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Abstract

In this paper, we derive explicit expressions for the nearest singular polynomials with
given root multiplicities and its distance to the given polynomial. These expressions
can be computed recursively. These results extend previous results of (Zhi et al.,
2004; Zhi and Wu, 1998).
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1 Introduction

The problem of finding the nearest polynomial with given root structure
has been considered by many people (Corless and Rezvani, 2007; Hitz and
Kaltofen, 1998; Hitz et al., 1999; Karmarkar and Lakshman, 1996; Pope and
Szanto, 2009; Rezvani and Corless, 2005; Stetter, 1999, 2004; Zeng, 2005; Zhi
et al., 2004; Zhi and Wu, 1998). Substantial progress has been made by Pope
and Szanto in (Pope and Szanto, 2009). They extended previous results from
the univariate case to the multivariate case and presented a symbolic-numeric
method for finding the closest multivariate polynomial system with given root
multiplicities. Motivated by the interesting results in (Pope and Szanto, 2009),
we derive explicit expressions of the nearest singular polynomials, which ex-
tend the results in (Zhi et al., 2004; Zhi and Wu, 1998) to arbitrary given
multiplicity structure.
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Problem. Given a monic univariate polynomial f € C|[x] with degree m and
the multiplicity structure k = (ki, kz,..., k) € N2, Let n = 35_, k; < m,

we want to find a polynomial hy € C[z] and z1, ..., z; € € such that
hae =TIy (x — )" (2™ + Y7 g2 "), ;€ T, (1)
j=1
and N = || f — hy ||* is minimal, where || f — hx ||* is the square of the

[2-norm of its coefficient vector.

Prior works. In (Pope and Szanto, 2009), they generalized the explicit
formula of V%) in (Zhi et al., 2004; Zhi and Wu, 1998) to the case s > 1:

NI = M, (2)

where they defined the column vector

T

(), 5] 3)

!

£ = [f(z). f

and
T

fk = {flTa fQTa SRR fsT} ) (4)
and f; denotes the conjugate transpose of fi. Here and hereafter, fU)(z;)
denotes the evaluation of the j-th derivative of f(z) at z;, and My denotes
the inverse matrix of My. The matrix My can be decomposed into

My = Vi Vi, (5)
where
B 21 ... P ]
01 ... (m—1)z?
00 ...11% (m—d) ™
Vi= |1 : g QUntorhe)xm, (6)
1zs... zm 1
01 ... (m—1)z""72
10 0 ... [Iy (m — i)z




We define

m—1
=\t
Nij = > (27)
t=0
W Nij O Ny ]
0] 0% T oz;Mi !
i 92 0% \i
0z 02i0z; " 9z;07;% 7! kixk;
Aki7kj = . . ’ . ' J el g (7)
akifl)\i’j ak’i)\i’j 8’“2'““1'*2)\“-
L ozt 9l ez T 9l oz Rt
where 7,7 = 1,..., s, and Z; denotes the conjugate of z;.
. . . . . u—+v
Note 1 These partial derivatives denote the symbolic evaluation of gx“ﬁy); t

x =2 andy = %;, where A = Y7 (zy)t. We will use these notations through-
out this paper.

From (5), (6), (7), we have

Apyky Ay - Mgy,

Mk _ Akakl Ak)27k‘2 e Ak‘27ks E C(kl“l“i‘ks)x(kl"l"‘l‘ké)' (8)
_Aks,kl Aks,kg R Aks,ks ]
We denote the determinant of My by
qx = det M. 9)

It should be noted that gy is always different from zero, see Theorem 1 in (Zhi
et al., 2004) and Definition 3 in (Pope and Szanto, 2009).

Main contribution. In previous papers (Zhi et al., 2004; Zhi and Wu,
1998), they studied the case of finding the nearest singular polynomial with one
multiple root k = (k) and gave recursive formulas related to the determination
of the nearest singular polynomials for consecutive multiplicity k. In (Pope and
Szanto, 2009), they extended results in (Zhi and Wu, 1998) to find the nearest
multivariate polynomial system to a given one which has roots with prescribed
multiplicity structure. In univariate case, Pope and Szanto generalized the
explicit formula for the gradient of the distance function to the s > 1 case and
gave a component-wise formula for the Gauss-Newton iteration to find the
optimum. We focus on extending symbolic recursive relations in (Zhi et al.,
2004; Zhi and Wu, 1998) for determining the minimal distance and the nearest



singular polynomial to the case when the input univariate polynomial is near
to a polynomial with several multiple roots. Moreover, in (Zhi et al., 2004),
they derived explicit expressions of the nearest singular polynomial for & =
2,3,4. We generalize them to the case of roots with any given multiplicities
k = (ki ks, ... k) € NSy, where s > 1.

Structure of the paper. The remaining part of the paper is set up as
follows. In Section 2, we derive the explicit formula of hy(z) defined in (1) for
s = 1. In Section 3, we generalize explicit recursive formulas in (Zhi et al., 2004;
Zhi and Wu, 1998) to the case s > 1. We illustrate two numerical examples in
Section 4.

2 The Case s=1

Let us consider the simplest case where s = 1. We take k = ki, k = (k),
Ak = Mk = Akl,klv Z =2z,

m—1

G =A1= ) (22)", qu =det Ay (10)

t=0
for short. In (Zhi et al., 2004), they derived explicit expressions of the nearest
singular polynomial h; for k& = 2,3,4. We generalize them to the arbitrary
integer k > 1 case:

s () = %’ (11)
qk
where
A f
Hk+1 = * '
a(z) f()
, T
fi = [f(2), f' (2),- - fO70 ()]
Oqu1(z) " 'qui(x)
qk(x) = [qll(i)a oz ozk—1 )
and »
q1(z) =Y (zx)". (12)
t=0
Another expression for qy(x) is
q(z) = vVy, (13)
where
v = [l,at,...,atk_l,...,xm_l}, (14)



and V7 is defined in Section 1 for the case s = 1.

Theorem 1 For k > 0, suppose the minimum of the N\¥+1) is attained at z,

then the nearest singular polynomial with a root of multiplicity k+1 is hyy1(x)
defined by (11).

Before we give the proof, we define the determinant of Py, by

Pr+1 = det Py, (15)
where
VAV i
Pk—l—l = 7k > 07 (16)
wi f9(2)
. g g o*1q, T a7
P 0zR 92078 02107k |
and py = f(2).

Note 2 For k > 0, suppose the minimum of the N\**Y) is attained at z, then
according to Theorem 5 in (Zhi and Wu, 1998), we have pri1 = 0.

Proof of Theorem 1. According to the definition of hyy;(x), two rows are
equal in the matrix Hy,; when taken derivatives by = and evaluated at x = z,
hence we have

hiar(2) = by (2) = - = b5V (2) = 0. (18)

Since the minimum of A/*+1 is attained at z, we derive that
k Dr+1
B () = =52 =0, (19)
Ak
It should be noted that py.; = 0 follows from Note 2.

Furthermore, from the definition of hj,1(x) we have

higa(z) = fx) — qr(z)Ag .

As Ay is a Hermitian matrix (Theorem 1 in (Zhi et al., 2004)),

| hier = £ 1P = || au(2) AL |
= | vViA |
= A VI VAL
=fIA
= N®
— N,%k—l_l)-



The last equality follows from py.; = 0 and Theorem 5 in (Zhi et al., 2004).
O

Let hy(x) = f(z) and qi1(z) = 7' (Z2)?, we define

Qrr1k1(2) = det Qpy, (20)
where
Ak Wi
Qua=| ol 21)
k() =5z

There is an alternative method to determine hy(z) and ggp(z) for & > 1
recursively.

Theorem 2 For k > 0, the nearest singular polynomial hy1(x) with a root
z of multiplicity k + 1 can be obtained recursively by the following formulas:

hgi_l) z
(o) = (o) = ), (22)
where
. 1 a%—l,i—l(x) 0¢i—1
QZ,Z(:L') - Gio (%—1 ag 82 q:—l,z—l(x) ) (23)

fori=2,....k and ho(z) = f(z) — @qll(x), qo = 1.

q1
Techniques used in the proofs of Theorem 5 in (Zhi et al., 2004) and Theorem

2 in (Zhi and Wu, 1998) have been generalized to show the correctness of the
recursive relations (22) and (23).

Proof of Theorem 2. Firstly, for i = 2,...,k, let

then



We have

hip1(z) — hi(2) = f(z) — qi(@)A7 e — (f(2) — i1 ()AL ei)
=qi1(2)A; e — qi(7)A] e,
g1 (07 qu(x) ~
- G < g1 qi—l(x>Ai—11Wi—1
(f(i_l) (Z) - W;'k_lAi__llei_l)
_ 41 %a(®) pi
q?' Gi—1 Gi—1
h(z_l)(z)

]

= ———¢i,i(7).

qi

Secondly, by the definition of ¢;;(z) in (20, 21), we obtain:

- afhl(f) oq
Q2,2(I) =4q1 Iz Q11($) 9z
Furthermore, for ¢« = 3, ..., k, we have

-1
¢i,i(T) = qi—1 <%1(x) - qi—l(x)Ai__llwi—1>

0i_1 X _ 0W,-_
= ¢i—1 <%1() — qi—2(2)A; oz 2) — ¢i—2

i—2 2i—3 ,
(a qll(x) - Qi—2($)Ai_—12Wi—2> < a == W;k 2A'_12 awl_Q)

72 R R

4 0" 1qy () ~ qpa(z) AL OWis  gi—2Gi—1,i-1(%) Ogim1 1
il oz =1 i 0z Gi-1  Gi-2 0Z G2

_ 1 ' aQi—l,i—l(x)_aQi—l' ' (:17)
Gis qi—1 82 ag qi—1,i—1 .

It should be noted that the third equality above is derived from

g %3¢ . g Ow
L = qi—2 <071 - Wi_QAZ'_12 2 )

0z =207~ 1 0z
0¢i—1,i-1() I qui(x) _1 0w,y
————— =i |~ — Qi—2(7)A ,
0z qi—2 971 q 2(x) i—2 9z
where w;_» comes from (17). O

Note 3 For any given integer k > 1, suppose the minimum of N'*) is attained
at z, then the nearest singular polynomial with a root of multiplicity k can be

obtained by substituting z into hy(z) computed by formulas (22) and (23). This
15 true by Theorem 1.



3 The Case s > 1
3.1 Faxplicit Recursive Fxpression

In this section, let k, m, n and s be given as in the introduction. We denote
the determinant of Py by

Pk = det Pk, (24)

where

Abyky Mgy oo Ay i1 B

Ak‘z,lﬁ Ak‘z,kz Akz,‘ks—l fi2 e C(k1+--~+ks)><(k1+--~+ks). (25)

| Aoy Akges - A p—1 £ |

We derive an alternative explicit expression for M%) in terms of g and py.
Some recursive relations to generate ¢ and pyx are also provided. These ex-

pressions extend results in (Zhi et al., 2004; Zhi and Wu, 1998).

We search for the nearest polynomials with the roots of multiplicity structure
r;:

(4) 1<i<h,
kyi— k ky <0 <y + ko,
. Frimk) o hsrshorhe g
(1{51,]{?2,]{33, R ,’i — Zj;i ]{Z]) Z;;} ]fj <1 <n.

Theorem 3 Let k = (ky, ko, ... k), n = X5 kj and 1 < i < n, then the
distance to the nearest singular polynomial with given root multiplicities is

Nélk) — prlp_l'l + pr2ZT2 4ot pl‘nm ' (27>
ql‘l qu qrg an,l an

Proof. Similar to the proof of Theorem 5 in (Zhi et al., 2004), we divide M
into

Tit1

M,, wy,
Ml‘i+1 = ' ) (28>
W, «

where the last column of M,,,, is divided into w,, and «a. Since the matrix

ri+1



M,, is an invertible Hermitian matrix, the inverse of M can be written as

Tit1

-1 _ Mr_il _M;ilwriﬁ_l I 0 (20)
Tit1 )
0 Bt —w; M1
where .
B=a—w M,w, = —+L (30)
‘ Or,
If we divide f;,, , into f., and v, then we have
Ngiﬂ) = f:i+1M;i}r1fri+1
* * M;zl _M;ilwriﬂ_l I 0 fl‘i
= &)
0 gt —wi M1 |y
= £ M+ 670 (v - M W) (v — wi M)
— N(ri) + Qri Priyi Prig,
S
— N(ri) + pl‘i+1pl‘i+1.
" Qriqmﬂ
O
There are also recursive relationships between p,, and ¢,, fori =1,...,n. Sim-

ilar to the definition of py in (24), for an integer [, we denote the determinant
Pk, = det Pk,la (31)

where

Akh/ﬁ Ak17k2 s Akhks—l g1,
Ak27k1 Ak27k2 Akz,ks—l 82,1

| Akoy Abgy - -+ Akogko—1 851 |
and the evaluation vectors

T
o, = A\ 8)\j,l 8’%"1)\]-71
gl = Jsls R ki—1
0z; 0z}

, gl=1,...,s.

Furthermore, for 6 = Z§:1 k;, we have

g = (kl, e akt)'
Define the evaluation column vectors

£, =[BT 87 17

[4



T
_ T T T
gl‘e - {gl,t-i-l >g2,t+1 P gt,t-i—l } )

T
T T T
8rol = [gl,l 1820 5.5 8t } .

Combining these notations with Theorem 3, we derive the following explicit
expressions

g:QMr_glgre _ Prit+1Prq i1 4 Prot+1Prs 141 NI prg,t—i-lprg,t-i-l, (33)
QI‘1 er Qrg QI‘Q, 1 qrg
g:gM;glfre _ PryPry t4+1 + ProPryt+1 4t prgprg,t—l—l’ (34)
qu qu qrg ql‘9,1 qrg
g:QM;;gre’l _ DPry,1Prq t+1 i DPry,iProt+1 Tt prg,lprg,t-i-l’ (35)
qu qu ql‘z qr9,1 ql‘9

where ¢ and [ are from 2 to s.

Note 4 If t + 1 = [, equations (33) and (35) are same. Otherwise, as the
lengths of vectors gy, and gy, are not equal, we can not exchange them with
each other. In our algorithm, we only need to consider the case t +1 < [.

The following theorems give alternative methods to determine these ¢, pr,
and py, ; recursively.

Theorem 4 Let k = (ki, ko, ..., k), n=>7_1k;j andi=1,...,n, we have
G, = ¢, 1=1,... k. (36)
]fz'zzg-:lk‘jjtlforsomet:1,...,5—1, we have
r; = (ki, ko, ..o ke, 1),

and
Qr; = Q4r; 4 ()‘t+1,t+1 - g:i,lM;il,lgl‘iﬂ) : (37>
Otherwise, there exist two integers d, t with 1 < d < k1 and 1 <t <s—1
such that
ri_q=(ki,ko, ... ki),
and
P, _ Oqe, , Ogr,
rics 020410Zi1 021 0%

= qr;_oGr;- (38)

Proof. Firstly, if s = 1 we obtain the recursive formula by Theorem 2 in (Zhi
and Wu, 1998)

e, =i, 1=1,... k.
If

r, = (]{71, ]{72, cey ]{Zt, 1),

10



then

Akhkl Ak17k2 Akl,kt 81,t+1
Ak27k1 Ak27k2 Akz,kt 82.t+1

qr, = det

AktJﬁ Akmkz Akhkt 8t,i+1

git+1 g;,t-l-l e g?,k,t+1 At1,t41
So we have

G, = iy ()\t-i-l,t—i—l - gii,lM;Lgri,l) :
If
r_4g4= (]{71, ]{72, cey ]{Zt),

applying the Gaussian elimination

I 00 1\/[,“.72 Uy U2 Mri,g [ul UQ]
—uiM' 10 u o | = a ul ,
* —12 * O - ' ]_\/_[;2172 |:U1 U2:|
—upM 7, 01 uy B om B ()

we have the following equalities

qr, = det M,
Mri,Q Uy U2

= det uy o £

uy; B on
ag (o
= det Mri,g det - Mer U1 U
B (0
=det M,, , (a — u“{M;;ul) (17 — UZM;;UQ)
—det My, (B — usM;'ur) (€ —uiMy! uz)
and
ri_o U1 *n r—1
qrifl == det Ml‘i,1 = det == det Mri,g (Oé - ueri72u1) )
uy o«

Qr, , = det M, ,.
In the expression of det M, ,, the partial derivative of the /th row of My, ,
with respect to z;11 is zero for 1 <[ < Z;Zl k;, and the partial derivative
of the Ith row of M,, , with respect to z;,; is the (I + 1)th row of M,, , for
23:1 k; <1 <1 —1, but the partial derivative of the last row of M,, , is

11



the last row of M,, upon deletion of its last element; same facts exist for the
derivatives of the columns with respect to Z;.1. Hence, we have

e, ddet M, M, , u
Ar;_, _ € i1 _ et 2 = det 1\/[1,1_72 (ﬂ — u;M;iZTM) ,
8zt+1 azt-{-l u§ ﬂ
e, d det M, M, , u
az i—1 — 2_ i—1 — det 2 2 — det Ml‘i72 (5 — UTM;£2/LL2) ;
Zt+1 Zt+1 up &
0%qy. 9 det M., M, , u
Qr;_, _ € i1 _ Jet 2 2 = det ]_\/II,F2 (7} — u;M;iZUQ) .
024410Z141 021110Z111 uy; n Z
Then we obtain the equality (38). O

Theorem 5 Let k = (ki, ko, ..., k), n=>7_1k;j andi=1,...,n, we have
pr, =i, t=1,... k. (39)
Ifi = §:1kj+1f07’somet:1,...,5—1, we have
r; = (ki, ko, ... ke, 1),

and
Pr; = Qr;_y (f(zt-i-l) - g:i,er_il,lfriq) : (40)
Otherwise, there exist two integers d, t with 1 < d < k1 and 1 <t <s—1
such that
r_g = (k’l, k’g, ceey k‘t),
and

= qr;_5Pr;- (41>

Proof. Firstly, for s = 1 case, we can obtain the recursive formula by Theorem
2 and Theorem 4 in (Zhi and Wu, 1998)

pri:pia 7;:]-9"'akll'

If
r; = (kla k27 ) kta 1)a
then
Akl,kl Ak1,k2 c. Akhkt fl

ANpgy Apghy -+ Ay, B
oo = det| . . .
Ay Akky o Ay B

git—i—l gS,t—i—l th+1 f(zi41)

12



So we have
Pr, = Qqr;_, (f(2t+1) - g:i,er_il,lfri,l) .
If
ri_q=(ki,ko, ... ki),

applying the Gaussian elimination

I 00 Mri,g Ul U9
* -1 *
—ufM_ " 10 uy o  f
. ouy 1 01 ouj da )]
ath r;—2 8zt+1 ath 8zt+1
Mer {ul u2}
= *
o | T o] ’
da 86 8@ r;_2 ul u2
Ozt41 Ozt Ozt 41
we have
Pr; = det Py,
Ml‘i—z Uq U9
= det uy a 15}
ouj o JoJé]
Oz¢t4+1 Ozi41 Ozp41
a f uj
= det M, . det - M !
r;—2 da 8,6 8u1‘ r;—2 ul u2
8Zt+1 8Zt+1 8Zt+1
op ou;
= det M, , (a — u’{M;iQul) - 1 Y I
0%141 0zi11
o out
—det My, [ 5— — =—-M; " | (8- uiM; jus) |
Oz41 Ozpr !
and

r;_o U2

up  f

per, = det Py, , = det = det M, , (8= uiM; ! us) |

Qr, , = det M, ,.

In det P,, ,, the partial derivative of the /th row of P,, , with respect to 2,14
is zero for 1 <1 < ¥7%_, k;, and the partial derivative of the Ith row of Py,_,
with respect to z4 is the (I4-1)th row of Py, for >'_ k; <1 <i—1, but the
partial derivative of the last row of Py, , is the last row of P, upon deletion

13



of the last second element; similar facts exist for det M, ,. Hence,

aerl _ a det PI‘Z‘,1 _ det Ml‘i:z
0211 0zi41 Ouj 0B
Ozt4+1  Oziq1

U2

=detM,, , ( o8 Ou; M_12u2> ,

- ri_
Ozep1 Oz

gy, ddet My, M,, , u 0 ouj
rioy _ TON T _ et | 7 | Zdet My, | — TN gy ).
02111 02111 Oui _da 0zpp1 Oz 772
Ozt41  Ozp41
Then we obtain the equality (41). O

Theorem 6 Let k = (ki kg, ..., ks), n = X5 1 kj andi = 1,...,n. Ifi =
1,..., ki, we can obtain all py,; by replacing £ in p; with g;. If i = 23:1 ki+1
for somet=1,...,s— 1, we have

r; = (kla k2a ) kta 1)a

and
Pect = ey (M —&r M g ) (42)

Otherwise, there exist two integers d, t with 1 < d < k1 and 1 <t <s—1
such that

riq= (kla k2a SRR kt))

and

q 8p1‘i717l —p 8qri71
ri1 azt—i—l ri—1,l

= Qr;_5Pr; - (43)

The proof of Theorem 6 is similar to the proof of Theorem 5, since we only
need to replace all f; in P,, by g;;, where j =1,...,s.

3.2 FEzplicit Expression of the Nearest Singular Polynomial

Let k, n, ¢ and r; be given as in the previous subsection. We introduce auxiliary
polynomials gx k() and hyx(z) to obtain the generalized explicit expression of
the nearest singular polynomial.

We denote the auxiliary polynomial

qk,k(x) = det Qk, (44)

14



where

Mrn71 grnfl : k‘s _ 1’
qrnfl(x) qu(x)
Qx = (45)
OM, -n—1
M., _, 7"52 )
8k571q1 (w) ’ ks > 17
U, (T) s
m—1
Ar, 1 (7) =VVy (@) = ) (Za), (46)
=0

and M, , (-,n—1) denotes the last column of M, _,. We define the polynomial

det Hk

hi () = ; (47)
Qr,_1
where
H, — M., , .,
Ur,, () f()
Note 5 Suppose the minimum of N\X) is attained at zy,. .., zs, according to

Proposition 13 and Remark 14 in (Pope and Szanto, 2009), we have py = 0.

Theorem 7 Let k = (ki,...,ks), n = X3 k;j and r; be defined in (26) for
1 < i < n. Suppose the minimum of NX) is attained at zi,...,zs, then the
nearest singular polynomial with roots of multiple structure k is hy(z).

Proof. If k, = 1, similar to Theorem 1, we obtained

kj—1
hic(2)) = hie(z) = - = b (z) = 0,
where j = 1,...,s — 1. Furthermore, as the minimum of A% attained at
Z1,...,%s, We have
hie(zs) = 25 =0
rn—1

according to Note 5. If ks, > 1, similarly, we have
kj—1
hic(z)) = hie(z) = - = " (z) = 0,
forj=1,...,s—1and
hie(zs) = hig(z,) = - = by ™2 (z,) = 0.

Furthermore,

15



It follows that every z; is a root of hy(x) with multiplicity k;. In the end, we
have

L= F I =] arpy (@M f |
=|vVi M
=f M. V. Vi M
=f; M. f

— Nr(r:'nfl)
— N,

f,

rn—1

The last equality is derived from Note 5 and Theorem 3. O

Similarly, we obtain a recursive method to determine hy(x) and gy x(z) for
k= (k... k).

Theorem 8 Let k, n and r; be defined before. For hy,(x) = f(z) and gy, = 1,
hi(x) can be obtained recursively for i from 2 to n by the following recursive
formula:

pri,
h'l'i (LL’) = hrifl(a:) - 71%'1'71,1'1'71 (LL’), (48>
Qr;_19r;_,
where
Grori(T) = qii(2), 1=2,... k1 (49)

[fizzg-:lkj+1f0r50met:1,...,5—1, we have
r; = (klakQa"'aktal)a

and then
Qrix;(2) = subs(zs = z, q,). (50)
Otherwise, there exist two integers d, t with 1 < d < kyyq; and 1 <t <s—1
such that
ri_g= (ki ko, ... k),

1 0 ri_ 1,01 0 ri_
qri,rxx):—(qm s (0) _ O, <x>). (51)

— - ri—1,ri—1
Qr; 0Z141 0Z141

and

Proof. We have

hl‘i (LL’) - hl‘ifl(:@ = f(SL’) - qri—l(x>M;il,1fri—1 - (f(SL’) —dr;_, (LL’)M;Z_172frZ.72)
=dr,_, (‘(L’)Mr_il,gfl‘ifz —Qr;_, ({L’)MELfrFl
i Gri1 i1 (T) Priy

Qr;_4 Qr;_, Qr;_,
Pr;_4
= Qr;_yr;_ (ZL’),
Qr;_19r;_,

16



where ¢ =2, ..., n.

The proof of the recursive relation of ¢, r,(z) is similar to proofs of Theorem
2 and Theorem 4 for s =1 case. O

Note 6 For any given multiplicity structure defined by k, suppose the mini-
mum of the N\% is attained at 2, ..., z,, then the nearest singular polynomial
with the roots of multiplicity k can be obtained by substituting z,, ..., zs into
the hy(x) computed from the above formula. This is true by Theorem 7.

4 Examples

We are now ready to describe two examples of computing the nearest singu-
lar polynomials. All experiments are run with Digits=10 in Maple 13 under
Windows XP.

Example 1

f=a*—1.999 2 + 0.997998 2* 4+ 0.001004 = + 0.000398.

For k = (2),

by = z* — 1.999100023 2* + 0.9978980072 2° + 0.9040371317e — 3
+ 0.2980670675e — 3;
2z = 1.000299559;  (double root)

N = 0.3998232663¢ — 7.
For k = (3),

he = 2t — 1.929265099 22 + 1.046163212 22 4+ 0.9656143200e — 3 x
—0.9167052023¢ — 1;
z = 0.7237048697;  (triple root)

N = 0.1565945795¢ — 1.
For k = (2,2),

he = z* — 1.999000817 22 + 0.9979971828 22 4+ 0.1003382271e — 2 &
+0.2519456319¢ — 6;
z1 = —0.50194072190e — 3, 2, = 1.000002349; (two double roots)

NI = (0.1582052317¢ — 6.

Suppose the given tolerance ¢ = 1073, then f has two 2-cluster of zeros. If
€ = 1077, then f only has a 2-cluster of zeros.
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Example 2

f =2 —3.000z" +2.998997 2* — 0.997991998 22 — 0.1007004e — 2 =
+0.402002¢ — 3.

For k = (2),

hi = 2° — 3.000079054 z* + 2.998916651 2° — 0.9980736638 22
—0.1090008152¢ — 2.z + 0.3176375994¢ — 3:
21 = 0.9838765078;  (double root)

N = 0.3338184094e — 7.
For k = (3),

hi = 2° — 2.999919943 z* + 2.998996997 x> — 0.9980720296 2
—0.1167031531e — 2 2 + 0.1620105104e — 3;
21 = 1.000200211; (triple root)

N = 0.3524545527¢ — 6.
For k = (4),

he = 2° — 2.916630494 2* + 2.984063932 2> — 1.080981545 22
— 0.7456574864¢ — 1 = + 0.9061192588¢ — 1:
z1 = 0.2978402953;  (quadruple root)

N = 0.1525953438.
For k = (2,2),

hie = 2% — 2.999999511 z* + 2.998997489 2> — 0.9979915087 z°
— 0.1006214604e — 2z — 0.2532432402¢ — 6;

21 = —0.502978703700000027¢ — 3, 25 = 0.999683127399999982:
(two double roots)

N = 0.1618668066e — 6.
For k = (3,2),

he = 2° — 3.000000991 z* + 2.998997020 2> — 0.9979909797 2>
— .1004797476e — 2 2 — 0.25253117¢ — 6;

21 = 1.00033517600000010, 2, = —0.502270004600000042¢ — 3:;
(one double root and one triple root)

N = 0.1591303726e — 4.

Suppose the given tolerance e = 1073, then f has a 3-cluster of zeros and a
2-cluster of zeros. If e = 1077, then f only has a 2-cluster of zeros.
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