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Improved Two-Step Newton’s Method for Computing
Simple Multiple Zeros of Polynomial Systems

Nan Li · Lihong Zhi

Abstract Given a polynomial system f that is associated with an isolated singu-
lar zero ξ whose Jacobian matrix is of corank one, and an approximate zero x that
is close to ξ, we propose an improved two-step Newton’s method for refining x to
converge to ξ with quadratic convergence. Our new approach is based on a closed-
form basis of the local dual space and a recursive reduction of the simple multiple
zero. By avoiding solving several least-squares problems appeared in the previous
methods, an overall 2×-5× acceleration is achieved. The proof of the quadratic
convergence of proposed iterations is also simplified significantly. Numerical exper-
iments demonstrate up to 100× speed-up when we replace the least-squares-solving
calculations with closed-form solutions for refining approximate singular solutions
of large-size problems (1000 equations and 1000 variables).

Keywords polynomial system, simple multiple zero, Newton’s method, quadratic
convergence

1 Introduction

Consider a square polynomial system f = {f1, . . . , fn}, where fi ∈ C[X1, . . . , Xn]
for i = 1, . . . , n, and a zero ξ ∈ Cn of f = 0. Let Df(ξ) denote the Jacobian matrix
of f evaluated at ξ.

When Df(ξ) is invertible, then Newton’s method

N(f, x) = x−Df(x)−1f(x) (1)
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starting from an approximate zero x that is sufficiently close to ξ will converge to
ξ quadratically, namely,

‖N(f, x)− ξ‖ = O
(
‖x− ξ‖2

)
, (2)

where O(g) denotes that the value is bounded above by g up to a positive constant.
When Df(ξ) is not invertible, i.e., dim kerDf(ξ) ≥ 1, then Newton’s method

will fail to retain local quadratic convergence, because there may exist a positive-
dimensional manifold near ξ that satisfies detDf(X) = 0 [?]. Many modifica-
tions [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?] have been proposed to restore the
quadratic convergence of Newton’s method for isolated singular zeros from differ-
ent aspects, see the related works below.

When dim kerDf(ξ) = 1, a two-step Newton’s method was proposed in [?] that
refines an approximate zero x to converge quadratically to ξ: the first step of the
iteration projects x to x′ by solving a damped least squares problem (??), such
that x′ − ξ approximately belongs to the one-dimensional linear space spanC{v

′},
which approximately coincides with kerDf(ξ); the second step of the iteration
estimates a step length δ by solving a sequence of least squares problems (??) and
a linear system (??), such that the approximate solution x′′ = x′ + δv′ satisfies
‖x′′ − ξ‖ = O(‖x − ξ‖2). In this work, an improved two-step Newton’s method
is proposed without solving any least-squares problems or linear systems while
retaining the quadratic convergence.

Main contributionFor a square polynomial system f that is associated with an
isolated zero ξ (unknown) of multiplicity µ satisfying dim kerDf(ξ) = 1, we pro-
pose a two-step Newton’s method for refining an approximate zero x (known) to
converge quadratically to ξ:

Step 1. Suppose the singular value decomposition of Df(x) is

Df(x) = (u1, . . . , un) · diag(σ1, . . . , σn) · (v1, . . . , vn)∗,

then the first step of the refinement is to update x by

x′ := x−
n−1∑
i=1

1

σi
viu
∗
i f(x).

Step 2. Suppose the singular value decomposition of Df(x′) is

Df(x′) = (u′1, . . . , u
′
n) · diag(σ′1, . . . , σ

′
n) · (v′1, . . . , v′n)∗,

then the second step of the refinement is to update x′ by

x′′ := x′ − 1

µ
v′n
u′n
∗
∆µ−1(f)

u′n
∗
∆µ(f)

,

where ∆µ−1 and ∆µ are two linear differential functionals of order µ − 1 and
µ, which are calculated recursively using the closed form (??).

The new proposed two-step Newton’s method has achieved an overall two to
five times acceleration due to the following improvements:
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1. It projects x to x′ using only O(n2) floating-point multiplications instead of
solving a damped least squares problem costing O(n3) floating-point multipli-
cations.

2. It calculates ∆µ−1(f) and ∆µ(f) using only O(µn2) floating-point multiplica-
tions instead of solving µ least squares problems costing O(µn3) floating-point
multiplications.

3. It computes a suitable step length using only O(1) floating-point multiplication-
s instead of solving a linear system using O(n3) floating-point multiplications.

A cost comparison is summarized below, where the previous Algorithms 1 &
2 [?,?] are illustrated in the beginning of Section 3 and the new Algorithms 3 &
4 are given in the end of Section 4. It should be noted that both methods exe-
cute two SVDs, which use O(µn3) floating-point multiplications. A more detailed
comparison of the cost of three improved sub-steps is provided in Section 5.

Table 1 Cost analysis of Algorithm 1 & 2 (previous) and Algorithm 3 & 4 (current)

cost in
Algorithm 1 & 2

cost in
Algorithm 3 & 4

acceleration

Step 1
decompose Df(x)

update x′
O(n3)

O(n3)

O(n3)

O(n2)

none

∼ 1/n

Step 2

decompose Df(x′)

calculate ∆k(f)

update x′′

O(n3)

O(µn3)

O(n3)

O(n3)

O(µn2)

O(1)

none

∼ 1/n

∼ 1/n3

On the other hand, the proof of the quadratic convergence in [?] is mainly based
on the deflation techniques [?,?] and the symbolic-numeric reduction to geometric
involutive forms [?,?]. Although the proof is rigorous, it is rather lengthy and it
is difficult to derive a quantified version of the proof. Based on the closed-form
basis of the local dual space (Theorem ??) and the recursive reduction of simple
multiple zeros (Theorem ??), we present a new proof of the quadratic convergence
without using deflation techniques, which may lead to a quantified analysis of the
quadratic convergence of the improved two-step Newton’s method.

Related works There are many different numeric and symbolic approaches to
compute multiple zeros of polynomial systems. In [?], Rall studied the convergence
property of Newton’s method for singular solutions, and many modifications of
Newton’s method to restore the quadratic convergence for singular solutions have
been proposed in [?,?,?,?,?,?,?].

In [?], Griewank constructed a bordered system from the initial system f

and the singular value decomposition of the Jacobian matrix Df(x) to restore
the quadratic convergence of Newton’s method when Df(x) has corank one. The
method was extended by Shen and Ypma [?,?] to the case where Df(x) has arbi-
trary high rank deficiency.

In [?,?,?], Ojika et al. proposed a deflation method to construct a regular system
to refine an approximate isolated singular solution to high accuracy. The deflation
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method has been further developed and generalized by Leykin, Verschelde and
Zhao [?,?] for singular solutions whose Jacobian matrix has arbitrary high rank
deficiency and for overdetermined polynomial systems. Furthermore, they proved
that the number of deflations needed to derive a regular solution of an augmented
system is strictly less than the multiplicity. Stetter [?] considered multiple zeros
and zero clusters. Dayton and Zeng [?,?] proved that the depth of the local dual
space is a tighter bound for the number of deflations. In [?], Lecerf gave a deflation
algorithm which outputs a regular triangular system at the singular solution. In
[?], Mantzaflaris and Mourrain proposed a one-step deflation method and veri-
fied a multiple root of a nearby system with a given multiplicity structure, which
depends on the accuracy of the given approximate multiple root. The method
is further developed by Mantzaflaris, Mourrain and Szanto in [?]. Hauenstein,
Mourrain and Szanto [?,?] proposed a novel deflation method which extends their
early works [?,?] to verify the existence of an isolated singular zero with a given
multiplicity structure up to a given order. More recently, in [?], Giusti and Yak-
oubsohn proposed a new deflation sequence using the kerneling operator defined
by the Schur complement of the Jacobian matrix and proved a new γ-theorem for
analytic regular systems.

Dedieu and Shub [?] gave explicitly an upper bound for separating simple dou-
ble zeros of analytic functions, and a numeric criterion for separating a cluster
of two zeros (counting multiplicities). In [?], we gave a computable lower bound
on the minimal distance between the simple multiple zero x and other zeros of f .
If x is only given with limited accuracy, we proposed a numerical criterion that
f is certified to have µ zeros (counting multiplicities) in a small ball around x.
When µ = 2, 3, we proposed a modified Newton iteration and proved the quanti-
fied quadratical convergence of the new method in [?]. Yakoubsohn [?] extended
α-theory [?,?,?,?,?,?] to clusters of zeros of univariate polynomials and provided
an algorithm to compute them [?]. Giusti, Lecerf, Salvy and Yakoubsohn [?] stud-
ied criteria on point estimates for locating clusters of zeros of analytic functions
in univariate case and provided bounds on the diameter of the cluster of µ zeros
(counting multiplicities). They proposed an algorithm based on Schröder’s itera-
tion for approximating the cluster and a stopping criterion which guarantees that
the algorithm converges to the cluster quadratically. In [?], they further gener-
alized their results to locate and approximate clusters of zeros of analytic maps
of embedding dimension one via the implicit function theorem and the symbolic
deflation technique.

Structure of the Paper In Section ??, we recall some definitions and provide
two characterizations of simple multiple zeros: a closed-form basis of the local
dual space and a recursive reduction that plays an important role for proving
the quadratic convergence of the new method. The previous two-step Newton’s
method is reviewed in Section ?? and an algorithmic analysis is also presented. In
Section ??, we propose an improved method and prove its quadratic convergence.
Three experiments are conducted to study numerical stability of the algorithm
with respect to the initially given approximate solution, the separation bound and
the tolerance. In Section ??, we compare the performance of our algorithm with
the algorithm in [?] for a list of benchmark examples.
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2 Characterization of Simple Multiple Zeros

Definition 1 Given a square polynomial system f = {f1, . . . , fn}, where fi ∈
C[X1, . . . , Xn] for i = 1, . . . , n, a point ξ ∈ Cn is a simple multiple zero of f = 0 of
multiplicity µ if it satisfies:

(1) f(ξ) = 0,
(2) a ball B(ξ, r) of radius r > 0 such that B(ξ, r) ∩ f−1(0) = {ξ},
(3) a generic analytic g sufficiently close to f possesses µ simple zeros in B(ξ, r),
(4) dim kerDf(ξ) = 1.

The first three conditions define an isolated singular zero while the fourth con-
dition identifies a simple multiple zero, which has some unique characterizations,
including a closed-form basis of the local dual space and a recursive reduction.

2.1 A Closed-Form Basis of the Local Dual Space

Let

dαξ : C[X1, . . . , Xn]→ C

denote the differential functional defined by

dαξ (g) =
1

α1! · · ·αn!
· ∂|α|g

∂Xα1
1 · · · ∂X

αn
n

(ξ), ∀g ∈ C[X1, . . . , Xn], (3)

where α = [α1, . . . , αn] ∈ Nn and If denote the ideal generated by f = {f1, . . . , fn},
then the local dual space of If at an isolated zero ξ is a subspace of Dξ =
spanC{d

α
ξ },

Df,ξ = {Λ ∈ Dξ | Λ(g) = 0, ∀g ∈ If}. (4)

Consequently, if ξ is an isolated singular zero of multiplicity µ, then dimDf,ξ = µ.
Moreover, if ξ is a simple multiple zero, then its multiplicity structure is uniformly
characterized via a parametric basis of cardinality µ.

We write dα1
1 · · · d

αn
n instead of dαξ , where dαii = 1

αi!
· ∂

αi

∂X
αi
i

and let Ψi : Dξ → Dξ

be the morphism that satisfies Ψi(d
α1
1 · · · d

αn
n ) = dαi+1

i · · · dαnn if α1 = · · · = αi−1 =
0 and 0 otherwise for i = 1, . . . , n.

Proposition 1 [?, Theorem 3.4] For a square polynomial system f associated with

a simple multiple zero ξ of multiplicity µ, with (µ − 1)n parameters ak,i, where k =
1, . . . , µ−1 and i = 1, . . . , n, the set {Λ0 = 1, Λ1 = a1,1d1+· · ·+a1,ndn, Λ2, . . . , Λµ−1}
recursively formulated by

∆k =
n∑
i=1

k−1∑
j=1

aj,iΨi(Λk−j), (5)

Λk = ∆k +
n∑
i=1

ak,idi, (6)

for k = 2, . . . , µ− 1 is a parametric basis of Df,ξ.
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Obviously, constraints Λk(f) = 0 are not sufficient to guarantee a unique basis
of Df,ξ because dim kerDf(ξ) = 1. Therefore, some normalization constraint is
required for deciding ak,i uniquely. Let

Df(ξ) = U · diag(σ1, . . . , σn−1, 0) · V ∗

be the Singular Value Decomposition (SVD) of Df(ξ), where σ1 ≥ · · · ≥ σn−1 >

0, U = (u1, . . . , un) and V = (v1, . . . , vn) are unitary matrices, V ∗ denote the
Hermitian (conjugate) transpose of V .

Theorem 1 Consider the normalization constraint

a∗1,1a1,1 + · · ·+ a∗1,na1,n = 1, a∗1,1ak,1 + · · ·+ a∗1,nak,n = 0 (k = 2, . . . , µ− 1), (7)

then a unique basis of Df,ξ is determined incrementally by the closed form
a1,1
a1,2

...

a1,n

 = vn,


ak,1
ak,2

...

ak,n

 = −
n−1∑
i=1

1

σi
viui

∗∆k(f) (k = 2, . . . , µ− 1). (8)

Proof Since V is a unitary matrix, its columns satisfy v∗nvn = 1, and v∗nvi = 0 for
i = 1, 2, . . . , n− 1. Therefore, the vectors (ak,1, ak,2, . . . , ak,n)T in (??) satisfy (??)
for k = 1, . . . , µ− 1.

According to the normalization constraint (??), we can rewrite

(ak,1, ak,2, . . . , ak,n)T = λ1v1 + λ2v2 + · · ·+ λn−1vn−1.

Then, the constraint Λk(f) = 0 is equivalent to

0 = U∗Λk(f)

= U∗[∆k(f) + ak,1d1(f) + · · ·+ ak,ndn(f)]

= U∗∆k(f) + U∗Df(ξ)(ak,1, ak,2, . . . , ak,n)T

= U∗∆k(f) + diag(σ1, . . . , σn−1, 0)V ∗V (λ1, λ2, . . . , λn−1, 0)T

=


u∗1∆k(f) + σ1λ1
u∗2∆k(f) + σ2λ2

...
u∗n−1∆k(f) + σn−1λn−1

u∗n∆k(f)

 . (9)

Therefore, if u∗n∆k(f) = 0, then

λ1 = − 1

σ1
u∗1∆k(f), λ2 = − 1

σ2
u∗2∆k(f), . . . , λn−1 = − 1

σn−1
u∗n−1∆k(f)

gives a unique solution (??) of Λk(f) = 0 satisfying the normalization constraint
(??); otherwise, the procedure is terminated and k is the multiplicity of the simple
multiple zero ξ, i.e. µ = k.
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Remark 1 Since dim kerDf(ξ) = 1, without loss of generality, one can assume the
first column of Df(ξ) can be written as a linear combination of other n−1 columns
of Df(ξ). Therefore, in [?], the following normalization constraint

a1,1 = 1, ak,1 = 0 (k = 2, . . . , µ− 1). (10)

is used to determine a unique basis of Df,ξ by solving µ− 1 linear systems incre-
mentally

Df(ξ)


1
a1,2

...
a1,n

 = 0, Df(ξ)


0
ak,2

...
ak,n

 = −∆k(f) (k = 2, . . . , µ− 1). (11)

In Section ??, we will demonstrate that replacing the previous constraint (??)
by (??) and its corresponding closed-form solution (??) will save a significant
amount of computational effort for calculating an approximate basis of Df,ξ when
an approximate zero x near to ξ is given.

2.2 Recursive Reduction

Suppose ξ is a simple multiple zero of f(X) = 0 of multiplicity µ and Df(ξ) =
U · diag(σ1, . . . , σn−1, 0) · V ∗ is the SVD of Df(ξ), where σ1 ≥ · · · ≥ σn−1 > 0,
U = (u1, . . . , un) and V = (v1, . . . , vn) are unitary matrices.

Since dim kerDf(ξ) = 1, inspired by the implicit univariate reduction in [?]
and formula (3.18) in [?, Lemma 3.13], we show the existence of the following
recursive reduction of the polynomial u∗nf(X) at ξ. It is very similar to expanding
a univariate polynomial at a multiple zero of multiplicity µ.

Theorem 2 Suppose ξ is a simple multiple zero of f(X) = 0 of multiplicity µ, then

there exists a recursive reduction

u∗nf(X) = u∗n∆µ(f)
[
v∗n(X − ξ)

]µ
+
∑
|β|>µ

cβ(X − ξ)β +
n−1∑
i=1

hi(X)(u∗i f(X)), (12)

where ∆µ ∈ Df,ξ is the unique differential functional satisfying (??),(??) and (??),

cβ ∈ C for β ∈ Nn, and hi ∈ C[X] satisfying hi(ξ) = 0.

Proof Since u∗iDf(ξ) = σiv
∗
i , Taylor’s expansion of f at ξ indicates that

u∗i f(X) = σiv
∗
i (X − ξ) +

∑
|β|≥2

bi,β [V ∗(X − ξ)]β , (i = 1, . . . , n− 1), (13)

where
[V ∗(X − ξ)]β = [v∗1(X − ξ)]β1 · · · [v∗n(X − ξ)]βn

for β = [β1, . . . , βn] ∈ Nn and bi,β ∈ C,

u∗nf(X) =
∑
|γ|≥2

bn,γ [V ∗(X − ξ)]γ , (14)
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for γ = [γ1, . . . , γn] ∈ Nn and bn,γ ∈ C.

For |γ| = γ1+ · · ·+γn ≥ 2, if γi > 0 (i = 1, . . . , n−1), by (??), we can substitute

v∗i (X − ξ) =
1

σi
u∗i f(X)− 1

σi

∑
|β|≥2

bi,β [V ∗(X − ξ)]β , (i = 1, . . . , n− 1)

into only one corresponding factor of bn,γ [V ∗(X − ξ)]γ to derive

bn,γ [V ∗(X − ξ)]γ = bn,γ [V ∗(X − ξ)]γ−ei

 1

σi
u∗i f(X)− 1

σi

∑
|β|≥2

bi,β [V ∗(X − ξ)]β


=
bn,γ
σi

[V ∗(X − ξ)]γ−ei(u∗i f(X))−
∑
|β|≥2

bn,γbi,β
σi

[V ∗(X − ξ)]γ+β−ei

where ei is the i-th unit vector and |γ + β − ei| = |γ|+ |β| − 1 > |γ|.
Then, recursively perform the above substitution for |γ| = 2, . . . , µ where γi >

0 (i = 1, . . . , n− 1) in (??), we derive

u∗nf(X) =

µ∑
l=2

cl
[
v∗n(X − ξ)

]l
+
∑
|β|>µ

cβ(X − ξ)β +
n−1∑
i=1

hi(X)(u∗i f(X)), (15)

where cl ∈ C, cβ ∈ C, (X − ξ)β = (X1 − ξ1)β1 · · · (Xn − ξn)βn for β ∈ Nn and
hi ∈ C[X] satisfying hi(ξ) = 0.

Suppose ∆k ∈ Dξ are those differential functionals satisfying (??),(??) and
(??), then we can show that they also satisfy the following conditions:

∆k

(
(X − ξ)β

)
= 0, if |β| > k, (16)

∆k

(
(X − ξ)βf(X)

)
= 0, if |β| > 0, (17)

∆k

([
v∗n(X − ξ)

]l)
=

{
1, if k = l,

0, otherwise,
(18)

See Appendix for the proofs of the above conditions. Therefore, by applying the
above ∆k to both sides of (??), we obtain

∆k
(
u∗nf(X)

)
= u∗n∆k(f) = ck, (k = 2, . . . , µ).

According to (??), we have ck = u∗n∆k(f) = 0 (k = 2, . . . , µ) and cµ = u∗n∆µ(f) 6=
0, so we conclude the recursive reduction (??).

In Section ??, we will give an elegant proof of the quadratic convergence of the
new proposed two-step Newton’s method based on the recursive reduction (??).
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3 Review of Two-step Newton’s Method

We review the two-step Newton’s method for computing simple multiple zeros
under Assumption 1 in [?].

Assumption 1 Suppose we are given a polynomial system f ∈ C[X1, . . . , Xn]n having

a simple multiple zero ξ ∈ Cn of multiplicity µ (not known prior) and a point x ∈ Cn
satisfying ‖x− ξ‖ = ε where 1 > ε > 0 can be sufficiently small.

Using Taylor’s expansion of f(x) at ξ, it is easy to show that Assumption ??

implies that ‖f(x)‖ = O(ε). Moreover, consider Taylor’s expansion of Df(x) at ξ,

Df(x) = Df(ξ) +D2f(ξ)(x− ξ) +
∑
k≥2

Dk+1f(ξ)

k!
(x− ξ)k.

then it implies

‖Df(x)−Df(ξ)‖ ≤ ‖D2f(ξ)‖ε+
∑
k≥2

‖Dk+1f(ξ)‖
k!

εk = O(ε).

Let σi(x) (σi(ξ)) denote the singular values of Df(x) (Df(ξ)) in descending
order, then according to Weyl’s theorem [?],

|σi(x)− σi(ξ)| ≤ ‖Df(x)−Df(ξ)‖ = O(ε), for i = 1, . . . , n,

which concludes

σn(x) ≤ σn(ξ) +O(ε) = O(ε), σi(x) ≥ σi(ξ)−O(ε) ≥ c > 0, (19)

for i = 1, . . . , n − 1 where c = σn−1(ξ)/2, since σn(ξ) = 0, σn−1(ξ) > 0 and ε can
be sufficiently small.

The above discussion suggests a numerical identification for an approximation
x of a simple multiple zero ξ. Namely, if ‖f(x)‖ < τ and σn < τ � σn−1 for a
specified tolerance τ , then x is identified as an approximation of a simple multiple
zero ξ of f .

Given a successfully identified approximation x, the task of this paper is to
refine it to a more accurate approximation x′′ satisfying

‖x′′ − ξ‖ = O(‖x− ξ‖2).

We review the algorithms MultipleRootRefinerBreadthOne (MRRB1) in [?] and Ap-

proximateMultiplicityStructure (AMS) in [?] for refining approximate simple multiple
zeros to higher accuracies.
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Algorithm 1 MultipleRootRefinerBreadthOne [?]

Input:
f : a polynomial system associated with a simple multiple zero ξ;
x: an identified approximation of ξ for a specified tolerance τ ;

Output:
x′′: the refined approximation of ξ;

1: Calculate Df(x) = U · diag(σ1, . . . , σn) · V ∗,
where U = (u1, . . . , un), V = (v1, . . . , vn) are unitary and σ1 ≥ · · · ≥ σn ≥ 0.

2: Refine x to x′ = x+ LinearSolver(Df(x)∗Df(x) + σnIn,−Df(x)∗f(x)),
where LinearSolver(A, b) is the solution of the linear system AX = b.

3: Calculate Df(x′) = U ′ · diag(σ′1, . . . , σ
′
n) · V ′∗,

where U ′ = (u′1, . . . , u
′
n), V ′ = (v′1, . . . , v

′
n) are unitary and σ′1 ≥ · · · ≥ σ′n ≥ 0.

4: Refine x′ to x′′ = x′ + δv′n,

where δ = πX1

(
LinearSolver

([
∆µ(f),

∂f(x)

∂X2
, . . . ,

∂f(x)

∂Xn

]
,−Λµ−1(f)

))
/µ,

πX1
(·) is the first component of a vector, Λµ−1 and ∆µ are by-products of AMS.

Algorithm 2 ApproximateMultiplicityStructure [?]

Input:
f : a polynomial system associated with a simple multiple zero ξ;
x: an identified approximation of ξ for a specified tolerance τ ;

Output:
µ: an estimation of the multiplicity of ξ;
ak,i: an estimation of (µ− 1)n parameters for a basis of Df,ξ approximately;

1: Let vn be the last right singular vector of Df(x) and suppose vn,1 ≥ vn,i, set

a1,1 = 1, a1,i = vn,i/vn,1 (i = 2, . . . , n),

2: From k = 2, incrementally set ak,1 = 0 and calculate ak,i (i = 2, . . . , n) by

(
ak,2, . . . , ak,n

)T
= LeastSquares

([
∂f(x)

∂X2
, . . . ,

∂f(x)

∂Xn

]
,−∆k(f)

)
, (20)

where LeastSquares(A, b) is the least squares solution of min ‖AX − b‖2 and ∆k is
formulated by (??,??). If ‖(∆k + ak,2d2 + · · · + ak,ndn)(f)‖ < τ , then set Λk =
∆k + ak,2d2 + · · ·+ ak,ndn and repeat the step; otherwise, return µ = k.

Figure ?? shows a sketch of Algorithm 1 on the following toy example.

Example 1 [?] Consider f = {X2 + Y − 3, X + 0.125 Y 2 − 1.5} associated with
ξ = (1, 2) and an identified approximation x = (1.01, 2.01).

Fig. 1 The red circle denotes the simple multiple zero (1, 2), green and blue circles denote
input and output approximations of each step which are linked by red dash-dotted lines. The
solid lines are contours of log

√
(X2 + Y − 3)2 + (X + 0.125 Y 2 − 1.5)2 and the dashed circles

are contours of log
√

(X − 1)2 + (Y − 2)2.

Figure ?? shows the methodology of the two-step Newton’s method for com-
puting simple multiple zeros:
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1. the first step of the refinement projects x to x′ such that x′ − ξ approximately
inside spanC{v

′
n}, which approximately coincides with kerDf(ξ). Outwardly,

x′ satisfies
‖x′ − ξ‖ = O(ε), ‖f(x′)‖ = O(ε2). (21)

2. the second step of the refinement finds x′′ by following the direction v′n from
x′ with the step length δ, which satisfies

|δ + v′n
∗
(x′ − ξ)| = O(ε2). (22)

In fact, (??) and (??) are essential to prove the quadratic convergence of Al-
gorithm 1:

Theorem 3 (Theorem 3.2 [?] & Theorem 3.6 [?]) Suppose y is the solution of

the linear system

(Df(x)∗Df(x) + σnIn)X = −Df(x)∗f(x), (23)

then the projection x′ = x + y satisfies (??). Consequently, x′ is already of quadratic

convergence in (kerDf(ξ))⊥ approximately, namely,

|v′i
∗
(x′ − ξ)| = O(ε2), i = 1, . . . , n− 1. (24)

Theorem 4 (Theorem 3.16 [?]) Suppose z is the solution of the linear system[
∆µ(f),

∂f(x)

∂X2
, . . . ,

∂f(x)

∂Xn

]
X = −Λµ−1(f), (25)

then the step length δ = πX1
(z)/µ satisfies (??). Consequently, the approximate zero

x′′ = x′ + δv′n is of quadratic convergence, namely,

‖x′′ − ξ‖ = O(ε2). (26)

Remark 2 Two facts worth to be noted. First, for any x′ satisfying (??),

‖diag(σ′1, . . . , σ
′
n) · V ′∗(x′ − ξ)‖ = ‖U∗Df(x′)(x′ − ξ)‖

=

∥∥∥∥∥∥U∗f(x′)− U∗f(ξ) + U∗
∑
k≥2

Dkf(x′)

k!
(ξ − x′)k

∥∥∥∥∥∥ ≤ ‖U∗f(x′)‖+O(ε2) = O(ε2).

Therefore, the condition (??) is satisfied. Second, for any δ satisfying (??), we have

‖x′′ − ξ‖2 = ‖V ′∗(x′′ − ξ)‖2

=
n−1∑
i=1

|v′i
∗
(x′ − ξ)|2 + |δ + v′n

∗
(x′ − ξ)|2 = (O(ε2))2.

Hence, the condition (??) is also satisfied.

In this paper, instead of solving linear systems (??) and (??), we propose Lin-

earSolver-free estimations for computing more efficiently the projection x′ and the
step length δ satisfying (??) and (??); instead of solving least-squares problems
(??), we propose LeastSquares-free estimations for computing more efficiently the
multiplicity µ and the values of parameters ak,i for an approximate multiplicity
structure. Both accelerations attribute to the two new characterizations of sim-
ple multiple zeros, namely, the closed-form basis of Df,ξ (??) and the recursive
reduction (??).
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4 New Approach

Given a polynomial system f associated with a simple multiple zero ξ, suppose x
is identified as an approximation of ξ for a specified tolerance τ , we propose an
accelerated two-step Newton’s method which retains the quadratic convergence
under Assumption ??.

4.1 A LinearSolver-Free Estimation for x′

Suppose x is an approximation of ξ satisfying ‖x−ξ‖ = ε. Let Df(x) =
∑n
i=1 σiuiv

∗
i

denote the SVD of Df(x), where u∗i uj = v∗i vj = 0 if i 6= j, u∗i ui = v∗i vi = 1 for
1 ≤ i ≤ n and 1 ≤ j ≤ n.

The following theorem provides a closed-form estimation for the projection x′

without solving any linear system comparing to Theorem ??.

Theorem 5 Suppose

y = −
n−1∑
i=1

1

σi
viu
∗
i f(x), (27)

then the projection x′ = x + y satisfies (??). Consequently, x′ is already of quadratic

convergence in (kerDf(ξ))⊥ approximately, namely, (??) holds.

Proof According to (??) and ‖x− ξ‖ = ε, we have ‖f(x)‖ = O(ε) and

‖x′ − ξ‖ = ‖(x− ξ) + y‖ ≤ ε+
n−1∑
i=1

1

σi
‖vi‖‖u∗i ‖‖f(x)‖ = O(ε),

which concludes the first part of (??).
For the second part, let us consider Taylor’s expansion of f(ξ) at x and multiply

U∗ to both sides of the equality,

0 = U∗f(ξ) = U∗f(x) + U∗Df(x)(ξ − x) + U∗
∑
k≥2

Dkf(x)

k!
(ξ − x)k.

It implies

‖U∗f(x) + U∗Df(x)(ξ − x)‖ ≤
∑
k≥2

‖Dkf(ξ)‖
k!

εk = O(ε2),

which concludes

|u∗nf(x)| ≤ |σnv∗n(x− ξ)|+O(ε2) = O(ε2). (28)

Similarly, let us consider Taylor’s expansion of f(x′) at x and again multiply
U∗ to both sides of the equality,

U∗f(x′) = U∗f(x) + U∗Df(x)y + U∗
∑
k≥2

Dkf(x)

k!
yk,
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which implies

‖f(x′)‖ = ‖U∗f(x′)‖ ≤ ‖U∗f(x) + U∗Df(x)y‖+O(ε2).

Now, we calculate U∗f(x) + U∗Df(x)y component-wisely. For i = 1, . . . , n− 1,

∣∣u∗i f(x) + u∗iDf(x)y
∣∣ =

∣∣∣∣∣∣u∗i f(x)− σiv∗i ·
n−1∑
j=1

1

σj
vju
∗
jf(x)

∣∣∣∣∣∣ =
∣∣u∗i f(x)− u∗i f(x)

∣∣ = 0.

For the last component, according to (??),

∣∣u∗nf(x) + u∗nDf(x)y
∣∣ =

∣∣∣∣∣∣u∗nf(x)− σnv∗n ·
n−1∑
j=1

1

σj
vju
∗
jf(x)

∣∣∣∣∣∣ =
∣∣u∗nf(x)− 0

∣∣ = O(ε2).

Therefore, we derive ‖f(x′)‖ = O(ε2), and the second part of (??) holds. Conse-
quently, according to Remark ??, (??) holds too.

4.2 A LeastSquares-Free Estimation for ak,i

Let

Df(ξ) =
n∑
i=1

σ̂iûiv̂
∗
i

be the SVD of Df(ξ), where û∗i ûj = v̂∗i v̂j = 0 if i 6= j, û∗i ûi = v̂∗i v̂i = 1 for
1 ≤ i ≤ n and 1 ≤ j ≤ n. By Theorem ??, a unique basis of Df,ξ can be determined
by assigning the values of (µ− 1)n parameters to

â1 =


â1,1
â1,2

...
â1,n

 = v̂n, âk =


âk,1
âk,2

...
âk,n

 = −
n−1∑
i=1

1

σ̂i
v̂iû
∗
i ∆̂k(f), (29)

for k = 2, . . . , µ− 1, where ∆̂k is incrementally formulated by (??) and (??).
Suppose x′ is now an approximation of ξ satisfying ‖x′ − ξ‖ = O(ε). Let

Df(x′) =
n∑
i=1

σ′iu
′
iv
′
i
∗

denote the SVD of Df(x′), where u′i
∗
u′j = v′i

∗
v′j = 0 if i 6= j, u′i

∗
ui = v′i

∗
vi = 1 for

1 ≤ i ≤ n and 1 ≤ j ≤ n. Let ∆2, . . . ,∆µ−1,∆µ ∈ Dx′ be the µ−1 linear differential
functionals, which are incrementally formulated by (??) and (??) with

a′1 =


a′1,1
a′1,2

...
a′1,n

 = v′n, a′k =


a′k,1
a′k,2

...
a′k,n

 = −
n−1∑
i=1

1

σ′i
v′iu
′
i
∗
∆k(f), (30)
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for k = 2, . . . , µ − 1. We show below that the above defined a′k is the optimal
solution of the following least squares problem:

min
ak,1,...,ak,n

‖∆k(f) +Df(x′)(ak,1, . . . , ak,n)T ‖ (31)

subject to v′n
∗
(ak,1, . . . , ak,n)T = 0.

Let

(ak,1, ak,2, . . . , ak,n)T = λk,1v
′
1 + · · ·+ λk,n−1v

′
n−1,

then we have

‖∆k(f) +Df(x′)(ak,1, . . . , ak,n)T ‖ =
∥∥∥U ′∗∆k(f) + U ′

∗
Df(x′)(ak,1, ak,2, . . . , ak,n)T

∥∥∥
=

∥∥∥∥∥∥∥∥∥


u′1
∗
∆k(f) + σ′1λk,1

...

u′n−1
∗
∆k(f) + σ′n−1λk,n−1

u′n
∗
∆k(f)


∥∥∥∥∥∥∥∥∥

≥ |u′n
∗
∆k(f)|.

The equality holds when

λk,1 = −u
′∗
1∆k(f)

σ′1
, . . . , λk,n−1 = −u

′∗
n−1∆k(f)

σ′n−1

. (32)

Moreover, for a′k = −
∑n−1
i=1

1
σ′i
v′iu
′
i
∗
∆k(f), we have

v′n
∗
(a′k,1, . . . , a

′
k,n)T = 0.

Therefore, (??) is the optimal solution of (??) and |u′n
∗
∆k(f)| is the optimal value.

The following theorem shows that the value (??) of parameters ak,i is a closed-

form approximation of (??) without solving any least squares problems. Moreover,
the errors of ‖a′k − âk‖ are bounded by O(ε) for k = 1, . . . , µ− 1.

Theorem 6 Suppose µ is the multiplicity of ξ, then

|v′n
∗
â1| = 1−O(ε), ‖a′1 − â1‖ = O(ε). (33)

|v′n
∗
âk| = O(ε), ‖a′k − âk‖ = O(ε), |u′n

∗
∆k(f)| = O(ε), (k = 2, . . . , µ− 1), (34)

|u′n
∗
∆µ(f)− û∗n∆̂µ(f)| = O(ε). (35)

Proof For k = 1, suppose â1 = v̂n = λ̂1,1v
′
1 + · · ·+ λ̂1,n−1v

′
n−1 + λ̂1,nv

′
n, then

a′1 − â1 = V ′


0
...
0
1

− V ′


λ̂1,1
...

λ̂1,n−1

λ̂1,n

 = V ′


−λ̂1,1

...

−λ̂1,n−1

1− λ̂1,n

 ,
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where V ′ = (v′1, . . . , v
′
n) is a unitary matrix. By the definition of SVD,

‖Df(x′)(a′1 − â1)‖ ≤ ‖Df(x′)v′n‖+ ‖(Df(ξ)−Df(x′))v̂n‖+ ‖Df(ξ)v̂n‖

≤ σ′n + ‖Df(x′)−Df(ξ)‖+ σ̂n

≤ O(ε) +O(ε) + 0 = O(ε).

On the other hand, since U ′ = (u′1, . . . , u
′
n) is a unitary matrix,

‖Df(x′)(a′1 − â1)‖ =

∥∥∥∥∥∥∥∥∥U
′diag(σ′1, . . . , σ

′
n−1, σ

′
n)V ′

∗
V ′


−λ̂1,1

...

−λ̂1,n−1

1− λ̂1,n


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


−σ′1λ̂1,1

...

−σ′n−1λ̂1,n−1

σ′n(1− λ̂1,n)


∥∥∥∥∥∥∥∥∥ .

As ‖Df(x′)(a′1 − â1)‖ = O(ε) and σ′i = O(1) for i = 1, . . . , n− 1, we get

|λ̂1,1| = O(ε), . . . , |λ̂1,n−1| = O(ε).

Moreover, because
∑n
i=1 |λ̂1,i|

2 = ‖v̂n‖2 = 1, we get

|λ̂1,n| = 1−O(ε).

Hence, |v′n
∗
â1| = |v′n

∗
v̂n| = |λ̂1,n| = 1−O(ε), which proves the first part of (??).

Given an SVD Df(ξ) =
∑n
i=1 σ̂iûiv̂

∗
i , where û∗i ûj = v̂∗i v̂j = 0 if i 6= j and

û∗i ûi = v̂∗i v̂i = 1, then replacing ûn and v̂n by z · ûn and z · v̂n where z ∈ C satisfying
|z| = 1 will still validate an SVD of Df(ξ). Therefore, without loss of generality, we
can always assume that â1 = v̂n ∈ kerDf(ξ) satisfies ‖a′1− â1‖ = O(ε). Otherwise,
we replace v̂n by z∗0 · v̂n where z0 = argmin|z|=1|z−v

′
n
∗
v̂n|. Since |v′n

∗
v̂n| = 1−O(ε),

by triangular inequality, we have |z0 − v′n
∗
v̂n| = |z0| − |v′n

∗
v̂n| = O(ε). At this

moment,

‖a′1 − â1‖ =

∥∥∥∥∥∥∥∥∥V
′


−z∗0 λ̂1,1

...

−z∗0 λ̂1,n−1

1− z∗0 λ̂1,n


∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥z
∗
0


−λ̂1,1

...

−λ̂1,n−1

z0 − λ̂1,n


∥∥∥∥∥∥∥∥∥ = O(ε),

since |λ̂1,1| = O(ε), . . . , |λ̂1,n−1| = O(ε), λ̂1,n = v′n
∗
v̂n. Hence, the second part

of (??) is proved. Similarly, we can always assume the last left singular vector
ûn ∈ kerDf(ξ)∗ satisfying ‖u′n − ûn‖ = O(ε).

Assume ‖a′i − âi‖ = O(ε) is true for i = 1, . . . , k − 1, we prove below that
‖a′k − âk‖ = O(ε).

First, since the constructions of ∆k and ∆̂k depend only on the values of a′i
and âi, ‖a′i− âi‖ = O(ε) for i = 1, . . . , k− 1 and ‖x′− ξ‖ = O(ε), it is easy to verify
that ∥∥∥∆k(f)− ∆̂k(f)

∥∥∥ = O(ε),
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Consequently, we get

‖∆k(f) +Df(x′)âk‖ ≤ ‖∆̂k(f) +Df(ξ)âk‖+ ‖∆k(f)− ∆̂k(f)‖ (36)

+ ‖Df(x′)−Df(ξ)‖‖âk‖ = O(ε).

Now, let âk = λ̂k,1v
′
1+· · ·+λ̂k,n−1v

′
n−1+λ̂k,nv

′
n and a′k = λ′k,1v

′
1+· · ·+λ′k,n−1v

′
n−1,

where the values of λ′k,1, . . . , λ
′
k,n−1 satisfy (??), then

a′k − âk = V ′


λ′k,1

...
λ′k,n−1

0

− V ′


λ̂k,1
...

λ̂k,n−1

λ̂k,n

 = V ′


λ′k,1 − λ̂k,1

...

λ′k,n−1 − λ̂k,n−1

−λ̂k,n

 . (37)

Let ãk = λ̂k,1v
′
1 + · · ·+ λ̂k,n−1v

′
n−1, then ãk is a feasible solution of (??) satisfying

‖∆k(f) +Df(x′)ãk‖ ≤ ‖∆k(f) +Df(x′)âk‖+ ‖Df(x′)(ãk − âk)‖

= ‖∆k(f) +Df(x′)âk‖+ ‖λ̂k,nDf(x′)v′n‖ = O(ε).

Because the optimal value is less than any feasible value of (??), we get

|u′∗n∆k(f)| = ‖∆k(f) +Df(x′)a′k‖ ≤ ‖∆k(f) +Df(x′)ãk‖ = O(ε), (38)

which proves the third part of (??). Therefore, by (??) and (??), we have

‖Df(x′)(âk − a′k)‖ ≤ ‖∆k(f) +Df(x′)âk‖+ ‖∆k(f) +Df(x′)a′k‖ = O(ε).

On the other hand, since U ′ = (u′1, . . . , u
′
n) is a unitary matrix,

‖Df(x′)(a′k − âk)‖ =

∥∥∥∥∥∥∥∥∥U
′diag(σ′1, . . . , σ

′
n−1, σ

′
n)V ′

∗
V ′


λ′k,1 − λ̂k,1

...

λ′k,n−1 − λ̂k,n−1

−λ̂k,n


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


σ′1(λ′k,1 − λ̂k,1)

...

σ′n−1(λ′k,n−1 − λ̂k,n−1)

−σ′nλ̂k,n


∥∥∥∥∥∥∥∥∥ .

As ‖Df(x′)(a′k − âk)‖ = O(ε) and σ′i = O(1) for i = 1, . . . , n− 1, we get

|λ′k,1 − λ̂k,1| = O(ε), . . . , |λ′k,n−1 − λ̂k,n−1| = O(ε). (39)

Moreover, because
∑n
i=1 λ̂

∗
1,iλ̂k,i = â∗1âk = 0 and |λ̂1,1| = O(ε), . . . , |λ̂1,n−1| = O(ε),

|λ̂1,n| = 1−O(ε), we get

|v′n
∗
âk| = |λ̂k,n| = O(ε), (40)

which proves the first part of (??).
Finally, by (??), (??) and (??), we have ‖a′k− âk‖ = O(ε), which completes the

inductive proof of (??).
The proof of (??) is easy since

|u′∗n∆µ(f)− û∗n∆̂µ(f)| ≤ ‖u′∗n − û∗n‖‖∆µ(f)‖+ ‖û∗n‖‖∆µ(f)− ∆̂µ(f))‖ = O(ε).
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Hence, when x′ is sufficiently close to ξ, there exists a proper value of τ such
that the multiplicity is correctly estimated via the criterion |u′∗n∆k(f)| � τ <

|u′∗n∆µ(f)|.

4.3 A LinearSolver-Free Estimation for δ

Suppose x′ is an approximation of ξ satisfying ‖x′ − ξ‖ = O(ε) and ‖f(x′)‖ =
O(ε2) by Theorem ??. Let Df(x′) =

∑n
i=1 σ

′
iu
′
iv
′
i
∗

be the SVD of Df(x′) and
∆2, . . . ,∆µ−1,∆µ ∈ Dx′ be the µ − 1 linear differential functionals, which are
incrementally formulated by (??) and (??), where the values of ak,i are given by
(??) satisfying (??), (??) and (??) by Theorem ??.

Before we give a closed-form estimation for the step length δ, let us recall the
well-known result for refining approximate singular zeros of univariate polynomi-
als. Assume that an a univariate polynomial f(X) has a µ-fold zero ξ, then its
Taylor’s expansion at ξ can be written as

f(X) = (X − ξ)µ +
∑
k>µ

ck(X − ξ)k.

The iterative method

x′ = x− 1

µ

1

(µ− 1)!

∂µ−1f(X)

∂Xµ−1
(41)

is of quadratic convergence if the approximate zero x is sufficiently close to ξ since∥∥∥∥x− 1

µ

1

(µ− 1)!

∂µ−1f(x)

∂Xµ−1
− ξ
∥∥∥∥ =

∥∥∥∥∥∥
∑
k≥2

c′k(x− ξ)k
∥∥∥∥∥∥ = O(‖x− ξ‖2).

Inspired by (??), based on the recursive reduction (??) given in Theorem ??,
the following theorem provides a closed-form estimation of the step length δ

using the differential functionals instead of solving any linear system comparing
to Theorem ?? to achieve the quadratic convergence.

Theorem 7 Suppose

δ = − 1

µ

u′n
∗
∆µ−1(f)

u′n
∗
∆µ(f)

, (42)

then it satisfies (??). Consequently, the approximation x′′ = x′ + δv′n is of quadratic

convergence, i.e., ‖x′′ − ξ‖ = O(ε2) holds.

Proof We consider the perturbed polynomial system

f̃(X) = f(X)− f(x′)− σ′nu′nv′n
∗
(X − x′)−

µ−1∑
k=2

u′nu
′
n
∗
∆k(f)

[
v′n
∗
(X − x′)

]k
. (43)

First, we show that the approximation x′ of ξ is now a simple multiple zero of
f̃ of multiplicity µ. It is clear that

f̃(x′) = 0,

Df̃(x′) = U ′ · diag(σ′1, . . . , σ
′
n−1, 0) · V ′∗.
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According to (??), we can derive that

u′n
∗
∆k(f̃) = u′n

∗
∆k(f)− u′n

∗
u′nu

′
n
∗
∆k(f) = 0, (k = 2, . . . , µ− 1)

u′n
∗
∆µ(f̃) = u′n

∗
∆µ(f) 6= 0.

Therefore, according to Theorem ??, x′ is a simple multiple zero of f̃ of multiplicity
µ and a basis of Df̃ ,x′ is uniquely determined via (??), (??) and (??). Subsequently,

according to (??), we get the recursive reduction

u′n
∗
f̃(X) = u′n

∗
∆µ(f)

[
v′n
∗
(X − x′)

]µ
+
∑
|β|>µ

cβ(X − x′)β +
n−1∑
i=1

h̃i(X)[u′i
∗
f̃(X)],

(44)
where cβ ∈ C and h̃i ∈ C[X] satisfying h̃i(x

′) = 0.

Combining (??) and (??), we get an expansion of u′n
∗
f(X) at x′,

u′n
∗
f(X) = u′n

∗
f̃(X) + u′n

∗
f(x′) + σ′nv

′
n
∗
(X − x′) +

µ−1∑
k=2

u′n
∗
∆k(f)

[
v′n
∗
(X − x′)

]k
= u′n

∗
f(x′) + σ′nv

′
n
∗
(X − x′) +

µ−1∑
k=2

u′n
∗
∆k(f)

[
v′n
∗
(X − x′)

]k
+ u′n

∗
∆µ(f)

[
v′n
∗
(X − x′)

]µ
+
∑
|β|>µ

cβ(X − x′)β +
n−1∑
i=1

h̃i(X)[u′i
∗
f̃(X)].

We are ready to complete the proof of the quadratic convergence using the
above expansion and the local dual space Df,ξ. Let Λ̂1 = â1,1d1+· · ·+â1,ndn ∈ Df,ξ
satisfy â∗1,1â1,1 + · · ·+ â∗1,nâ1,n = 1, according to (??), we have∣∣∣v′n∗â1

∣∣∣ = 1−O(ε), where â1 = (â1,1, . . . , â1,n)T .

Let Λ̂µ−1 ∈ Df,ξ be the (µ − 1)-th differential functional that is incrementally
formulated by (??), (??) and (??), then according to (??), we have∣∣∣v′n∗âk∣∣∣ = O(ε), where âk = (âk,1, . . . , âk,n)T , k = 2, . . . , µ− 1.

Applying Λ̂µ−1 to the above expansion, we get

0 = Λ̂µ−1(u′n
∗
f) (45)

= Λ̂µ−1

(
u′n
∗
f(x′) + σ′nv

′
n
∗
(X − x′) +

µ−1∑
k=2

u′n
∗
∆k(f)

[
v′n
∗
(X − x′)

]k)

+ Λ̂µ−1

u′n∗∆µ(f)
[
v′n
∗
(X − x′)

]µ
+
∑
|β|>µ

cβ(X − x′)β +
n−1∑
i=1

h̃i[u
′
i
∗
f − u′i

∗
f(x′)]

 .
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Now we estimate the error of every term in the above expansion. First, it is clear
that

Λ̂µ−1

(
u′n
∗
f(x′)

)
= 0, since u′n

∗
f(x′) ∈ C,

Λ̂µ−1

(
h̃iu
′
i
∗
f
)

= 0, since h̃iu
′
i
∗
f ∈ If ,

Λ̂µ−1

(
h̃iu
′
i
∗
f(x′)

)
= O(ε2), since

∣∣∣u′i∗f(x′)
∣∣∣ = O(ε2).

Λ̂µ−1

(
c′β(X − x′)β

)
= O(ε2), since |β| − (µ− 1) ≥ 2,

Second, similar to the condition (??), the differential functional Λ̂µ−1 ∈ Df,ξ sat-
isfies

Λ̂µ−1

([
v′n
∗
(X − x′)

]k)
=


O(ε), k ≤ µ− 2,

(v′n
∗
â1)µ−1 +O(ε), k = µ− 1,

µv′n
∗
(ξ − x′)(v′n

∗
â1)µ−1 +O(ε2), k = µ.

(46)

See Appendix for the proofs of the condition (??) . Therefore, we get

Λ̂µ−1

(
σ′nv
′
n
∗
(X − x′)

)
= O(ε2), since σ′n = O(ε)

Λ̂µ−1

(
µ−2∑
k=2

u′n
∗
∆k(f)

[
v′n
∗
(X − x′)

]k)
= O(ε2), since |u′n

∗
∆k(f)| = O(ε)

Λ̂µ−1

(
u′n
∗
∆µ−1(f)

[
v′n
∗
(X − x′)

]µ−1
)

= u′n
∗
∆µ−1(f)(v′n

∗
â1)µ−1 +O(ε2),

Λ̂µ−1

(
u′n
∗
∆µ(f)

[
v′n
∗
(X − x′)

]µ)
= µu′n

∗
∆µ(f)v′n

∗
(ξ − x′)(v′n

∗
â1)µ−1 +O(ε2).

Combining all above term-wise error estimations with (??), we have∣∣∣u′n∗∆µ−1(f)(v′n
∗
â1)µ−1 + µu′n

∗
∆µ(f)v′n

∗
(ξ − x′)(v′n

∗
â1)µ−1

∣∣∣ = O(ε2).

Finally, since |v′n
∗
â1| = 1−O(ε) and |u′n

∗
∆µ(f)| ≥ τ > 0, we derive

∣∣∣∣v′n∗(ξ − x′) +
1

µ

u′n
∗
∆µ−1(f)

u′n
∗
∆µ(f)

∣∣∣∣ = O(ε2).

Therefore, (??) is satisfied for δ = − 1
µ
u′n
∗∆µ−1(f)

u′n
∗∆µ(f)

. Consequently, let x′′ = x′+ δv′n,

according to Remark ??, we have ‖x′′ − ξ‖ = O(ε2).

Based on Theorem ?? and Theorem ??, we propose a modification of Algorithm
1, where two refinement steps involving LinearSolver are replaced by two closed-

form solutions (??) and (??) respectively, meanwhile the quadratic convergence is
retained.
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Algorithm 3 SimpleMultipleRootRefiner

Input:
f : a polynomial system associated with a simple multiple zero ξ;
x: an identified approximation of ξ for a specified tolerance τ ;

Output:
x′′: the refined approximation of ξ;

1: Calculate the SVD of Df(x),

Df(x) = U · diag(σ1, . . . , σn) · V ∗,

where U = (u1, . . . , un), V = (v1, . . . , vn) are unitary and σ1 ≥ · · · ≥ σn ≥ 0.
2: Refine x to x′,

x′ = N1(f, x)
def
= x−

n−1∑
i=1

1

σi
viu
∗
i f(x).

3: Calculate the SVD of Df(x′),

Df(x′) = U ′ · diag(σ′1, . . . , σ
′
n) · V ′∗,

where U ′ = (u′1, . . . , u
′
n), V ′ = (v′1, . . . , v

′
n) are unitary and σ′1 ≥ · · · ≥ σ′n ≥ 0.

4: Refine x′ to x′′,

x′′ = N2(f, x′)
def
= x′ −

1

µ
v′n
u′n
∗∆µ−1(f)

u′n
∗∆µ(f)

,

where u′n
∗∆µ−1 and u′n

∗∆µ are by-products of LeastSquares-Free ApproximateMultiplici-
tyStructure.

Remark 3 Comparing to [?], whose proof of the quadratic convergence was based
on the deflation techniques and the symbolic-numeric reduction to geometric in-
volutive forms, the new proof is based on the following facts:

1. x′ = N1(f, x) adjusts the given approximation x to a special position x′ such
that there exists a refined approximation with quadratic convergence along the
direction v′n (Theorem ??);

2. x′ is an exact simple multiple zero of the perturbed system f̃(X) (??), where
the polynomial u′n

∗
f̃(X) has a recursive reduction (??);

3. a suitable step length is estimated using the differential functionals such that
x′′ = N2(f, x′) achieves the quadratic convergence (Theorem ??).

Additionally, based on Theorem ??, we propose a modification of Algorithm 2
below, where the parameter-estimation step involving LeastSquares is replaced
by the closed-form solution (??).
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Algorithm 4 LeastSquares-Free ApproximateMultiplicityStructure

Input:
f : a polynomial system associated with a simple multiple zero ξ;
x: an identified approximation of ξ for a specified tolerance τ ;

Output:
µ: an estimation of the multiplicity of ξ;
ak,i: an estimation of µn parameters for a basis of Df,ξ;

1: Let Df(x) = U · diag(σ1, . . . , σn) · V ∗, where U = (u1, . . . , un), V = (v1, . . . , vn) are
unitary and σ1 ≥ · · · ≥ σn ≥ 0, then

a1,i = vn,i,

and set Λ1 = a1,1d1 + · · ·+ a1,ndn.
2: From k = 2, formulate ∆k incrementally according to (??): while |u∗n∆k(f)| < τ , then

calculate ak,i,  ak,1
...

ak,n

 = −
n−1∑
i=1

1

σi
viu
∗
i∆k(f),

set Λk = ∆k + ak,1d1 + · · ·+ ak,ndn and repeat the step; otherwise, return µ = k.

4.4 Example ?? (continued)

We illustrate the main steps of the proposed two-step Newton’s method for Ex-
ample ??.

#1 SVD

Df(x) =

[
2.02 1

1 0.5025

]
=

[
−0.8957 −0.4447
−0.4447 0.8957

]
·
[

2.5165 0
0 0.00598

]
·
[
−0.8957 −0.4447
−0.4447 0.8957

]
#1 Refinement

x′ =

(
1.01
2.01

)
− 1

2.5165

(
−0.8957
−0.4447

)
· (−0.8957,−0.4447) ·

(
0.0301

0.0150125

)
=

(
0.998
2.004

)
.

#2 SVD

Df(x′) =

[
1.996 1

1 0.501

]
=

[
−0.8941 −0.4479
−0.4479 0.8941

]
·
[

2.497 0
0 0.000021

]
·
[
−0.8941 −0.4479
−0.4479 0.8941

]
Parameter-Estimation Initialize

(a1,1, a1,2)T = v′2 = (−0.4479, 0.8941)T ,
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then ∆2(f) = (0.2006, 0.09992)T by (??) and |u′2
∗
∆2(f)| = 0.00053 < 0.01.

For k = 2, we have(
a2,1
a2,2

)
= − 1

2.497

(
−0.8941
−0.4479

)
· (−0.8941,−0.4479) ·

(
0.2006
0.09992

)
=

(
−0.0803
−0.0402

)
,

then ∆3(f) = (0.0719,−0.009)T by (??) and |u′2
∗
∆3(f)| = 0.04024 > 0.01.

The multiplicity is recovered as µ = 3.
#2 Refinement

x′′ =

(
0.998
2.004

)
− 1

3

(
−0.4479
−0.8941

)
· 0.00053

0.04024

=

(
1.000007
2.000106

)
.

Let x0 = x = (1.01, 2.01), x1 = x′′ = (1.000007, 2.000106), and x2 = N2(f,N1(f, x1))
and x3 = N2(f,N1(f, x2)) are the refined approximations, then the distance ‖xk −
ξ‖ is reduced from 10−2 to 10−16 for k = 0, 1, 2, 3:

0.01414→ 0.000106→ 6.8462× 10−9 → 4.4409× 10−16.

4.5 Numerical Stability

In this subsection, we show the numerical stability of the algorithms with respect
to the initially given approximate solution, the separation bound and the tolerance.

Example 2 The polynomial system

f = {X2 + Y 3, X + 10−k · Y }

has a simple double zero ξ = (0, 0) and a nearby simple zero η = (10−3k,−10−2k).

The following experiments are done in Maple 2018 with the Maple environment
variable being set by the statement “Digits:=14”.

– The first experiment is conducted by setting k = 1, i.e., η = (0.001,−0.01) and
varying x from (0.0001, 0.0001) to (0.001, 0.001) and (0.01, 0.01). We notice
from Table ?? that the accuracy of the approximate solution x affects the con-
vergence rate of our algorithm. When x is sufficiently close to ξ = (0, 0) and far
from another zero η = (0.001,−0.01), the first row of Table ?? indicates that x
converges to ξ quadratically as our theoretical analysis proved. When x is cho-
sen between the double zero ξ = (0, 0) and the simple zero η = (0.001,−0.01),
then the convergent rate drops significantly.

Note that the symbol→ means the error is measured by the Euclidean distance
between x′′ and the simple double zero ξ.
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– The second experiment is conducted by setting x = (0.0001, 0.0001) and vary-
ing k = 1, 2, 3. Table ?? shows that when the double zero ξ = (0, 0) is well
separated from another zero η = (0.001,−0.01), and the approximate solution
x = (0.0001, 0.0001) is close to ξ, then our algorithm converges quadratically
to the double zero ξ. However, when η = (10−6,−10−4) or η = (10−9,−10−6),
then for the given tolerance τ = 0.0001, ξ and η can be treated as a cluster
of zeros of f , which behaves like a simple triple zero of a slightly perturbed
system numerically. Therefore, x converges to the centroid (2 · ξ + 1 · η)/3 of ξ
and η quadratically.

Note that the symbol means the error is measured by the Euclidean distance
between x′′ and the centroid (2 · ξ + 1 · η)/3.

– The third experiment is conducted by setting k = 2, η = (10−6,−10−4), x =
(0.0001, 0.0001), and varying the value of τ from 10−3 to 10−4. Results are
recorded in Table ??. The convergence and the multiplicity are affected by
values of τ . When τ = 10−3, the first row indicates that x converges to the
centroid (2 · ξ+ 1 · η)/3 quadratically, i.e., x is identified as close to a cluster of
three zeros. When τ = 10−4, x is identified as close to the double root ξ, the
second row indicates that x converges to the simple double zero ξ, however the
convergence rate is linear rather than quadratic.

Table 2 Fix k = 1, vary x = (0.0001, 0.0001), (0.001, 0.001), (0.01, 0.01)

‖x− ξ‖ ‖x− η‖ τ µ error per iteration

1.41e-04

1.41e-03

1.41e-02

1.01e-02

1.10e-02

1.68e-02

0.001

0.001

0.001

2

2

2

1.41e-04→1.17e-06→2.03e-10→3.28e-16

1.41e-03→9.45e-05→1.30e-06→2.50e-10

1.41e-02→3.27e-03→8.06e-04→7.81e-05

Table 3 Fix x = (0.0001, 0.0001), vary k = 1, 2, 3

k ‖ξ − η‖ τ µ error per iteration

1

2

3

1.00e-02

1.00e-04

1.00e-06

0.001

0.001

0.001

2

3

3

1.41e-04→1.17e-06→2.03e-10→3.28e-16

1.66e-04 2.04e-12 1.45e-17 1.45e-17

1.42e-04 2.00e-12 3.55e-21 3.55e-21

Table 4 Fix k = 2 and x = (0.0001, 0.0001), vary τ = 0.001, 0.0001

τ µ error per iteration

0.001

0.0001

3

2

1.66e-04 2.04e-12 1.45e-17 1.45e-17

1.41e-04→3.70e-05→9.74e-06→1.10e-06

Three experiments reveal that the numerical stability of our algorithm is not
only affected by the accuracy of the identified approximation zero x but also by
the distribution of the other zeros of f . The quantitative analysis of f and x for
guaranteeing quadratic convergence is left for future works, which is actually the
generalization of Smale’s α-theory to simple multiple zeros.
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5 Implementation and Experiment

In this section, we show that the proposed two-step Newton’s method not only
enables a more elegant proof of the quadratic convergence, but also results in
a more efficient implementation compared with MultipleRootRefinerBreadthOne [?]
and ApproximateMultiplicityStructure [?].

5.1 Implemental Comparison

Comparing Algorithm 3 and Algorithm 4 to MultipleRootRefinerBreadthOne [?] and
ApproximateMultiplicityStructure [?], they both use two SVDs in their implementa-
tion, namely,

Step 1: Df(x) = U · diag(σ1, . . . , σn) · V ∗,
where U = (u1, . . . , un), V = (v1, . . . , vn) are unitary and σ1 ≥ · · · ≥ σn ≥ 0,

Step 3: Df(x′) = U ′ · diag(σ′1, . . . , σ
′
n) · V ′∗,

where U ′ = (u′1, . . . , u
′
n), V ′ = (v′1, . . . , v

′
n) are unitary and σ′1 ≥ · · · ≥ σ′n ≥ 0.

However, how they exploit two outputs in those subsequent steps: #1 Refine-
ment (Step 2), #2 Refinement (Step 4) and Parameter-Estimation (Step 2) are
different.

#1 Refinement MultipleRootRefinerBreadthOne takes σn from the SVD in Step 1 as
the regularization parameter, then solves a damped least-squares problem for com-
pleting #1 Refinement, which totally costs O(n3) floating-point multiplications.
Respectively, Algorithm 3 takes the sum of the first n−1 products of viu

∗
i f(x)/σi,

which uses O(n2) floating-point multiplications.

Table 5 Implemental Comparison on #1 Refinement

MultipleRootRefinerBreadthOne [?] SimpleMultipleRootRefiner

x′ = x+ y
where y is the optimal solution of
min ‖Df(x) · y + f(x)‖2 + σn‖y‖2

x′ = x+ y

where y = −
∑n−1
i=1 viu

∗
i f(x)/σi

O(n3) O(n2)

#2 Refinement MultipleRootRefinerBreadthOne solves a least-squares problem for
completing #2 Refinement, which costs about O(n3) floating-point multiplica-
tions. Respectively, Algorithm 3 takes only one-time floating-point multiplication
because u′n

∗
∆µ−1(f) and u′n

∗
∆µ(f) are two by-products of Algorithm 4.

Parameter-Estimation ApproximateMultiplicityStructure recursively solves µ−1 least-
squares problems for estimating the values of ak,i, which totally costs O(µn3−n3)
floating-point multiplications. Respectively, Algorithm 4 takes the sum of the first
n−1 products of v′iu

′
i
∗
∆k(f)/σ′i recursively, which costs O(µn2−n2) floating-point

multiplications.
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Table 6 Implemental Comparison on #2 Refinement

MultipleRootRefinerBreadthOne [?] SimpleMultipleRootRefiner

x′′ = x′ + δ · v′n/µ
where (δ, y) is the optimal solution of

min ‖∆µ(f) · δ +Df(x) · y +∆µ−1(f)‖2
subject to v′n

∗ · y = 0

x′′ = x′ + δ · v′n/µ
where δ = −u′n

∗∆µ−1(f)/u′n
∗∆µ(f)

O(n3) O(1)

Table 7 Implemental Comparison on Parameter-Estimation

ApproximateMultiplicityStructure [?] LS-Free ApproximateMultiplicityStructure

ak is the optimal solution of
min ‖Df(x) · ak +∆k(f)‖2

subject to v′n
∗ · ak = 0

ak = −
∑n−1
i=1 v

′
iu
′
i
∗∆k(f)/σ′i

O(µn3 − n3) O(µn2 − n2)

5.2 Experimental Comparison

In order to examine the performance of the proposed two-step Newton’s method
comparing to the previous approach in [?,?], we compare both implementations on
two categories of examples: the benchmark examples in literature and the large-size
examples.

All experiments are done in Maple 2018 on a MacBook Pro with 2.3 GHz 8-
Core Intel Core i9 (processor) and 16 GB 2400 MHz DDR4 (memory) running
Catalina. The Maple environment variable is set by the statement “Digits:=14”.
All timings are measured as elapsed time in seconds. The code of SimpleMultiple-

RootRefiner and MultipleRootRefinerBreadthOne and the worksheet of all experimen-
tal results are available at http://www.mmrc.iss.ac.cn/~lzhi/Research/hybrid/

RefineSimpleMultipleZeros/

Benchmark Examples in Literature Some benchmark examples in the litera-
ture are tested and their experimental results are listed in Table ??. All polynomial
systems are well-constrained (# variables = # equations = n) associated with a
simple multiple zero of µ. τ denotes the specified tolerance in the experiment
for correctly recovering µ. The last two columns illustrate the averaging elapsed
times for one iteration of MultipleRootRefinerBreadthOne and SimpleMultipleRootRe-

finer respectively. In Table ??, eight examples are listed in order of n and µ, where
the fourth example is modified from [?] (the original system is of multiplicity 4).
Obviously, our proposed method is 2x-3x faster.

Examples in Table ?? are of small-size (n < 4) such that it is hard to confirm the
efficiency of the proposed method. Some large-size examples are further examined.

Large-Size Examples We demonstrate the efficiency of the proposed method
by testing the following example, which possesses a simple multiple zero at the
origin of multiplicity µ = k. The experimental comparison on four examples (n =
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Table 8 Experimental Comparison on Benchmark Examples in Literature

Systems n µ τ previous proposed

Decker3 [?] 2 2 0.1 0.0117 0.0063
Decker1 [?] 2 3 0.1 0.0160 0.0067
Decker2 [?] 2 4 0.1 0.0213 0.0087
Rump [?] 2 5 0.1 0.0327 0.0117
Ojika3 [?] 3 2 0.01 0.0117 0.0063
Ojika4 [?] 3 3 0.1 0.0163 0.0077
Giusti [?] 3 4 0.1 0.0207 0.0097
Dayton [?] 3 5 0.1 0.0237 0.0113

100/1000, µ = 2/3) are listed in Table ??. The last two columns illustrate the
averaging runtime for one iteration, where the averaging runtime for three different
solvers in Table ??, Table ?? and Table ?? are listed in brackets.

Example 3 [?] Consider f = {X2
1 +X1−X2, . . . , X

2
n−1 +Xn−1−Xn, Xk

n} associated
with ξ = (0, . . . , 0) of multiplicity µ = k.

Table 9 Experimental Comparison on Large-Size Examples

n µ τ previous (LeastSquares) proposed (Closed-Form)

100
100
1000
1000

2
3
2
3

1.0e-05
1.0e-05
1.0e-06
1.0e-06

0.8793 (0.5523)
1.7827 (0.6460)

31.8237 (19.5770)
60.8303 (25.3040)

0.1540 (0.0110)
0.8597 (0.0130)
9.3320 (0.1923)
31.9803 (0.2997)

In Table ??, it is clearly observed from the last column that the new proposed
method is 2x-5x faster than the previous method in [?,?]. If we pay further atten-
tion to the three different solvers in Table ??, Table ?? and Table ??, the speed-up
proportion rises up to 50x-100x faster.

5.3 Other Experimental Results

Examples below are given to demonstrate that our proposed methods are appli-
cable to analytic systems and polynomial systems with clusters of simple zeros as
well.

Analytic-Singularity Examples

Example 4 [?] Consider f = {X2sin(Y ), Y − Z2, Z + sin(X4)} associated with
ξ = (0, 0, 0) and an approximation x = (0.001, 0.001, 0.001).

The error in each iteration is measured as the Euclidian distance between ξ

and the current approximation. The quadratic convergence is clearly observed.
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Table 10 Experimental Results on Analytic-Singularity Examples

n µ τ error per iteration time (sec.)
3 10 0.1 1.73e-03→1.00e-06→4.34e-22 0.03367

Zero-Cluster Examples

Example 5 [?] Consider f = {14 X + 33 Y − 3
√

5 (X2 + 4 XY + 4 Y 2 + 2) +
√

7 +
X3 + 6 X2Y + 12 XY 2 + 8 Y 3, 41 X−18 Y −

√
5 + 8 X3−12 X2Y + 6 XY 2−Y 3 +

3
√

7 (4 XY −4 X2−Y 2−2)} associated with ξ = (2
√

7/5+
√

5/5,−
√

7/5+2
√

5/5)
and an approximation x = (1.506, 0.366).

Table 11 Experimental Results on Zero-Cluster Examples

n µ τ error per iteration time (sec.)
2 5 0.5 8.71e-04→1.55e-09→1.48e-13 0.01100

The irrational coefficients of f are rounded to 14 digits such that the numerically-
rounded system f̃ has a cluster of five simple zeros centering at ξ. The error in
each iteration is measured as the Euclidian distance between the rounded ξ and
the current approximation. The quadratic convergence is clearly observed.
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Appendix

We prove below conditions (??), (??), (??) and (??).
Proof of (??). It is easy to check that

dαξ

(
(X − ξ)β

)
=

{
1, α = β,

0, otherwise.

Since the order of every differential monomial in ∆k is bounded above by k, we
derive

∆k

(
(X − ξ)β

)
= 0, if |β| > k.

Proof of (??). Since (X − ξ)βfi(X) ∈ If for i = 1, . . . , n, we have

0 = Λk

(
(X − ξ)βf(X)

)
= ∆k

(
(X − ξ)βf(X)

)
+ ak,1d1

(
(X − ξ)βf(X)

)
+ · · ·+ ak,ndn

(
(X − ξ)βf(X)

)
.

Since f(ξ) = 0, we have dj

(
(X − ξ)βf(X)

)
= 0 for j = 1, . . . , n. Therefore, we

derive
∆k

(
(X − ξ)βf(X)

)
= 0, if |β| > 0.

Proof of (??). Let Φ[ak] =
∑n
i=1 ak,iΨi, where Ψi : Dξ → Dξ be the morphism

that satisfies Ψi(d
α1
1 · · · d

αn
n ) = dαi+1

i · · · dαnn if α1 = · · · = αi−1 = 0 and 0 otherwise
for i = 1, . . . , n, then (??) and (??) can be rewritten into

∆k =
k−1∑
j=1

Φ[aj ](Λk−j),

Λk = ∆k + Φ[ak](1).

Consequently, ∆k and Λk can be written into a sum of homogenous terms formu-
lated by

∏k
j=1 Φ[aj ]

nj (1), where nj ≥ 0 and
∑k
j=1 nj ≤ k. We can check that

k∏
j=1

Φ[aj ]
nj (1)

(
[v∗(X − ξ)]l

)
=

{∏k
j=1(v∗aj)

nj ,
∑k
j=1 nj = l,

0, otherwise.

Since Φ[a1]k is the only pure term of Φ[a1] in ∆k (other terms are mixed with at
least one Φ[aj ] for j = 2, . . . , k − 1), and vn

∗a1 = 1, vn
∗aj = 0 according to (??),

we derive

∆k

([
vn
∗(X − ξ)

]l)
=

{
1, if k = l,

0, otherwise.

Proof of (??). Since ‖v′n
∗
(x′ − ξ)‖ ≤ ‖v′n

∗‖‖x′ − ξ‖ = O(ε), we get[
v′n
∗
(X − x′)

]k
=
[
v′n
∗
(X − ξ) + v′n

∗
(ξ − x′)

]k
=
[
v′n
∗
(X − ξ)

]k
+ k

[
v′n
∗
(X − ξ)

]k−1 [
v′n
∗
(ξ − x′)

]
+O(ε2) (47)

=
[
v′n
∗
(X − ξ)

]k
+O(ε). (48)
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Similar to the proof of (??), ∆̂µ−1 and Λ̂µ−1 can be written as a sum of homoge-
nous terms formulated by

∏µ−1
j=1 Φ[âj ]

nj (1), where nj ≥ 0 and
∑µ−1
j=1 nj ≤ µ − 1.

According to (??) and (??), we know that |v′n
∗
â1| = 1− O(ε) and |v′n

∗
âj | = O(ε),

so we have

µ−1∏
j=1

Φ[âj ]
nj (1)

(
[v′n
∗
(X − ξ)]k

)
=


(v′n
∗
â1)k,

∑µ−1
j=1 nj = k and n1 = k,

O(ε),
∑µ−1
j=1 nj = k and n1 < k,

0, otherwise.

(49)

Since Φ[â1]µ−1 is the only pure term of Φ[â1] in Λ̂µ−1 (other terms are mixed with
at least one Φ[âj ] for j = 2, . . . , µ− 1), combining (??) and (??), we derive

Λ̂µ−1

([
v′n
∗
(X − x′)

]k)
=

{
O(ε), k ≤ µ− 2,

(v′n
∗
â1)µ−1 +O(ε), k = µ− 1.

For k = µ, combining (??) and (??), we derive

Λ̂µ−1

([
v′n
∗
(X − x′)

]µ)
=Λ̂µ−1

([
v′n
∗
(X − ξ)

]µ)
+ Λ̂µ−1

(
µ
[
v′n
∗
(X − ξ)

]µ−1 [
v′n
∗
(ξ − x′)

])
+O(ε2)

=0 + µv′n
∗
(ξ − x′)(v′n

∗
â1)µ−1 +O(ε2).


