; Shor and
Stetsyuk, 1997) and further developed by Parrilo (Parrilo, 2000; Parrilo and
Sturmfels, 2003) and Lasserre (Lasserre, 2001). The idea is to express the
problem (1) as a polynomial minimization problem r∗ = minX∈Rn f(X) and
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relax it to the following SOS program:

r∗sos := sup
r∈R,W

r

s.t. f(X) − r = md(X)T Wmd(X),

W � 0,





(2)

where W is a real symmetric positive semidefinite matrix.

The objective polynomial corresponding to the minimization problem (1) is

f(X) =
s∑

i=1

‖fi − p · ui‖
2
2 =

s∑

i=1

∑

|α|≤di

|fi,α −
∑

β+γ=α

pβui,γ|
2. (3)

Denote the numbers of indeterminates in the coefficients of p, u1, . . . , us by
n(p), n(u1), . . . , n(us) respectively (see Remark 2.1 for details). Then md(X)

is the column vector of all monomials up to degree d = ⌈ tdeg(f)
2

⌉ = 2 in the
variables

X = {p1, . . . , pn(p)} ∪ (
s⋃

i=1

{ui,1, . . . , ui,n(ui)}). (4)

The number of variables is n = n(p)+
∑s

i=1 n(ui). The length of real symmetric

matrix W is
(

n+2
2

)
and there are

(
n+4

4

)
equality constraints in (2).

Remark 2.1 If F = R, the coefficients of p, ui are real numbers and therefore
n(p) =

(
t+k

t

)
, n(ui) =

(
t+di−k

t

)
. If F = C, we can assume that at least one

coefficient of p is a real number and have n(p) = 2
(

t+k

t

)
− 1, n(ui) = 2

(
t+di−k

t

)

by separating real and imaginary parts of each complex coefficient. In the
univariate case (t = 1), we can assume that p is monic, then n(p) is k in the
real case or 2k in the complex case.

Write f(X) =
∑

α fαXα, then the dual SDP problem of the SOS program (2)
can be described as (Lasserre, 2001):

r∗mom := inf
y

∑

α

fαyα

s.t. y0,...,0 = 1,

Md(y) � 0,





(5)

where Md(y) := (yα+β)0≤|α|,|β|≤d is called the d-th moment matrix of the
real vector y. The SOS program (2) has a feasible solution with r = 0, and
r∗ ≥ r∗sos = r∗mom according to (Lasserre, 2001). When the computed moment
matrix Md(y

∗) satisfies some flat extension conditions, the global minimum is
achieved and some global minimizers can be extracted numerically by solving
an eigenvalue problem (Henrion and Lasserre, 2005).
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2.2 Rational function minimization

Let fi,ui,p be the coefficient vectors of polynomials fi, ui, p respectively, and
let Ai = Ai(p) be the convolution matrices such that Aiui produces the coeffi-
cient vector of p·ui. Then the straight-forward formulation of the minimization
problem (1) can be written as

min
p,u1,...,us

‖f1 − A1u1‖
2
2 + · · · + ‖fs − Asus‖

2
2. (6)

If we fix the coefficients of p, the minimum is achieved at

ui := (A∗
i Ai)

−1A∗
i fi, 1 ≤ i ≤ s, (7)

and the minimization problem becomes

min
p

s∑

i=1

(fi
∗fi − fi

∗Ai(A
∗
i Ai)

−1A∗
i fi). (8)

Here and hereafter A∗
i and fi

∗ denote the conjugate transpose of Ai and fi re-
spectively. This is an unconstrained minimization problem of rational function
with the positive denominator

lcm(det(A∗
1A1), . . . , det(A∗

sAs)).

It generalizes the formulations presented in (Chin et al., 1998; Hitz and Kaltofen,
1998; Karmarkar and Lakshman Y. N., 1996, 1998; Zhi and Wu, 1998; Zhi
et al., 2004) for computing approximate GCDs of univariate polynomials and
in (Hitz et al., 1999) for computing nearest bivariate polynomials with a linear
(or fixed degree) factor.

Express the minimization problem (8) as minX∈Rn
f(X)
g(X)

, where f(X), g(X) ∈

R[X1, . . . , Xn] and g(X) is a real positive definite polynomial. Similar to the
polynomial minimization problem, it can be transferred to a constrained SOS
program (Nie et al., 2008):

r∗sos := sup
r∈R,W

r

s.t. f(X) − rg(X) = md(X)T Wmd(X),

W � 0.





(9)

Here X = {p1, . . . , pn(p)}, and md(X) is the column vector of all monomials up

to degree d = ⌈max(tdeg(f),tdeg(g))
2

⌉ where tdeg(f) ≤ tdeg(g) ≤ 2
∑s

i=1

(
t+di−k

t

)
.

The length of the real symmetric matrix W is
(

n+d

n

)
and there are

(
n+2d

n

)

equality constraints in (9) for n = n(p). It can be seen that there is a trade
off between choosing the number of variables and the degrees of polynomials.
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Example 2.1 Consider two polynomials

f1(z) = z(z + 1)2, f2(z) = (z − 1)(z + 1)2 + 1/10

and k = 2, F = R. Solving the SOS program (2) and its dual problem with

f(X) = ‖f1 − p · u1‖
2
2 + ‖f2 − p · u2‖

2
2 = p2

1u
2
1,1 + (1 − p1u1,2 − p2u1,1)

2

+ (2 − p2u1,2 − u1,1)
2 + (1 − u1,2)

2 + (−9/10 − p1u2,1)
2

+ (−1 − p1u2,2 − p2u2,1)
2 + (1 − u2,1 − p2u2,2)

2 + (1 − u2,2)
2,

we get the minimal value r∗sos ≈ 9.3876e − 4. The length of the matrix W in
the corresponding SDP problem (2) is 28. From the optimal dual solutions, we
find that the global minimum is achieved and the minimizer can be extracted:

X∗ ≈ (0.9335, 1.9778, 0.02569, 1.0013,−0.9739, 0.9975).

It corresponds to the monic approximate GCD

p(z) ≈ 0.9335 + 1.9778z + z2

with cofactors u1(z) ≈ 0.02569 + 1.0013z, u2(z) ≈ −0.9739 + 0.9975z.

Solving the SOS program (9) and its dual problem with

f(X) = 12/5p2p1 + 7p4
1 + 281/100p4

2 − 281/50p2
2p1 + 11/5p2

1p
2
2

− 6p3
2 + 9/5p3

1 + 981/100p2
1 + 581/100p2

2 + 281/100

− 6p2p
2
1 − 9/5p3

2p1 + 9/5p1 − 2p2 − 2p2p
3
1,

g(X) = p4
1 + p2

1p
2
2 + 2p2

1 + p4
2 + p2

2 + 1 − 2p2
2p1,

we get the minimal value r∗sos ≈ 9.3876e − 4. The length of the matrix W
in the corresponding SDP problem (9) is 6. From the optimal dual solutions,
we can extract the minimizer X∗ ≈ (0.9335, 1.9778). Evaluating the rational
function at X∗ shows that

f(X∗)

g(X∗)
≈ 9.3876e − 4 ≈ r∗sos,

which implies that X∗ is the global minimizer. It corresponds to the same
monic approximate GCD p(z).

Example 2.2 Consider two polynomials

f1(z1, z2) = z2
1 + 2z1z2 + z2

2 − 1, f2(z1, z2) = z2
1 + z1z2 − z2 − 1.01
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and k = 1, F = R. Solving the SOS program (2) and its dual problem with

f(X) = ‖f1 − p · u1‖
2
2 + ‖f2 − p · u2‖

2
2 = (−1 − p1u1,1)

2 + (−p1u1,3 − p3u1,1)
2

+ (−p1u1,2 − p2u1,1)
2 + (2 − p2u1,3 − p3u1,2)

2 + (1 − p3u1,3)
2

+ (1 − p2u1,2)
2 + (−1.01 − p1u2,1)

2 + (−p1u2,3 − p3u2,1)
2 + p2

2u
2
2,2

+ (−1 − p1u2,2 − p2u2,1)
2 + (1 − p2u2,3 − p3u2,2)

2 + (1 − p3u2,3)
2,

we get the minimal value r∗sos ≈ 3.89306e− 5. The length of the matrix W in
the corresponding SDP problem (2) is 55.

Solving the SOS program (9) and its dual problem with

f(X) = −20.02p2p
3
3p

2
1 + 26.0804p2

1p
2
3p

2
2 − 22.04p3p2p

4
1 − 22.02p3p

3
2p

2
1

+ 5.98p4
1p

2
2 + 9p4

1p
2
3 + 6.0001p2

1p
4
2 + 10.0201p2

1p
4
3 + 13.0402p4

2p
2
3

+ 14.0402p2
2p

4
3 + 8p6

1 + 4.0201p6
2 + 4.0201p6

3 − 10p3
3p

3
2 − 6p2p

5
3

− 4p3p
5
2 − 6.04p3p

3
1p

2
2 − 2p2p

4
3p1 − 6.02p1p3p

4
2 − 4.02p1p

3
3p

2
2

− 2.02p3
1p

3
3 − 2.02p1p

5
3 + 2p2p

5
1 + 2p3

2p
3
1 + 2p1p

5
2,

g(X) = p6
1 + 2p4

1p
2
2 + 2p4

1p
2
3 + 2p2

1p
4
2 + 5p2

1p
2
3p

2
2 + 2p2

1p
4
3 + p6

2 + 2p4
2p

2
3

+ 2p2
2p

4
3 + p6

3,

we get the minimal value

r∗sos ≈ 3.89306e − 5.

Here f(X), g(X) are homogeneous polynomials in the coefficients of p. The
length of the matrix W in the corresponding SDP problem (9) is 10. From the
optimal dual solutions, we get an approximate GCD

p(z) ≈ 1.00199 + 0.99937z2 + z1.

Example 2.3 Consider two polynomials

f1(z) = (z − 0.3)(z + 4.6)(z − 1.45)(z + 10),

f2(z) = (z − 0.301)(z + 4.592)(z − 1.458)(z − 0.6)(z − 15)(z + 2)

and k = 3, F = R. Solving the SOS program (2) and its dual problem we
get r∗sos ≈ 0.0156. The length the of matrix W in the corresponding SDP
problem (2) is 55. Solving the SOS program (9) and its dual problem we
get the minimal value r∗sos ≈ 0.0156. The length of the matrix W in the
corresponding SDP problem (9) is 84.

Example 2.4 (Kaltofen et al., 2006a) Consider two polynomials

f1(z) = 1000z10 + z3 − 1, f2(z) = z2 −
1

100
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and k = 1, F = R. Solving the SOS program (9) and its dual problem we
get r∗sos ≈ 0.042157904. The length of matrix W in the corresponding SDP
problem (9) is 13. It was shown in (Kaltofen et al., 2006a) that after about
ten iterations in the average, the STLN algorithm converges to the following
local minima:

0.0421579, 0.0463113, 0.0474087, 0.0493292, . . .

for different initializations.

Example 2.5 (Kaltofen et al., 2006b) Consider two polynomials

f1(z) = z2 + 2z + 1, f2(z) = z2 − 2z + 2

and k = 1, F = R. Let p(z) = p1 + z, u1(z) = u1,1 + u1,2z, u2(z) = u2,1 + u2,2z.
Solving the SOS program (2) and its dual problem we get r∗sos ≈ 2.000569 and
an approximate GCD

p(z) ≈ z − 14686.677911.

Solving the SOS program (9) and its dual problem with

f(X)

g(X)
=

(p2
1 − 2p1 + 1)2 + (p2

1 + 2p1 + 2)2

1 + p2
1 + p4

1

=
12p2

1 + 4p1 + 3

1 + p2
1 + p4

1

+ 2,

we get the minimal value r∗sos ≈ 2.000000, but extract no minimizers. The
global minimum r∗ = 2 is only an infimum, f(X)−r∗g(X) = 12(p1+1/6)2+8/3
is an SOS, and there are no global minimizers.

2.3 Minimization problem with constraints

As in (Kaltofen et al., 2006a,b), the problem of computing approximate GCDs
of several polynomials can also be formulated as

min
∆c

‖∆c‖2
2

s.t. Sk(c + ∆c)x = 0, ∃ x 6= 0,




 (10)

where c is the coefficient vector of f1, . . . , fs, the perturbations to the poly-
nomials are parameterized via the vector ∆c, and Sk(c + ∆c) is the multi-
polynomial generalized Sylvester matrix (Kaltofen et al., 2006a). The min-
imization problem (10) is a quadratic optimization problem with quadratic
constraints.

Similar to the method used in (Kaltofen et al., 2006a,b), we can choose a
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column of Sk and reformulate the problem as

min
∆c,x

‖∆c‖2
2 + ρ‖x‖2

2

s.t. A(c + ∆c)x = b(c + ∆c).



 (11)

Two alternative formulations are

min
∆c,x

‖∆c‖2
2

s.t. Sk(c + ∆c)x = 0,

‖x‖2
2 = 1,





(12)

and
min
∆c,x

‖∆c‖2
2 + ρ‖x‖2

2

s.t. Sk(c + ∆c)x = 0,

vT x = 1,





(13)

where ρ is a small positive number and v is a random vector. The dimensions
of the vectors ∆c, x are

∑s
i=1

(
t+di

t

)
and

∑s
i=1

(
t+di−k

t

)
respectively.

Let us describe the polynomial minimization problem with constraints as:

min
X∈Rn

∑

α

fαXα

s.t. h1(X) ≥ 0, . . . , hl(X) ≥ 0.





(14)

We can reformulate it as a convex LMI (Linear Matrix Inequality) optimization
problem (or semidefinite program):

inf
y

∑

α

fαyα

s.t. y0,...,0 = 1,

Md(y) � 0,

Md−wi
(hiy) � 0, 1 ≤ i ≤ l,






(15)

where wi := ⌈ tdeg(hi)
2

⌉ for 1 ≤ i ≤ l, d ≥ max(⌈ tdeg(f(X))
2

⌉, w1, . . . , wl), the
moment matrix Md(y) and localizing matrices Md−wi

(hiy) of real vector y are
defined in (Lasserre, 2001).

Example 2.6 Consider two polynomials

f1(z) = z3 − 1, f2(z) = z2 − 1.01

and k = 1, F = R, ρ = 10−6. We choose the first column of S1 to be b
and the remaining columns to be matrix A. For minimization problem (11),
the minimal perturbation computed by the first-order (d = 1) semidefinite
programs is 9.9673e−6. The length of the matrix involved in the corresponding
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SDP is 152. The minimal perturbation computed by the second-order (d = 2)
semidefinite program is 2.0871e− 5. The length of the matrix involved in the
corresponding SDP is 6476. The minimizer can be extracted by the second-
order semidefinite program.

For minimization problem (12), the lower bounds given by the first and second
order semidefinite programs are 0 and 2.0852e−5 respectively. Here we notice
that one feasible solution corresponding to the first-order relaxation in the
homogenous model (12) is ∆c = 0, x = [0, 1]T with objective value zero.

As pointed out by Erich Kaltofen, if we want to compute the lower bound
for the minimization problem (10) by solving problem (11), we have to try
all the possible selection of b, which is very time consuming. So we suggest
the formulation (13). For minimization problem (13), the lower bounds given
by the first and second order semidefinite programs depend on the choice
of random vector v. The obtained lower bounds are around 10−6 and 10−5

respectively.

The experiments show that the first-order semidefinite programs give us some
useful information on the minimal perturbations. Although we may compute
the global minimizer from high-order semidefinite programs, the sizes of the
matrices increase quickly.

3 Exploiting sparsity in SOS relaxation

In this section, we investigate how to reduce the size of the SOS program
by exploiting the special structures of the minimization problems involved in
the approximate GCD computation. Examples 2.1 and 2.2 show that the SOS
relaxations are dense for the rational function formulation. So in the following,
we only exploit the sparsity in the polynomial formulation SOS program (2).
The same technique can be applied to solve Problem (10).

3.1 Exploiting Newton polytope

There are algorithms in (Parrilo, 2000; Kojima et al., 2005; Waki et al., 2006)
that remove redundant monomials by exploiting sparsity in the SOS programs.
However, it is quite expensive to compute the structured sparsity for problems
having large size, whereas the sparsity structure of the approximate GCD
problem (1) is obvious and can be analyzed easily.

Given a polynomial p(x) =
∑

α pαxα, the cage of p, C(p), is the convex hull of
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supp(p) = {α|pα 6= 0}. Denote the convex hull of the degrees α by H(·).

Theorem 3.1 (Reznick, 1978) For any polynomial p, C(p2) = 2C(p); for
any positive semidefinite (PSD) polynomials f and g, C(f) ⊆ C(f + g); if
f =

∑
j g2

j then C(gj) ⊆
1
2
C(f).

Corollary 3.2 For any PSD polynomials f and g, C(f + g) = H(supp(f) ∪
supp(g)); if f =

∑
j g2

j then C(f) = 2H(
⋃

j supp(gj)).

Proof. Since f and g are PSD polynomials, according to Theorem 3.1, we have
supp(f) ∪ supp(g) ⊆ C(f) ∪ C(g) ⊆ C(f + g). From

C(f + g) = H(supp(f + g)) ⊆ H(supp(f) ∪ supp(g)) ⊆ C(f + g),

it is clear that C(f + g) = H(supp(f) ∪ supp(g)).

If f =
∑

j g2
j , we have C(g2

j ) = 2C(gj) according to Theorem 3.1. Because
C(gj) = H(supp(gj)) ⊆ H(

⋃
j supp(gj)), so H(

⋃
j C(gj)) = H(

⋃
j supp(gj)).

Then

C(f) = H(
⋃

j

supp(g2
j )) = H(

⋃

j

C(g2
j )) = 2H(

⋃

j

C(gj)) = 2H(
⋃

j

supp(gj)).

2

The SOS program (2) is to compute polynomials vj(X) such that

f(X) − r = md(X)T Wmd(X) =
∑

j

vj(X)2.

Let Xσ be any monomial in vj. By Theorem 3.1 and Corollary 3.2, we have

σ ∈
1

2
C(f(X) − r) = H(O ∪ (

s⋃

i=1,|α|≤di

supp(fi,α −
∑

β+γ=α

pβui,γ))),

where O is the origin. If there exists nonzero constant term in the coefficients
pβ, the monomials existing in fi,α −

∑
β+γ=α pβui,γ, 1 ≤ i ≤ s, |α| ≤ di are

1, p1u1,1, . . . , p1us,n(us), . . . , pn(p)u1,1, . . . , pn(p)us,n(us), u1,1, . . . , us,n(us), (16)

let pn(p)+1 = 1 and n1(p) = n(p) + 1. Otherwise all existing monomials are

1, p1u1,1, . . . , p1us,n(us), . . . , pn(p)u1,1, . . . , pn(p)us,n(us), (17)

let n1(p) = n(p). According to the property of convex hull, there exist λj,i,k ≥ 0
for 1 ≤ j ≤ n1(p), 1 ≤ i ≤ s, 1 ≤ k ≤ n(ui) such that

∑
i,j,k λj,i,k ≤ 1 and

Xσ =
∏

i,j,k

(pjui,k)
λj,i,k =

∏

j

p
ej

j

∏

i,k

u
ei,k

i,k .
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Because the exponents ej , ei,k are nonnegative integers and
∑

j ej =
∑

i,k ei,k =∑
i,j,k λj,i,k ≤ 1, so the monomial Xσ can only be 1 or pjui,k for some j, i, k and

only these monomials are needed in the SOS program (2). The sparse SOS
program of the approximate GCD problem (1) is:

r∗sos1 := sup
r∈R,W

r

s.t. f(X) − r = mG(X)T WmG(X),

W � 0,





(18)

where mG(X) = [1, p1u1,1, . . . , p1us,n(us), . . . , pn1(p)u1,1, . . . , pn1(p)us,n(us)]
T . Let

n(u) =
∑s

i=1 n(ui), then the length of the real symmetric matrix W is 1 +

n1(p)n(u) and there are 1+n1(p)n(u)+
(

n1(p)+1
2

)(
n(u)+1

2

)
equality constraints.

3.2 Extract solutions in sparse case

The dual SDP problem of the sparse SOS program (18) is:

inf
y

∑

α

fαyα

s.t. y0,...,0 = 1,

MG(y) � 0,





(19)

where the moment matrix MG(y) := (yα+β)α,β∈G and its rows and columns
correspond to the monomial vector mG(X).

Suppose the moment matrix evaluated at the optimal solution y∗ is written

as MG(y∗) =




1 γT
1

γ1 M1


 , and we have the Cholesky factorization M1 = V V T .

For any vector γ satisfying V T γ = 0, we have γT [−γ1, I]MG(y∗)[−γ1, I]T γ =
−(γT

1 γ)2 ≥ 0, hence γT
1 γ = 0. So there exists a vector γ2 such that γ1 = V γ2,

and

MG(y∗) =



γT

2

V




[
γ2 V T

]
+



1 − γT

2 γ2 0

0 0


 .

It can be seen that 1−γT
2 γ2 = γT MG(y∗)γ ≥ 0 with γ = [1,−γT

2 (V T V )−1V T ]T .
We denote c = rank(M1).

If rank(MG(y∗)) > c, then 1 − γT
2 γ2 > 0 and y = [1, 0, . . . , 0]T is an optimal

solution of the sparse SDP problem (19). The global minimum is achieved
and X∗ = 0 is a global minimizer. If rank(MG(y∗)) = c, then γT

2 γ2 = 1. It
corresponds to the general case for the approximate GCD problem (1).
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If c = 1, we write V as vector [v1,1, . . . , v1,n(u), . . . , vn1(p),1, . . . , vn1(p),n(u)]
T and

rearrange its elements to define a matrix B = (vi,j)n1(p)×n(u). From the struc-
ture of the moment matrix and M1 = V V T , we have vi1,j1vi2,j2 = vi1,j2vi2,j1

for any 1 ≤ i1, i2 ≤ n1(p), 1 ≤ j1, j2 ≤ n(u). Therefore any two columns of
the matrix B are linearly dependent. Hence rank(B) = 1, the global mini-
mum is achieved, and one global minimizer can be extracted by decomposing
B/γ2 = [p1, . . . , pn1(p)]

T [u1,1, . . . , us,n(us)].

If c > 1, we do not have sufficient conditions for global optimality like the
flat extension conditions in (5) for the sparse SDP problem (19). However, we
can assume that the global optimality is achieved (see Remark 4.2) and try
to extract some solutions X∗(j) by a method similar to the one in (Henrion
and Lasserre, 2005). Therefore we apply Gauss-Newton iterations to refine
the solutions (see Remark 4.1). If f(X∗(j)) is approximately equal to r∗sos1, we
know that the global minimum is achieved approximately since f(X∗(j)) ≥
r∗ ≥ r∗sos1.

The extracting method is described below. Suppose

[γ2, V
T ]T [γ2, V

T ] = V ∗(V ∗)T , V ∗ = [η1mG(X∗(1)), . . . , ηcmG(X∗(c))].

We write V as [V1, . . . , Vn1(p)]
T and V1, . . . , Vn1(p) are c × n(u) matrices. If

n1(p) = n(p) + 1, then set V0 = Vn1(p). Otherwise, we have n1(p) = n(p), let

V0 =
∑n(p)

i=1 θiVi be a random combination and assume
∑n(p)

i=1 θipi = 1 for all so-
lutions. Consider the matrix Ṽ = [V0, V1, . . . , Vn(p), γ2]

T and its corresponding
monomial vector m(X) = [u1,1, . . . , us,n(us), p1u1,1, . . . , p1us,n(us), . . . , 1]T .

If rank(V0) = c, we reduce Ṽ to column echelon form U by Gaussian elim-
ination with column pivoting, and suppose all the pivot elements in U (i.e.
the first non-zero elements in each column) correspond to monomial basis
w = [ui1,k1

, . . . , uic,kc
]T . It holds m(X) = Uw for all solutions, so we can

extract from U the multiplication matrix Ni and the vector γ3 such that
piw = Niw and 1 = γT

3 w for i = 1, . . . , n(p).

As in (Henrion and Lasserre, 2005), in order to compute common eigenvalues

pi(j), j = 1, . . . , c, we build a random combination N =
∑n(p)

i=1 λiNi and com-
pute the ordered Schur decomposition N = QTQT (Corless et al., 1997), where
Q = [q1, . . . , qc] is an orthogonal matrix and T is an upper-triangular matrix.
For j = 1, . . . , c, the j-th solution is given by pi(j) = qT

j Niqj, and we obtain
u1,1(j), . . . , us,n(us)(j) by solving Nw = Tj,jw, γT

3 w = 1 and m(X) = Uw. It
should be noticed that the cofactors can also be computed by (7).

Example 3.1 Consider two polynomials

f1(z) = z3 − z, f2(z) = 3z2 − 1

12



and k = 1, F = R. Solving the SOS program (18) and its dual problem (19)
with

mG(X) = [1, p1u1,1, p1u1,2, p1u1,3, p1u2,1, p1u2,2, u1,1, u1,2, u1,3, u2,1, u2,2]
T ,

we get the minimal value r∗sos1 ≈ 0.0991769059 and rank(MG(y∗)) = rank(M1)
= 2. We compute γ2 and V = [V1, V2]

T via SVD. Since rank(V2) = 2, we can
reduce Ṽ = [V2, V1, γ2]

T to U and solve the common eigenvalue problem to get
the values of p1 corresponding to two approximate GCDs z − 0.5878795 and
z + 0.5878795 with cofactors

u1 ≈ 1.0518891z2 + 0.7066490z − 0.4344338, u2 ≈ 2.9913164z + 1.7437641,

u1 ≈ 1.0518891z2 − 0.7066490z − 0.4344338, u2 ≈ 2.9913164z − 1.7437641,

respectively. Applying the Gauss-Newton iterations to refine the results, we
get

f(X∗(1)) ≈ 0.0991769059, f(X∗(2)) ≈ 0.0991769059.

The global minimum is achieved since f(X∗(1)) = f(X∗(2)) ≈ r∗sos1.

3.3 Exploiting correlative sparsity

Since the polynomial f(X) in SOS program (2) is written as

f(X) =
s∑

i=1

‖fi − p · ui‖
2
2,

we can define the subsets

X∆i
= {p1, . . . , pn(p)} ∪ {ui,1, . . . , ui,n(ui)}.

The collections of variables X∆1
, . . . , X∆s

satisfy the following running inter-
section property: for every k = 1, . . . , s − 1,

X∆k+1
∩

k⋃

j=1

X∆j
⊆ X∆i

for some 1 ≤ i ≤ k.

According to (Waki et al., 2006; Lasserre, 2006; Nie and Demmel, 2007), we
are going to find the maximum r such that

r∗sos2 := sup
r∈R,W1,...,Ws

r

s.t. f(X) − r =
s∑

i=1

md(X∆i
)T Wimd(X∆i

),

Wi � 0, 1 ≤ i ≤ s,





(20)

13



where md(X∆i
) is the column vector of all monomials up to degree d = 2. The

length of Wi is
(

n(p)+n(ui)+2
2

)
.

The following sparse SOS program is obtained by considering both the Newton
polytope and correlative sparsity:

r∗sos3 := sup
r∈R,W1,...,Ws

r

s.t. f(X) − r =
s∑

i=1

mGi
(X)T WimGi

(X),

Wi � 0, 1 ≤ i ≤ s,





(21)

where mGi
(X) = [1, p1ui,1, . . . , p1ui,n(ui), . . . , pn1(p)ui,1, . . . , pn1(p)ui,n(ui)]

T and
the length of Wi is 1 + n1(p)n(ui).

3.4 Comparison of sparsity strategies

The relation between the optimums of polynomial minimization problem (1),
the SOS program (2) and the three sparse SOS programs (18),(20),(21) is

r∗ ≥ r∗sos = r∗sos1 ≥ r∗sos2 ≥ r∗sos3.

The sizes of the SDP matrices in the three kinds of sparse SOS programs are:

m1 = (1 + n1(p)n(u))2, m2 =
s∑

i=1

(
n(p)+n(ui)+2

2

)2
, m3 =

s∑

i=1

(1 + n1(p)n(ui))
2.

We have that

s · m2 ≥ s · m3 = s
s∑

i=1

(1 + n1(p)n(ui))
2 ≥ (s + n1(p)n(u))2 ≥ m1 ≥ m3.

We show in Table 1 experiments of applying four kinds of SOS relaxations
(2),(18),(20),(21) to compute an approximate GCD of three pairs of poly-
nomials f1 and f2. We notice that the first and third kinds of sparse SOS
programs can reduce the size of the optimization problem remarkably. How-
ever, the third kind of sparse SOS program can only give a lower bound in
general.

4 Implementation and experiments

The methods described above have been implemented by the first author in
Matlab based on algorithms in SOSTOOLS (Prajna et al., 2004), YALMIP
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Table 1
Comparison of different sparsity SOS programs.

f1 z(z + 1)2 (z + 1)2 z2
1 + 2z1z2 + z2

2 − 1

f2 (z − 1)(z + 1)2 + 0.1 z2 + 2z + 1.01 z2
1 + z1z2 − z2 − 1.01

k 2 1 1

r∗sos 9.3876e-4 3.3167e-5 3.8931e-5

size 785 442 3026

r∗sos1 9.3876e-4 3.3167e-5 3.8931e-5

size 170 82 362

r∗sos2 4.2616e-7 3.3167e-5 3.6525e-6

size 451 201 1569

r∗sos3 1.2123e-10 3.3167e-5 3.6502e-6

size 99 51 201

Table 2
Experimental results of examples in (Chin et al., 1998).

di k polynomial rational poly. sparse Newton STLN

5,4 2 1.620473e-8 1.579375e-8 1.560388e-8 1.560294e-8 1.560294e-8

4,6 3 1.561803e-2 1.561770e-2 1.561754e-2 1.561754e-2 1.561754e-2

3,3 2 1.702596e-2 1.702596e-2 1.702596e-2 1.702596e-2 1.702596e-2

5,5 4 7.086761e-5 7.086331e-5 7.086312e-5 7.086311e-5 7.086311e-5

3,2,3 2 1.729192e-5 1.729175e-5 1.729175e-5 1.729175e-5 1.729175e-5

(Löfberg, 2004) and SeDuMi (Sturm, 1999). We apply Gauss-Newton itera-
tions to improve the accuracy of the results computed by SDP solvers.

In Table 2, we compare the minimal residues achieved by different methods,
for examples in (Chin et al., 1998). The third through the fifth columns are
the minimum residues computed by SOS programs (2),(9),(18) respectively.
The sixth column consists of the minimum residues refined by applying Gauss-
Newton iteration. The last column consists of the minimal residues computed
by STLN method in (Kaltofen et al., 2006a).

Remark 4.1 In our experiments, the fixed precision SDP solvers in Matlab
often encounter numerical problems and the accuracy of the computed results
is not enough. Sometimes the lower bounds r∗sos are even larger than the local
minima computed by STLN method (see the Tables). So we need to apply
Gauss-Newton iterations to refine the global minimizer.
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Table 3
Experimental results of random examples.

n di k rational or poly. sparse Newton STLN

1 65,65 1 7.85073312e-6 7.84895293e-6 7.84895293e-6

20,20 1 8.77479920e-6 8.72559736e-6 8.72559736e-6

19,19 2 6.90363904e-5 6.88055540e-5 6.88055540e-5

15,16 3 5.40141468e-5 5.40041186e-5 5.40041186e-5

15,15 4 2.03530157e-4 2.03408558e-4 2.03408558e-4

14,14 5 1.61530926e-4 1.61402027e-4 1.61402027e-4

13,14 6 3.20576318e-4 3.20568077e-4 3.20568077e-4

13,14 7 1.01396122e-4 1.01208845e-4 1.01208845e-4

13,13 8 2.71981668e-4 2.71825700e-4 2.71825699e-4

10,10 5 1.08249380e-4 1.08207747e-4 1.08207747e-4

6,4 3 1.13839852e-2 1.13839851e-2 1.13839851e-2

3,3 2 1.32223417e-5 1.32185834e-5 1.32185834e-5

3,2 2 5.07694667e-3 5.07694668e-3 5.07694668e-3

2,2 1 1.04706956e-4 1.04706621e-4 1.04706621e-4

2 5,5 1 4.28360491e-4 4.28336831e-4 4.28336831e-4

4,5 2 7.44701587e-4 7.44633647e-4 7.44633647e-4

4,5 3 4.94579319e-6 4.94240926e-6 4.94240926e-6

5,5 4 1.20576057e-5 1.20467080e-5 1.20467080e-5

3,3 2 4.09496306e-6 4.09320783e-6 4.09320783e-6

3,2 2 3.51277009e-4 3.51276829e-4 3.51276829e-4

In Table 3, we show the experimental results of random examples generated
in the same way described in (Kaltofen et al., 2006a). The first example is
solved by the SOS program (9) and the other examples are solved by the SOS
program (18). For these random examples, the ranks of all moment matrices
are one and the global minimum is achieved.

Remark 4.2 In the last two tables, the minimum residues computed by
STLN method (Kaltofen et al., 2006a) are approximately equal to the minima
computed by solving SDP and Gauss-Newton iteration. However, as shown in
Example 2.4, for different initializations, the STLN method may not converge
to global minima, while the results computed by solving SDP are guaranteed
to be global minima since the ranks of the moments are all equal to one in
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these examples.

The results computed by solving SDP are lower bounds. In (Kaltofen et al.,
2008), an efficient algorithm is given to certify the exact lower bounds via
rationalizing SOS obtained from our SDPs for the approximate GCD problem
and other problems.

5 Conclusions

In this paper, we discussed how to solve approximate GCD problem which can
be formulated as an unconstrained quartic polynomial optimization problem
about the coefficients of factor polynomials. This is a nonconvex nonlinear least
squares problem and it is usually very difficult for finding global solutions. This
paper proposed various semidefinite relaxation methods for solving this special
polynomial optimization. The usual SOS relaxation is often very good for
finding global solutions, but it is expensive to solve problems of large sizes. By
exploiting the special sparsity structures of the quartic polynomial arising from
the GCD approximations, we proposed various sparse SOS relaxations based
on different formulations and sparsity techniques. Numerical experiments show
the efficiency of these relaxation methods.

There is a trade-off in choosing these various sparse relaxation methods. The
sparse SOS relaxation (18) is the best in quality (it has the same quality as the
dense SOS relaxations), but it is the most expensive one in these relaxations.
The sparse SOS relaxation (21) has the lowest quality, but it is the cheapest
one and can solve problems of large sizes. In practice, to solve GCD problems
of large sizes, we suggest applying relaxation (21) to find one approximate
solution, and then applying local methods like STLN to refine the solution.

The GCD problem can also be equivalently formulated as an unconstrained
rational function optimization (9). This formulation is faster than the poly-
nomial SOS program (2) when there are only few variables and the degree of
GCD is very small. However, the problem (9) is very difficult to solve when
the GCD problem has large size. It is also an interesting work to exploit the
special structures of (9) to obtain more efficient methods.

The strength of SOS relaxation methods is that they do not require an initial
guess of solutions and can always return a lower bound of the global minimum.
When this lower bound is achieved, we immediately know that the global
solution is found. Our preliminary experiments show that these SOS relaxation
methods work well in solving the GCD problems. They often return global
solutions.
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Our proposed sparse SOS relaxation methods are based on the nonlinear least
squares formulation (1). Since the GCD problem can also be equivalently
formulated as (10), it is also possible to exploit special structure of (10). An
interesting future work is to get more efficient semidefinite relaxations for
(11)-(13) based on their structures.
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