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ABSTRACT
We study the unlabeled sensing problem that aims to solve a linear

system of equations 𝐴𝑥 = 𝜋 (𝑦) for an unknown permutation 𝜋 .

For a generic matrix 𝐴 and a generic vector 𝑦, we construct a

system of polynomial equations whose unique solution satisfies

𝐴𝜉∗ = 𝜋 (𝑦). In particular, 𝜉∗ can be recovered by solving the rank-

one moment matrix completion problem. We propose symbolic

and numeric algorithms to compute the unique solution. Some

numerical experiments are conducted to show the efficiency and

robustness of the proposed algorithms.
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1 INTRODUCTION
Given a full-rankmatrix𝐴∗ ∈ R𝑚×𝑛 and a vector𝑦∗ ∈ R𝑠 satisfying
𝑚 ⩾ 𝑠 > 𝑛 > 0, the unlabeled sensing problem [64, 65] asks that for

an unknown vector 𝜉∗ ∈ R𝑛 , if one only knows the vector 𝑦∗ ∈ R𝑠
consisting of 𝑠 shuffled entries of 𝐴∗𝜉∗, whether the vector 𝜉∗ is
unique and how to recover it efficiently. This problem emerges from

various fields of natural science and engineering, such as biology

[1, 24, 39, 56], neuroscience [46], computer vision [17, 26, 36, 42, 62]

and communication networks [27, 45, 58].

Theorem 1 in [64] asserts that the solution of the unlabeled

sensing problem is indeed unique if 𝑠 ⩾ 2𝑛 and 𝐴∗ is generic. For
the case𝑚 = 𝑠 , Song, Choi and Shi [58] proposed a new method for
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recovering the vector 𝜉∗ as follows: let

𝑞𝑖 (𝑥) = 𝑝𝑖 (𝐴∗𝑥) − 𝑝𝑖 (𝑦∗),
where 𝑥 = [𝑥1, . . . , 𝑥𝑛] and

𝑝𝑘 (𝑦) =
𝑚∑︁
𝑖=1

𝑦𝑘𝑖 ∈ R[𝑦]

is the 𝑘-th power sum of the variables 𝑦 = [𝑦1, . . . , 𝑦𝑚]. As 𝑝𝑘 is a

symmetric polynomial in 𝑦, its value is independent of the order of

the variables𝑦1, . . . , 𝑦𝑚 . Suppose 𝜋 is an element of the permutation

group Σ𝑚 , if 𝜉∗ is a solution of

𝐴∗𝑥 = 𝜋 (𝑦∗), (1)

then it is a root of the polynomials 𝑞𝑖 (𝑥), i.e.,
𝑞𝑖 (𝜉∗) = 𝑝𝑖 (𝐴∗𝜉∗) − 𝑝𝑖 (𝑦∗) = 𝑝𝑖 (𝜋 (𝑦∗)) − 𝑝𝑖 (𝑦∗) = 0

for 𝑖 = 1, . . . ,𝑚.

By Theorem 1 in [58] and by [64, 65], with 𝐴∗ ∈ R𝑚×𝑛 a given

matrixwith i.i.d random entries drawn from an arbitrary continuous

probability distribution over R, if𝑚 ⩾ 2𝑛, then with probability 1,

𝜉∗ is the unique solution of the polynomial system

𝑄𝑚 = {𝑞1 (𝑥) = 0, . . . , 𝑞𝑚 (𝑥) = 0}. (2)

Numerical experiments showed that solving the first 𝑛+1 equations
is sufficient for recovering the solution 𝜉∗; i.e. 𝜉∗ is the unique solu-
tion of 𝑄𝑛+1. Hence, [58] pointed out the following open problem

(see also Conjecture 6 in [43]):

Open Problem. For a generic matrix 𝐴∗ ∈ R𝑚×𝑛 ,𝑚 ⩾ 𝑛 + 1, and
a permutation 𝑦∗ of a generic vector in the column space of 𝐴∗, the
(𝑛 + 1)-by-𝑛 polynomial system

𝑄𝑛+1 = {𝑞1 (𝑥) = 0, . . . , 𝑞𝑛 (𝑥) = 0, 𝑞𝑛+1 (𝑥) = 0} (3)

has a unique solution 𝜉∗, which satisfies 𝐴∗𝜉∗ = 𝜋 (𝑦∗).

In [63], it is shown that for a generic matrix𝐴∗ ∈ C𝑚×𝑛 and any

vector 𝑦∗, the 𝑛-by-𝑛 polynomial system

𝑄𝑛 = {𝑞1 (𝑥) = 0, . . . , 𝑞𝑛 (𝑥) = 0} (4)

in the variables 𝑥 = 𝑥1, . . . , 𝑥𝑛 has at most𝑛! solutions. Furthermore,

if 𝑦∗ is a permutation of a generic vector in the column space of

𝐴∗, then among the solutions of 𝑄𝑛 there is only one vector 𝜉∗

satisfying 𝐴∗𝜉∗ = 𝜋 (𝑦∗). They can recover 𝜉∗ by solving 𝑄𝑛 via

symbolic or homotopy methods and then select 𝜉∗ from 𝑛! solutions

via numerical optimization methods.
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Example 1. Given a matrix 𝐴∗ and a vector 𝑦∗

𝐴∗ :=


1 2

4 3

0 −2
−2 0


, 𝑦∗ =


−5
−10
2

4


,

find a solution 𝜉∗ such that

𝐴∗𝜉∗ = 𝜋 (𝑦∗)

for an unknown permutation 𝜋 of the coordinates of 𝑦∗.
From the matrix𝐴∗ and the vector 𝑦∗, we compute the polynomials

𝑞1 (𝑥) = 3𝑥1 + 3𝑥2 + 9,
𝑞2 (𝑥) = 21𝑥1

2 + 28𝑥1𝑥2 + 17𝑥22 − 145,
𝑞3 (𝑥) = 57𝑥1

3 + 150𝑥12𝑥2 + 120𝑥1𝑥22 + 27𝑥23 + 1053,
𝑞4 (𝑥) = 16𝑥1

3𝑥2 + 44𝑥12𝑥22 + 24𝑥1𝑥23 − 400.

The polynomial system {𝑞1 (𝑥) = 0, 𝑞2 (𝑥) = 0, 𝑞3 (𝑥) = 0, 𝑞4 (𝑥) =
0} has a unique solution 𝜉∗ = (−1,−2). One can check that 𝜉∗ is the
solution of (1) for the permutation 𝜋 = [1, 2, 4, 3].

We can check that 𝜉∗ is the unique solution of the polynomial
system {𝑞1 (𝑥) = 0, 𝑞2 (𝑥) = 0, 𝑞3 (𝑥) = 0}, which gives an example
supporting the positive answer to the open problem (1).

The polynomial system {𝑞1 (𝑥) = 0, 𝑞2 (𝑥) = 0} has two solutions
𝜂∗ =

(
− 4

5
,− 11

5

)
, 𝜉∗ = (−1,−2). One can check that 𝜂∗ is not a

solution of (1).

The following theorem shows that one can obtain the unique

and desired vector 𝜉∗ for a generic matrix 𝐴∗ and a permutation

𝑦∗ of a generic vector in the column space of 𝐴∗ by solving the

polynomial system 𝑄𝑛+1.

Theorem 1. The map

𝑓 : C𝑚×𝑛 × C𝑛 → C𝑚×𝑛 × C𝑛+1 (5)

(𝐴∗, 𝜉∗) ↦→ (𝐴∗, 𝑝1 (𝐴∗𝜉∗), . . . , 𝑝𝑛+1 (𝐴∗𝜉∗))

is a birational morphism to the image 𝑓 (C𝑚×𝑛×C𝑛) ⊆ C𝑚×𝑛×C𝑛+1.

Remark 1. The fact that the morphism (5) is birational implies
that there exists a dense open subset 𝑈2 of 𝑉 such that 𝑓 induces a
bijection from 𝑈1 := 𝑓 −1 (𝑈2) to 𝑈2, see [22, Chapter I, Corollary
4.5]. Therefore, if the sample point (𝐴∗, 𝑦∗) satisfies the condition
(𝐴∗, 𝑝1 (𝑦∗), . . . , 𝑝𝑛+1 (𝑦∗)) ∈ 𝑈2, then there exists a unique vector 𝜉∗

such that (𝐴∗, 𝜉∗) ∈ 𝑈1 and

(𝐴∗, 𝑝1 (𝐴∗𝜉∗), . . . , 𝑝𝑛+1 (𝐴∗𝜉∗)) = (𝐴∗, 𝑝1 (𝑦∗), . . . , 𝑝𝑛+1 (𝑦∗)).

This answers the open problem above in the affirmative.

As an alternative to existing RANSAC [18], expectation max-

imization [2], branch & bound [53] or homotopy and Groebner

bases [63] approaches for solving the unlabeled sensing problem in

its generality (that is without special assumptions such as sparsity,

as, e.g., considered in [57]), in this paper we focus on finding the

unique solution of the polynomial system 𝑄𝑛+1 efficiently by re-

ducing it to a rank-one moment matrix completion problem, which

can then be solved by many efficient algorithms.

Structure of the paper. In Section 2, we briefly review the main

idea in the proof of Theorem 1 in [38] and its relationship with pre-

vious known results. In Section 3, we show that solving polynomial

system 𝑄𝑛+1 can be reduced to solving the rank-one moment ma-

trix completion problem, which can be solved efficiently by solving

a sequence of semidefinite programming (SDP) problems. In Sec-

tion 4, we propose some symbolic and numerical algorithms based

on Theorem 1 and 3. We conducted eight numeric and symbolic

experiments to test the efficiency and robustness of the proposed

algorithms.

2 PROOF OF THEOREM 1
For convenience, we will abbreviate the unlabeled sensing problem

for case𝑚 = 𝑠 > 𝑛 > 0 by USP and call the data (𝐴∗, 𝑦∗) in USP as

the sample point of USP.

The morphism 𝑓 can be written as the composition of the fol-

lowing two morphisms

𝑔 : C𝑚×𝑛 × C𝑛 → 𝑔(C𝑚×𝑛 × C𝑛) ⊆ C𝑚×𝑛 × C𝑚 (6)

(𝐴∗, 𝜉∗) ↦→ (𝐴∗, 𝑝1 (𝐴∗𝜉∗), . . . , 𝑝𝑚 (𝐴∗𝜉∗))

and 𝛾 : 𝑔(C𝑚×𝑛 × C𝑛) → 𝑓 (C𝑚×𝑛 × C𝑛) ⊆ C𝑚×𝑛 × C𝑚 . (7)

(𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑚 (𝜂∗)) ↦→ (𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑛+1 (𝜂∗)) (8)

Since the composition of two birational morphisms is still a bira-

tional morphism, the proof of Theorem 1 can be divided into two

parts:

• Show the morphism 𝑔 is birational, and

• Show the morphism 𝛾 is birational.

When 𝑚 = 𝑛 + 1, the morphism 𝑔 equals the morphism 𝑓 in

Theorem 1. We show first in Section 2.1 that the morphism 𝑔 is

birational. Hence, it implies Theorem 1 for the case𝑚 = 𝑛 + 1, i.e.,
one can obtain the unique and desired vector 𝜉∗ for a generic matrix

𝐴∗ and a permutation 𝑦∗ of a generic vector in the column space of

𝐴∗ by solving the polynomial system 𝑄𝑛+1 for the case𝑚 = 𝑛 + 1.
Moreover, as 𝑔 is birational, it implies that for generic sample points

(𝐴∗, 𝑦∗) of the unlabeled sensing problem (USP), the polynomial

system 𝑄𝑚 in (2) has a unique solution 𝑥 = 𝜉∗, which is also the

unique solution of USP.

Since𝑚 can be much larger than 𝑛 in the application, we need to

show that 𝑓 is birational for a general𝑚 ⩾ 𝑛 + 1. This implies that

the smaller polynomial system 𝑄𝑛+1 in (3) has a unique solution

for generic (𝐴∗, 𝑦∗). The key point of showing that 𝑓 is birational

is to prove

[C(𝐴, 𝑥) : C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥))] = 𝑛!, and
[C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)) : C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥))] = 𝑛!.

The first degree is the Bézout number of the complete intersection

given by the regular sequence 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥), and the second

one is exactly the degree of the minimal polynomial of 𝑝𝑛+1 (𝐴𝑥)
over C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥)). In Section 2.2, we give a sketch

proof showing that this polynomial is the resultant of the system

{𝑝𝑘 (𝐴𝑥) − 𝑧𝑘 : 𝑘 = 1, . . . , 𝑛 + 1}.***

2.1 The morphism 𝑔 is birational
In this subsection, we prove the following theorem, which implies

that one can obtain the unique and desired vector 𝜉∗ for a generic
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matrix 𝐴∗ and a permutation 𝑦∗ of a generic vector in the column

space of 𝐴∗ by solving the polynomial system 𝑄𝑚 .

Theorem 2. For𝑚 > 𝑛 > 0, the morphism

𝑔 : C𝑚×𝑛 × C𝑛 → C𝑚×𝑛 × C𝑚

(𝐴∗, 𝜉∗) ↦→ (𝐴∗, 𝑝1 (𝐴∗𝜉∗), . . . , 𝑝𝑚 (𝐴∗𝜉∗))

is birational onto the image 𝑔(C𝑚×𝑛 × C𝑛).

When𝑚 = 𝑛+1, the morphism𝑔 equals 𝑓 , i.e., Theorem 2 implies

Theorem 1 in this special case.

We decompose 𝑔 into the composition of two dominant mor-

phisms 𝛼 and 𝛽 defined by (9) and (12) respectively. To show 𝑔 is

birational, it suffices to show 𝛼 and 𝛽 are birational.

Define the morphism 𝛼

𝛼 : C𝑚×𝑛 × C𝑛 → 𝐷𝑛+1 (𝐴|𝑦) ⊆ C𝑚×𝑛 × C𝑚, (9)

(𝐴∗, 𝜉∗) ↦→ (𝐴∗, 𝐴∗𝜉∗)

where 𝐷𝑛+1 (𝐴|𝑦) is the zero locus of the all (𝑛 + 1)-minors of

the matrix (𝐴|𝑦), 𝐴 = [𝑎𝑖 𝑗 ] is a 𝑚-by-𝑛 matrix of 𝑚𝑛 variables

and 𝑦 = [𝑦𝑖 ] is a column vector of 𝑚 variables, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛].
Namely, 𝐷𝑛+1 (𝐴|𝑦) is the determinantal variety consisting of𝑚-by-

(𝑛 + 1) matrices of rank less than 𝑛 + 1. The determinantal variety

𝐷𝑛+1 (𝐴|𝑦) is irreducible [6, Proposition 1.1], i.e., it is not a union

of any two proper closed subvarieties.

Lemma 1. The morphism 𝛼 is birational.

Proof. The determinantal variety 𝐷𝑛+1 (𝐴|𝑦) is irreducible [6,
(1.1) Proposition], and the morphism 𝛼 maps the non-empty open

subset 𝑆0 of C
𝑚×𝑛 × C𝑛 to the non-empty open subset 𝑆1 = 𝛼 (𝑆0)

in 𝐷𝑛+1 (𝐴|𝑦), where

𝑆0 := {(𝐴∗, 𝜉∗) ∈ C𝑚×𝑛 × C𝑛 : rank(𝐴∗) = 𝑛} and (10)

𝑆1 := {(𝐴∗, 𝜂∗) ∈ 𝐷𝑛+1 (𝐴|𝑦) : rank(𝐴∗) = 𝑛} (11)

are respectively the set of the solutions to USP and the set of cor-

rectly sorted sample points in USP. Hence, we deduce that 𝛼 is

dominant. Furthermore, for any (𝐴∗, 𝜂∗) ∈ 𝑆1, using Cramer’s rule

in linear algebra, we see that the fiber 𝛼−1 (𝐴∗, 𝜂∗) is a singleton,
hence the morphism 𝛼 is restricted to a bijection from 𝑆0 to 𝑆1.

Therefore, 𝛼 is birational. □

The second dominant morphism, to be shown to be birational, is

𝛽 : 𝐷𝑛+1 (𝐴|𝑦) → 𝛽 (𝐷𝑛+1 (𝐴|𝑦)) ⊆ C𝑚×𝑛 × C𝑚 (12)

(𝐴∗, 𝜂∗) ↦→ (𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑚 (𝜂∗))

Note that 𝛽 is the restriction of the finite morphism

C𝑚×𝑛 × C𝑚 → C𝑚×𝑛 × C𝑚, (13)

(𝐴∗, 𝜂∗) ↦→ (𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑚 (𝜂∗))

hence 𝛽 is also a finite and closedmorphism [22, Chapter II, Exercise

3.5], and

𝛽 (𝐷𝑛+1 (𝐴|𝑦)) = 𝛽 (𝐷𝑛+1 (𝐴|𝑦)) = 𝑔(C𝑚×𝑛 × C𝑛). (14)

To prove the following Lemma 2, we shall first clarify the actions

of Σ𝑚 on both C𝑚×𝑛 × C𝑚 and C[𝐴,𝑦].

A permutation 𝜎 ∈ Σ𝑚 acts on C[𝐴,𝑦] as a C-algebra iso-

morphism given by 𝜎 (𝑦𝑖 ) = 𝑦𝜎 (𝑖 ) and fixing 𝐴. Then for any

𝑓 ∈ C[𝐴,𝑦] and 𝑦∗ = (𝑦∗
1
, . . . , 𝑦∗𝑚) ∈ C𝑚 , we have

(𝜎 (𝑓 )) (𝑦∗) = 𝑓
(
𝑦∗
𝜎 (1) , . . . , 𝑦

∗
𝜎 (𝑚)

)
.

A permutation 𝜎 ∈ Σ𝑚 acts on 𝑦∗ = (𝑦∗
1
, . . . , 𝑦∗𝑚) ∈ C𝑚 by

𝜎 (𝑦∗
1
, . . . , 𝑦∗𝑚) =

(
𝑦∗
𝜎−1 (1) , . . . , 𝑦

∗
𝜎−1 (𝑚)

)
. (15)

Then (𝜎 (𝑓 )) (𝑦∗) = 𝑓
(
𝜎−1 (𝑦∗)

)
. This action induces the fiberwise

action of Σ𝑚 on C𝑚×𝑛 × C𝑚 , i.e., for (𝐴∗, 𝑦∗) ∈ C𝑚×𝑛 × C𝑚 , we

define

𝜎 (𝐴∗, 𝑦∗) = (𝐴∗, 𝜎 (𝑦∗)) . (16)

For the variable vector 𝑦 = [𝑦1, . . . , 𝑦𝑚],

𝜎 (𝑦) := [𝑦𝜎 (1) , . . . , 𝑦𝜎 (𝑚) ]

is also a vector of variables, and we denote by 𝐷𝑛+1 (𝐴|𝜎 (𝑦)) the
determinantal variety on which all the (𝑛 + 1)-minors of (𝐴|𝜎 (𝑦))
vanish. Then we have

𝐷𝑛+1 (𝐴|𝜎 (𝑦)) = 𝜎 (𝐷𝑛+1 (𝐴|𝑦)).

Lemma 2. The morphism 𝛽 is birational.

Proof. To show that 𝛽 is birational, it suffices to prove the fol-

lowing three facts

• The subset

𝑊1 := 𝐷𝑛+1 (𝐴|𝑦) \
⋃

𝜎∈Σ𝑚\{1}
𝐷𝑛+1 (𝐴|𝜎 (𝑦)) (17)

is dense open in 𝐷𝑛+1 (𝐴|𝑦).
By definition,𝑊1 is an open subset of 𝐷𝑛+1 (𝐴|𝑦). According
to [63, Proof of Theorem 1], for generic matrix 𝐴∗ ∈ C𝑚×𝑛 ,
generic column vector 𝜉∗ ∈ C𝑛 and any 𝑚-permutation

𝜎 ≠ 1, we have

rank(𝐴∗ |𝜎 (𝐴∗𝜉∗)) = 𝑛 + 1.

Hence𝑊1 is nonempty and dense open in 𝐷𝑛+1 (𝐴|𝑦).
• 𝛽−1 (𝛽 (𝑊1)) = 𝑊1, and the restriction 𝛽′ of 𝛽 on𝑊1 is a

bijection from𝑊1 to 𝛽 (𝑊1).
We first notice that for any (𝐴∗, 𝜂∗), all the entries in 𝜂∗ are
different from each other. Using Vieta’s Theorem, we derive

that for any (𝐴∗, 𝜁 ∗) ∈ 𝛽−1 (𝛽 (𝑊1)), there is a permutation

𝜎 ∈ Σ𝑚 such that

𝜎 (𝜁 ∗) = 𝜂∗ .

Thus 𝜎 = 1 and (𝐴∗, 𝜁 ∗) = (𝐴∗, 𝜂∗) ∈𝑊1. Moreover, we also

deduce that 𝛽′ is injective.
It is clear that 𝛽′ is surjective, so the bijectivity of 𝛽′ follows.
• 𝛽 (𝑊1) is dense open in 𝛽 (𝐷𝑛+1 (𝐴|𝑦)).
Vieta’s Theorem implies that 𝛽 is a finite morphism, hence

𝛽 is a closed morphism. Since𝑊1 is open in 𝐷𝑛+1 (𝐴|𝑦) and
𝛽−1 (𝛽 (𝑊1)) =𝑊1, we conclude that 𝛽 (𝑊1) is also open in

𝛽 (𝐷𝑛+1 (𝐴|𝑦)).
□

Now Theorem 2 follows, because 𝑔 is the composition of the

birational morphisms 𝛼 and 𝛽 .
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Remark 2. In this remark, we construct explicitly the open subset
𝑊 of X such that if the sample point (𝐴∗, 𝑦∗) of USP lies in𝑊 , then
there exists a unique𝑚-permutation 𝜋 and a unique vector 𝜉∗ ∈ C𝑛
such that 𝐴∗𝜉∗ = 𝜋 (𝑦∗).
• The set 𝑆 of sample points (𝐴∗, 𝑦∗) in USP is

𝑆 :=
⋃

𝜎∈Σ𝑚
𝜎 (𝑆1) ⊆ C𝑚×𝑛 × C𝑚, (18)

where 𝑆1 is defined in (11), and the action of Σ𝑚 onC𝑚×𝑛×C𝑚
is defined by (15) and (16). 𝑆 is a dense open subset of the Σ𝑚-
equivariant closed subvariety

X :=
⋃

𝜎∈Σ𝑚
𝜎 (𝐷𝑛+1 (𝐴|𝑦)) ⊆ C𝑚×𝑛 × C𝑚, (19)

A key observation is that, the finite morphism in (13) parame-
terizes the Σ𝑚-orbits of X.
• Since𝑊1 in (17) is nonempty, for any 𝜏 ∈ Σ𝑚 the set

𝜏 (𝑊1) = 𝜏 (𝐷𝑛+1 (𝐴|𝑦)) \
⋃

𝜎∈Σ𝑚\{𝜏 }
𝜎 (𝐷𝑛+1 (𝐴|𝑦)))

is also nonempty and dense open in 𝜏 (𝐷𝑛+1 (𝐴|𝑦)). Therefore,
the variety X has exactly |Σ𝑚 | =𝑚! irreducible components
𝜎 (𝐷𝑛+1 (𝐴|𝑦)) for 𝜎 ∈ Σ𝑚 .
• Write𝑊1 in (17), then the set

𝑊 :=
⋃

𝜎∈Σ𝑚
𝜎 (𝑊1),

is dense open in X, hence 𝑆 ∩𝑊 ≠ ∅. Since any point in𝑊
lies in a unique irreducible component of X, we conclude that
if the sample point (𝐴∗, 𝑦∗) of USP lies in𝑊 , then there exists
a unique𝑚-permutation 𝜋 and a unique vector 𝜉∗ ∈ C𝑛 such
that 𝐴∗𝜉∗ = 𝜋 (𝑦∗). Therefore, the solution (𝐴∗, 𝜉∗) to USP
is unique for most sample points, and in this case (𝐴∗, 𝜉∗) is
exactly the solution of system 𝑄𝑚 in (2).

2.2 The morphism 𝛾 is birational
To show the morphism 𝛾 in (7) is birational, we need the projection

𝛿 : 𝑓 (C𝑚×𝑛 × C𝑛) → C𝑚×𝑛 × C𝑛 . (20)

(𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑛+1 (𝜂∗)) ↦→ (𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑛 (𝜂∗)) (21)

Notice that (𝐴∗, 𝑝1 (𝜂∗), . . . , 𝑝𝑛+1 (𝜂∗)) is a point in 𝑓 (C𝑚×𝑛 × C𝑛).
Hence, 𝛿 is uniquely determined by (21).

Now we give the sketch of the proof that the morphism 𝛾 is

birational.

• For generic (𝐴∗,𝑤∗) ∈ C𝑚×𝑛×C𝑛 , the fiber (𝛿𝛾𝑔)−1 (𝐴∗,𝑤∗)
consists of at most 𝑛! points [63, Theorem 2] . Since 𝑔 is bira-

tional, we deduce that the fiber (𝛿𝛾)−1 (𝐴∗,𝑤∗) also generi-

cally consists of at most 𝑛! points. Hence, it suffices to show

that 𝛿 is also a generically finite morphism with generic

covering degree 𝑛!.

• Let 𝐴 = [𝑎𝑖 𝑗 ]𝑚×𝑛, 𝑡 = [𝑡1, . . . , 𝑡𝑛] and 𝑧 = [𝑧1, . . . , 𝑧𝑛+1] be
the matrix and vectors in variables 𝑎𝑖 𝑗 , 𝑡𝑖 , 𝑧 𝑗 respectively.

Let 𝑅(𝐴, 𝑧) ∈ Z[𝐴, 𝑧] and 𝑐 (𝐴) ∈ Z[𝐴] be the resultants of
the polynomial systems

{𝑝𝑘 (𝐴𝑡) − 𝑧𝑘 : 𝑘 = 1, . . . , 𝑛 + 1}, (22)

{𝑝𝑘 (𝐴𝑡) : 𝑘 = 1, . . . , 𝑛} (23)

eliminating the variables 𝑡1, . . . , 𝑡𝑛 , respectively. We shall

show that

(i) The leading term of 𝑅(𝐴, 𝑧) in 𝑧𝑛+1 is 𝑐 (𝐴)𝑛+1𝑧𝑛!𝑛+1;
(ii) 𝑅(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)) = 0;

(iii) 𝑅(𝐴, 𝑧) is irreducible in C(𝐴, 𝑧1, . . . , 𝑧𝑛) [𝑧𝑛+1].
– To show (i), we use Macaulay’s assertions on resultants

[41, Section 8] to deduce that deg𝑧𝑛+1 (𝑅(𝐴, 𝑧)) ⩽ 𝑛! and
the coefficient of 𝑧𝑛!

𝑛+1 in 𝑅(𝐴, 𝑧) is 𝑐 (𝐴)
𝑛+1

. According to

Lemma 4 in [63], 𝑝1 (𝐴∗𝑡), . . . , 𝑝𝑛 (𝐴∗𝑡) is a homogeneous

regular sequence of C[𝑡] for generic matrix 𝐴∗ ∈ C𝑚×𝑛 ,
hence 𝑝1 (𝐴𝑡), . . . , 𝑝𝑛 (𝐴𝑡) is also a homogeneous C(𝐴) [𝑡]-
regular sequence. Thus, the system (23) in variables 𝑡 has

no solution in the projective (𝑛 − 1)-space over the alge-
braic closure of C(𝐴). Therefore, [41, Section 10] asserts

that 𝑐 (𝐴) is nonzero in C[𝐴], whence the leading term of

𝑅(𝐴, 𝑧) in 𝑧𝑛+1 is 𝑐 (𝐴)𝑛+1𝑧𝑛!𝑛+1.
Moreover, the fact that 𝑝1 (𝐴𝑡), . . . , 𝑝𝑛 (𝐴𝑡) is a homoge-

neous C(𝐴) [𝑡]-regular sequence implies that the field ex-

tension degree [C(𝐴, 𝑥) : C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥))] = 𝑛!
is the product of the degrees of 𝑝𝑘 (𝐴𝑡), 𝑘 ∈ [𝑛] in 𝑡 . This
fact also implies that for generic (𝐴∗,𝑤∗) ∈ C𝑚×𝑛 × C𝑛 ,
the fiber (𝛿𝛾)−1 (𝐴∗,𝑤∗) consists of 𝑛! points.

– To show (ii), we notice that the system (22) substituting

𝑧𝑘 with 𝑝𝑘 (𝐴𝑥) has a solution 𝑡 = 𝑥 in the affine space

over the algebraic closure of C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)).
According to arguments in [41, Section 10], we know that

𝑅(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)) = 0.

– To show (iii), let 𝐴 be the first 𝑛 + 1 rows of 𝐴, and 𝐴>𝑛+1
be the last𝑚 − (𝑛 + 1) rows of 𝐴. Then

(a) 𝑅

(
𝐴, 𝑧

)
≡ 𝑅(𝐴, 𝑧) mod 𝐴>𝑛+1, and 𝑐

(
𝐴

)
≠ 0;

(b) The leading term of 𝑅

(
𝐴, 𝑧

)
in 𝑧𝑛+1 is 𝑐

(
𝐴

)𝑛+1
𝑧𝑛!
𝑛+1;

(c) 𝑅

(
𝐴, 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛+1

(
𝐴𝑥

))
= 0;

(d)

[
C
(
𝐴, 𝑥

)
: C

(
𝐴, 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛

(
𝐴𝑥

))]
= 𝑛!.

Note that the birational morphism 𝑔 for the case𝑚 = 𝑛 +
1 implies that C

(
𝐴, 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛+1

(
𝐴𝑥

))
= C

(
𝐴, 𝑥

)
,

hence the polynomial 𝑅

(
𝐴, 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛

(
𝐴𝑥

)
, 𝑧𝑛+1

)
in 𝑧𝑛+1 is irreducible over C

(
𝐴, 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛

(
𝐴𝑥

))
.

Since 𝑝1

(
𝐴𝑥

)
, . . . , 𝑝𝑛

(
𝐴𝑥

)
is C

(
𝐴

)
[𝑥]-regular, 𝑅

(
𝐴, 𝑧

)
in 𝑧𝑛+1 is also irreducible over C

(
𝐴, 𝑧1, . . . , 𝑧𝑛

)
. Using

Gauss’ Lemma, we see that any factorization 𝑅(𝐴, 𝑧) = 𝑢𝑣
in C(𝐴, 𝑧1, . . . , 𝑧𝑛) [𝑧𝑛+1] induces a factorization 𝑅(𝐴, 𝑧) =
𝑢1𝑣1 in C[𝐴, 𝑧] satisfying

deg𝑧𝑛+1 𝑢1 = deg𝑧𝑛+1 𝑢, deg𝑧𝑛+1 𝑣1 = deg𝑧𝑛+1 𝑣

and the leading coefficients of 𝑢1 and 𝑣1 in 𝑧𝑛+1 ly in

C[𝐴]. Modulo𝐴>𝑛+1 and noticing that 𝑐
(
𝐴

)𝑛+1
≠ 0 is the

leading coefficient of 𝑅

(
𝐴, 𝑧

)
, we deduce that 𝑅

(
𝐴, 𝑧

)
=

𝑢1𝑣1, deg𝑧𝑛+1 𝑢1 = deg𝑧𝑛+1 𝑢1 and deg𝑧𝑛+1 𝑣1 = deg𝑧𝑛+1 𝑣1.

Thus, 𝑅(𝐴, 𝑧) is irreducible over C(𝐴, 𝑧1, . . . , 𝑧𝑛).
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Hence, the algebraic field extension degree

[C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)) : C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥))] = 𝑛!

coincides with [C(𝐴, 𝑥) : C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛 (𝐴𝑥))] = 𝑛!,

which implies that 𝛿 is a generically finite morphism with a

generic covering degree 𝑛!, and

C(𝐴, 𝑝1 (𝐴𝑥), . . . , 𝑝𝑛+1 (𝐴𝑥)) = C(𝐴, 𝑥),

namely, 𝛾 is birational, and Theorem 1 follows. We refer to

[38] for detailed proof of the above arguments.

Remark 3. From the fact that 𝛾 is birational, we can also derive
that for generic (𝐴∗,𝑤∗) ∈ C𝑚×𝑛 × C𝑛 , the fiber (𝛿𝛾𝑔)−1 (𝐴∗,𝑤∗)
exactly consists of 𝑛! points, among which there is, however, only one
solution to USP. This result indicates that the bound 𝑛! in [63, Theorem
2] is optimal.

3 RANK-ONE MOMENT MATRIX
COMPLETION

There are many well-known symbolic or numeric algorithms and

software packages for solving zero-dimensional polynomial sys-

tems in variables 𝑥 = [𝑥1, . . . , 𝑥𝑛]

{𝑔1 (𝑥) = 0, . . . , 𝑔𝑚 (𝑥) = 0}, (24)

e.g. [3, 4, 19, 35, 55, 67]. A desirable method for us is the semidefi-

nite relaxation method proposed by Parrilo [51, 52], Lasserre [33]

for solving a sequence of SDP problems with constant objective

function 1
min 1

s. t. y0 = 1,

𝑀𝑡 (y) ⪰ 0,
𝑀𝑡−𝑑 𝑗

(𝑔 𝑗y) = 0, 𝑗 = 1, . . . ,𝑚,

(25)

where 𝑑 𝑗 := ⌈deg(𝑔 𝑗 )/2⌉, y = (y𝛼 )𝛼∈N𝑛 ∈ RN
𝑛
, and𝑀𝑡 (y) is the

truncated moment matrix of order 𝑡

𝑀𝑡 (y) := (y𝛼+𝛽 ) |𝛼 |, |𝛽 |⩽𝑡 ∈ RN
𝑛×N𝑛 ,

|𝛼 | = ∑
𝑖 𝛼𝑖 , |𝛽 | =

∑
𝑖 𝛽𝑖 , which is the principal submatrix of the full

(infinite) moment matrix

𝑀 (y) = (y𝛼+𝛽 ) ∈ RN
𝑛×N𝑛 , 𝛼, 𝛽 ∈ N𝑛 .

Suppose 𝑔 𝑗 (𝑥) = Σ𝛼∈N𝑛𝑔 𝑗,𝛼𝑥𝛼 ∈ R[𝑥]. If the (𝑘, 𝑙)-th entry

of 𝑀𝑡 (y) is 𝑦𝛽 , then the (𝑘, 𝑙)-th entry of the localizing matrix

𝑀𝑡−𝑑 𝑗
(𝑔 𝑗y) with respect to y and 𝑔 𝑗 is defined by

𝑀𝑡−𝑑 𝑗
(𝑔 𝑗y) (𝑘, 𝑙) :=

∑︁
𝛼

𝑔 𝑗,𝛼y𝛼+𝛽 .

Lasserre, Laurent, and Rostalski gave explicitly rank conditions

that guarantee us to find all real solutions of the polynomial sys-

tem (24) [30–32] by the semidefinite relaxation method. Let 𝑑 =

max𝑗=1,...,𝑚 𝑑 𝑗 , for 𝑡 ⩾ 𝑑 , define the convex set

𝐾R𝑡 :=

{
y ∈ RN

𝑛
2𝑡 |y0 = 1, 𝑀𝑡 (y) ⪰ 0, 𝑀𝑡−𝑑 𝑗

(𝑔 𝑗y) = 0, 𝑗 = 1, . . . ,𝑚

}
(26)

Proposition 1. [30, Proposition 4.4] Let 𝑡 ⩾ 𝑑 and y ∈ 𝐾R𝑡 for
which rank𝑀𝑡 (y) is maximum. If

rank𝑀𝑠 (y) = rank𝑀𝑠−1 (y) (27)

holds for some 2𝑑 ⩽ 𝑠 ⩽ 𝑡 , or

rank𝑀𝑠 (y) = rank𝑀𝑠−𝑑 (y) (28)

for some 𝑑 ⩽ 𝑠 ⩽ 𝑡 . Then 𝐼 (𝑉R (𝐼 )) = ⟨𝐾𝑒𝑟𝑀𝑠 (y)⟩, where 𝐼 =

⟨𝑔1, . . . , 𝑔𝑚⟩. Moreover, rank𝑀𝑠 (y) = |𝑉R (𝐼 ) |.

The following result is obtained by applying Proposition 1 to the

polynomial system with a unique real solution.

Theorem 3. If the polynomial system {𝑔1 (𝑥) = 0, . . . , 𝑔𝑚 (𝑥) = 0}
has a unique real solution, suppose y ∈ 𝐾R

𝑑
satisfies the flat ex-

tension condition (28), then the unique real solution can be read
from the first column of the truncated moment matrix 𝑀𝑑 (y) for
𝑑 = max𝑗=1,...,𝑚 ⌈deg(𝑔 𝑗 )/2⌉.

Proof. Since the flat extension condition (28) is satisfied, Corol-

lary 1.4 in [34] shows that the vector y ∈ 𝐾R
𝑑
can be extended to ỹ ∈

𝐾R :=
{
y ∈ RN𝑛 |y0 = 1, 𝑀 (y) ⪰ 0, 𝑀 (𝑔 𝑗y) = 0, 𝑗 = 1, . . . ,𝑚

}
, with

rank(𝑀 (ỹ)) = rank(𝑀𝑑 (y)) = rank(𝑀0 (y)) = 1. When the poly-

nomial system has a unique solution, rank(𝑀 (ỹ)) = 1 = |𝑉R (𝐼 ) |, ac-
cording to Proposition 1.1 in [30], 𝐼 (𝑉R (𝐼 )) = ker(𝑀 (ỹ)). Moreover,

Proposition 3.6 in [30] shows ker(𝑀 (ỹ)) = ⟨ker(𝑀𝑑 (y))⟩. NowThe-

orem 3.3 and Proposition 1.1 in [30] imply the unique solution 𝜉∗

can be recovered from the first column of𝑀𝑑 (y), whose (1, 1) entry
is 1, and 𝜉∗

𝑖
= 𝑀 (ỹ) (1, 𝑖 + 1) = 𝑀𝑑 (y) (1, 𝑖 + 1), 𝑖 = 2, . . . , 𝑛. □

Remark 4. For solving a zero-dimensional polynomial, it is well-
known that the flatness conditions in Proposition 1 will be satisfied
for some 𝑠 ≥ 𝑑 . In Theorem 3, y ∈ 𝐾R

𝑑
satisfying condition (28)

exists and is unique, which is exactly the moment sequence generated
by the Dirac measure 𝛿𝜉∗ , to be more concrete y𝛼 = (𝜉∗)𝛼 . When
condition (28) is achieved at 𝑡 = 𝑠 = 𝑑 , it is sufficient for recovering
the solution from 𝑀𝑑 (y), and the size of moment matrices for SDP
solvers is therefore bounded by

(𝑛+𝑑
𝑑

)
.

According to Theorem 3, to obtain the unique solution of 𝐼 , one

must find the truncated moment sequence y ∈ 𝐾R
𝑑

with rank 1.

Hence, finding the unique real solution of a polynomial system

is reduced to solving the rank-one moment matrix completion

problem. There are many well-knownmethods for solving low-rank

matrix completion problems [10–12, 14–16, 21, 23, 25, 48–50, 54, 66].

The nuclear norm of a matrix is the sum of the singular values

of the matrix. If the matrix is symmetric and positive semidefinite,

then its nuclear norm is equal to the trace of the matrix. In [54,

Theorem 2.2], Recht, Fazel, and Parrilo have shown that the nuclear

norm is the best convex lower approximation of the rank function

over the set of matrices with spectral norm less than or equal to 1.

Therefore, the problem of finding a rank-one moment matrix can

be relaxed to the following form:
min tr(𝑀𝑡 (y))
s. t. y0 = 1,

𝑀𝑡 (y) ⪰ 0,

𝑀𝑡−𝑑 𝑗
(𝑔 𝑗y) = 0, 𝑗 = 1, . . . ,𝑚

(29)

In [14, 15], Cossc and Demanet also show that when the rank-one

matrix completion problem has a unique solution, the second-order

semidefinite relaxation with minimization of the nuclear norm will

be enough for finding the unique solution. In [40, 68, 69], we have

shown that by solving the nuclear norm optimization problem (29),
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one can find some real solutions (not all solutions) for polynomial

systems more efficiently.

According to Theorem 1, the polynomial system 𝑄𝑛+1 has a

unique real solution. Hence, in the next section, instead of minimiz-

ing the constant objective function 1 in (25), we solve the nuclear

norm minimization problem (29) to find the unique real solution of

𝑄𝑛+1.

4 EXPERIMENTS
4.1 Algorithm Design
For simplicity, we assume that our data 𝐴∗ ∈ R𝑚×𝑛, 𝑦∗ ∈ R𝑛 are

generic in the sense of Theorem 1 and [63, Theorem 2]. This sec-

tion presents two symbolic algorithms and one symbolic-numeric

algorithm to solve the unlabeled sensing problem (1).

A straightforward attempt to recover 𝜉∗ is to solve the polyno-

mial system 𝑄𝑛 using Groebner basis [7–9], which is formalized as

the following algorithm. The experiment 4.2.1 was conducted on

Maple’s symbolic computation software, and Maple automatically

chose the monomial order, usually the reverse-graded lexicographic

order.

Algorithm 1: Groebner basis for solving square system𝑄𝑛

(4)

Input: 𝐴∗ ∈ Q𝑚×𝑛, 𝑦∗ ∈ Q𝑛 such that ∃𝜋 ∈ Σ𝑚 , the

permutation group, and 𝜋 (𝑦∗) ∈ im(𝐴∗), the image

space of 𝐴∗

Output: 𝜉∗ such that 𝐴∗𝜉∗ = 𝜋 (𝑦∗)
compute Groebner basis of the ideal 𝐼𝑛 = (𝑄𝑛), and
extracted the roots symbolically

𝑟𝑜𝑜𝑡𝑠 ← {𝜉 ∈ Q𝑛 |𝑞𝑖 (𝜉) = 0, 𝑖 = 1, . . . , 𝑛};
for 𝜉 ∈ 𝑟𝑜𝑜𝑡𝑠 do

if coordinates of 𝐴∗𝜉 are a permutation of 𝑦∗ then
return 𝜉∗ ← 𝜉

end
end

The complexity of solving zero-dimensional polynomial systems

in 𝑛 variables is known to be single exponential in 𝑛 [13, 19, 28],

even for well-behaved cases [20]. The complexity of examining

whether coordinates of 𝐴∗𝜉 are a permutation of 𝑦∗ is quasi-linear
in𝑚 using a quick sorting algorithm.

According to Theorem 1, the polynomial system 𝑄𝑛+1 has only
one solution. Experimental results in Section 4.2 show that it is far

more efficient to compute the Groebner basis for polynomial sys-

tems with only one solution. This observation leads to the following

algorithm 2.

Both algorithms above use symbolic computation. Given precise

input and clean measurement, the solution one obtains using these

two algorithms is exact. When the given data are corrupted by noise,

the perturbed polynomial system 𝑄𝑛+1 will have no solution as it

is an overdetermined polynomial system. However, in real-world

applications, all measurements are inevitably influenced by noise.

Therefore, a robust and efficient symbolic-numerical algorithm is

needed to deal with corrupted measurements 𝑦∗ one observes in
the unlabeled sensing problem. In Section 3, we have shown that

Algorithm 2: Groebner basis for solving overdetermined

system 𝑄𝑛+1 (3)

Input: 𝐴∗ ∈ Q𝑚×𝑛, 𝑦∗ ∈ Q𝑛 such that ∃𝜋 ∈ Σ𝑚 , the

permutation group, and 𝜋 (𝑦∗) ∈ im(𝐴∗), the image

space of 𝐴∗

Output: 𝜉∗ such that 𝐴∗𝜉∗ = 𝜋 (𝑦∗)
compute Groebner basis of the ideal 𝐼𝑛+1 = (𝑄𝑛+1), and
extracted the roots symbolically

𝑟𝑜𝑜𝑡𝑠 ← {𝜉 ∈ Q𝑛 |𝑞𝑖 (𝜉) = 0, 𝑖 = 1, . . . , 𝑛 + 1};
𝑟𝑜𝑜𝑡𝑠 = {𝜉∗};
return 𝜉∗

the unique solution of the polynomial system𝑄𝑛+1 can be obtained

by solving the rank-one moment matrix completion problem (29).

Below, we develop the rank-onemoment matrix completionmethod

for solving polynomial system 𝑄𝑛+1 (3) numerically.

Algorithm 3:Matrix completion solving overdetermined

system 𝑄𝑛+1 (3)

Input: 𝐴∗ ∈ R𝑚×𝑛, 𝑦∗ ∈ R𝑛 such that

∃𝜋 ∈ Σ𝑚, 𝜋 (𝑦∗) ∈ 𝑖𝑚(𝐴∗)
Output: 𝜉∗ such that 𝐴∗𝜉∗ = 𝜋 (𝑦∗)
solve SDP problem (29) for 𝑔𝑖 = 𝑞𝑖 to the relaxation order

𝑠 = ⌈(𝑛 + 1)/2⌉ to get the moment matrix𝑀𝑠

compute singular value decomposition of𝑀𝑠

[𝑈 , 𝑆,𝑉 ] ← 𝑠𝑣𝑑 (𝑀𝑠 );
select the first n+1 rows of𝑈

𝑥1 ← 𝑈 (1 : 𝑛 + 1, 1);
normalize 𝑥1 to recover 𝜉𝑠𝑑𝑝

𝜉𝑠𝑑𝑝 ← (𝜉 (𝑘) ← 𝑥1 (𝑘 + 1, 1)/𝑥1 (1, 1))𝑘=1,...,𝑛 ;
use EM method in [61] to refine 𝜉𝑠𝑑𝑝

𝜉𝐸𝑀 ← 𝐸𝑀 (𝜉𝑠𝑑𝑝 );
return 𝜉∗ ← 𝜉𝐸𝑀

Semidefinite programming problems can be solved using the

interior-point method [5], whose complexity is bounded by a poly-

nomial in the matrix size. There are well-developed software pack-

ages to solve SDP problems, for example, Sedumi [59] and SDP-

NAL+ [60].

The Expectation-Maximization (EM) method proposed in [63] is

an algebraic trick to refine the solution extracted from a numerical

polynomial system solver. By sorting 𝐴∗𝜉𝑠𝑑𝑝 and 𝑦∗, if the solution
extracted is accurate enough, one expects that 𝐴∗𝜉𝑠𝑑𝑝 and 𝑦∗ af-
ter sorting should match, hence recovers the permutation 𝜋 and

reduces the problem to classical linear regression. The numerical

precision of classical linear regression is determined by the condi-

tion number of 𝐴∗ and precision of 𝑦∗, which, in practice, can be

better controlled in numerical algorithms.

4.2 Symbolic and Numerical Experimental
Results

The experiments were conducted on a desktop with an Intel(R)

Core(TM) i9-10900X CPU @ 3.70GHz and 128 GB RAM. The matrix

entries of 𝐴∗ were randomly generated from standard Gaussian
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distribution in these experiments, and entries 𝜉∗ were generated
from a uniform distribution in (0, 1). Equations (𝑞𝑖 = 0)𝑖=1,...,𝑛+1
were then constructed from 𝐴∗, 𝜉∗, and possible noise. SDP in algo-

rithm 3 was solved using Sedumi [59]. Source codes are uploaded

on GitHub at unlabeled-sensing-ISSAC-2024.

4.2.1 symbolic algorithm 1 and 2, clean input data in Q, algorithm
performance on different 𝑛.

Experiment 4.2.1 compares the running time of algorithm 1

(TA1/s) and algorithm 2 (TA2/s) with different 𝑛 = 3, 4 . . . , 8, and𝑚

was set as 2𝑛, clean measurement. Algorithm 1 uses the square sys-

tem 𝑄𝑛 = {𝑞1 (𝑥) = 0, . . . , 𝑞𝑛 (𝑥) = 0}. Algorithm 2 uses the overde-

terimined system 𝑄𝑛+1 = {𝑞1 (𝑥) = 0, . . . , 𝑞𝑛 (𝑥), 𝑞𝑛+1 (𝑥) = 0}. All
of the Groebner basis computations are done in Maple.

Table 1: cpu time for Algorithm 1 and Algorithm 2, with
different 𝑛,𝑚 = 2𝑛.

𝑛 𝑇𝐴1/s 𝑇𝐴2/s
3 0.05 0.08

4 1.95 0.24

5 153.05 0.56

6 – 3.30

7 – 200.39

8 – 72549.63

Table 1 shows that as the number of variables and the degree

of the polynomial system increase, computing a Groebner basis

for the polynomial system 𝑄𝑛 or 𝑄𝑛+1 becomes more difficult. As

𝑄𝑛+1 has only one solution, its Groebner basis in lexicographic

order consists of 𝑛 linear polynomials 𝑥1 − 𝜉∗
1
, . . . , 𝑥𝑛 − 𝜉∗𝑛 . On the

other hand, the polynomial system 𝑄𝑛 has at most 𝑛! solutions;

its Groebner basis consists of a set of polynomials with higher de-

grees and larger coefficients. Therefore, solving the overdetermined

polynomial system 𝑄𝑛+1 is much faster than solving the square

polynomial system 𝑄𝑛 . When 𝑛 ⩾ 6, algorithm 1 could not return

the result within 24 hours and was terminated manually.

4.2.2 numerical algorithm 3, clean input data in R, algorithm per-
formance on different 𝑛.

The following experiments examine the performance of numeri-

cal algorithm 3. Since algorithm 3 computes the moment optimiza-

tion problem numerically, the relative error of the solution extracted

from the moment matrix is defined as 𝑒𝑟𝑟𝑠𝑑𝑝 :=
∥𝜉∗−𝜉𝑠𝑑𝑝 ∥2
∥𝜉∗ ∥2 , where

𝜉𝑠𝑑𝑝 represents the solution extracted by semidefinite programming

part of algorithm 3.

Experiment 4.2.2 examines the running time of algorithm 3

(TA3/s) with different 𝑛 = 3, 4, 5, 6, and𝑚 was set as 2𝑛, 𝑡 records

the relaxation order used in the semidefinite programming, 𝑟𝑎𝑛𝑘𝑠

records the rank sequence of the truncated moment matrix𝑀 , 𝑠𝑖𝑧𝑒

denotes the dimension of the truncated moment matrix for the

given relaxation order. In this experiment, no noise was imposed

on 𝑦.

Table 2 shows that as the number of variables and the degree of

polynomial rise, the time consumed to compute the moment matrix

increases. The rank sequence of the moment matrix𝑀 stabilizing

at 1 indicates that the semidefinite programming reaches the flat

extension criterion at the lowest relaxation order required, which

Table 2: CPU time, relative error of 𝜉𝑠𝑑𝑝 , rank sequence and
moment matrix size for Algorithm 3 with different 𝑛,𝑚 = 2𝑛.

𝑛 𝑡 𝑇𝐴3/s 𝑒𝑟𝑟𝑠𝑑𝑝 𝑟𝑎𝑛𝑘𝑠 𝑠𝑖𝑧𝑒

3 2 0.20 2.73E-08 1, 1, 1 10

4 3 1.88 6.53E-07 1, 1, 1, 1 35

5 3 5.58 1.62E-06 1, 1, 1, 1 56

6 4 290.95 4.93E-06 1, 1, 1, 1, 1 210

is ⌈(𝑛 + 1)/2⌉, therefore Theorem 3 guarantees that the solution ex-

tracted from the𝑀 is exactly the unique solution of the polynomial

system𝑄𝑛+1. When using clean measurement𝑦, the 𝑒𝑟𝑟𝑠𝑑𝑝 behaves

well and mildly increases as 𝑛 becomes larger for 𝑛 = 3, 4, 5, 6.

4.2.3 numerical algorithm 3, corrupted measurement 𝑦, algorithm
performance on different𝑚.

The following experiments included noise on measurement. For

real solution 𝜉∗, and clean measurement 𝑦∗ := 𝐴∗𝜉∗, noise 𝑦𝑐 was
assumed to be a Gaussian random vector with expectation 0 and

covariance matrix 𝜎2𝐼 , where 𝐼 denotes the 𝑛 × 𝑛 identity matrix.

The magnitude of noise in signal processing is measured using

signal-noise-ratio 𝑆𝑁𝑅 in decibels. In our experiments, 𝑆𝑁𝑅 can be

computed from the formula

𝑆𝑁𝑅 = 10

(
log

10

( 𝑛

3𝜎2

))
.

The equations generated using corrupted measurement 𝑦 :=

𝑦∗ + 𝑦𝑐 as
𝑞𝑖𝑐 := 𝑝𝑖 (𝐴∗𝑥) − 𝑝𝑖 (𝑦) = 0.

We further report the relative error of the solution refined by EM

algorithm [63] as 𝑒𝑟𝑟𝐸𝑀 :=
∥𝜉∗−𝜉𝐸𝑀 ∥2
∥𝜉∗ ∥2 . EM method is essentially a

sorting procedure. It sorts 𝑦 according to its coordinates to 𝑦𝑠𝑜𝑟𝑡 .

For possible solutions (𝑥𝑖 )𝑖 , compute𝐴𝑥𝑖 and sort its coordinations

to (𝐴𝑥𝑖 )𝑠𝑜𝑟𝑡 . The most likely solution should be the nearest one to

𝑦𝑠𝑜𝑟𝑡 . Hence, the permutation is determined accordingly. Once the

permutation is found, solving USP is reduced to solving a linear

system.

Experiment 4.2.3 examines the running time and relative error

of algorithm 3 with respect to𝑚 under the noise of 𝑆𝑁𝑅 = 60dB,

fixing 𝑛 = 4.𝑇𝐸𝑀 , 𝑇𝑠𝑑𝑝 record the CPU time of EM refinement and

solving SDP problem in algorithm 3, 𝑇𝐴3 = 𝑇𝐸𝑀 +𝑇𝑠𝑑𝑝 is the total

CPU time of algorithm 3.

Table 3: CPU time, and relative error of 𝜉𝐸𝑀 and 𝜉𝑠𝑑𝑝 for
algorithm 3 with different m, observation y is corrupted by
Gaussian random noise of 𝑆𝑁𝑅 = 60dB, 𝑛 = 4 fixed, 20 trials
median.

𝑚 𝑒𝑟𝑟𝐸𝑀 𝑒𝑟𝑟𝑠𝑑𝑝 𝑇𝐸𝑀/s 𝑇𝑠𝑑𝑝/s 𝑇𝐴3/𝑠
500 0.010% 0.141% 0.003 2.477 2.450

1000 0.006% 0.102% 0.003 2.586 2.589

2000 0.005% 0.125% 0.016 2.602 2.617

5000 0.006% 0.250% 0.188 2.672 2.859

Remark 5. Algorithm 3 may fail to find a good approximate solu-
tion using SDP solvers and EM refinement possibly cannot recover the
right permutation from the solution extracted from 𝜉𝑠𝑑𝑝 , leading to
the relative error of the solution returned by algorithm 3 diverging
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very far away from most of the trials. Here we manifest a typical
outlier on the condition 𝑛 = 4,𝑚 = 500, 𝑆𝑁𝑅 = 60dB, the median of
relative errors of the trials are 𝑒𝑟𝑟𝐸𝑀 = 0.016% and 𝑒𝑟𝑟𝑠𝑑𝑝 = 0.396%,
the outlier appeared in our experiment is 𝑒𝑟𝑟𝐸𝑀 = 165.957% and
𝑒𝑟𝑟𝑠𝑑𝑝 = 167.938%. For small 𝑛 = 4 and noise 𝑆𝑁𝑅 = 80dB or
𝑆𝑁𝑅 = 100dB, the proportion of the outliers is less than 5%. The
proportion of the outliers is between 5% and 35% for other 𝑛 and 𝑆𝑁𝑅,
increasing along with the number of variables and noise.

The outliers are mainly caused by noise interfering SDP algorithm.
The rank sequence of SDP relaxation without noise under the assump-
tion of a unique solution should stabilize at 1. However, in outliers, the
numerical rank sequence increases beyond 1 under a certain numer-
ical tolerance concerning the noise. Set 𝑛 = 4,𝑚 = 50, 𝑆𝑁𝑅 = 60dB
and tolerance 0.01 for the numerical rank. In 50 trials, 2 outliers were
recorded; these two outliers have numerical rank sequence 1, 3, 5, 5,
and 1, 2, 3, 3. Many factors may lead to the increase of the rank se-
quence. We observed that the scale of the coordinates of the real
solution 𝜉∗ varied acutely in two outliers. The outlier with numer-
ical rank sequence 1, 3, 5, 5 corresponds to the real solution 𝜉∗ =

(0.753, 0.081, 0.326, 0.879)𝑡 ; the outlier with rank sequence 1, 2, 3, 4
corresponds to the real solution 𝜉∗ = (0.414, 0.515, 0.004, 0.624)𝑡 .

Table 3 shows that the accuracy 𝑒𝑟𝑟𝑠𝑑𝑝 and 𝑒𝑟𝑟𝐸𝑀 of algorithm

3 is stable with different𝑚. As𝑚 increases, the time𝑇𝐴3 consumed

mildly rises because the EM refinement part of algorithm 3 needs to

sort more entries. However, compared with the sorting procedure,

the main computation in algorithm 3 occurs in solving the SDP

problem, which is irrelevant to𝑚. Therefore, 𝑇𝐴3 increases rather

slowly when𝑚 becomes larger. Table 3 also reveals that for𝑚 =

500 or 1000, the portion of time consumed on EM refinement is

insignificant in the overall time consumed; hence, the overall time

of algorithm 3 will be reported in further experiments, and the time

of EM refinement will be omitted in tables below.

4.2.4 numerical algorithm 3, corrupted measurement 𝑦, algorithm
performance on different magnitude of noise 𝑆𝑁𝑅, 𝑛 = 5, 6.

Experiment 4.2.4 examines for each 𝑛 the running time and

relative error of algorithm 3 with respect to the magnitude of noise,

fixing𝑚 = 500.

Table 4: CPU time, and relative error of 𝜉𝐸𝑀 and 𝜉𝑠𝑑𝑝 for
algorithm 3 with different magnitude of noise, 𝑛 = 5,𝑚 = 500

fixed, 20 trials median.

𝑆𝑁𝑅/dB 𝑇𝐴3/s 𝑒𝑟𝑟𝑠𝑑𝑝 𝑒𝑟𝑟𝐸𝑀

100 5.46 0.003% 0.003%

80 5.58 0.043% 0.021%

60 6.50 0.220% 0.010%

50 6.97 1.430% 0.058%

Tables 4, 5 show that as the noise builds up, the 𝑒𝑟𝑟𝑠𝑑𝑝 becomes

larger, and EM refinement technique successfully improves the

precision of the solution in all these experiments. For small noise

𝑆𝑁𝑅 = 100dB or 80dB, the 𝑒𝑟𝑟𝐸𝑀 is not sensitive to 𝑛. This is not so

strange because the precision of 𝜉𝐸𝑀 dependsmajorly on the sorting

procedure. When the noise is relatively small, with high probability

EM technique finds the right permutation 𝜋 . Once the permutation

Table 5: CPU time, and relative error of 𝜉𝐸𝑀 and 𝜉𝑠𝑑𝑝 for
algorithm 3 with different magnitude of noise, 𝑛 = 6,𝑚 = 500

fixed, 20 trials median.

𝑆𝑁𝑅/dB 𝑇𝐴3/s 𝑒𝑟𝑟𝑠𝑑𝑝 𝑒𝑟𝑟𝐸𝑀

100 185.83 0.002% 0.002%

80 184.59 0.023% 0.019%

60 253.38 0.546% 0.011%

50 220.52 1.224% 0.044%

𝜋 is deduced correctly, the precision of classical linear regression

only depends on the condition number of 𝐴 and the relative noise

∥ 𝑦𝑐
𝐴∗𝜉∗ ∥2 imposed on the measurement. For general 𝑛 = 5, 6, the

condition number of 𝐴 with random entries of standard normal

distribution behaves well, and the magnitude of relative noise is

less sensitive to 𝑛. Hence, the relative error after EM refinement

𝑒𝑟𝑟𝐸𝑀 behaves well in small noise circumstances.

4.2.5 comparison between algorithm AIEM [63] and algorithm 3.
Algorithm AIEM was introduced in [63]. AIEM uses homotopy

method [44] to solve the polynomial system 𝑄𝑛 (4). Homotopy

continuation method solves polynomial systems by transforming

the original system into a continuous path from an easily solvable

system to the desired one. It introduces an auxiliary parameter 𝑡 and

constructs a family of homotopy equations with 𝑡 , which smoothly

deforms from a known system to the target system to be solved.

The homotopy solver returns at most 𝑛! roots, among which the

real solution will be selected by EM sorting procedure. The relative

error for 𝜉ℎ𝑜𝑚𝑜 the solution from homotopy solver after selection

by sorting is defined as: 𝑒𝑟𝑟ℎ𝑜𝑚𝑜 :=
∥𝜉∗−𝜉ℎ𝑜𝑚𝑜 ∥2
∥𝜉∗ ∥2 .

Table 6: CPU time and relative error for AIEM and algorithm
3 with different 𝑛.𝑚 = 500, 𝑆𝑁𝑅 = 80dB, 20 trials median.

AIEM(homotopy) algorithm 3(SDP)

𝑛 𝑇𝐴𝐼𝐸𝑀/s 𝑒𝑟𝑟ℎ𝑜𝑚𝑜 𝑒𝑟𝑟𝐸𝑀 𝑇𝐴3/s 𝑒𝑟𝑟𝑠𝑑𝑝 𝑒𝑟𝑟𝐸𝑀

3 0.12 0.043% 0.012% 0.29 0.029% 0.016%

4 0.23 0.037% 0.016% 3.04 0.021% 0.019%

5 0.79 0.040% 0.014% 5.58 0.043% 0.021%

6 9.06 0.039% 0.019% 184.80 0.053% 0.011%

Table 6 shows that as 𝑛 increases, AIEM using the homotopy

solver HOM4PS2 [37] is more efficient than algorithm 3 using the

SDP solver Sedumi. The SDP solver Sedumi used in algorithm 3

implemented the traditional interior-point method in its inner it-

erations, which is numerically more stable but is relatively slow

compared to modern SDP solvers such as SDPNAL+. In [63], the

homotopy solver Bertini [3] was used to solve the polynomial sys-

tem 𝑄𝑛 , for 𝑛 = 6 AIEM needs 2243 seconds to return the solution.

Our experiments suggest that different software and implementa-

tions can influence the time and accuracy of AIEM and algorithm

3, which should be further examined and compared in the future.

4.2.6 Computational complexity analysis.

The complexity of solving a zero-dimensional polynomial system

using Groebner bases is single exponential 𝑑𝑂 (𝑛) [29], where 𝑑 is
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the degree of polynomials and 𝑛 is the number of variables. In the

context of unlabeled sensing and algorithm 1(𝑑 = 𝑛), 2(𝑑 = 𝑛 + 1),
the overall complexity of symbolic algorithm should be 𝑛𝑂 (𝑛) =
𝑂 (exp(𝑛 log𝑛)).

For general input, ∃𝑛! solutions for homotopy continuation al-

gorithm, and EM procedure picks one among the 𝑛! solutions [63].

Fixing the precision of the result, the complexity of the homotopy

continuation algorithm is proportional to the number of solutions,

providing a lower bound Ω(𝑛!).
For the SDP relaxation algorithm 3, the interior method costs

𝑂 (𝑁
√
𝑀), where 𝑁 is the cost of solving Newton system in iter-

ations, 𝑀 characterizes the scale of semi-definite constrains [47].

Denote 𝑚𝑠 as the size of the moment matrix. In the context of

unlabeled sensing and algorithm 3, 𝑁 = 𝑂 (𝑚6

𝑠 ), 𝑀 = 𝑂 (𝑚𝑠𝑛),
and 𝑚𝑠 ≤

(𝑛+𝑑
𝑑

)
=

(
2𝑛+1
𝑛

)
. Fixing the precision of results, an up-

per bound of the complexity of algorithm3 can be estimated as

𝑂

( (
2𝑛+1
𝑛

)6.5√
𝑛

)
. Comparing the complexity of homotopy continu-

ation algorithm and algorithm 3:

𝑐𝑜𝑠𝑡 (𝐻𝐶)
𝑐𝑜𝑠𝑡 (𝑆𝐷𝑃) = Ω

©­« 𝑛!(
2𝑛+1
𝑛

)6.5√
𝑛

ª®¬ ⊆ Ω(exp(𝑛)), (30)

we know that in the perspective of computational complexity, algo-

rithm 3 has an exponential speed-up over the homotopy continua-

tion algorithm.

For the case 𝑛 = 5, the homotopy continuation algorithm in

Bertini took half an hour to find 120 solutions [63], while the SDP

algorithm in Sedumi used only 5.58 seconds to find the unique

solution. In our experiment, we used HOM4PS2 to solve the poly-

nomial system, and it took only 0.79 seconds to find 120 solutions.

Different implementations seem to influence the actual runtime of

the algorithms. For low-rank matrix completion problems, there are

also other practical algorithms; future research should test other

implementations.

5 CONCLUSION
In this paper, we give a positive answer to the open problem 1 by

showing the polynomial system𝑄𝑛+1 consisting of the𝑛+1Newton
polynomials has a unique solution. The main Theorem 1 is proved

by considering the birationality of the algebraic morphisms defined

among several algebraic varieties. Since𝑄𝑛+1 has a unique solution,
the unlabeled sensing problem can be reduced to the classic rank-

one moment matrix completion problem, and the unique solution

can be recovered at the lowest relaxation order ⌈𝑛+1
2
⌉.

Enlightened by the main Theorem 1 and 3, we develop symbolic

and numerical algorithms 1, 2 and 3. Algorithm 1 and 2 are based

on the Groebner basis computation, and algorithm 3 is based on

semidefinite programming.

We test and compare the performance of these algorithms for

different 𝑛,𝑚 and 𝑆𝑁𝑅. Our experiments show that for clean input

without noise, algorithm 2 solving the overdetermined system𝑄𝑛+1
is faster than algorithm 1, 3 and the existing algorithm AIEM, as the

Groebner basis of the ideal generated by polynomials in 𝑄𝑛+1 has
simple linear form for lexicographic monomial order and graded

monomial order. For corrupted input data with noise, our experi-

ment shows that algorithm 3 can return an approximate solution

within several minutes. Besides, our experiments confirm the re-

sults in Theorem 3. The rank sequence of the moment matrices

in algorithm 3 stabilizes at 1 within the numeric tolerance when

using clean input data. However, we also notice that due to the

degree of the polynomial system 𝑄𝑛+1 is relatively high for the

moment relaxation method, algorithm 3 may fail to recover the

unique solution, which should be improved in the future.
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