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Abstract

In this paper we describe how to improve the performance of the symbolic-
numeric method in [19, 20] for computing the multiplicity structure and refining
approximate isolated singular solutions in the breadth-one case. By introducing
a parameterized deflated system with smoothing parameters, we generalize the
algorithm in [33] to compute verified error bounds such that a slightly perturbed
polynomial system is guaranteed to have a breadth-one multiple root within the
computed bounds.

Keywords: polynomial systems, isolated singular solutions, multiplicity
structure, verification, error bounds.

1. Introduction

It is a challenge problem to solve polynomial systems with singular solutions.
In [28], Rall studied the convergence properties of Newton’s method at singular
solutions, and many modifications of Newton’s method to restore the quadratic
convergence have been proposed in [29, 30, 5, 6, 7, 10, 12, 27, 25, 11, 26, 1, 34].
Recently, some symbolic-numeric methods have been proposed for refining ap-
proximate isolated singular solutions to high accuracy [2, 14, 4, 8, 9, 15, 17, 36,
37, 3, 21]. Especially, in [15, 17], they modified the symbolic deflation method
in [27, 26] and provided a numerically stable implementation to compute iso-
lated singular solutions accurately to the full machine precision. For many
benchmark problems from the PHCpack demos by Jan Verschelde (available at
http://www.math.uic.edu/~jan/demo.html), one deflation always suffices to
restore the quadratic convergence. However, for the special case of breadth one,
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each deflation only reduces the multiplicity exactly by one [20]. In addition, a
modified deflation method based on computing the multiplicity structure was
proposed in [4] to reduce the size of deflated systems in [15, 17] to a linear func-
tion in the multiplicity for the case of breadth one. Furthermore, in [19, 20],
we described a new symbolic-numeric method based on regularized Newton it-
erations and computations of multiplicity structures for refining approximate
isolated singular solutions with quadratic convergence in the breadth-one case.
The size of matrices involved in our algorithm is bounded by the number of
variables and polynomials and does not increase with the multiplicity. A pre-
liminary implementation performs well in most cases. However, it may suffer
from computing and storing dense multiplicity structures caused by linear trans-
formations or dense expressions of differential functionals even for sparse input
polynomials. In [18], we show briefly how to compute evaluations of differen-
tial functionals more efficiently by avoiding linear transformations and solving
a sequence of least squares problems.

Since arbitrary small perturbations of coefficients may transform an isolated
singular solution into a cluster of simple roots (or even make it disappear), it
is more difficult to certify whether a polynomial system has a multiple root.
In [33], by introducing a smoothing parameter, they described a verification
method for computing guaranteed error bounds such that a slightly perturbed
system is proved to have a double root within the computed bounds. In [21], they
proposed a method to verify a multiple root of a nearby system with a computed
local structure, which depends on accuracy of the given approximate singular
point. By adding a perturbed univariate polynomial in one selected variable with
some smoothing parameters to one selected equation of the input system, we
are able to use the parameterized deflated system in [18] to compute guaranteed
error bounds, such that a slightly perturbed system has a breadth-one multiple
root within the computed bounds. Moreover, if the original input system has an
exact breadth-one multiple root near the given approximate singular solution,
we can refine the multiple root and the multiplicity structure simultaneously
to arbitrary accuracy. The techniques for the construction of a parameterized
deflated system and evaluations of differential functionals are similar to those
introduced in [15, 16].

Main results. In this paper, we still focus on the special case where the
Jacobian matrix has corank one. First, we describe a method to preserve
sparse structures of input polynomial systems by avoiding linear transforma-
tions. Next, we present an algorithm to compute the recursive evaluation of
differential functionals without constructing and storing their dense structure.
Furthermore, we show that the parameterized deflated system introduced in
[18] can be used to generalize the algorithm in [33] to compute verified error
bounds, therefore, a slightly perturbed polynomial system is guaranteed to have
a breadth-one multiple root within the computed bounds. We also prove that
it is always possible to construct a regular augmented system to compute an
inclusion of the multiple root by choosing properly smoothing parameters and
renumbering the polynomials. We provide numerical experiments to demon-
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strate the effectiveness of our method.

Organization of the paper. Section 2 is devoted to recall some notations
and well-known facts. In Section 3, we describe an improved algorithm for
computing the multiplicity structure at an isolated singular solution when the
Jacobian matrix has corank one. Some experimental results are given to show
the efficiency of the new algorithm. In Section 4, we show how to construct a
parameterized deflated system to refine and compute verified error bounds for a
breadth-one multiple root. Some numerical examples are given to demonstrate
the performance of our algorithm.

2. Notation and Preliminaries

Let R = K[x] denote a polynomial ring over the field K of characteristic
zero. Let I = (f1, . . . , fn) be an ideal of R, x̂ ∈ K

n an isolated root of I,
mx̂ = (x1 − x̂1, . . . , xn − x̂n) the maximal ideal at x̂. Suppose Qx̂ is the isolated
primary component whose associate prime is mx̂, then the multiplicity µ of x̂

is defined as the dimension of the quotient ring R/Qx̂.
Let dα

x̂
: R → K denote the differential functional defined by

dα
x̂
(g) =

1

α1! · · ·αn!
· ∂|α|g

∂xα1

1 · · ·∂xαn
n

(x̂), ∀g(x) ∈ R, (1)

for a point x̂ ∈ K
n and an array α ∈ N

n. The normalized differentials have a
useful property: when x̂ = 0, we have dα

0
(xβ) = 1 if α = β or 0 otherwise. We

may occasionally write dα = dα1

1 dα2

2 · · · dαn
n instead of dα

x̂
for simplicity if x̂ is

clear from the context, where dαi

i = 1
αi!

∂αi

∂x
αi
i

.

Definition 2.1. The local dual space of I at x̂ is the subspace of elements of
Dx̂ = Span

K
{dα

x̂
, α ∈ N

n} that vanish on all the elements of I

Dx̂ := {Λ ∈ Dx̂ | Λ(f) = 0, ∀f ∈ I}, (2)

where dim(Dx̂) = µ.

Computing a closed basis of the local dual space is done essentially by matrix-
kernel computations [22, 24, 4, 36, 38], which are based on the stability property
of Dx̂:

∀Λ ∈ Dt
x̂
, Φxi

(Λ) ∈ Dt−1
x̂

, i = 1, . . . , n, (3)

where Dt
x̂

denotes the subspace of Dx̂ of the degree less than or equal to t, for
t ∈ N, and Φxi

: Dx̂ → Dx̂ are the linear anti-differentiation operators defined
by

Φxi
(dα

x̂
) :=

{

d
(α1,...,αi−1,...,αn)
x̂

, if αi > 0,
0, otherwise.

Moreover, D0
x̂

= Span
K
{Λ0 := 1} and Φk

xi
(dα

x̂
) := Φxi

k−1
︷ ︸︸ ︷◦ · · · ◦Φxi

(dα
x̂
).
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Lemma 2.2. [35, Theorem 8.36] Suppose {Λ0, . . . , Λs} is a closed basis of
Dt−1

x̂
, then an element Λ ∈ Dx̂ lies in Dt

x̂
if and only if it satisfies (3) and

Λ(fi) = 0 for i = 1, . . . , n.

In fact, (3) is equivalent to finding λi,k ∈ K such that Λ ∈ Dx̂ satisfies

Φxi
(Λ) = λi,0Λ0 + λi,1Λ1 + · · · + λi,sΛs, for i = 1, . . . , n. (4)

If these λi,j are known, we can compute Λ by the following formula [24]

Λ =
s∑

j=0

λ1,jΨx1
(Λj) +

s∑

j=0

λ2,jΨx2
(Λj) + · · · +

s∑

j=0

λn,jΨxn
(Λj), (5)

where the differentiation operators Ψxi
: Dx̂ → Dx̂ are defined by

Ψxi
(dα

x̂
) :=

{

d
(α1,...,αi+1,...,αn)
x̂

, if α1 = · · · = αi−1 = 0,
0, otherwise.

Here and hereafter, JF (x̂) denotes the Jacobian matrix of the polynomial
system F evaluated at x̂. It is well known that when the corank of JF (x̂) is
one, Dx̂ has the important property:

dim(Dt
x̂
) − dim(Dt−1

x̂
) = 1, for 1 ≤ t ≤ µ − 1.

Hence, it is also called the breadth-one case in [4]. For this special case, in [19],
under the assumption that the first column of JF (x̂) is zero, we employ both
normalization and reduction techniques to compute a closed basis of Dx̂ very
efficiently by solving µ− 1 linear systems with the size bounded by n× (n− 1).

Theorem 2.3. [19, Theorem 3.1] Suppose x̂ is an isolated breadth-one root of
a given polynomial system F = {f1, . . . , fn}, and the first column of JF (x̂) is a
zero vector. Set Λ0 = 1 and Λ1 = d1, we can construct Λk incrementally for k
from 2 by

Λk = ∆k + ak,2d2 + ak,3d3 + · · · + ak,ndn, (6)

where ∆k is a differential functional which has no free parameters and can be
obtained from previously computed {Λ0, Λ1, . . . , Λk−1} by

∆k = Ψx1
(Λk−1) +

k−2∑

j=1

ak−j,2Ψx2
(Λj) + · · · +

k−2∑

j=1

ak−j,nΨxn
(Λj). (7)

The parameters ak,i, for i = 2, . . . , n, are determined by solving

J̃F (x̂) ·






ak,2

...
ak,n




 = −






∆k(f1)
...

∆k(fn)




 , (8)

where J̃F (x̂) consists of the last n − 1 columns of JF (x̂). The process stops
when there is no solution for (8) and returns the multiplicity µ := k and
{Λ0, Λ1, . . . , Λµ−1} a closed basis of Dx̂.
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In [19], if the first column of JF (x̂) is not a zero vector, we apply a linear
transformation of variables to obtain a new system and a new root, which satisfy
the assumptions of Theorem 2.3. Finally, we can derive a closed basis of the
local dual space of the original system at the original root by transforming back
the computed basis. Unfortunately, these transformations always result in dense
systems even if the original ones are sparse.

EXAMPLE 2.1. [26] Consider a polynomial system

F =

{

x2
1 + x2 − 3, x1 +

1

8
x2

2 −
3

2

}

.

The system F has (1, 2) as a 3-fold isolated zero.

The Jacobian matrix of F at (1, 2) is

JF (1, 2) =

[
2 1
1 1

2

]

,

which has a non-trivial null vector r = (− 1
2 , 1)T . Then we apply a linear

transformation of the variables

x1 = −1

2
y1 + 2y2, x2 = y1 + y2,

to obtain a new dense polynomial system

G =

{
1

4
y2
1 − 2y1y2 + 4y2

2 + y1 + y2 − 3,
1

8
y2
1 +

1

4
y1y2 +

1

8
y2
2 − 1

2
y1 + 2y2 −

3

2

}

.

The returned closed basis of the local dual space of G at the new point (6
5 , 4

5 )
by Theorem 2.3 is

Λ0 = 1, Λ1 = d1, Λ2 = d2
1 −

1

20
d2,

which can be transformed back to a closed basis of F at (1, 2)

Λ0 = 1, Λ1 = −1

2
d1 + d2, Λ2 =

1

4
d2
1 −

1

2
d1d2 + d2

2 −
1

10
d1 −

1

20
d2.

3. A Modified Algorithm for Computing a Closed basis of Dx̂

In this section, we show how to avoid linear transformations in computing a
closed basis {Λ0, Λ1, . . . , Λµ−1} of the local dual space Dx̂.

Let r = (r1, r2, . . . , rn)T be a non-trivial null vector of JF (x̂). Without loss
of generality, we assume

|r1| ≥ |rj |, for 1 ≤ j ≤ n. (9)
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Otherwise, one can permute two variables to guarantee (9) is satisfied. Then
we normalize r by r1 and derive that

a1 = (1, a1,2, . . . , a1,n)
T

=

(

1,
r2

r1
, . . . ,

rn

r1

)T

(10)

is also a non-trivial null vector of JF (x̂). We set Λ0 = 1 and

Λ1 = d1 + a1,2d2 + · · · + a1,ndn, |a1,2| ≤ 1, . . . , |a1,n| ≤ 1. (11)

Lemma 3.1. Under the assumption of (11), the differential functional mono-
mial dk

1 belongs to the support of Λk, for k = 1, . . . , µ − 1.

Proof. By (11), it is clear that d1 belongs to the support of Λ1. If µ ≥ 3,
Λ2 will satisfy (4), and at least one of λ1,1,λ2,1,. . ., λn,1 will not be zero. Let
t be the integer such that λt,1 6= 0, then the differential functional monomial
d1dt belongs to the support of Λ2 according to (5). It follows that dt has a non-
zero coefficient in Φx1

(Λ2). Then from (4) and (11), we derive that λ1,1 6= 0.
Therefore, d2

1 belongs to the support of Λ2.
The rest proof is done by induction. Assume that the lemma is true for k and

k < µ − 1, then similar to the analysis above, Λk+1 will satisfy (4) and at least
one of λ1,k,λ2,k,. . .,λn,k will not be zero. Let t be the integer such that λt,k 6= 0,
then dk

1dt belongs to the support of Λk+1. It follows that dk−1
1 dt has a non-zero

coefficient in Φx1
(Λk+1). Since dim(Dk+1

x̂
) − dim(Dk

x̂
) = 1 and degree(Λk) = k,

we derive that λ1,k 6= 0. Therefore, dk+1
1 belongs to the support of Λk+1. �

Remark 3.2. According to Lemma 3.1, the coefficient of dk
1 in Λk is not zero,

therefore, it can be normalized to be one. Moreover, we can assume that Λk

does not have terms {1, d1, d
2
1, . . . , d

k−1
1 }. Otherwise, one can reduce them by

{Λ0, Λ1, Λ2, . . . , Λk−1}. Finally, the number of free parameters in (4) is reduced
to n − 1.

Lemma 3.3. Under the assumption of (11), after performing the normalization
and reductions above, we have

{
Φx1

(Λk) = Λk−1,
Φxi

(Λk) = ak,iΛ0 + ak−1,iΛ1 + · · · + a1,iΛk−1, for i = 2, . . . , n,
(12)

where aj,i is the coefficient of di in Λj, for 1 ≤ j ≤ k and k < µ.

Proof. By Lemma 3.1 and Remark 3.2, we know that Λk has a term dk
1

and there are no terms of {1, d1, d
2
1, . . . , d

k−1
1 } in Λk. Hence, according to (4),

we derive that Φx1
(Λk) = Λk−1. Furthermore, since Φxi

(Λk) ∈ Dk−1
x̂

, we have

Φxi
(Λk) = λi,0Λ0 + λi,1Λ1 + · · · + λi,k−1Λk−1, for i = 2, . . . , n.

Using (5), we claim that λi,j is equal to the coefficient of dj
1di in Λk. On the

other hand, we know that Φj
x1

(Λk) = Λk−j , hence the coefficient of dj
1di in
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Λk is equal to the coefficient of di in Λk−j , which is equal to ak−j,i. Hence,
λi,j = ak−j,i for 1 ≤ j ≤ k − 1 and we prove the second equality in (12). �

According to Lemma 3.3, from a closed basis {Λ0, Λ1, . . . , Λk−1} of Dk−1
x̂

to

compute a new element Λk in Dk
x̂
/Dk−1

x̂
, the only n−1 free parameters are ak,i.

Now we modify Theorem 2.3 under the assumption (11), in order to avoid linear
transformations.

Theorem 3.4. [18] Suppose x̂ is an isolated breadth-one root of a given poly-
nomial system F = {f1, . . . , fn}. Under the assumption (11), i.e., Λ0 = 1 and
Λ1 = d1 + a1,2d2 + · · · + a1,ndn, we can construct Λk incrementally for k from
2 by (6), where

∆k = Ψx1
(Λk−1) +

k−1∑

j=1

ak−j,2Ψx2
(Λj) + · · · +

k−1∑

j=1

ak−j,nΨxn
(Λj), (13)

and the parameters ak,2, . . . , ak,n are determined by solving (8). The process
stops when there is no solution for (8) and returns the multiplicity µ := k and
{Λ0, Λ1, . . . , Λµ−1} a closed basis of Dx̂.

Proof. According to Lemma 3.3 and formulas (5),(6) and (13), the con-
structed Λk satisfies the stability property (3). Moreover, by solving (8), we
guarantee that Λk(fi) = 0 for i = 1, . . . , n. Therefore, by Lemma 2.2, the set
{Λ0, Λ1, . . . , Λµ−1} is a closed basis of Dx̂. �

Remark 3.5. In Theorem 3.4, the first column of JF (x̂) is not required to be
zero. As showed in [19], when solving (8), only the vector on the right side is
updated, while the matrix of the size n× (n− 1) on the left side is fixed. So we
apply the LU decomposition to J̃F (x̂), then solve two triangular systems instead
of solving (8).

Now we consider Example 2.1 again. Since JF (1, 2) has a non-trivial null
vector r = (− 1

2 , 1)T , we permute two variables x1 ↔ x2, then apply the method
described in Theorem 3.4 for computing a closed basis of the local dual space
of F at (1, 2). We derive that

Λ0 = 1, Λ1 = −1

2
d1 + d2, Λ2 =

1

4
d2
1 −

1

2
d1d2 + d2

2 −
1

8
d1.

In [19], in order to compute Λk of Dk
x̂
/Dk−1

x̂
, we need to construct ∆k by (7)

and evaluate ∆k(fi), for i = 1, . . . , n. Even if the input system F is sparse, the
differential functional ∆k could still be very dense. Hence, the evaluation of the
vector on the right side of (8) could be very expensive sometimes.

EXAMPLE 3.1. Consider a polynomial system F = {f1, . . . , fs}
fi = x3

i + x2
i − xi+1, if i < s,

fs = x2
s,

with a breadth-one zero (0, . . . , 0) of multiplicity 2s.
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As shown in [19], for s = 6, about 17MB of memory is used to store the local
dual bases and it takes about 3 hours to compute all of them. Moreover, for
s = 7, we are not able to obtain all Λk in 2 days, and for s = 9, the estimated
store space is about 1GB. It is not a surprise that the computation is dominated
by the evaluation of ∆k(F ) in (8).

Let Pk and Lk be the differentiation operators corresponding to ∆k and
Λk respectively. The evaluation of ∆k(F ) is divided into two steps. First, for
2 ≤ k ≤ µ, we construct polynomial systems Pk(F ) = {Pk(f1), . . . , Pk(fn)}
iteratively by

Pk(F ) =

k−1∑

j=1

j

k
· JLk−j(F ) · aj and Lk(F ) = Pk(F ) + JF · ak, (14)

where L1(F ) = JF · a1, a1 = (1, a1,2, . . . , a1,n)T , JLj(F ) is the Jacobian matrix

of Lj(F ), and aj = (0, aj,2, . . . , aj,n)T for j > 1. Secondly, we compute the
evaluation ∆k(fi) by

∆k(fi) = Pk(fi)(x̂), for i = 1, . . . , n.

The routine MSB1 below takes a polynomial system F = {f1, f2, . . . , fn}
and an isolated root x̂ ∈ K

n of I as input, where the corank of JF (x̂) is one,
and returns the multiplicity µ of x̂ and a closed basis of Dx̂. Besides, we take
a1,a2,. . .,aµ−1 as output too, since one can construct all Λk by (6) and (13)
immediately after they are computed. Another reason for outputting ai’s is
that these values are important for multiple root refinement and verification
if x̂ is only given with limited precision, which will be discussed in the next
section.

Algorithm 3.6. MSB1
Input: A polynomial system F = {f1, f2, . . . , fn} and a root x̂ ∈ K

n.
Output: The multiplicity µ, the parameters a1,a2, . . . ,aµ−1 and a closed basis
{Λ0, Λ1, . . . , Λµ−1} of the local dual space Dx̂.

1. Compute a non-trivial null vector r = (r1, r2, . . . , rn)T of JF (x̂). Let t be
the integer s.t. |rt| ≥ |rj |, 1 ≤ j ≤ n.
Apply the permutation of variables x1 ↔ xt to F , x̂, JF and r. Set

a1 :=

(

1,
r2

r1
,
r3

r1
, . . . ,

rn

r1

)T

and L1(F ) := JF · a1.

Compute the LU Decomposition of J̃F (x̂): J̃F (x̂) = P · L · U , where P is
the pivot matrix. Set k := 2.

2. Compute Pk(F ) by (14) and evaluate it at x̂ to get ∆k(F ), and solve

L · b = −P−1 · ∆k(F ).
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If the last entry in b is zero, solve U1..(n−1),: · c = b, and set

ak :=

(
0
c

)

and Lk(F ) := Pk(F ) + JF · ak,

and repeat with k := k + 1. Otherwise, set µ := k, go to Step 3.

3. Construct {Λ0, Λ1, . . . , Λµ−1} by (6) and (13) using computed vectors a1,a2,
. . . ,aµ−1, and permute variables d1 ↔ dt.

Note that we run Step 3 in Algorithm 3.6 only when a closed basis for the
local dual space is wanted. If one is only interested in refining and certifying
approximate isolated singular solutions, this step can be omitted. We have
implemented the algorithm in Maple. In the following table, we show the time
needed for computing all aj in Example 3.1, for j = 1, . . . , 2s − 1.

s 6 7 8 9 10
multiplicity 64 128 256 512 1024
time(sec.) 0.593 1.377 3.445 10.913 44.659

4. Verified Multiple Roots of Polynomial Systems

As mentioned in [21], in real-life applications it is common to work with
approximate inputs, and usually we need to decide (numerically) whether an
(approximate) system possesses a unique real or complex root in a given domain.

Standard verification methods for nonlinear systems are based on the fol-
lowing theorem [13, 23, 31].

Theorem 4.1. Let F ∈ R
n be a polynomial system with F = {f1, . . . , fn}, and

x̃ ∈ R
n a real point. Given an interval domain X ∈ IR

n with x̃ ∈ X, and an
interval matrix M ∈ IR

n×n satisfies ∇fi(X) ⊆ Mi,:, for i = 1, . . . , n. Denote
by I the n × n identity matrix and assume

−JF (x̃)F (x̃) + (I − JF (x̃)M)X ⊆ int(X).

Then there is a unique x̂ ∈ X with F (x̂) = 0. Moreover, every matrix M̃ ∈ M
is nonsingular. In particular, the Jacobian matrix JF (x̂) is nonsingular.

In [33], they introduced a smoothing parameter to certify a double root of
a slightly perturbed system using Theorem 4.1. It should be noticed that a
double root is the simplest breadth-one root with multiplicity two.

In [21], they applied Theorem 4.1 to a deflated system to verify a multiple
root of a nearby system with the computed local dual structure. Their method
can deal with arbitrary multiple roots, but the computed local dual structure
depends on the accuracy of the given approximate input.

For an isolated breadth-one root with multiplicity greater than two, in [33,
Theorem 4.2], they proved that it is impossible to compute an inclusion of a
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multiple root by adding only a smoothing parameter to one selected equation.
We describe a method below to construct a deflated system using µ−1 smoothing
parameters and a parameterized basis in a1, . . . ,aµ−1 of Dx̂ to certify a breadth-
one multiple root for µ ≥ 2.

Let F = {f1, . . . , fn} ∈ R be given. Suppose x̂ ∈ K
n is an isolated root

of F with multiplicity µ and JF (x̂) has corank one. We show how to choose a
pair of suitable variable and equation to perform the perturbation. In fact, the
perturbed variable xi can be determined by choosing a column of JF (x̂), which
can be written as a linear combination of the other n − 1 columns. Similarly,
suppose the j-th row of JF (x̂) can be written as a linear combination of the
other n − 1 linearly independent rows, then we add the perturbed univariate
polynomial in xi to fj. Finally, we permute

x1 ↔ xi and f1 ↔ fj (15)

to construct the deflated system (16).

Assumption 4.2. Suppose JF (x̂) has corank one. We assume below that the
first row (column) of JF (x̂) can be written as a linear combination of its other
rows (columns). This can always be achieved by permuting variables and renum-
bering equations as above.

We introduce µ − 1 smoothing parameters b0, b1, . . . , bµ−2 and construct a
deflated system G(x,b,a) with µn variables and µn equations:

G(x,b,a) =











F1(x,b) = F (x) −
(
∑µ−2

ν=0
bνxν

1

ν!

)

e1

F2(x,b,a1)
F3(x,b,a1,a2)

...
Fµ(x,b,a1, . . . ,aµ−1)











, (16)

where b = (b0, b1, . . . , bµ−2), a = (a1,a2, . . . ,aµ−1), a1 = (1, a1,2, . . . , a1,n)T ,
ak = (0, ak,2, . . . , ak,n)T for 1 < k ≤ µ, and

Fk(x,b,a1, . . . ,ak−1) = Lk−1(F1). (17)

Theorem 4.3. Suppose G(x̂, b̂, â) = 0. Under Assumption 4.2, if JG(x̂, b̂, â) is

nonsingular, then x̂ is an isolated root of the polynomial system F0(x) = F1(x, b̂)
with multiplicity µ and the corank of JF0

(x̂) is one.

Proof. From G(x̂, b̂, â) = 0, we have F0(x̂) = 0 and

F2(x̂, b̂, â1) = JF0
(x̂) · â1 = 0.

Since â1 6= 0, we derive that

rank(JF0
(x̂)) ≤ n − 1.
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Moreover, from the expression of â1, we know that the first column of JF0
(x̂)

can be written as a linear combination of the other n − 1 columns. Therefore,

rank(J̃F0
(x̂)) = rank(JF0

(x̂)) ≤ n − 1,

where J̃F0
(x̂) consists of the last n − 1 columns of JF0

(x̂). Similarly, since

Fk(x̂, b̂, â1, . . . , âk−1) = 0, by Theorem 3.4 and (6), we derive that

rank(∆k−1(F0), J̃F0
(x̂)) = rank(J̃F0

(x̂)) ≤ n − 1, for 2 < k ≤ µ.

In order to prove that x̂ is a breadth-one root of F0(x) = 0 with multiplicity µ,
we need to show that

rank(J̃F0
(x̂)) = n − 1 and rank(∆µ(F0), J̃F0

(x̂)) = n. (18)

It is interesting to see that we can use the equivalent relations

∂Fk

∂aj,i

=
∂Fk−j

∂xi

, for 2 ≤ i ≤ n and 1 ≤ j ≤ k − 1, (19)

to obtain a simplified expression of JG

JG =















JF1
e1 x1e1 · · · x

µ−2

1

(µ−2)!e1 0 0 · · · 0 0

JF2
0 e1 · · · x

µ−3

1

(µ−3)!e1 J̃F0
0 · · · 0 0

JF3
0 0 · · · x

µ−4

1

(µ−4)!e1 J̃F2
J̃F0

· · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

JFµ−1
0 0 · · · e1 J̃Fµ−2

J̃Fµ−3
· · · J̃F0

0

JFµ
0 0 · · · 0 J̃Fµ−1

J̃Fµ−2
· · · J̃F2

J̃F0















,

(20)
where JFk

denotes the Jacobian matrix of Fk(x,b,a1, . . . ,ak−1) with respect to
x and J̃Fk

consists of the last n − 1 columns of JFk
, for 2 ≤ k ≤ µ.

If rank(J̃F0
(x̂)) ≤ n − 2, then there exists a non-trivial vector in its kernel.

Note that J̃F0
(x̂) is the only non-zero element in the last column, we claim

that there will exist a non-trivial vector in the kernel of JG(x̂, b̂, â), which is a
contradiction. Hence, we derive that

rank(JF0
(x̂)) = rank(∆k−1(F0), J̃F0

(x̂)) = rank(J̃F0
(x̂)) = n − 1.

On the other hand, from (13) and (17), we derive that

JG(x̂, b̂, â):,1..(µ−1)n+1 · v = (0, . . . , 0, ∆µ(F0))
T ,

where

v =
1

µ
·(1, â2,2, . . . , â2,n, 0, . . . , 0, 2â3,2, . . . , 2â3,n, . . . , (µ−1)âµ,2, . . . , (µ−1)âµ,n)T .
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So that, if rank(∆µ(F0), J̃F0
(x̂)) ≤ n − 1, then there exists a non-trivial vector

in the kernel of JG(x̂, b̂, â), which is a contradiction. Hence, we have

rank(∆µ(F0), J̃F0
(x̂)) = n.

Therefore, according to Theorem 3.4, x̂ is an isolated breadth-one root of
F0(x) = 0 with multiplicity µ. �

Theorem 4.4. Suppose x̂ is an exact isolated root of F (x) = 0 with multiplicity
µ and the corank of JF (x̂) is one exactly. Under Assumption 4.2, we have

rank(J̃F (x̂), e1) = n. (21)

Evaluating (16) at b̂ = 0, i.e., no perturbations for F , then JG(x̂,0, â) is non-
singular.

Proof. According to Assumption 4.2, the first row of J̃F (x̂) can be written as
a linear combination of its other rows. Since the rank of J̃F (x̂) is n− 1, its last
n − 1 rows must be linear independent. Therefore, we have (21).

Assume v is a nontrivial vector in the kernel of JG(x̂,0, â). If v1 = 0, by
checking the columns of JG in (20), and using (21), we can show that v = 0. If
v1 6= 0, we can assume v1 = 1. Similar to the second part of proof of Theorem
4.3, we derive that ∆µ(F ) can be written as a linear combination of the columns

from J̃F (x̂), which is a contradiction. Hence, there exists no nontrivial vector
in the kernel of JG(x̂,0, â). In other word, JG(x̂,0, â) is nonsingular. �

Now, we apply Theorem 4.1 on the deflated system. If the test succeeds, we
derive verified narrow error bounds with the property that a slightly perturbed
system is proved to have a breadth-one multiple root within the computed
bounds.

Theorem 4.5. Suppose Theorem 4.1 is applicable to G(x,b,a) in (16) and

yields inclusions for x̂, b̂ and â such that G(x̂, b̂, â) = 0. Then x̂ is an isolated

breadth-one root of F0(x) := F1(x, b̂) with multiplicity µ.

Proof. A direct result of Theorem 4.1 and Theorem 4.3. �

EXAMPLE 4.1. [33, Example 4.11] Consider a polynomial system

F = {x2
1x2 − x1x

2
2, x1 − x2

2}.

The system F has (0, 0) as a 4-fold isolated zero.

The Jacobian matrix of F at (0, 0) is

JF (0, 0) =

[
0 0
1 0

]

.
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We choose x2 as the perturbed variable and add the univariate polynomial
b0 + b1x2 + b2

2 x2
2 to the first equation in F to construct the parameterized

deflated system

G(x,b,a) =















x2
1x2 − x1x

2
2 − b0 − b1x2 − b2

2 x2
2

x1 − x2
2

2a1x1x2 − a1x
2
2 + x2

1 − 2x1x2 − b1 − b2x2

a1 − 2x2

a2
1x2 + 2a1x1 − 2a1x2 + 2a2x1x2 − a2x

2
2 − x1 − b2

2
a2 − 1

a2
1 + 2a1a2x2 − a1 + 2a2x1 − 2a2x2 + 2a3x1x2 − a3x

2
2

a3















.

Applying the INTLAB function verifynlss in Matlab [32] to G with the initial
approximation

[0.002, 0.003,−0.001, 0.0015,−0.002, 0.002, 1.001,−0.01]

to obtain inclusions

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

This proves that the perturbed system F0(x) (|bi| ≤ 10−14, i = 0, 1, 2) has a
4-fold root x̂ with −10−14 ≤ x̂ ≤ 10−14.

EXAMPLE 4.2. [33, Example 4.7] Consider a polynomial system

F = {x2
1 − x2

2, x1 − x2
2}.

The system F has (0, 0) as a 2-fold isolated zero.

For this example, as mentioned in [33], the iteration is sensitive to the initial
approximations. Applying the INTLAB function verifynlss2 in Matlab to F with
the starting point [0.002, 0.001], we will obtain inclusions

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

However, for the initial approximation [0.001, 0.001], we obtain

[ 0.49999999999999, 0.50000000000001]

[ 0.70710678118654, 0.70710678118655]

[ −0.25000000000001, −0.24999999999999]
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which finds the double root (0.5, 1/
√

2) of x2
1 − x2

2 + 0.25 = 0 and x1 − x2
2 = 0.

For this reason, we prefer to use the symbolic-numeric method described
in [20] to refine initial approximations first, next to construct the parameter-
ized deflated system with smoothing parameters, finally we use the method in
Theorem 4.5 to compute inclusions of multiple roots. We show the routine
MRRB1 below for refining an approximate singular solution to high precision in
the breadth-one case. The input of MRRB1 is a sequence of polynomial sys-
tems F1, F2, . . . , Fµ defined in (16) (17) with b = 0 (without perturbations),
Fµ+1 = Pµ(F1) and an approximate solution x̂ of F1 = 0. The algorithm in [20]
has been improved in MRRB1 by avoiding linear transformations and constructing
differential functionals repeatedly.

Algorithm 4.6. MRRB1
Input: A sequence of systems F1, . . . , Fµ+1, a point x̂ ∈ K

n.
Output: A refined point x̂ and refined parameters â2, . . . , âµ.

1. Regularized Newton Iteration: Solve the least squares problem
(
J∗

F1
(x̂) · JF1

(x̂) + σnIn

)
y = −J∗

F1
(x̂) · F1(x̂),

where J∗
F1

(x̂) is the conjugate transpose of JF1
(x̂), σn is the smallest sin-

gular value of JF1
(x̂) and In is the n × n identity matrix.

Set x̂ := x̂ + ŷ.

2. For 2 ≤ k ≤ µ, solve the least squares problem

Fk(x̂, â1, . . . , âk−2,ak−1) = 0

to obtain âk−1.

3. Solve the linear system
[

Fµ+1(x̂, â1, . . . , âµ−1),
∂F1(x̂)

∂x2
, . . . ,

∂F1(x̂)

∂xn

]

v = −Fµ(x̂, â1, . . . , âµ−1),

where v = (v1, . . . , vn)T . Set δ := v1/µ.

4. Return â1, . . . , âµ−1 and

x̂ := x̂ + δ








1
â1,2

...
â1,n








.

Now we consider Example 4.2 again. For [0.002, 0.001], after running MRRB1 two
times in Maple then applying the INTLAB function verifynlss to G in Matlab,
we obtain

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]
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Similarly, for [0.001, 0.001], we obtain

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

[ −0.00000000000001, 0.00000000000001]

EXAMPLE 4.3. [19] Consider a system F = {f1, . . . , fs} given by

fi = x2
i + xi − xi+1, if i < s,

fs = x3
s,

with a breadth-one singular zero (0, 0, . . . , 0) of multiplicity 3.

We run MRRB1 three times in Maple for initial approximate roots near the
origin, whose errors are around 10−4, to obtain the refined x̂ and â with errors
about 10−12. Then we choose xs as the perturbed variable and add the univari-
ate polynomial b0+b1xs to the last polynomial fs to construct the parameterized
deflated system. In the following table, |X | and |B| denotes the interval size

of inclusions for x̂ and b̂, which are computed by applying INTLAB function
verifynlss in Matlab to the deflated system (16) and (x̂,0, â).

s |X | |B|
10 10−14 10−14

20 10−14 10−14

50 10−14 10−14

100 10−14 10−14

200 10−12 10−12

500 10−12 10−12

1000 10−12 10−12
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